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Abstract. We consider a simple model which is a caricature of a crystal interacting

with a radiation field. The model has two bands of continuous spectrum and the particle

can pass from the upper one to the lower by radiating a photon, the coupling between the

excited and deexcited states being of a Friedrichs type. Under suitable regularity and

analyticity assumptions we find the continued resolvent and show that for weak enough

coupling it has a curve-type singularity in the lower halfplane which is a deformation of

the upper-band spectral cut. We then find a formula for the decay amplitude and show

that for a fixed energy it is approximately exponential at intermediate times, while the tail

has a power-like behaviour.

1. Introduction.

A mathematical theory of decay and resonance processes in quantum theory has a

long history which started from the well known Friedrichs model [1]. Formulated more

than half a century ago, it was a departure point from which the perturbation theory of

a continuous spectra was developed. Various generalizations of the Friedrichs method,

which we will briefly review below together with alternative approaches to the prob-

lem, dealt mostly with situation when the unperturbed system had discrete eigenvalues

embedded in the continuum. After several decades of fruitful investigations one can say

that this problem is now well understood.

This is not the case for the situation when the unperturbed spectrum has two over-

lapping continuous components and the perturbation couples the corresponding spectral

subspaces. It is the aim of the present paper to investigate such a situation in the frame-

work of a simple and physically interesting model, which can be regarded as a con-

tinuous analogy of the original Friedrichs problem. As the latter, our model is solvable

in the sense that we will be able to find the resolvent of the operator H in question, and

to study its properties by means of analytic continuation. We will be also able to derive

properties of the corresponding evolution group t 7! expð�iHtÞ.

Let us first say a few words about the history. As indicated, it started from [1]

and was pursued later in numerous papers—see, e.g. [2], [3]. A systematic study of the

problem started in the seventies. J. Howland and H. Baumgärtel with collaborators—

see [4], [5], [6], [7] and the papers quoted there—used operator methods to establish

the existence of resonance poles and to prove the Fermi rule for various systems with

perturbed embedded eigenvalues. At the same time the seminal paper [8] by J. Aguilar
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and J.-M. Combes initiated the development of complex-scaling methods which are now-

adays a very e‰cient tool to study resonances of Schrödinger operators.

In the eighties many papers dealing with quantum-field decay models appeared. A

phenomenological models based on the Langevin equation were investigated in [9], [10],

[11] and [12]. Moreover a generalization of them was given by A. Arai [13] within the

Hamiltonian formalism. In a last few years the long-time behavior of canonical cor-

relation functions for general Hamiltonians was investigated in [14] by applying the

results of [13] and [15] via a quantum Langevin equation. From the point of view of

virtual transitions, the long-time behavior of a correlation function was studied in [16].

It is also worth noticing that, revisiting the decay problem, Bach, Fröhlich, and Sigal

have developed a new manner to analyze the resonance problems for a class of models

in quantum electrodynamics [17], [18].

As we have said, in most of these models the unstable states come from pertur-

bation of eigenvalues, either embedded in the continuous spectrum or isolated as in the

case of Stark e¤ect. Much less attention has been paid to the situation when the states

which should decay belong to the continuous spectrum of the unperturbed Hamiltonian.

It is a sort of surprising because this case is of no less physical interest; an archetypal

example of such a situation is a crystal in which an electron can radiate a photon and

pass to a lower spectral band. A natural model in this case would be a Schrödinger

operator with a periodic potential coupled to a quantized field. This is not easy, how-

ever. To start with a simpler case, we discuss in this paper a model of Friedrichs type

with transitions between two bands of the absolutely continuous spectra which can be

regarded as a one-photon approximation of the more realistic description.

While perturbed embedded eigenvalues typically give rise to resonance poles in the

analytically continued resolvent, we are going to show that in the mentioned model

the cut-like singularity corresponding to the ‘‘excited’’ spectral band gets deformed to

the lower complex halfplane. Recall that a similar behavior has been observed in a

completely di¤erent type of systems which involve a perturbation of a band spectrum,

namely for scattering in finitely periodic systems [19]. Here we have a situation with

a finite number of resonances which accumulate, however, along curves in the lower

halfplane which are close to the spectral bands of the infinite system when the inter-

action is weak.

Let us describe briefly the contents of the paper. After formulating the model in

the next section we shall compute in Section III the projection of the Hamiltonian

resolvent onto the subspace of excited states corresponding to the upper spectral band

of the ‘‘crystal’’. Under natural regularity assumptions we prove the mentioned claim

about the change of the spectral singularity caused by a decay with the radiation of a

‘‘photon’’.

Then we turn to the time evolution of the undecayed state and show that its pro-

jection onto the upper-band subspace is—at least for a weak enough coupling—realized

as multiplication by a function which we evaluate explicitly. The rest of the paper is

devoted to properties of this decay amplitude. We show that in the weak-coupling case

the latter is dominated at intermediate times by an exponential function. Hence the

population of the excited spectral band changes in the course of the evolution: the wave-

function components supported in the regions where the deformed singularity is closer
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to the real axis survive longer. On the other hand, similarly to the usual decay theory,

the deexcitation process cannot be purely exponential; we show that the decay amplitude

has a power-like tail at long times.

Before passing to the description of the model, let us say a few words about the

assumptions we will use. Some of them define the model and come from the physical

considerations underlying it. However, most of the assumptions are technical and for-

mulated at appropriate places of the text. They are designed not to be the weakest pos-

sibility but to carry out our considerations with a reasonable degree of brevity. In spite

of that the list of used assumptions is not short. To make the presentation more

reader-friendly, we formulate in the closing section a shorter list of four stronger

hypotheses which imply all of the assumptions (a1-13) used throughout the paper.

2. Description of the model.

The ‘‘crystal part’’ of our model is assumed to have the simplest nontrivial spec-

trum consisting of a pair of disjoint absolutely continuous bands I0 ¼ ½x
ð�Þ
0 ; x

ðþÞ
0 � and

I1 ¼ ½x
ð�Þ
1 ; x

ðþÞ
1 � with �y < x

ð�Þ
0 < x

ðþÞ
0 < x

ð�Þ
1 < x

ðþÞ
1 < y. Using the spectral represen-

tation [20] we can assume without loss of generality that the crystal state space is

L2ðI1 U I0;wðxÞ dxÞ with the Hamiltonian Hc acting as multiplication by the variable x;

the weight function w is positive almost everywhere, Lebesgue integrable, and satisfies

ð

I1UI0

wðxÞ dx ¼ 1:

As we have said the ‘‘field part’’ is represented by the vacuum and one-photon (or

phonon) states, which coexist with the upper and lower band of the ‘‘crystal’’, respec-

tively. The photon vacuum is by assumption a single state of zero energy, while the

single-photon states belong to the space L2ð½n;yÞ;oðzÞ dzÞ, nb 0, on which the free

Hamiltonian Hp acts as a multiplication by the variable z. The weight function o is

again Lebesgue integrable, non-negative a.e., and satisfies

ðy

n

oðzÞ dz ¼ 1:

Putting the two components together we get the total state space of our model in the

form

H ¼ H0 lH1 :¼ L2ðI1;w1ðxÞ dxÞl ½L2ðI0;w0ðyÞ dyÞnL2ðK ;oðzÞ dzÞ�; ð2:1Þ

where K ¼ ½n;yÞ and wa :¼ w Z Ia, a ¼ 0; 1. The free Hamiltonian acts as

H0
f

g

� �

¼
Hc f

ðHc n I þ I nHpÞg

� �

which means

H0
f

g

� �� �

x

y; z

� �

¼
xf ðxÞ

ðyþ zÞgðy; zÞ

� �

ð2:2Þ

with the arguments x A I1, y A I0, and z A K .
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Next we have to choose the interaction part of the Hamiltonian. Being inspired by

the Friedrichs model we require

(i) the interaction includes necessarily a single photon emission/absorption, or in

other words, the projections of Hint on L2ðI1;w1ðxÞ dxÞ and its orthogonal com-

plement in H are zero,

(ii) the interaction is ‘‘minimal’’ in the sense that the action of Hint can be written

in terms of multiplication by a ‘‘formfactor’’, integration, and possibly a change

of variables.

It follows from (i) that Hint ¼ kL with an interaction constant k and an ‘‘o¤-diagonal’’

operator L, where Lij : Hj ! Hi, i.e.

Hint
f

g

� �� �

x

y; z

� �

¼ k
ðL01gÞðxÞ

ðL10 f Þðy; zÞ

� �

: ð2:3Þ

Furthermore, in accordance with (ii) the operator L10 should be chosen in the form

ðL10 f Þðy; zÞ ¼ lðy; zÞ f ðuðy; zÞÞ; ð2:4Þ

where l : I0 � K ! C and u : I0 � K ! I1 are measurable functions containing the

dynamical information about the system. This choice in turn restricts L01 because the

full Hamiltonian (with a real coupling constant k) must be symmetric, which means

ð

I1

f ðxÞðL01gÞðxÞw1ðxÞ dx ¼

ð ð

I0�K

lðy; zÞ f ðuðy; zÞÞgðy; zÞw0ðyÞoðzÞ dydz ð2:5Þ

for all f and g from the operator domain. Suppose now that there are functions u; v

such that ðy; zÞ 7! ðuðy; zÞ; vðy; zÞÞ : I0 � K ! I1 � K is a bijective di¤eomorphism which

can be used as a substitution at the right-hand side of (2.5) leading to

ðL01gÞðxÞw1ðxÞ ¼

ð

K

lðy; zÞgðy; zÞ
Dðy; zÞ

Dðu; vÞ

�

�

�

�

�

�

�

�

w0ðyÞoðzÞ dt; ð2:6Þ

the variables y; z being expressed as the inverse of x ¼ uðy; zÞ and t ¼ vðy; zÞ at the

right-hand side.

Remarks 2.1. (a) For the sake of simplicity, assume that u depends on a single

variable mapping I0 onto I1. This will reduce the dependence of the transition between

a pair of states in I1 and I0, respectively, on the photonic component of the system.

(b) In the same vein we could suppose that

lðy; zÞ ¼ l0ðyÞlKðzÞ ð2:7Þ

which will turn H0 þHint—up to the isomorphism between I1 and I0—into a direct

integral of Friedrichs-type Hamiltonians. However, we choose a nontrivial setup and

do not require that the dependence of the interaction strength on the energies of the

excited state and the photon contained in the function l factorizes. In other words, we

will keep a general l : I0 � K ! C .

After this heuristic discussion, let us define the Hamiltonian which we shall consider

in the following. We suppose that

(a1) u : I0 ! I1 is a bijective C1-di¤eomorphism,
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then the interaction term Hint acts according to (2.3) with

ðL10 f Þðy; zÞ :¼ lðy; zÞf ðuðyÞÞ;

ðL01gÞðxÞ :¼
w0ðu

�1ðxÞÞ

ju 0ðu�1ðxÞÞjw1ðxÞ

ð

K

lðu�1ðxÞ; zÞgðu�1ðxÞ; zÞoðzÞ dz ð2:8Þ

with x A I1; y A I0, and z A K . The second expression makes sense because the two fac-

tors in the denominator are positive almost everywhere by assumption. The operator L

defined in this way is formally symmetric and unbounded in general. To get a self-

adjoint Hamiltonian we add a boundedness assumption. Specifically, we assume that

(a2) l is Lebesgue measurable in I0 � K and there are positive C;C1 such that
ð

K

jlðy; zÞj2oðzÞ dzaC; w0ðyÞaC1ju
0ðyÞjw1ðuðyÞÞ

holds for every y A I0;

the last inequality means that the Radon-Nikodým derivative appearing as the first

factor in L01g is bounded.

Proposition 2.2. Under the assumptions (a1) and (a2), Hint is bounded and sym-

metric. Consequently,

H ¼ HðkÞ ¼ H0 þHint ¼ H0 þ kL

is self-adjoint on the domain of H0.

Proof. It remains to verify the boundedness of Hint which amounts to checking

that the operators L10 : H0 ! H1 and L01 : H1 ! H0 are bounded. This is easily seen

from the following estimates:

kL10 f k
2
I0�K ¼

ð ð

I0�K

jlðy; zÞj2j f ðuðyÞÞj2w0ðyÞoðzÞ dydz

aC

ð

I1

j f ðxÞj2
w0ðu

�1ðxÞÞ

ju 0ðu�1ðxÞÞj
dxaC1Ck f k2I1

and

kL01gk
2
I1
¼

ð

I1

w0ðu
�1ðxÞÞ

u 0ðu�1ðxÞÞw1ðxÞ

� �2 ð

K

lðu�1ðxÞ; zÞgðu�1ðxÞ; zÞoðzÞ dz

� �

�

ð

K

lðu�1ðxÞ; tÞgðu�1ðxÞ; tÞoðtÞ dt

� �

w1ðxÞ dx

¼

ð

I0

w0ðyÞ
2

ju 0ðyÞjw1ðuðyÞÞ
�

ð ð

K�K

½lðy; zÞlðy; tÞ�½gðy; zÞgðy; tÞ�oðzÞoðtÞ dzdt

� �

dy

aC1

ð

I0

ð

K

jlðy; zÞj2oðzÞ dz

� �
ð

K

jgðy; tÞj2oðtÞ dt

� �

w0ðyÞ dy

aC1Ckgk2I0�K ;

where we have used the Fubini theorem in combination with the Schwarz inequality for

the scalar product in L2ðK � K;oðzÞoðtÞ dzdtÞ. r
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Before proceeding further let us make a comment on the assumptions, part physical

and part technical, which we will have to make in the following. Since the present

model is rather a motivation study for a more realistic one, we do not strive for the

maximal possible generality. On the other hand, we do not want to impose many

unnecessary restrictions which would correspond to a fully specific system such as the

one given below.

Example 2.3. Let Ejð�Þ, j ¼ 0; 1 be the lowest two dispersion curves of a one-

dimensional crystal. Since we are discussing a caricature model, we neglect the multi-

plicity of the eigenvalues. In other words, we consider just a half of the Brillouin zone

and regard Ej as bijective maps ½0; p� ! Ij with E0 strictly increasing and E1 strictly

decreasing. Moreover, both are restrictions to ½0; p� of real-analytic functions with the

first derivatives vanishing at the endpoints of the interval but nonzero in its interior.

To rewrite the band projections of the crystal Hamiltonian in our formalism, we

employ the operators Uj : L
2ð½0; p�Þ ! L2ðIj;wjðyÞ dyÞ defined by ðUj f ÞðyÞ :¼ f ðE�1

j ðyÞÞ;

the definition makes sense since the inverse functions E�1
j exist by assumption. The

operators Uj are unitary provided we put

wjðyÞ ¼ jE 0
j ðE

�1
j ðyÞÞj�1: ð2:9Þ

These functions are Cy in Ij with singularities at the endpoints but the latter are

integrable. In particular, if E 00
j ðQÞ0 0 at Q ¼ 0; p we have wjðyÞ ¼ Oðjy� x

ðGÞ
j j�1=2Þ

there.

One of the basic ingredients is, of course, the function u. Since the system of the

crystal plus the radiation field is invariant with respect to the discrete group of

translations on a multiple of the lattice constant, it is natural in the present example to

suppose that the interaction does not couple states whose quasimomentum support in the

upper and lower bands are disjoint. This is achieved if we choose

uðyÞ ¼ E1ðE
�1
0 ðyÞÞ; ð2:10Þ

it is easy to see that it is a Cy function and

u 0ðyÞ ¼
E 0
1ðE

�1
0 ðyÞÞ

E 0
0ðE

�1
0 ðyÞÞ

ð2:11Þ

has finite limits at x
ðGÞ
0 assuming that E0 and E1 have the first non-vanishing derivative

at 0 resp. p of the same order. On the other hand we think of the radiation field as of

the electromagnetic field in the rotating wave approximation. In this case we put the

threshold energy n ¼ 0 and oðzÞ ¼ w½0; nmax�ðzÞ where nmax is a possible ultraviolet cut-o¤.

Under these model assumptions (a1) is satisfied automatically and the same is true

for the second part of (a2); it follows from (2.9) and (2.11) that it is valid for any C1b 1.

The only remaining restriction is thus the boundedness condition
Ð nmax

0 jlðy; zÞj2 dzaC

for the formfactor.

3. The resolvent.

As usual the spectral information is contained in the resolvent of the Hamiltonian.

Under our assumptions, we can find it explicitly by solving the equation
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ðH � zÞ
f

g

� �

¼
f1

g1

� �

for z in the resolvent set, in particular, for all z A CnR. It is straightforward to check

that

f ðxÞ ¼ rðx; zÞ f1ðxÞ � krðx; zÞ
w0ðu

�1ðxÞÞ

ju 0ðu�1ðxÞÞjw1ðxÞ

�

ð

K

lðu�1ðxÞ; zÞ

u�1ðxÞ þ z� z
g1ðu

�1ðxÞ; zÞoðzÞ dz; ð3:1Þ

gðy; zÞ ¼ �k
lðy; zÞ

yþ z� z
rðuðyÞ; zÞ f1ðuðyÞÞ þ

g1ðy; zÞ

yþ z� z
þ k2 lðy; zÞ

yþ z� z

� rðuðyÞ; zÞ
w0ðyÞ

ju 0ðyÞjw1ðuðyÞÞ

ð

K

lðy; sÞ

yþ s� z
g1ðy; sÞoðsÞ ds;

where

rðx; zÞ :¼ x� z� k2 w0ðu
�1ðxÞÞ

ju 0ðu�1ðxÞÞjw1ðxÞ

ð

K

jlðu�1ðxÞ; zÞj2

u�1ðxÞ þ z� z
oðzÞ dz

( )�1

:

Let P be the projection onto the subspace H0 ¼ L2ðI1;w1 dxÞ of ‘‘undecayed’’ states

in H,

P
f1

g1

� �

¼
f1

0

� �

:

By (3.1), the reduced resolvent acts then as multiplication by the function r,

PðH � zÞ�1
P ¼ rð� ; zÞP: ð3:2Þ

For the sake of brevity we introduce the following notation,

vðy; zÞ :¼ jlðy; zÞj2oðzÞ; ð3:3Þ

%ðxÞ :¼
w0ðu

�1ðxÞÞ

ju 0ðu�1ðxÞÞjw1ðxÞ
; ð3:4Þ

Gðy; zÞ :¼

ð

K

vðy; zÞ

yþ z� z
dz; ð3:5Þ

so the function r can be written as

rðx; zÞ ¼ fx� z� k2
%ðxÞGðu�1ðxÞ; zÞg�1 ð3:6Þ

for =z0 0.

Remark 3.1. In the particular case of Example 2.3 it follows from (2.9) and (2.11)

that %ðxÞ ¼ 1, and moreover, vðy; zÞ ¼ jlðy; zÞj2w½0; nmax�ðzÞ.

To reveal the analytic properties of rðx; �Þ let us begin with those of Gðy; �Þ.
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Lemma 3.2. Let vðy; �Þ have a locally bounded derivative in ðn;yÞ. Then for any

y A I0 and a real z > yþ n there exists finite principal value of the integral

Iðy; zÞ :¼ P

ð
y

n

vðy; zÞ

yþ z� z
dz: ð3:7Þ

Moreover, for any k A ð0; z� y� nÞ,

Iðy; zÞ ¼

ð z�y�k

n

vðy; zÞ

yþ z� z
dzþ

ð z�yþk

z�y�k

vðy; zÞ � vðy; z� yÞ

yþ z� z
dzþ

ð
y

z�yþk

vðy; zÞ

yþ z� z
dz ð3:8Þ

where all the three integrals are Lebesgue convergent.

Proof. Choose any k A ð0; z� y� nÞ. As the integrals

ð z�y�k

n

vðy; zÞ

yþ z� z
dz and

ð
y

z�yþk

vðy; zÞ

yþ z� z
dz

exist due to the assumption (a2) it is su‰cient to check the convergence of

Ikðy; zÞ ¼ P

ð z�yþk

z�y�k

vðy; zÞ

yþ z� z
dz: ð3:9Þ

We employ the identity vðy; zÞ ¼ vðy; z� yÞ þ ½vðy; zÞ � vðy; z� yÞ� together with the

estimate

jvðy; zÞ � vðy; z� yÞja c1jyþ z� zj

with a finite c1 independent of z. We see that finite

ð z�yþk

z�y�k

vðy; zÞ � vðy; z� yÞ

yþ z� z
dz

exists and it is su‰cient to check P
Ð z�yþk

z�y�k
ðdz=ðyþ z� zÞÞ which is easily seen to exist

and to be equal to zero. r

As usual in similar situations to proceed one needs some analyticity assumption

about the formfactor. In the present case we suppose that

(a3) for all y A I0 the function vðy; �Þ can be holomorphically extended to an open

set Wv;y I ðn;yÞ; we denote the extension again as vðy; �Þ. Let us further

assume that there is an open set W in C such that

ðx
ð�Þ
0 þ n;yÞHWH 7

y A I0

ðyþWv;yÞ:

Notice that the hypothesis of the previous lemma is satisfied under (a3). Now we can

make the following claim.

Lemma 3.3. Let y A I0 and x A ðyþ n;yÞ. Then

lim
G=z>0; z!x

Gðy; zÞ ¼ Iðy; xÞG ipvðy; x� yÞ:

Proof. Let us write again Gðy; zÞ defined by (3.5) as a sum of three integrals

over the intervals ðn; x� y� kÞ, ðx� y� k; x� yþ kÞ and ðx� yþ k;yÞ with 0 < k <
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x� y� n. The first and the third integral can be interchanged with limit by dominated

convergence. The set Wv;y is open and contains ðn;yÞ, hence there is k1 > 0 such that

any Q A C satisfying jQ� xþ yja k1 belongs to Wv;y. Let us consider only z satisfying

jz� xja k1 (so that z� y A Wv;y) in the second integral and denote z1 ¼ <z, then we

employ the identity vðy; zÞ ¼ vðy; z1 � yÞ þ ½vðy; zÞ � vðy; z1 � yÞ� and observe that

jvðy; zÞ � vðy; z1 � yÞja c1ðy; x; k; k1Þjyþ z� z1j:

The contribution from the di¤erence can be thus also handled by dominated con-

vergence. In view of (3.8) we get

lim
G=z>0; z!x

Gðy; zÞ ¼ Iðy; xÞ þ vðy; x� yÞ lim
G=z>0; z!x

ð x�yþk

x�y�k

dz

yþ z� z

and the result follows by an easy calculation. r

Lemma 3.4. Define the functions GW : I0 �W ! C and G
W
: I0 �W ! C by

GWðy; zÞ ¼

Gðy; zÞ . . . =z > 0

Iðy; zÞ þ ipvðy; z� yÞ . . . =z ¼ 0

Gðy; zÞ þ 2ipvðy; z� yÞ . . . =z < 0;

8

>

<

>

:

ð3:10Þ

G
Wðy; zÞ ¼

Gðy; zÞ � 2ipvðy; z� yÞ . . . =z > 0

Iðy; zÞ � ipvðy; z� yÞ . . . =z ¼ 0

Gðy; zÞ . . . =z < 0:

8

>

<

>

:

ð3:11Þ

Under our assumptions (a1)–(a3), the functions GWðy; �Þ and G
Wðy; �Þ are holomorphic in

Wnð�y; yþ n� for any fixed y A I0.

Proof. By Lemma 3.2 and assumption (a3), GW is a finite function. Notice that

z� y A Wv;y for z A W and y A I0. According to Lemma 3.3, the function GWðy; �Þ is con-

tinuous in fz A W j =zb 0gnð�y; yþ n�—see, e.g., Theorem 146 in [21]. Alternatively,

the continuity of Iðy; �Þ in ðyþ n;yÞ can be established directly from the dominated

convergence used in the proof of Lemma 3.2. Similarly, the continuity in

fz A W j =za 0gnð�y; yþ n� is seen and thus GWðy; �Þ is continuous in Wnð�y; yþ n�.

As it is holomorphic in fz A W j =z > 0gU fz A W j =z < 0g it is also holomorphic in

Wnð�y; yþ n� due to a corollary (dubbed the edge-of-wedge theorem) of the Morera’s

theorem (stating that the continuous function is holomorphic if and only if the integrals

over all rectangles with the edges parallel to the axes are zero—see, e.g., [22, Theorem

168] or [23, Theorem 10.17]). As to G
Wðy; �Þ, we can prove our statement in the same

way as for GWðy; �Þ. r

Now we are in position to show what happens with the upper spectral band under

influence of the perturbation. Let us formulate some further assumptions before.

(a4) The functions %ðxÞGWðu
�1ðxÞ; zÞ and %ðxÞðqGWðu

�1ðxÞ; zÞ=qzÞ are continuous

in the set fðx; zÞ A I1 �W j z B ð�y; u�1ðxÞ þ n�g.

(a5) For all x A I1,

x > u�1ðxÞ þ n:
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Remarks 3.5. (a) In the particular case of Example 2.3 the factor %ðxÞ ¼ 1 can be

dropped in (a4) and the assumption (a5) is satisfied.

(b) While most assumptions we make are of a technical nature, (a5) is a physical

hypothesis saying that in no part of the excited spectral band the decay is prevented by

energy conservation. It is satisfied, of course, if n ¼ 0.

Let us denote

Wx ¼ Wnð�y; u�1ðxÞþn �:

Theorem 3.6. Assume (a1)–(a5). Then the following statements hold.

(a) There exist D > 0, d > 0 and a unique function z : I1 � ð�d; dÞ ! C satisfying

zðx; kÞ A ðx� D; xþ DÞ þ ið�D;DÞHWx; ð3:12Þ

x� zðx; kÞ � k2%ðxÞGWðu
�1ðxÞ; zðx; kÞÞ ¼ 0: ð3:13Þ

The function z is continuous in I1 � ð�d; dÞ and zðx; �Þ A Cyð�d; dÞ.

(b) The inequality

=zðx; kÞa 0 ð3:14Þ

holds for all x A I1, k A ð�d; dÞ. Moreover, if

%ðxÞvðu�1ðxÞ; x� u�1ðxÞÞ0 0 ð3:15Þ

for all x from some compact I 0 H I1, then there exists a d A ð0; d1� such that

=zðx; kÞ < 0 ð3:16Þ

holds for all 0 < jkj < d1 and x A I 0.

Proof. (a) Let us denote

Dþðx; k; zÞ :¼ x� z� k2%ðxÞGWðu
�1ðxÞ; zÞ: ð3:17Þ

The functions Dþ and qDþ=qz are continuous in fðx; k; zÞ j x A I1; k A R; z A Wxg by

assumption and Dþðx; � ; �Þ A CyðR�WxÞ by Lemma 3.4. Furthermore, Dþðx; 0; xÞ ¼ 0

and

qDþðx; 0; xÞ

qz
¼ �10 0:

By the implicit function theorem—see, e.g. [21, Theorem 211]—to any x0 A I1 there

exist dx0
> 0, dx0

> 0 and Dx0
> 0 such that for all x A ðx0 � dx0

; x0 þ dx0
ÞV I1 and k A

ð�dx0
; dx0

Þ there is just one zx0
ðx; kÞ A ðx0 � Dx0

; x0 þ Dx0
Þ þ ið�Dx0

;Dx0
ÞHWx (recall

(a5)) satisfying Dþðx; k; zx0
ðx; kÞÞ ¼ 0, i.e. the relation (3.13). The function zx0

is con-

tinuous in ððx0 � dx0
; x0 þ dx0

ÞV I1Þ � ð�dx0
; dx0

Þ and zx0
ðx; �Þ A Cyð�dx0

; dx0
Þ for any

fixed x A ðx0 � dx0
; x0 þ dx0

Þ. We put

d 0
x0

¼ minðDx0
; dx0

Þ:
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As I1 is compact by assumption, the open covering of I1 defined in this way has a finite

subcovering, i.e. there exist a finite number of points xj A I1, j ¼ 1; . . . ; n, such that

I1 H 6
n

j¼1

Kj;

we employ here the notation

Kj ¼ ðxj � d 0
xj
; xj þ d 0

xj
Þ; Jj ¼ Kj þ ið�d 0

xj
; d 0

xj
Þ

for j ¼ 1; . . . ; n. Let us pick a point xjk A Kj VKk for given j; k ¼ 1; . . . ; n; then there is

0 < djkaminðdxj ; dxk Þ such that

zxj ðxjk; kÞ A Jj V Jk; zxk ðxjk; kÞ A Jj V Jk ð3:18Þ

for jkj < djk. Moreover, zxj ðx; kÞ ¼ zxk ðx; kÞ for all x A Kj VKk and jkj < djk; otherwise

the uniqueness of zxj and zxk would be violated near at least one of the points

supfx A Kj VKk j xb xjk; zxj ðy; kÞ ¼ zxk ðy; kÞ for xjka ya x; jkj < djkg;

inffx A Kj VKk j xa xjk; zxj ðy; kÞ ¼ zxk ðy; kÞ for xa ya xjk; jkj < djkg:

Choosing a number d 0 > 0 with d 0amin1a jan dxj and d 0aminKjVKk0q djk, we con-

clude that there exists a unique z : I1 � ð�d 0; d 0Þ ! C such that zðx; kÞ A Jj for x A Kj

and Dþðx; k; zðx; kÞÞ ¼ 0. The function z is continuous in I1 � ð�d 0; d 0Þ and zðx; �Þ A

Cyðð�d 0; d 0ÞÞ for any fixed x A I1. Put

hjðxÞ ¼ minðx� xj þ d 0
xj
; xj þ d 0

xj
� xÞ:

The function hj : I1 ! R defined in this way is continuous and x A Kj if and only if

hjðxÞ > 0. Then

hðxÞ :¼ max
1a jan

hjðxÞ

specifies a positive continuous function h on I1. Let us denote

D ¼ min
x A I1

hðxÞ > 0; D ¼ min D; min
1a jan

d 0
xj

� �

> 0:

As z is uniformly continuous on compact subsets of I1 � ð�d 0; d 0Þ there exists 0 < da d 0

such that

zðx; kÞ A ðx� D; xþ DÞ þ ið�D;DÞ

for x A I1 and jkj < d; hence the existence of the numbers d;D and the function z is

demonstrated.

Finally, to check the uniqueness of z let us assume that ~zz is another function

satisfying

~zzðx; kÞ A ðx� D; xþ DÞ þ ið�D;DÞ; Dþðx; k; ~zzðx; kÞÞ ¼ 0

for x A I1, k A ð�d; dÞ. Suppose that x A I1 and jkj < d are given. There exists an index

j ¼ 1; . . . ; n such that
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hjðxÞ ¼ hðxÞbD; x A Kj; zðx; kÞ A Jj:

As the inequalities

x� xj þ d 0
xj
bD; xj þ d 0

xj
� xbD; �D < y� x < D

hold, where y :¼ <~zzðx; kÞ, we have also

y� xj þ d 0
xj
> 0; xj þ d 0

xj
� y > 0

and y A Kj. Furthermore, j=~zzðx; kÞj < Da d 0
xj
aDxj . Then zðx; kÞ ¼ ~zzðx; kÞ and the

uniqueness is proven.

(b) Assume first that =z > 0, then =GWðu
�1ðxÞ; zÞ ¼ =Gðu�1ðxÞ; zÞb 0 by (3.5)

and (3.10), so the right-hand side of (3.17) has negative imaginary part. Consequently,

there are no solutions zðx; kÞ with positive imaginary parts, in other words (3.14) holds.

We have checked here only that the open upper half-plane is a part of the resolvent

set for the Hamiltonian. In the lower half-plane, the function Dþðx; k; �Þ
�1 is a mer-

omorphic continuation of rðx; �Þ and may have singularities.

Suppose now that (3.15) holds. The expression %ðxÞqGWðu
�1ðxÞ; zðx; kÞÞ=qz is

continuous in ðx; kÞ A I1 � ð�d; dÞ. It follows that

M :¼ max
ðx;kÞ A I 0�½�d=2; d=2�

%ðxÞ
qGWðu

�1ðxÞ; zðx; kÞÞ

qz

�

�

�

�

�

�

�

�

< y:

Di¤erentiating the equation defining zðx; kÞ with respect to k2 we get

qzðx; kÞ

qðk2Þ
þ %ðxÞGWðu

�1ðxÞ; zðx; kÞÞ þ k2%ðxÞ
qGWðu

�1ðxÞ; zðx; kÞÞ

qz

qzðx; kÞ

qðk2Þ
¼ 0: ð3:19Þ

In combination with the previous inequality we conclude that

qzðx; kÞ

qðk2Þ
¼ �

%ðxÞGWðu
�1ðxÞ; zðx; kÞÞ

1þ k2%ðxÞðqGWðu�1ðxÞ; zðx; kÞÞ=qzÞ
ð3:20Þ

is continuous in ðx; kÞ A I 0 � ð�minðd=2;M�1=2Þ;minðd=2;M�1=2ÞÞ defining M�1=2 ¼ y

for M ¼ 0. Furthermore, the assumption (3.15) together with (3.10) implies =ðqzðx; 0Þ=

qðk2ÞÞ < 0, hence there is 0 < d1aminðd=2;M�1=2Þ such that

=
qzðx; kÞ

qðk2Þ
< 0

for ðx; kÞ A I 0 � ð0; d1Þ and (3.16) holds. r

Remarks 3.7. (a) Putting k ¼ 0 in (3.19) we obtain

qzðx; 0Þ

qðk2Þ
¼ �%ðxÞGWðu

�1ðxÞ; xÞ; ð3:21Þ

where right-hand side is given by Lemma 3.4. This relation can be regarded as an

analogue of the Fermi golden rule in the present situation.

(b) Notice that for the factorization (2.7) the term jl0ðu
�1ðxÞÞj2 factorizes from

GWðu
�1ðxÞ; zÞ and zðx; kÞ ¼ x holds whenever l0ðu

�1ðxÞÞ ¼ 0.
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4. Decay of excited states.

In accordance with the physical motivation, we are interested in transitions from a

given state supported in I1 into those in I0. To find the time profile of the de-excitation

probability it is su‰cient to know the reduced evolution operator PUðtÞP ¼ Pe�iHtP.

Suppose that the initial state is of the form

C0 ¼
c0

0

� �

;

for some c0 A L2ðI1;w1ðxÞ dxÞ with kC0k
2 ¼

Ð

I1
jc0ðxÞj

2
w1ðxÞ dx ¼ 1. Its time evolution

is given by the Stone formula,

UðtÞC0 ¼ lim
h!0þ

1

2pi

ð

R

½ðH � x� ihÞ�1 � ðH � xþ ihÞ�1�e�ixtC0 dx;

according to [20, Theorem VIII.5], and the projection P can be interchanged with the

limit and the integral being a bounded operator. This yields the reduced evolution

operator,

PUðtÞC0 ¼
cðt; �Þ

0

� �

;

where

cðt; �Þ ¼ lim
h!0þ

1

2pi

ð

R

½rð� ; xþ ihÞ � rð� ; x� ihÞ�e�ixtc0ð�Þ dx ð4:1Þ

and r is given by (3.6). The integral and the limit refer to functions with values in

H0 ¼ L2ðI1;w1ðxÞ dxÞ; they are known to be convergent as the Hamiltonian H is self-

adjoint.

Let us now look for conditions under which the interchange of the limit and the

integral in (4.1) is possible. To this end, we need more assumptions.

(a6) vðy; zÞaC2 and jqvðy; zÞ=qzjaC3 holds for some positive constants C2;C3

and all y A I0, z A K.

(a7) vðy; nÞ ¼ 0 for all y A I0.

(a8) There exists a zero-measure set NH I1 and a number

n1 > d1 :¼ sup
x A I1

½x� u�1ðxÞ � n� > 0

such that

%ðxÞvðu�1ðxÞ; xÞ > 0

for all x A I1nN and x A ðn; nþ n1Þ.

Lemma 4.1. Assume (a1)–(a7). Then there exists a number C4 such that

jGðy; xG ihÞjaC4 ð4:2Þ

holds for all y A I0, x A R, and 00 h A R.
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Proof. Recall the definition

Gðy; xG ihÞ ¼

ð

y

n

vðy; zÞ

yþ z� xH ih
dz ¼

ð

y

n

yþ z� xG ih

ðyþ z� xÞ2 þ h2
vðy; zÞ dz:

Using the first part of (a6), we get

j=Gðy; xG ihÞj ¼

ð

y

n

jhjvðy; zÞ

ðyþ z� xÞ2 þ h2
dzaC2

ð

y

�y

jhj

z2 þ h2
dz ¼ pC2:

We fix a > 0 and distinguish several cases.

(i) x� yb nþ a. Then

<Gðy; xG ihÞ ¼

ð�a

nþy�x

þ

ð a

�a

þ

ð

y

a

� �

zvðy; z� yþ xÞ

z2 þ h2
dz

where by (a2) we have

ð�a

nþy�x

þ

ð

y

a

� �

zvðy; z� yþ xÞ

z2 þ h2
dz

�

�

�

�

�

�

�

�

a
1

a

ð

y

n

vðy; zÞ dza
C

a
:

Using the mean value theorem,

J2 :¼

ð a

�a

zvðy; z� yþ xÞ

z2 þ h2
dz

¼

ð a

�a

z

z2 þ h2
½vðy; x� yÞ þ zq2vðy; Qðy; x; zÞÞ� dz

with Qðy; x; zÞ between x� y and x� yþ z. The integral of the first term is zero due to

the antisymmetry in z while the second term can be estimated by (a6) giving jJ2ja 2C3a

and

j<Gðy; xG ihÞjaCa�1 þ 2C3a:

(ii) na x� y < nþ a. Then

<Gðy; xG ihÞ ¼

ð x�n�y

nþy�x

þ

ð a

x�n�y

þ

ð

y

a

� �

zvðy; z� yþ xÞ

z2 þ h2
dz;

where

ð x�n�y

nþy�x

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

a 2C3ðx� n� yÞa 2C3a

follows by the same procedure as for the integral J2 in case (i) and

ð

y

a

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

aCa�1

due to (a2). In the remaining integral,

jvðy; z� yþ xÞjaC3ðz� yþ x� nÞ
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by (a6) and (a7). Denoting for a while A ¼ x� n� y, we have now

ð a

x�n�y

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

aC3

ð a

A

z2 þ Az

z2 þ h2
dz

¼ C3 a� Aþ
A

2
ln

a2 þ h2

A2 þ h2
� jhj arctan

a

jhj
� arctan

A

jhj

� �� �

aC3 aþ
A

2
ln

a2 þ h2

A2 þ h2

� �

taking into account that 0aAa a in the last inequality. Let us estimate the maximum

of function

f ðAÞ ¼
A

2
ln

a2 þ h2

A2 þ h2

in the mentioned interval of A. Clearly f ð0Þ ¼ f ðaÞ ¼ 0 and f ðAÞ > 0 for 0 < A < a.

Hence f has a maximum at some point A0 A ð0; aÞ satisfying

f 0ðA0Þ ¼
1

2
ln

a2 þ h2

A2
0 þ h2

�
A2

0

A2
0 þ h2

¼ 0:

From the last equation,

f ðA0Þ ¼
A3

0

A2
0 þ h2

aA0a a:

As a result,
ð a

x�n�y

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

a 2C3a

and

j<Gðy; xG ihÞja 4C3aþ Ca�1.

(iii) n� aa x� y < n. Then

j<Gðy; xG ihÞj ¼

ð a

nþy�x

þ

ð

y

a

� �

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

:

Here the second integral is bounded by Ca�1 and the first one we estimate similarly as

in the case (ii). Denoting here B ¼ nþ y� x A ð0; a�, we obtain

ð a

nþy�x

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

aC3

ð a

B

zðz� BÞ

z2 þ h2
dzaC3a

and

j<Gðy; xG ihÞjaC3aþ Ca�1
:

(iv) x� y < n� a. Then

j<Gðy; xG ihÞj ¼

ð

y

nþy�x

z

z2 þ h2
vðy; z� yþ xÞ dz

�

�

�

�

�

�

�

�

aCa�1
:
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Summing up the discussion, we have found that in all the cases the inequality

j<Gðy; xG ihÞja 4C3aþ Ca�1

holds. Minimizing the right-hand side with respect to a > 0, we get

j<Gðy; xG ihÞja 4
ffiffiffiffiffiffiffiffiffi

CC3

p

and

jGðy; xG ihÞja
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16CC3 þ p2C2
2

q

; ð4:3Þ

what we set out to prove. r

Theorem 4.2. Assume (a1)–(a8). Then there exists d2 > 0 such that for all 0 <

jkj < d2 and t A R

cðt; xÞ ¼ Uðt; xÞc0ðxÞ ð4:4Þ

holds for almost every x A I1, where

Uðt; xÞ ¼

ðy

nþu�1ðxÞ

Wðx; xÞe�ixt dx; ð4:5Þ

Wðx; xÞ ¼
k2%ðxÞvðu�1ðxÞ; x� u�1ðxÞÞ

½x� x� k2%ðxÞIðu�1ðxÞ; xÞ�2 þ p2k4%ðxÞ2vðu�1ðxÞ; x� u�1ðxÞÞ2
: ð4:6Þ

Proof. Let d;D and zðx; kÞ ¼ z1ðx; kÞ � iz2ðx; kÞ be as in Theorem 3.6. We first

verify that z2ðx; kÞ > 0 for x A I1nN and

0 < jkj < d 02 :¼ min d;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n1 � d1

C1C4

s

;

ffiffiffiffiffiffiffiffiffiffiffi

d

C1C4

s

 !

;

where

d :¼ min
x A I1

½x� n� u�1ðxÞ� > 0

by assumption (a5). It is su‰cient to show that zðx; kÞ is not real as we know that

z2ðx; kÞb 0. By assumption (a2) and Lemma 4.1,

jDþðx; k; xÞjb jx� xj � k2C1C4

for real x and there is no solution in ð�y; x� k2C1C4ÞU ðxþ k2C1C4;yÞ. If

zðx; kÞ ¼ x then the imaginary part of (3.13) reads

k2p%ðxÞvðu�1ðxÞ; x� u�1ðxÞÞ ¼ 0:

Thus there are no real solutions in ðnþ u�1ðxÞ; nþ n1 þ u�1ðxÞÞI ðx� d; nþ n1 þ u�1ðxÞÞ

by assumption (a8). For the considered values of k the intervals without real solutions

x cover the whole real axis.

To any natural number n there exists an open set Nn HR of Lebesgue measure

smaller then 1=n such that NHNnþ1 HNn. Let us denote I 0n ¼ I1nNn. Let j be an

arbitrary vector from H0 and jn ¼ jwI 0
n
. The scalar product

ðjn;cðt; �ÞÞ ¼ lim
h!0þ

1

p

ð

I1�R

jnðxÞð=rðx; xþ ihÞÞe�ixtc0ðxÞw1ðxÞ dxdx ð4:7Þ
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with rðx; xþ ihÞ given by (3.6). Fubini theorem can be used here as

jGðu�1ðxÞ; xþ ihÞja
C

h
; jrðx; xþ ihÞja

1

h
;

j=rðx; xþ ihÞj ¼ Oðx�2Þ as x !Gy

for h > 0 using (a2), (3.5) and (3.6) only. Let us next choose 0 < D1 < D, 0 < h1 < D,

denote

d2 ¼ min d 02;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D1

2C1C4

r

� �

; ð4:8Þ

and consider further only 0 < jkj < d2, 0 < ha h1. Now

jk2%ðxÞGðu�1ðxÞ; xþ ihÞja
1

2
D1

by Lemma 4.1. We divide the integration range I1 � R of (4.7) into the parts where

jx� xjbD1 and jx� xjaD1, respectively, and construct the integrable majorant allow-

ing us to use the dominated convergence in (4.7).

For jx� xjbD1, clearly

j=rðx; xþ ihÞja
h1 þ ð1=2ÞD1

ðjx� xj � ð1=2ÞD1Þ
2
a

4h1 þ 2D1

D2
1

:

Let us define function g : R ! R as (recall that I1 ¼ ½x
ð�Þ
1 ; x

ðþÞ
1 �)

gðxÞ ¼

x� x
ð�Þ
1 þ

D1

2

� ��2

h1 þ
D1

2

� �

. . . x < x
ð�Þ
1 � D1

4h1 þ 2D1

D2
1

. . . x
ð�Þ
1 � D1a xa x

ðþÞ
1 þ D1

x� x
ðþÞ
1 �

D1

2

� ��2

h1 þ
D1

2

� �

. . . x > x
ðþÞ
1 þ D1:

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

ð4:9Þ

Then ðx; xÞ 7! gðxÞjjðxÞj jc0ðxÞjw1ðxÞ is the sought majorant.

For jx� xjaD1 we can consider only x A I 0n as jnðxÞ ¼ 0 elsewhere. By Theorem

3.6,

mk;n :¼ minjDþðx; k; xþ ihÞj > 0

where Dþ is defined in (3.17) and the minimum is taken over the considered set of

variables x A I 0n, x A ½x� D1; xþ D1�, h A ½0; h1� and a fixed value of 0 < jkj < d2 (notice

that xþ ih A Wx due to our choice of D1; h1 and the inclusion in (3.12)). The majorant

can be now chosen as

m�1
k;njjðxÞj jc0ðxÞjw1ðxÞ:

Interchanging the limit with the integral in (4.7), using Lemma 3.3 and realizing

that the integrand limit vanishes for x < nþ u�1ðxÞ, we obtain

ðjn;cðt; �ÞÞI 0
n
¼ ðjn;Uðt; �Þc0ÞI 0

n
ð4:10Þ
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with U given by (4.5)–(4.6) and scalar products in the space L2ðI 0n;w1ðxÞ dxÞ. Here

Uðt; �Þc0 A L2ðI 0n;w1ðxÞ dxÞ as U is bounded in R� I 0n which can be seen using the

majorant constructed above. As jn A L2ðI 0n;w1ðxÞ dxÞ may be arbitrary, (4.4) follows

for almost every x A I 0n. Now we see (4.4) for almost every x A I1 in the limit n ! y.

r

5. Exponential decay at intermediate times.

Recall that decays of unstable quantum systems are nonexponential at very short

and very long times, however, they are usually exponential in a very good approxi-

mation over a wide range of intermediate times. Our aim here is to show that the pre-

sent models exhibits a similar behaviour in the sense that the function Uð� ; xÞ appearing

in the restricted time evolution operator (4.4) can be approximated by an exponential for

almost every fixed x A I1.

The way to prove that is inspired by [3]. We employ the fact that the continued

resolvent is for any fixed x a meromorphic function and show that for a su‰ciently

weak coupling the time evolution is dominated by the contribution from the residue term

in (4.5).

In addition to the hypotheses made above, let us assume that there exists a constant

C5 such that

(a9)
q2vðy; zÞ

qz2

�

�

�

�

�

�

�

�

aC5 holds for all y A I0 and z A K .

Lemma 5.1. For any a > �n, x A I1, and x > u�1ðxÞ þ n the following estimates hold:

<
qGWðu

�1ðxÞ; xÞ

qx

�

�

�

�

�

�

�

�

a
C2

aþ n
þ 4C3

� �

þ C3 ln
x� u�1ðxÞ � n

aþ n

�

�

�

�

�

�

�

�

þ C5ðx� u�1ðxÞ � nÞ; ð5:1Þ

=
qGWðu

�1ðxÞ; xÞ

qx

�

�

�

�

�

�

�

�

a pC3: ð5:2Þ

Proof. Let us estimate

qGðu�1ðxÞ; zÞ

qz
¼

ð

y

n

vðu�1ðxÞ; zÞ

ðu�1ðxÞ þ z� zÞ2
dz ð5:3Þ

for z ¼ xþ ih, h > 0, and get the result on the real axis by taking the limit h ! 0þ using

Lemma 3.4. We rewrite the derivative as

qGWðu
�1ðxÞ; zÞ

qz
¼

ð

y

nþu�1ðxÞ�x

z2 � h2 þ 2ihz

ðz2 þ h2Þ2
vðu�1ðxÞ; zþ x� u�1ðxÞÞ dz ð5:4Þ

and denote for a moment

b ¼ x� u�1ðxÞ � n; g ¼ x� u�1ðxÞ þ a; ð5:5Þ

by assumption we have 0 < b < g.

In the expression for the imaginary part of (5.4) we separate the integrals over

ð�b; bÞ and ðb;yÞ. In the second integral the limit h ! 0 gives zero as it can be seen

easily by the dominated convergence. In the integral over ð�b; bÞ, we insert the Taylor

expansion
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vðu�1ðxÞ; zþ x� u�1ðxÞÞ ¼ vðu�1ðxÞ; x� u�1ðxÞÞ

þ
qvðu�1ðxÞ; x� u�1ðxÞÞ

qz
zþ

1

2

q2vðu�1ðxÞ; x� u�1ðxÞ þ yÞ

qz2
z2 ð5:6Þ

where y in the error term lies between 0 and z. The contribution of the z0 term to

the integral vanishes because it gives rise to an odd function. The contribution of the

second term is bounded by pC3 in the limit h ! 0 as it follows from assumption (a6)

and an explicit calculation. The z2 term again does not contribute in view of assump-

tion (a9) and an explicit calculation. In this way, inequality (5.2) is proved.

As for the real part of (5.4), we proceed similarly. Inserting the expansion (5.6)

into the integral over ð�b; bÞ we obtain from the z0 term

�
2

b
vðu�1ðxÞ; x� u�1ðxÞÞ

�

�

�

�

�

�

�

�

a 2C3;

where the assumptions (a6) and (a7) were used in the last inequality. The term with z

does not contribute and the term with z2 is estimated by C5b in the limit h ! 0. The

integral over ðb; gÞ in (5.4) can be handled by means of (a6) and (a7),

ð g

b

z2 � h2

ðz2 þ h2Þ2
vðu�1ðxÞ; zþ x� u�1ðxÞÞ dz

�

�

�

�

�

�

�

�

�

�

¼

ð g

b

z2 � h2

ðz2 þ h2Þ2
qvðu�1ðxÞ; y1Þ

qz
ðzþ x� u�1ðxÞ � nÞ dz

�

�

�

�

�

�

�

�

�

�

aC3

ð g

b

zþ x� u�1ðxÞ � n

z2
dz ¼ C3 ln 1þ

aþ n

b

� �

þ
aþ n

g

� �

aC3 2þ ln
x� u�1ðxÞ � n

aþ n

�

�

�

�

�

�

�

�

� �

;

where we have employed n < y1 < zþ x� u�1ðxÞ and the inequality lnð1þ xÞa 1þ

jln xj. Finally, we have

ð

y

g

z2 � h2

ðz2 þ h2Þ2
vðu�1ðxÞ; zþ x� u�1ðxÞÞ dz

�

�

�

�

�

�

�

�

�

�

aC2

ð

y

g

dz

z2
a

C2

aþ n
;

putting all these estimates together, we arrive at (5.1). r

Lemma 5.2. There is d3 > 0 such that for all 0 < jkj < d3 and almost every x A I1,

the function Wðx; �Þ defined by formula (4.6) for x > nþ u�1ðxÞ and extended by zero to

the rest of the real axis, Wðx; xÞ ¼ 0 for xa nþ u�1ðxÞ, is absolutely continuous in any

compact subinterval of R.

Proof. From the proof of Theorem 4.2 we know that

Wðx; xÞ ¼
1

p
lim
h!0þ

=rðx; xþ ihÞ;

A model of interband radiative transition 771



and therefore

Wðx; xÞ ¼
1

p
=rWðx; xÞ; ð5:7Þ

rWðx; xÞ :¼
1

x� x� k2%ðxÞGWðu�1ðxÞ; xÞ
¼ ½Dþðx; k; xÞ�

�1 ð5:8Þ

for x > nþ u�1ðxÞ. Let d and D be the numbers from Theorem 3.6. For k2 <

DC�1
1 C�1

4 , Dþ has no zeros if jx� xjbD (see Lemmas 3.4 and 4.1 and assumption (a2)).

On the other hand, for jx� xj < D and 0 < jkj < d2 real zeros can exist for at most zero-

measure set of x which we neglect (see the proof of Theorem 4.2). Apart of it Wðx; �Þ

has a continuous derivative in ðnþ u�1ðxÞ;yÞ and therefore it is absolutely continuous

in any compact subinterval. Let us denote

d :¼ min
x A I1

½x� n� u�1ðxÞ� > 0;

where the positivity follows from assumption (a5). Then jDþðx; k; xÞj > d=3 for

nþ u�1ðxÞ < x < nþ u�1ðxÞ þ d=3, k2 < d=ð3C1C4Þ, and qWðx; xÞ=qx is bounded by

an expression similar to the right-hand side of (5.1) in the considered interval of x. Due

to the integrability of jlnðx� n� u�1ðxÞÞj and the estimate

jWðx; xÞja
3pC3

C4d
ðx� n� u�1ðxÞÞ

(see assumptions (a6)–(a7) and (3.10)) Wðx; �Þ is absolutely continuous in ½nþ u�1ðxÞ;

nþ u�1ðxÞ þ d=3�. Consequently, it is absolutely continuous in any compact subinterval

of R. Choosing

d3 ¼ min d; d2;

ffiffiffiffiffiffiffiffiffiffiffi

D

C1C4

r

;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d

3C1C4

s

 !

we get the desired result. r

Lemma 5.3. There exists d4 > 0 such that

M1 :¼ max
x A I1; jkjad4

j%ðxÞGWðu
�1ðxÞ; zðx; kÞÞj < y; ð5:9Þ

M2 :¼ max
x A I1; jkjad4

%ðxÞ
qGWðu

�1ðxÞ; zðx; kÞÞ

qz

�

�

�

�

�

�

�

�

< y; ð5:10Þ

and for all jkj < d5 :¼ minðd4; ð2M2Þ
�1=2Þ, x A I1, we have

jz1ðx; kÞ � xja 2M1k
2; 0a z2ðx; kÞa 2M1k

2;

jzðx; kÞ � xja 2M1k
2;

qzðx; kÞ

qk2

�

�

�

�

�

�

�

�

a 2M1;

where zðx; kÞ ¼ z1ðx; kÞ � iz2ðx; kÞ is the function from Theorem 3.6.

Proof. By Theorem 3.6 z is uniformly continuous in I1 � ½�d=2; d=2�. Hence

there is 0 < d4a d=2 such that for jkja d4 and all x A I1 we have jzðx; kÞ � xj < d.
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Then z1ðx; kÞ > nþ u�1ðxÞ and the functions in the right-hand side of (5.9), (5.10) are

continuous. Consequently, M1;M2 are finite. For jkj < d5 we now have

qzðx; kÞ

qk2

�

�

�

�

�

�

�

�

¼
%ðxÞGWðu

�1ðxÞ; zðx; kÞÞ

1þ k2%ðxÞðqGWðu�1ðxÞ; zðx; kÞÞ=qzÞ

�

�

�

�

�

�

�

�

a
M1

1� k2M2
a 2M1

and the sought estimates on zðx; kÞ � x follow. r

Lemma 5.4. Let a be a number such that

0 < a < d :¼ inf
x A I1

ðx� u�1ðxÞ � nÞ; a < distðI1;CnWÞ;

and let us denote

Na;x :¼ fQ A C j jQ� xja ag;

Na :¼ fðx; QÞ A I1 � C j x A I1; jQ� xja ag:

Then

(i) Na H fðx; QÞ A I1 � C j Q A Wnð�y; u�1ðxÞ þ n�g,

(ii) if x A I1 and Q A Na;x then ðx; QÞ A Na,

(iii) Na is closed in R� C ,

(iv) the numbers

M3ðaÞ :¼ max
ðx;QÞ ANa

j%ðxÞGWðu
�1ðxÞ; QÞj < y; ð5:11Þ

M4ðaÞ :¼ max
ðx;QÞ ANa

%ðxÞ
qGWðu

�1ðxÞ; QÞ

qQ

�

�

�

�

�

�

�

�

< y ð5:12Þ

are finite,

(v) there exists an a 0 > a such that for any x A I1, Q A Na 0;x, and jkj < d6ðaÞ :¼

minðd5;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a=4M1

p

Þ (see Lemma 5.3) we have

GWðu
�1ðxÞ; QÞ ¼ GWðu

�1ðxÞ; zðx; kÞÞ

þ
qGWðu

�1ðxÞ; zðx; kÞÞ

qz
ðQ� zðx; kÞÞ þFðx; QÞðQ� zðx; kÞÞ2 ð5:13Þ

where Fðx; �Þ is a function holomorphic in the interior of Na 0;x and

j%ðxÞFðx; QÞja
8M3ðaÞ

a2
¼: m3ðaÞ; ð5:14Þ

%ðxÞ
qFðx; QÞ

qQ

�

�

�

�

�

�

�

�

a
16M3ðaÞ

a3
¼: m4ðaÞ ð5:15Þ

holds for Q in the interior of Na=2;x.

Proof. The claims (i)–(iii) trivially follow from the definitions, the claim (iv) fol-

lows from the assumption (a4) and the claims (i), (iii). Under our assumptions there

exists a 0 > a satisfying all the assumptions of the lemma. Then for any x A I1, the func-
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tion GWðu
�1ðxÞ; �Þ is holomorphic in the interior of Na 0;x, the function F defined by

(5.13) exists and Fðx; �Þ is holomorphic in the interior of Na 0;x. For jkj < d6ðaÞ now

zðx; kÞ is in the interior of Na;x and for all Q in the interior of Na;x we have

%ðxÞFðx; QÞ ¼
1

2pi

ð

qNa; x

%ðxÞGWðu
�1ðxÞ; zÞ

ðz� zðx; kÞÞ2ðz� QÞ
dz;

%ðxÞ
qFðx; QÞ

qQ
¼

1

2pi

ð

qNa; x

%ðxÞGWðu
�1ðxÞ; zÞ

ðz� zðx; kÞÞ2ðz� QÞ2
dz:

If jkj < d6ðaÞ and Q A Na=2;x, then

jz� zðx; kÞjb jz� xj � jx� zðx; kÞjb a� 2M1k
2 >

a

2
; ð5:16Þ

jz� Qjb jz� xj � jx� Qjb
a

2
ð5:17Þ

by Lemma 5.3, and the inequalities (5.14), (5.15) follow immediately. r

Theorem 5.5. Assume (a1)–(a9). Then there exist finite constants d 0 > 0 and

C6 > 0 such that for all jkj < d 0 and t > 0 we have

jUðt; xÞ � Aðx; kÞe�iz1ðx;kÞt�z2ðx;kÞtja
C6k

2

t
ð5:18Þ

for almost every x A I1 where zðx; kÞ ¼ z1ðx; kÞ � iz2ðx; kÞ is the singularity location (with

z1 real, z2b 0—cf. Theorem 3.6) and

Aðx; kÞ :¼ 1þ k2%ðxÞ
qGWðu

�1ðxÞ; zðx; kÞÞ

qz

� ��1

:

Proof. If k ¼ 0 we have zðx; 0Þ ¼ x by (3.13) and Uðt; xÞ ¼ e�ixt (see (2.2)) so the

theorem holds with any C6. Let us further suppose that k0 0. By Theorem 3.6 and

assumption (a8), z2ðx; kÞ > 0 for almost every x A I1 if jkj < d2. Let us exclude the

remaining zero-measure set of x’s from our considerations. Then the integral

ð

y

�y

e�ixtVðx; xÞ dx ¼ lim
R!y

ðR

�R

e�ixtVðx; xÞ dx; ð5:19Þ

where

Vðx; xÞ ¼
1

p
=

Aðx; kÞ

zðx; kÞ � x
; ð5:20Þ

exists in the generalized sense (5.19). While the Lebesgue integral does not exist due

to the behavior at large jxj, the existence of generalized integral is well known and will

be in fact seen from our calculations below. We shall estimate the di¤erence between

Uðt; xÞ in (4.5) and the integral (5.19).

Let us recall from the proof of Theorem 4.2 that

Wðx; xÞ ¼ lim
h!0þ

1

p
=rðx; xþ ihÞ ¼

1

p
=

1

x� x� k2%ðxÞGWðu�1ðxÞ; xÞ
; ð5:21Þ
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where the last equality should be used for x > nþ u�1ðxÞ only. Combining this with

(4.6), assumptions (a2), (a6) and Lemma 4.1 we arrive at the estimate

jWðx; xÞja
k2C1C2

ðx� x� k2C1C4Þ
2

ð5:22Þ

for x > xþ k2C1C4. Due to Lemma 5.2 we can integrate by parts for jkj < d3,

ð

y

�y

e�ixt½Wðx; xÞ � Vðx; xÞ� dx ¼ �
i

t

ð

y

�y

e�ixt q

qx
½Wðx; xÞ � Vðx; xÞ� dx:

Let us choose an a > 0 satisfying the assumptions of Lemma 5.4 and consider only the

values of the coupling constants such that

0 < jkj < min d3; d6ðaÞ;
1

2

ffiffiffiffiffiffiffiffiffiffiffi

a

C1C4

r� �

: ð5:23Þ

To calculate qWðx; xÞ=qx let us denote for a while

Dþ ¼ Dþðx; k; xÞ ¼ x� x� k2%ðxÞGWðu
�1ðxÞ; xÞ;

D1 ¼ <Dþ ¼ x� x� k2%ðxÞ<GWðu
�1ðxÞ; xÞ;

D2 ¼ =Dþ ¼ �k2%ðxÞ=GWðu
�1ðxÞ; xÞ;

D 0
1 ¼

qD1

qx
¼ �1� k2%ðxÞ<

q

qx
GWðu

�1ðxÞ; xÞ;

D 0
2 ¼

qD2

qx
¼ �k2%ðxÞ=

q

qx
GWðu

�1ðxÞ; xÞ:

Then

q

qx
Wðx; xÞ ¼ �p�1jDþj

�4½ðD2
1 �D2

2ÞD
0
2 � 2D1D

0
1D2�:

If now jx� xjb a=2 the assumption (a2) together with Lemmas 4.1 and 5.1 (where we

denote the constant as C 0
3) imply

jDþjb jx� xj � k2C1C4 >
a

4
> 0;

jDþjb
1

2
jx� xj;

jD1ja jx� xj þ k2C1C4 < 2jx� xj;

jD2ja k2C1C4 <
a

4
;

jD 0
1jaC 0

3 þ k2C1C3jlnðx� u�1ðxÞ � nÞj þ k2C1C5ðx� u�1ðxÞ � nÞ;

jD 0
2ja k2pC1C3:
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From here we get

ð

ðnþu�1ðxÞ;x�a=2ÞUðxþa=2;yÞ

q

qx
Wðx; xÞ

�

�

�

�

�

�

�

�

dxaC7k
2;

where the explicit value of the constant C7 can be expressed from the above estimates

if necessary. What is important is that C7 can be chosen independent of k in the

considered range.

Let us consider the term Vðx; xÞ now. We have the bounds

1

1þ k2M2
a jAðx; kÞja

1

1� k2M2

by Lemma 5.3, so

2

3
a jAðx; kÞja 2 ð5:24Þ

holds for

jkj < minðd4; ð2M2Þ
�1=2Þ: ð5:25Þ

Denoting for a while A1 ¼ <Aðx; kÞ, A2 ¼ =Aðx; kÞ, we have

jA1ja jAðx; xÞja 2; jA2ja k2
M2jAðx; kÞj

2
a 4k2

M2

and

q

qx
Vðx; xÞ ¼

1

p

A2½ðx� z1ðx; kÞÞ
2 � z2ðx; kÞ

2� � 2A1z2ðx; kÞðx� z1ðx; kÞÞ

½ðx� z1ðx; kÞÞ
2 þ z2ðx; kÞ

2�2
:

If jx� xjb a=2 and

jkj < min d5;

ffiffiffiffiffiffiffiffiffiffi

a

8M1

r� �

; ð5:26Þ

we have jx� z1ðx; kÞjb a=4 by Lemma 5.3, and therefore

ð

ð�y;x�a=2ÞUðxþa=2;yÞ

q

qx
Vðx; xÞ

�

�

�

�

�

�

�

�

dxaC8k
2

with a k-independent finite constant C8 which can be given explicitly if necessary.

Let us now turn to x A ðx� a=2; xþ a=2Þ. Using the expansion (5.13),

Wðx; xÞ � Vðx; xÞ ¼
1

p
=

k2Aðx; kÞ2%ðxÞFðx; xÞ

1þ k2Aðx; kÞ%ðxÞðx� zðx; kÞÞFðx; xÞ
;

q

qx
½Wðx; xÞ � Vðx; xÞ� ¼

1

p
k2=

�

Aðx; kÞ2
%ðxÞðqFðx; xÞ=qxÞ � k2Aðx; kÞ%ðxÞ2Fðx; xÞ2

½1þ k2Aðx; kÞ%ðxÞðx� zðx; kÞÞFðx; xÞ�2

�

:

Using (5.24), (5.14), (5.15) together with Lemma 5.3, and assuming that

jkj < min d6ðaÞ;
1

2

ffiffiffiffiffiffiffi

a

M1

r

;
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m3ðaÞa
p

 !

; ð5:27Þ
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we obtain

q

qx
½Wðx; xÞ � Vðx; xÞ�

�

�

�

�

�

�

�

�

aC9k
2
;

where

C9 :¼
16

p
ðm4ðaÞ þ 2d6ðaÞ

2
m3ðaÞ

2Þ:

Putting all the estimates together, we get

ð

y

�y

e�ixt q

qx
½Wðx; xÞ � Vðx; xÞ� dx

�

�

�

�

�

�

�

�

aC6k
2
;

where

C6 ¼ C7 þ C8 þ C9a

and

jkj < d 0;

d 0 being the minimum of d; d2 and the right-hand side in (5.23), (5.25)–(5.27). Eval-

uating the generalized integral

ð

y

�y

e�ixtVðx; xÞ dx ¼ Aðx; kÞe�izðx;kÞt

by closing the integration contour in the lower half-plane for t > 0 the inequality (5.18)

is obtained. r

The theorem is apparently useless for very short and very large times when the error

estimate Oðk2t�1Þ is much larger than the amplitude valueAexpð�z2ðx; kÞtÞ. On the

other hand, we get a nontrivial bound for the times when

C6k
2

t
W e�z2ðx;kÞt ð5:28Þ

where we take into account that Aðx; kÞA1. Let us write

z2ðx; kÞ ¼ k2h2ðx; kÞ;

h2ðx; kÞ ¼ p%ðxÞvðu�1ðxÞ; x� u�1ðxÞÞ þOðk2Þ ð5:29Þ

for small coupling k. In the subsequent formulas we do not write the arguments of

h2, however, its x-dependence should be kept in mind in general. The relation (5.28)

is valid for T1W tWT2 where T1;T2 are two solutions of the equation

k2h2Tie
�k2h2Ti ¼ C6k

4h2; i ¼ 1; 2: ð5:30Þ

If k2T1 is small we can approximate the equation by replacing the exponential with one

obtaining

T1AC6k
2
:
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On the other hand, if k2h2T2 X 1 we do not enlarge the range ðT1;T2Þ by dropping the

linear factor in (5.30). Then we obtain

T2A�
1

k2h2
lnðC6k

4h2Þ:

The right-hand side here is an decreasing function of h2 in the interval ð0;C�1
6 k�4Þ. By

(5.29) and assumptions (a2), (a6) we have

0a h2 a pC1C2

in the k0 approximation. Restricting ourselves then to the coupling constant values

with

jkjf ðpC1C2C6Þ
�1=4;

we can safely use

T2A�
1

pC1C2k2
lnðpC1C2C6k

4Þ:

Hence we see that the announced approximately exponential behaviour of Uð� ; xÞ

holds in the weak-coupling regime over wide time range, roughly speaking from

C
�1=4
1 C

�1=4
2 C

3=4
6 k to C�1

1 C�1
2 k�2.

6. Long time behavior.

The fact that the bound given by Theorem 5.5 becomes useless at very large times is

not coincidental, because the decay rate is indeed slower there. To illustrate this claim,

for instance, let x A I1 be such that by Lemma 3.4, Theorem 3.6(b), Theorem 4.2 and

assumptions (a6)–(a8), we have

Wðx; xÞ is finite and continuous with respect to x A ½nþ u�1ðxÞ;yÞ ð6:1Þ

for 0 < jkj < d2, where d2 is the number from Theorem 4.2. This holds for almost every

x A I1.

By (a6) and (4.6), we get

jWðx; xÞja
k2%ðxÞC2

½x� x� k2%ðxÞIðu�1ðxÞ; xÞ�2
¼: TðxÞ:

Since limx!y Iðu�1ðxÞ; xÞ ¼ 0 by (3.8), we get

TðxÞ @

x!y

k2%ðxÞC2

ðx� xÞ2
: ð6:2Þ

Thus, gðxÞ :¼ w½nþu�1ðxÞ;yÞðxÞWðx; xÞ is in L2ðRÞ, but its support is not the whole R, and

Uðt; xÞ ¼

ð
y

nþu�1ðxÞ

gðxÞe�ixt dx

by (4.5). Applying now [13, Corollary C2], we find that for almost every x A I1 and

jkj < d2

Uðt; xÞ does not decay exponentially as jtj ! y. ð6:3Þ
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To learn more about the long-time asymptotic behavior of Uðt; xÞ, we adopt the con-

ditions (a10)–(a13) below, and employ the results of [13] and [15] in the same way as in

[14, Theorem 3.2(ii)].

Given nb 0 and y A ð0; p=2Þ, we define Dn;y by

Dn;y :¼ fz A C j <z > n;�y < arg z < 0g: ð6:4Þ

If n < n 0, we have therefore

Dn 0;y HDn;y: ð6:5Þ

Let us denote

WðvÞ :¼ 7
y A I0

ðW� yÞ: ð6:6Þ

Notice that WðvÞH7
y A I0

Wv;y by (a3). We shall assume:

(a10) There exists y0 A ð0; p=4Þ such that Dn;y0 HWðvÞ.

(a11) vðy; xÞ > 0 holds for each y A I0 and x > n.

(a12) Given y A I0, there exists Cy > 0 and qy > 0 such that

jvðy; zÞj < Cyjzj
�qy

holds for any z A WðvÞ.

Notice that for v which is continuous by (a3), the assumption (a11) implies, in par-

ticular, that for each x A I1 and a; b A ðn;yÞ we have

mx;a;b :¼ inf
aaxab

vðu�1ðxÞ; xÞ > 0: ð6:7Þ

For fixed x A I1 and z A Wnð�y; u�1ðxÞ þ n�, we have defined Dþðx; k; zÞ by (3.17). In

a similar way, we define three other functions, D�ðx; k; zÞ, Wðx; zÞ, and gxðzÞ by

D�ðx; k; zÞ :¼ x� z� k2%ðxÞGWðu�1ðxÞ; zÞ; ð6:8Þ

Wðx; zÞ :¼
k2%ðxÞvðu�1ðxÞ; z� u�1ðxÞÞ

Dþðx; k; zÞD�ðx; k; zÞ
; ð6:9Þ

gxðzÞ :¼ Wðx; zþ u�1ðxÞÞ

¼
k2%ðxÞvðu�1ðxÞ; zÞ

Dþðx; k; zþ u�1ðxÞÞD�ðx; k; zþ u�1ðxÞÞ
; ð6:10Þ

in the last case z A WðvÞnð�y; n�. Then, for almost every x A I1 and k A R with

0 < jkj < d2,

gx can be regarded as measurable with gx A L1ððn;yÞ; dxÞ ð6:11Þ

by (6.1) and (6.2), and we can write the time evolution as follows,

Uðt; xÞ ¼ e�iu�1ðxÞt

ð
y

n

gxðxÞe
�ixt dx; ð6:12Þ

by (4.5) and (4.6).

Next we need several lemmas. The first of them follows from (a3), (a10), and

Lemma 3.4:
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Lemma 6.1. gxðzÞ is meromorphic in Dn;y0 for every x A I1 and k A R.

Lemma 6.2. For every x A I1 with %ðxÞ0 0, x A R with x > n, and k A R with 0 <

jkj < d2,

lim
e!0þ

gxðx� ieÞ ¼ gxðxÞ: ð6:13Þ

Proof. Let x 0
1 xþ u�1ðxÞ. By Lemma 3.4 we have

Dþðx; k; x
0Þ :¼ lim

e!0þ
Dþðx; k; x

0 � ieÞ

¼ x� x 0 � k2
%ðxÞfIðu�1ðxÞ; x 0Þ þ ipvðu�1ðxÞ; xÞg; ð6:14Þ

D�ðx; k; x
0Þ :¼ lim

e!0þ
D�ðx; k; x

0 � ieÞ

¼ x� x 0 � k2
%ðxÞfIðu�1ðxÞ; x 0Þ � ipvðu�1ðxÞ; xÞg ð6:15Þ

for x 0
> u�1ðxÞ þ n ðx > nÞ, which implies that

Dþðx; k; x
0ÞD�ðx; k; x

0Þ

¼ ½x� x 0 � k2
%ðxÞIðu�1ðxÞ; x 0Þ�2 þ p2k4

%ðxÞ2vðu�1ðxÞ; xÞ2: ð6:16Þ

Then lime!0þ Wðx; x 0 � ieÞ ¼ Wðx; x 0Þ follows from (4.6) giving (6.13). r

Lemma 6.3. For every x A I1, with %ðxÞ0 0, all su‰ciently small e > 0, every a; b A

ðn;yÞ with a < b, and every k A R with 0 < jkj < d2, there exists a constant Cx;a;b > 0

independent of e such that

sup
a<x<b

jgxðx� ieÞjaCx;a;b: ð6:17Þ

Proof. Let us choose 0 < y1 < y0 and set

Sp;q :¼ fz A C j pa<za q;�n tan y1a=za 0g:

Fix e 0 A R with 0 < e 0 < 1 arbitrarily. vðu�1ðxÞ; �Þ is uniformly continuous in Sa;b by

(a3) and (a10) since Sa;b HWðvÞ. So there exists a constant e1 1 e1ðx; e
0Þ > 0 such that

jvðu�1ðxÞ; x� ieÞ � vðu�1ðxÞ; xÞja e 0jvðu�1ðxÞ; xÞj

for aa xa b and 0 < e < e1 and we have

jvðu�1ðxÞ; x� ieÞja ð1þ e 0Þjvðu�1ðxÞ; xÞj ð6:18Þ

for aa xa b and 0 < e < e1. Since DGðx; k; �Þ is holomorphic in Wnð�y; u�1ðxÞ þ n�

by Lemma 3.4, DGðx; k; �Þ is uniformly continuous in Sa;b þ u�1ðxÞ. In view of (6.14)

and (6.15) there exists e2 1 e2ðx; e
0Þ > 0 such that

jDGðx; k; x
0 � ieÞ �DGðx; k; x

0Þja e 0jDGðx; k; x
0Þj

for x 0
1 xþ u�1ðxÞ with aa xa b and 0 < e < e2. Hence we have

ð1� e 0ÞjDGðx; k; xþ u�1ðxÞÞja jDGðx; k; xþ u�1ðxÞ � ieÞj ð6:19Þ
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if aa xa b and 0 < e < e2. Using further (6.7), (6.10), (6.16), (6.18) and (6.19), we get

jgxðx� ieÞja
ð1þ e 0Þk2%ðxÞjvðu�1ðxÞ; xÞj

ð1� e 0Þ2jDþðx; k; xþ u�1ðxÞÞD�ðx; k; xþ u�1ðxÞÞj

a
ð1þ e 0Þk2%ðxÞjvðu�1ðxÞ; xÞj

ð1� e 0Þ2p2k4%ðxÞ2jvðu�1ðxÞ; xÞj2

a
ð1þ e 0Þ

ð1� e 0Þ2mx;a;bp
2k2%ðxÞ

for aa xa b and 0 < e < e0 1minfe1; e2g, which implies the desired result. r

Lemma 6.4. For every x A I1, all su‰ciently large jzj with z A Dn;y0 , and every k A R

satisfying 0 < jkj < d2,

jgxðzÞja
C10

jzj2þqy

with a constant C10 > 0 independent of z A Dn;y0 .

Proof. In this proof, we set y ¼ u�1ðxÞ, x 0
1 xþ u�1ðxÞ, and let x > nb 0. Since

D�ðx; k; x
0 � ieÞ ¼ x� ðx 0 � ieÞ � k2%ðxÞGðy; x 0 � ieÞ

for every e > 0, we get

jD�ðx; k; xþ u�1ðxÞ � ieÞj2b ðxþ Ae;xðxÞÞ
2;

where

Ae;xðxÞ :¼ k2%ðxÞ<Gðy; x 0 � ieÞ þ u�1ðxÞ � x:

Set

Bx :¼ k2%ðxÞC4 þ ju�1ðxÞj þ jxj > 0:

Then we get jAe;xðxÞjaBx by Lemma 4.1. Since we now take x > 0, we get for every

C� with 0 < C� < 1,

ðxþ Ae;xðxÞÞ
2 � C2

�x
2
b x2 � 2Bxx� C 2

�x
2

¼ ð1� C2
�Þ x�

Bx

1� C2
�

� �2

�
B2
x

1� C2
�

:

Thus there exists C� with 0 < C� < 1 and x� 1 x�ðxÞ > 0 independent of e > 0 such

that

jD�ðx; k; xþ u�1ðxÞ � ieÞj > C�x ð6:20Þ

for every x > x�. As for Dþðx; k; x
0 � ieÞ, we have

Dþðx; k; x
0 � ieÞ ¼ D�ðx; k; x

0 � ieÞ � 2ik2%ðxÞpvðy; x� ieÞ

for any e > 0. Moreover, by (a12) we get

jvðy; x� ieÞja
Cy

fx2 þ e2gqy=2
a

Cy

xqy
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for x� ie A WðvÞ. Thus there exists x 0
þ > 0 independent of e > 0 such that if x > x 0

þ,
then

jvðy; x� ieÞj < C�
4pk2%ðxÞ :

Together we get

jDþðx; k; xþ u�1ðxÞ � ieÞjb jD�ðx; k; xþ u�1ðxÞ � ieÞj � C�
2

bC�x�
C�
2

> 0

for xbmaxfx�; x 0
þ; 1g ¼: xþ by (6.20); notice that xþ is independent of e > 0. On the

other hand, we get

C�x�
C�
2
b

C�
2

x

for x > xþ. Now we set Cþ :¼ C�=2; then 0 < Cþ < 1 and

jDþðx; k; xþ u�1ðxÞ � ieÞj > Cþx ð6:21Þ
for every x > xþ. Put x1<z and �h1=z so that h > 0. Then, having xb h, we get

2x2 � ðx2 þ h2Þ ¼ x2 � h2b 0. Hence by (6.20) and (6.21) we obtain

CG
ffiffiffi

2
p a

CGx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ h2
q a

jDGðx; k; zþ u�1ðxÞÞj
jzj

for z ¼ x� ih with xbmaxðxG; hÞ. If z A Dy;y0 with <z > maxðxG; j=zjÞ, we have

CG
ffiffiffi

2
p jzja jDGðx; k; zþ u�1ðxÞÞj: ð6:22Þ

Using then (6.10), (a12) and (6.22), we arrive at

jgxðzÞja 2
k2%ðxÞ
CþC�

Cyjzj�ð2þqyÞ

for su‰ciently large jzj with z A Dn;y0 . r

Next we set for any x A I1

d x
n 1 x� ðnþ u�1ðxÞÞ � k2%ðxÞ

ð

y

n

vðu�1ðxÞ; zÞ
z� n

dz: ð6:23Þ

Remark 6.5. Recall that by (a5) d x
n is positive for su‰ciently small jkj.

Let us finally state the last assumption:

(a13) Given x A I1, there are numbers An;x 0 0 and pn;xb 0 such that

lim
z!0

z AD0; y0

vðu�1ðxÞ; zþ nÞ
zpn; x

¼ An;x:

This is a new assumption for u�1ðxÞ ¼ x
ð�Þ
0 only, the existence of An;x and pn;x

follows from the holomorphicity and (a13) only fixes the notation for other values of x.
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If we would require the closure D0;y0 to be a part of WðvÞ in (a10) then (a13) would hold

automatically.

We set

k2
n;x :¼

x� n� u�1ðxÞ

%ðxÞIðu�1ðxÞ; nþ u�1ðxÞÞ

¼ ðx� n� u�1ðxÞÞ %ðxÞ

ð

y

n

vðu�1ðxÞ; zÞ

z� n
dz

� ��1

: ð6:24Þ

By (a5), this quantity satisfies k2
n;x > 0 and d x

n 0 0 for k2 0 k2
n;x.

Lemma 6.6. Assume (a1)–(a3), (a6), (a7), (a10) and (a13). Then

lim
x!nþ;h!0þ

DGðx; k; x� ihþ u�1ðxÞÞ ¼ d x
n ; ð6:25Þ

where for u�1ðxÞ ¼ x
ð�Þ
0 the limit is taken with x� ih� n A D0;y0 only.

Proof. By (3.17), (6.8) and Lemma 3.4,

Dþðx; k; x� ihþ u�1ðxÞÞ ¼ x� x� u�1ðxÞ þ ih

� k2
%ðxÞ½Gðu�1ðxÞ; x� ihþ u�1ðxÞÞ þ 2ipvðu�1ðxÞ; x� ihÞ�;

D�ðx; k; x� ihþ u�1ðxÞÞ ¼ x� x� u�1ðxÞ þ ih� k2
%ðxÞGðu�1ðxÞ; x� ihþ u�1ðxÞÞ

for h > 0, x� ih A Dn;y0 which is the su‰cient range of variables due to (a3) and (a10).

Under assumption (a3), for u�1ðxÞ > x
ð�Þ
0 there exists A > 0 such that vðu�1ðxÞ; �Þ is

holomorphic in the set fz A C j jz� nj < 2Ag. Taking into account (a7) then

lim
x!nþ;h!0þ

vðu�1ðxÞ; x� ihÞ ¼ vðu�1ðxÞ; nÞ ¼ 0:

The same holds by (a6), (a7), (a10) and (a13) for u�1ðxÞ ¼ x
ð�Þ
0 taking the limit with

x� ih� n A D0;y0 . Let us write

Gðu�1ðxÞ; x� ihþ u�1ðxÞÞ ¼

ð nþA

n

vðu�1ðxÞ; zÞ � vðu�1ðxÞ; xÞ

z� xþ ih
dz

þ vðu�1ðxÞ; xÞ

ð nþA

n

dz

z� xþ ih
þ

ð

y

Aþn

vðu�1ðxÞ; zÞ

z� xþ ih
dz ð6:26Þ

with a fixed A > 0. For the first and third integral, dominated convergence theorem

can be used giving (recall (a7))
ð

y

n

vðu�1ðxÞ; zÞ

z� n
dz

as the limit of their sum as x ! nþ, h ! 0þ. The second integral

ð nþA

n

dz

z� xþ ih
¼

1

2
ln
ðnþ A� xÞ2 þ h2

ðx� nÞ2 þ h2
þ i arctan

h

nþ A� x
þ arctan

h

x� n
� p

� �

for n < x < nþ A, h > 0. As jvðu�1ðxÞ; xÞjaC3ðx� nÞ with constant C3 from (a6), the

limit of the second term in (6.26) is zero. Now (6.25) is seen. r
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Lemma 6.7. Let 0 < jkj < d2, x A I1 and d x
n 0 0. Then the function z 7! gxðnþ zÞ

has no poles in fz A D0;y0 j jzj < e0g with a constant e0 > 0 and the limit

wn;x :¼ lim
z!0; z AD0; y0

gxðnþ zÞ

zpn; x

¼
k2%ðxÞAn;x

Dþðx; k; nþ u�1ðxÞÞD�ðx; k; nþ u�1ðxÞÞ
¼

k2%ðxÞAn;x

d x
n
2

: ð6:27Þ

Proof. The poles of gxðzÞ come only from the zeroes of DGðx; k; zþ u�1ðxÞÞ. If

d x
n 0 0 then

lim
z!0; z AD0; y0

gxðnþ zÞ ¼ 0 ð6:28Þ

by (6.10) and Lemma 6.6. By Lemma 6.1, gx is meromorphic in nþD0;y0 so its only

possible singularities there are isolated poles; they also do not accumulate at n due to

(6.28). Thus gxðnþ zÞ has no poles in a small neighborhood of z ¼ 0 in D0;y0 . By

(a13), we therefore have

gxðnþ zÞ @
z!0

k2%ðxÞAn;x

d x
n
2

zpn; x : r

Now we can formulate the main theorem of this section:

Theorem 6.8. Assume (a1)–(a7), (a10)–(a13). Then for every x A I1 and k A R

satisfying %ðxÞ > 0, d x
n 0 0, 0 < jkj < d2 we have the following asymptotic behaviour:

Uðt; xÞ @

t!y
wn;xe

�i½nþu�1ðxÞ�te�ipðpn; xþ1Þ=2Gðpn;x þ 1Þt�ðpn; xþ1Þ;

where G is the gamma function.

Proof. It is su‰cient to apply [13, Theorem 2.1] to (6.12) with the help of Lemmas

6.1–6.7 and we obtain the desired result. r

7. Alternative assumptions.

Our results rely on a number of assumptions. Some of them, such as (a1) and (a5),

have a physical content and define the model we are investigating. The same applies to

a certain extent to the assumption (a3) which allows us to use techniques based on

analytic continuation without which the solution would be hardly possible. Most of the

other assumptions represent natural mathematical requirements which allow us to carry

our considerations through. Without any doubt some of them can be weakened at

the expense of making the reasoning more cumbersome and technically involved. The

assumption (a11) strengthens (a8), the assumption (a10) requires the set W from (a3) to

be large enough. The boundedness of first derivative in (a6) follows from boundedness

of function v in (a6) and second derivative in (a9). With these exceptions, the assump-

tions are mutually independent.

On the other hand, the reader may rightly feel that some assumptions such as (a4)

are rather implicit and the whole set is not easy to oversee. This is why we present
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in conclusion a shorter list of stronger hypotheses which imply all of (a1)–(a13) used

throughout the paper. Let us first remind the notation of the intervals involved:

I0 ¼ ½x
ð�Þ
0 ; x

ðþÞ
0 �; I1 ¼ ½x

ð�Þ
1 ; x

ðþÞ
1 �; K ¼ ½n;yÞ; nb 0:

The simplified set of assumptions then reads as follows:

(b1) The inequalities

�y < x
ð�Þ
0 < x

ðþÞ
0 a x

ðþÞ
0 þ n < x

ð�Þ
1 < x

ðþÞ
1 < y

hold and u : I0 ! I1 is a C1-bijection of closed intervals.

(b2) The weight functions w0;w1 are continuous and strictly positive in I0; I1,

respectively.

(b3) There exist numbers y0 A ð0; p=4Þ, Cv > 0, q > 1, an open set Wv HC , and a

function v : I0 �Wv ! C such that

fz A C j <zb n� x
ðþÞ
0 þ x

ð�Þ
0 ; 0b=zb�ð<zþ x

ðþÞ
0 � x

ð�Þ
0 Þ tanðy0ÞgHWv;

for every y A I0, the function z 7! vðy; zÞ is holomorphic in Wv and has a zero

at z ¼ n, i.e.,

vðy; nÞ ¼ 0;

the function v satisfies the estimate

jvðy; zÞjaCvjzj
�q

for every y A I0 and z A Wv. The equality

vðy; zÞ ¼ jlðy; zÞj2oðzÞ > 0

holds for y A I0 and z > n, where the measurable function l and the weight

factor o are functional parameters of the model introduced in Section 2.

(b4) The functions vðy; zÞ and qvðy; zÞ=qz are continuous in I0 � K . There exist a

constant C5 > 0 and a function h A L1ðKÞ such that

q2vðy; zÞ

qz2

�

�

�

�

�

�

�

�

aC5;
qvðy; zÞ

qz

�

�

�

�

�

�

�

�

a hðzÞ

for every y A I0, z A K .
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[ 6 ] H. Baumgärtel and M. Demuth, Perturbation of unstable eigenvalues of finite multiplicity, J. Funct.

Anal., 22 (1976), pp. 187–203.
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