On harmonic Hardy spaces and area integrals

By Stevo Stević

(Received Apr. 1, 2002)
(Revised Sept. 9, 2002)

Abstract

In this paper we prove several necessary and sufficient conditions for a harmonic function in the unit ball belong to $\mathscr{H}^{p}(B)$-Hardy harmonic space.

1. Introduction.

Throughout this paper $B(a, r)=\left\{x \in \boldsymbol{R}^{n}| | x-a \mid<r\right\}$ denotes the open ball centered at a of radius r, where $|x|$ denotes the norm of $x \in \boldsymbol{R}^{n}$ and B is the open unit ball in \boldsymbol{R}^{n}. $S=\partial B=\left\{x \in \boldsymbol{R}^{n}| | x \mid=1\right\}$ is the boundary of B. Let $d V$ denote the Lebesgue measure on $\boldsymbol{R}^{n}, d \sigma$ the surface measure on S, σ_{n} the surface area of $S, d V_{N}$ the normalized Lebesgue measure on $B, d \sigma_{N}$ the normalized surface measure on S.

For $f \in C^{1}(B)$ we define the area integral by

$$
\mathscr{A}(r, f)=\int_{r B}|\nabla f(x)|^{2} d V_{N}(x), \quad r \in[0,1),
$$

where $|\nabla f(x)|=\left(\sum_{1}^{n}\left|\partial f(x) / \partial x_{i}\right|^{2}\right)^{1 / 2}$, while

$$
I_{p}(r)=\int_{S}|f(r \zeta)|^{p} d \sigma_{N}(\zeta)
$$

Let $\mathscr{H}(B)$ denote the set of harmonic functions on $B, \mathscr{H}^{p}(B)$ denote the set of harmonic functions on B such that:

$$
\|u\|_{\mathscr{H}^{p}(B)}=\sup _{0<r<1}\left(\int_{S}|u(r \zeta)|^{p} d \sigma_{N}(\zeta)\right)^{1 / p}<+\infty
$$

Elements of $\mathscr{H}^{p}(B)$ theory can be found in [1, Chapter VI]. For elements of complex H^{p} theory see, for example, [2].

A function $f \in C^{1}(B)$ is said to be a Bloch function if

$$
\|f\|_{\mathscr{B}}=\sup _{x \in B}(1-|x|)|\nabla f(x)|<+\infty .
$$

The space of Bloch functions is denoted by $\mathscr{B}(B)$.
Let $p>0$. A Borel function f, locally integrable on B, is said to be a $B M O_{p}(B)$ function if

$$
\|f\|_{B M O_{p}}=\sup _{B(a, r) \subset B}\left(\frac{1}{V(B(a, r))} \int_{B(a, r)}\left|f(x)-f_{B(a, r)}\right|^{p} d V(x)\right)^{1 / p}<+\infty
$$

where the supremum is taken over all balls $B(a, r)$ in B, and $f_{B(a, r)}$ is the mean value of f over $B(a, r)$.

In [8] for $p \geq 1$, Muramoto proved that $\mathscr{B}(B) \cap \mathscr{H}(B)$ is isomorphic to $B M O_{p}(B) \cap$ $\mathscr{H}(B)$ as Banach spaces. That paper inspired us to calculate exactly $B M O_{p}$ norm for harmonic functions, which is theme of the [11].

In the proof of the main result in [11], we essentially proved a generalization of Hardy-Stein identity, see, for example, [5, p. 42]. This identity is included in the following lemma.

Lemma 1. Let $1<p<+\infty, u \in \mathscr{H}(B)$, then

$$
\begin{equation*}
\int_{S}|u(r \zeta)|^{p} d \sigma_{N}(\zeta)=|u(0)|^{p}+\frac{p(p-1)}{n(n-2)} \int_{r B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(|x|^{2-n}-r^{2-n}\right) d V_{N}(x), \quad n \geq 3 . \tag{1}
\end{equation*}
$$

We used this lemma in our investigations in [12]. In this note we continue investigate harmonic Hardy spaces $\mathscr{H}^{p}(B)$ using this lemma. In fact, we use the following corollary which is identity of Hardy-Stein type.

Corollary 1. Let $1<p<+\infty, u \in \mathscr{H}(B), r \in(0,1), n \geq 3$, then

$$
\begin{equation*}
\frac{d}{d r} \int_{S}|u(r \zeta)|^{p} d \sigma_{N}(\zeta)=\frac{p(p-1)}{n} r^{1-n} \int_{r B}|u(x)|^{p-2}|\nabla u(x)|^{2} d V_{N}(x) \tag{2}
\end{equation*}
$$

In the case of holomorphic functions in C^{n}, similar identity was proved in [13]. Another consequence of Lemma 11 is the following corollary (see [12, Theorem 1]).

Corollary 2. Let $1<p<+\infty$ and $n \geq 3$. A function $u \in \mathscr{H}(B)$ belongs to $\mathscr{H}^{p}(B)$ if and only if

$$
\int_{B}|u(x)|^{p-2}|\nabla u(x)|^{2}\left(1-|x|^{2}\right) d V_{N}(x)<+\infty
$$

In the sequel we keep our attention to the case $n \geq 3$. Analogous results hold in the case $n=2$. Formulations and proofs of these results we leave to the reader.

We say that

$$
\operatorname{con}(\varsigma, \alpha)=\left\{x \left\lvert\, \cos \alpha \leq \frac{\langle\varsigma, \varsigma-x\rangle}{|\varsigma-x|} \leq 1\right.\right\}
$$

is the cone with vertex at $\varsigma \in S$, axis coincident with the vector ς, and half-angle α. Let $\operatorname{con}_{0}(z, \alpha)$ denote the cone with vertex at 0 , axis coincident with the vector z, and halfangle α; that is

$$
\operatorname{con}_{0}(z, \alpha)=\left\{y \left\lvert\, \cos \alpha \leq \frac{\langle y, z\rangle}{|y||z|} \leq 1\right.\right\} .
$$

The cone $\operatorname{con}_{0}(z, \alpha)$ determines a closed polar cap $\operatorname{cap}(z, \alpha)=\operatorname{con}_{0}(z, \alpha) \cap S$ having center z and spherical angle α.

Let $\mathscr{S}_{\alpha}(x)$ denote the Stoltz domain i.e.

$$
\mathscr{S}_{\alpha}(x)=\left(\operatorname{con}\left(\frac{x}{|x|}, \alpha\right) \cap \operatorname{con}_{0}\left(x, \frac{\pi}{2}-\alpha\right)\right) \cup B(0, \sin \alpha) .
$$

Let G be a subdomain of the unit disk U in the complex plane such that the boundary of G has the only one point 1 in common with the unit circle. Assume that there exists $r_{0} \in(0,1)$, depending on G, such that the intersection of G with each circle $\{|z|=r\}, r_{0}<r<1$, is of linear measure $r \phi(r)$, where

$$
\liminf _{r \rightarrow 1} \frac{\phi(r)}{1-r}>0
$$

and

$$
\limsup _{r \rightarrow 1} \frac{\phi(r)}{1-r}<\infty
$$

Let \mathscr{G} be the family of all domains G of the type described above. A typical example of G is a triangular domain in U with one vertex at 1 which we call, for short, a triangular domain at 1 . Denoting

$$
G(\theta)=\left\{z \in U \mid e^{-i \theta} z \in G\right\}, \quad \theta \in[0,2 \pi],
$$

we say that a holomorphic function f in U satisfies the p-Lusin property with respect to $G \in \mathscr{G}$ if

$$
L_{p}(f, G, \theta)=\frac{p^{2}}{4} \iint_{G(\theta)}|f(z)|^{p-2}\left|f^{\prime}(z)\right|^{2} d x d y
$$

is summable with respect to θ on $[0,2 \pi](0<p<\infty)$. In [14] Yamashita proved the following theorem.

Theorem A. Let f be a function holomorphic in the unit disc and let $0<p<+\infty$. If $f \in H^{p}$, then f has the p-Lusin property with respect to a certain triangular domain of class \mathscr{G}. Conversely, if f has the p-Lusin property with respect to a certain triangular domain of class \mathscr{G}, then $f \in H^{p}$.

Case $p=2$ was previously considered by N. Lusin [7], and G. Piranian and W. Rudin [10, Theorem 1], by the coefficients of Taylor expansion of f about 0 . Yamashita's proof is different from Lusin's, and Piranian-Rudin's, and it is based on Hardy-Stein identity.

First, we prove theorem of this type in the case of harmonic functions which are defined on B. Before we formulate this result we need a definition.

Definition 1. We say that u satisfies p-Lusin property with respect to Stoltz domain $S_{\alpha}\left(\zeta_{0}\right), \zeta_{0} \in S$, if

$$
L_{p}\left(u, S_{\alpha}(\zeta)\right)=\int_{S_{\alpha}(\zeta)}(1-|x|)^{2-n}|u(x)|^{p-2}|\nabla u(x)|^{2} d V_{N}(x), \quad n \geq 3
$$

is summable with respect $\zeta \in S, p \in(0, \infty)$.
Thus, it follows that $L_{p}\left(u, S_{\alpha}(\zeta)\right)<+\infty$ for almost every $\zeta \in S$.
The following theorem is a generalization of Theorem A.
Theorem 1. Let $u \in \mathscr{H}(B), p>1$. If $u \in \mathscr{H}^{p}(B)$, then u has the p-Lusin property
with respect to a certain Stoltz domain. Conversely, if u has the p-Lusin property with respect to a certain Stoltz domain, then $u \in \mathscr{H}^{p}(B)$.

In [6] the authors proved the following theorem: Let f be holomorphic in U. Then, if $0<p \leq 2$,

$$
f \in H^{p}(U) \Rightarrow \int_{0}^{1} A^{p / 2}(r, f) d r<\infty
$$

while if $p \geq 2$,

$$
\int_{0}^{1} A^{p / 2}(r, f) d r<\infty \Rightarrow f \in H^{p}(U)
$$

where $A(r, f)=\int_{|z| \leq r}\left|f^{\prime}(z)\right|^{2} d x d y$.
The main result in this paper is the following analogous, but slightly less perfect result for harmonic functions in the unit ball.

Theorem 2. Let $u \in \mathscr{H}(B)$, and $\varepsilon>0$. Then, if $p \in(1,2]$,

$$
u \in \mathscr{H}^{p}(B) \Rightarrow \int_{0}^{1}(1-r)^{(n-2+\varepsilon)(2-p) / 2} \mathscr{A}^{p / 2}(r, u) d r<\infty
$$

while if $p>2$,

$$
\int_{0}^{1}(1-r)^{(n-2+\varepsilon)(2-p) / 2} \mathscr{A}^{p / 2}(r, u) d r<\infty \Rightarrow u \in \mathscr{H}^{p}(B)
$$

Since complex analytic methods (the factorisation of zeros) are not available to establish sharp lower bounds for the integral average $I_{p}(r)$ in terms of the maximal function $M(r)$ there is an ε loss at one point.

2. Proof of Theorem 1.

In order to prove Theorem 1 we need an auxiliary result which is incorporated in the following lemma.

Lemma 2. Let $S_{\alpha}\left(\zeta_{0}\right), \zeta_{0} \in S$ be a Stoltz domain in $B, \chi(x, \zeta)$ the characteristic function of $S_{\alpha}(\zeta), \zeta \in S$, that is $\chi(x, \zeta)=1$ if $x \in S_{\alpha}(\zeta)$ and $\chi(x, \zeta)=0$ otherwise, and

$$
\phi(x)=\int_{S} \chi(x, \zeta) d \sigma(\zeta), \quad x \in B
$$

Then

$$
\phi(x) \asymp c_{\alpha}(1-|x|)^{n-1} .
$$

Proof. Let $x \in B$ be fixed. Then $\phi(x)$ is the surface measure of a polar cap. Let β denote its half angle. By well known formula we have

$$
\phi(x)=\sigma\left(\operatorname{cap}\left(\frac{x}{|x|}, \beta\right)\right)=\sigma_{n-1} \int_{0}^{\beta} \sin ^{n-2} \theta d \theta .
$$

From this, for $\beta \in[0, \pi / 2]$, we obtain

$$
\frac{\sigma_{n-1}}{n-1}\left(\frac{2}{\pi}\right)^{n-2} \beta^{n-1} \leq \sigma_{n-1} \int_{0}^{\beta} \sin ^{n-2} \theta d \theta \leq \frac{\sigma_{n-1}}{n-1} \beta^{n-1}
$$

Let c denote the side of the triangle in which other two sides have lengths 1 and $r=|x|$, and where the angle between c and the side which has length 1 is α. Then β is the angle between the sides with length 1 and r. Let us show that for x such that $|x|>\sin \alpha$, the inequalities

$$
\begin{equation*}
c_{1} \beta \leq 1-|x| \leq c_{2} \beta \tag{3}
\end{equation*}
$$

hold, for some $c_{1}, c_{2}>0$.
By the cosine theorem we obtain

$$
|c|=\frac{1-r^{2}}{\cos \alpha+\sqrt{r^{2}-\sin ^{2} \alpha}} .
$$

On the other hand by the sine theorem we have

$$
\frac{\sin \beta}{\left(1-r^{2}\right) /\left(\cos \alpha+\sqrt{r^{2}-\sin ^{2} \alpha}\right)}=\frac{\sin \alpha}{r} .
$$

Hence

$$
\frac{1}{2} \tan \alpha \leq \frac{\sin \beta}{1-|x|} \leq \frac{2}{\cos \alpha}
$$

from which (3) follows in this case. For $x \in \overline{B(0, \sin \alpha)}$ the inequalities (3) are trivial. From which the result follows.

Proof of Theorem 1. Let $S_{\alpha}\left(\zeta_{0}\right), \zeta_{0} \in S$ be a Stoltz domain in B and $\chi(x, \zeta)$ the characteristic function of $S_{\alpha}(\zeta), \zeta \in S$. It is clear that

$$
\phi(x)=\int_{S} \chi(x, \zeta) d \sigma(\zeta), \quad x \in B
$$

is the surface measure of the set $\left\{\zeta \mid x \in S_{\alpha}(\zeta)\right\}$ and that $\phi(x)$ is a radial function i.e. $\phi(x)=\phi(|x|)$.

We have

$$
\begin{aligned}
L_{p} & =\int_{S} L_{p}\left(u, S_{\alpha}(\zeta)\right) d \sigma(\zeta) \\
& =\int_{B}\left[\int_{S} \chi(x, \zeta) d \sigma(\zeta)\right](1-|x|)^{2-n}|u(x)|^{p-2}|\nabla u(x)|^{2} d V_{N}(x)
\end{aligned}
$$

By Lemma 2 we have

$$
\int_{S} \chi(x, \zeta) d \sigma(\zeta) \asymp c_{\alpha}(1-|x|)^{n-1}
$$

Thus, integral L_{p} is equiconvergent to the integral

$$
\int_{B}(1-|x|)|u(x)|^{p-2}|\nabla u(x)|^{2} d V_{N}(x) .
$$

By Corollary 2 we obtain our result.

3. Proof of the main result.

We divide the proof of Theorem 2 into several steps. The following lemma is an inequality of Riesz-Fejér type, see [3], [4] and [9].

Lemma 3. Let $u \in \mathscr{H}(B)$ and $\varepsilon>0$. Then

$$
\int_{0}^{r}(r-\rho)^{n-2+\varepsilon} M(\rho)^{p} d \rho \leq c_{p, n, \varepsilon} r^{n-1+\varepsilon} I_{p}(r), \quad p>1
$$

for some $c_{p, n, \varepsilon}>0$, which depends only on p, n and ε, and all $r \in(0,1)$, where

$$
M(r)=M(r, u)=\sup \{|u(x)|| | x \mid=r\} .
$$

Proof. We may suppose that $r=1$ and $u(0)=0$. By Poisson integral formula we have

$$
u(x)=\int_{\partial B} \frac{1-|x|^{2}}{|x-\zeta|^{n}} u(\zeta) d \sigma_{N}(\zeta), \quad x \in B
$$

By Jensen's and Harnack's inequalities we obtain

$$
|u(x)|^{p} \leq \int_{\partial B} \frac{1-|x|^{2}}{|x-\zeta|^{n}}|u(\zeta)|^{p} d \sigma_{N}(\zeta) \leq \frac{2\|u\|_{\mathscr{H}}^{p}(B)}{(1-|x|)^{n-1}},
$$

i.e.

$$
|u(x)|^{p}(1-|x|)^{n-1} \leq 2\|u\|_{\mathscr{H}^{p}(B)}^{p} .
$$

From this we obtain

$$
M^{p}(\rho)(1-\rho)^{n-1} \leq 2\|u\|_{\mathscr{H} P^{p}(B)}^{p}, \quad \text { for } \rho \in(0,1)
$$

Multiplying the last formula by $(1-\rho)^{-1+\varepsilon}$ and then integrating from 0 to 1 we obtain the desired inequality.

Lemma 4. Let $u \in \mathscr{H}(B)$, and $\varepsilon>0$. If $p \in(1,2]$, and $u(0)=0$,

$$
I_{p}(r) \geq c_{p, n, \varepsilon} \int_{0}^{r}\left(\frac{\mathscr{A}(\rho, u)}{\rho^{n-1}}\right)^{p / 2}(r-\rho)^{(n-2+\varepsilon)(2-p) / 2} d \rho
$$

while if $p>2$,

$$
I_{p}(r) \leq 2^{(p-2) / 2}|u(0)|^{\left(p^{2}-p+2\right) / 2}+c_{p, n, \varepsilon} \int_{0}^{r}\left(\frac{\mathscr{A}(\rho, u)}{\rho^{n-1}}\right)^{p / 2}(r-\rho)^{(n-2+\varepsilon)(2-p) / 2} d \rho
$$

for some $c_{p, n, \varepsilon}>0$ which depends only of p, n and ε.
Proof. If $p \in(1,2]$, then

$$
\mathscr{A}(r, u)=\int_{r B}|\nabla u(x)|^{2} d V(x) \leq M(r)^{2-p} \int_{r B}|u(x)|^{p-2}|\nabla u(x)|^{2} d V_{N}(x) .
$$

From this and by Corollary 1 we obtain

$$
\frac{p(p-1)}{n} \mathscr{A}(r, u) \leq M(r)^{2-p} r^{n-1} I_{p}^{\prime}(r),
$$

where $I_{p}^{\prime}(r)$ is derivative of $I_{p}(r)$.
Multiplying by $(r-\rho)^{(n-2+\varepsilon)(2-p) / p}$ and applying again Hölder's inequality and Lemma 3 we obtain

$$
\begin{aligned}
& \left(\frac{p(p-1)}{n}\right)^{p / 2} \int_{0}^{r}\left(\frac{\mathscr{A}(\rho, u)}{\rho^{n-1}}(r-\rho)^{(n-2+\varepsilon)(2-p) / p}\right)^{p / 2} d \rho \\
& \quad \leq \int_{0}^{r}(r-\rho)^{(n-2+\varepsilon)(2-p) / 2} M(\rho)^{(2-p) p / 2}\left(I_{p}^{\prime}(\rho)\right)^{p / 2} d \rho \\
& \quad \leq\left(\int_{0}^{r}(r-\rho)^{n-2+\varepsilon} M(\rho)^{p} d \rho\right)^{(2-p) / 2}\left(I_{p}(r)-I_{p}(0)\right)^{p / 2} \\
& \quad \leq c_{p, n, \varepsilon}^{(2-p) / 2} I_{p}(r),
\end{aligned}
$$

as desired.
For $p>2$, by Corollary 1 we have

$$
\begin{aligned}
\frac{d}{d r} \int_{S}|u(r \zeta)|^{p} d \sigma_{N}(\zeta) & =\frac{p(p-1)}{n} r^{1-n} \int_{r B}|u(x)|^{p-2}|\nabla u(x)|^{2} d V_{N}(x) \\
& \leq \frac{p(p-1)}{n} r^{1-n} M(r)^{p-2} \int_{r B}|\nabla u(x)|^{2} d V_{N}(x) \\
& =\frac{p(p-1)}{n} r^{1-n} M(r)^{p-2} \mathscr{A}(r, u) .
\end{aligned}
$$

By integration we obtain

$$
I_{p}(r) \leq|u(0)|^{p}+\frac{p(p-1)}{n} \int_{0}^{r} \rho^{1-n} M(\rho)^{p-2} \mathscr{A}(\rho, u) d \rho .
$$

By Hölder's inequality and Lemma 3 we get

$$
\begin{aligned}
I_{p}(r) \leq & |u(0)|^{p}+\frac{p(p-1)}{n}\left(\int_{0}^{r}(r-\rho)^{n-2+\varepsilon} M(\rho)^{p} d \rho\right)^{(p-2) / p} \\
& \times\left(\int_{0}^{r}\left(\frac{\mathscr{A}(\rho, u)}{\rho^{n-1}}\right)^{p / 2}(r-\rho)^{(n-2+\varepsilon)(2-p) / 2} d \rho\right)^{2 / p} \\
\leq & |u(0)|^{p}+\frac{p(p-1)}{n} c_{p, n, \varepsilon}^{(p-2) / p} I_{p}(r)^{(p-2) / p} \\
& \times\left(\int_{0}^{r}\left(\frac{\mathscr{A}(\rho, u)}{\rho^{n-1}}\right)^{p / 2}(r-\rho)^{(n-2+\varepsilon)(2-p) / 2} d \rho\right)^{2 / p}
\end{aligned}
$$

Hence

$$
I_{p}(r)^{2 / p} \leq|u(0)|^{\left(p^{2}-p+2\right) / p}+\frac{p(p-1)}{n} c_{p, n, \varepsilon}^{(p-2) / p}\left(\int_{0}^{r}\left(\frac{\mathscr{A}(\rho, u)}{\rho^{n-1}}\right)^{p / 2}(r-\rho)^{(n-2+\varepsilon)(2-p) / 2} d \rho\right)^{2 / p}
$$

From this the result follows in this case.
Proof of Theorem 2. It is an easy consequence of Lemma 4.
Corollary 3. Let $u \in \mathscr{H}^{p}(B)$ and $\varepsilon>0$. Then for $p \in(1,2]$

$$
\lim _{r \rightarrow 1}(1-r)^{((n-2+\varepsilon)(2-p)+2) / p} \mathscr{A}(r, u)=0 .
$$

Proof. For $u \in \mathscr{H}^{p}(B), p \in(1,2]$, it follows from Theorem 2 that

$$
\int_{0}^{1}(1-r)^{(n-2+\varepsilon)(2-p) / 2} \mathscr{A}^{p / 2}(r, u) d r<\infty .
$$

Since $\mathscr{A}(r, u)$ is nondecreasing we have

$$
\mathscr{A}(r, u)^{p / 2} \int_{r}^{1}(1-\rho)^{(n-2+\varepsilon)(2-p) / 2} d \rho \leq \int_{r}^{1}(1-\rho)^{(n-2+\varepsilon)(2-p) / 2} \mathscr{A}^{p / 2}(\rho, u) d \rho
$$

i.e.

$$
(1-r)^{((n-2+\varepsilon)(2-p)+2) / 2} \mathscr{A}(r, u)^{p / 2} \leq c_{p, n, \varepsilon} \int_{r}^{1}(1-\rho)^{(n-2+\varepsilon)(2-p) / 2} \mathscr{A}^{p / 2}(\rho, u) d \rho \rightarrow 0
$$

as $r \rightarrow 1$, from which the result follows.
A more precise result holds in the case of functions holomorphic in the unit disk, namely if $f \in H^{p}(U), 0<p \leq 2$, then

$$
\lim _{r \rightarrow 1}(1-r)^{2 / p} A(r, f)=0 ;
$$

see Theorem 2] in [15].

References

[1] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Grad. Texts in Math., 137, SpringerVerlag, New York 1992.
[2] P. L. Duren, Theory of H^{p} spaces, Academic Press, New York, 1970.
[3] L. Fejér and F. Riesz, Über einige funktionien theoretische Ungleichungen, Math. Z., 11 (1921), 305-314.
[4] G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z., 34 (1931), 403-439.
[5] W. Hayman, Multivalent functions, Cambridge Univ. Press, London, 1958.
[6] F. Holland and J. B. Twomey, On Hardy classes and area function, J. London Math. Soc. (2), 17 (1978), 275-283.
[7] N. Lusin, Sur une propriété des fonctions à carre sommable, Bull. Calcutta Math. Soc., 20 (1930), 139-154.
[8] K. Muramoto, Harmonic Bloch and BMO functions on the unit ball in several variables, Tokyo J. Math., 11, no. 2 (1988), 381-386.
[9] J. W. Noonan and D. K. Thomas, The integral means of regular functions, J. London Math. Soc. (9), 9 (1975), 557-560.
[10] G. Piranian and W. Rudin, Lusin's theorem on areas of conformal maps, Michigan Math. J., 3 (1955-56), 191-199.
[11] S. Stević, An equivalent norm on BMO spaces, Acta Sci. Math. (Szeged), 66 (2000), 553-564.
[12] S. Stević, On harmonic Hardy and Bergman spaces, J. Math. Soc. Japan, 54 (2002), 983-996.
[13] M. Stoll, A characterization of Hardy spaces on the unit ball of \boldsymbol{C}^{n}, J. London Math. Soc. (2), 48 (1993), 126-136.
[14] S. Yamashita, Criteria for functions to be of Hardy class H^{p}, Proc. Amer. Math. Soc., 75 (1979), 69-72.
[15] S. Yamashita, Holomorphic functions and area integral, Boll. Un. Mat. Ital. A. 6, 1-A (1982), 115120.

Stevo Stević
Faculty of Mathematics
University of Belgrade
Studentski Trg 16
11000 Beograd, Serbia
Yugoslavia
E-mail: sstevic@ptt.yu; sstevo@matf.bg.ac.yu

