J. Math. Soc. Japan
Vol. 56, No. 3, 2004

Fourier-Ehrenpreis integral formula for harmonic functions
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Abstract. We give a Fourier-Ehrenpreis integral representation formula that ex-
presses a harmonic function in a ball with a prescribed boundary value by superposition of
harmonic exponentials.

1. Introduction.

The exponential e~*" is harmonic in ¢ = (t1,...,t,) if z=(z1,...,z,) satisfies
zeV={zeC"z*= PO ij =0}. According to the Ehrenpreis fundamental princi-

ple, harmonic functions are represented as integrals over this kind of harmonic expo-
nentials with respect to some measures supported on V. The original proof was a very
abstract argument based on the Hahn-Banach theorem and gave no explicit construction
of such a measure.

On the other hand, integral formulas in Several Complex Variables led to explicit
versions of the fundamental principle; see and the references in and [4].

The power of 2] resides in its generality. When applied to the particular case of
the Laplacian, it has some redundancy: it involves not only the Dirichlet boundary value
but also some other data. We have given a formula free from such superfluous data
in the case n =3 in [4]. In the present paper we give a result for an arbitrary » in a
different formulation.

Let B, ={te R"; || = (3, tjz)l/2 < 1} be the open unit ball of R; and u(r) e
%°(B,) be harmonic in B,. We denote its Dirichlet boundary value by f e %°(S"!).
Let [, be the (1,1)-current of integration along V\{0}, which is the smooth locus of I/
and has a natural orientation as a complex manifold. For a (n— 1,n— 1)-form (pos-
sibly with singularities) @ on C", we have [, w = IV\{O} @*(w), where @ : V\{0} — C”"
is the natural embedding.

Set x;j=Rez;, yj=Imz; (j=1,...,n) and x=(x1,...,x,), Y= V1,---, n)-
Put dx Andy = 2}1:1 dx; ndy;. We will prove that in B, (n>3) we have the Fourier-
Ehrenpreis integral representation formula:

If n=2 we have a slightly different formula:

ult) = %JV /1) (el’<2»f> _ %) dx|$|dy
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2. Geometry.

The equation z2 = |x|* — |y|* 4 2ix, y> = 0 is satisfied if and only if |x| — |y| =
{x,y>=0. For a fixed value of s = y/|y| € S"!, r =|x| =|y| can take an arbitrary
positive value and x can be any vector which is orthogonal to s. Therefore there is a
diffeomorphism

VA{0} — TS"N\S", (x,9) = (v/1y, ),

where 7S"! is the tangent bundle of S"~! whose fiber at s is H(s) = {x e R";
{s,xy =0}. Here S"! is identified with the zero section S"~!' x {0} = TS""!. The
inverse mapping is

7S N\S" 1 = 1\{0}, (s5,x) — (x,|x]s).

For y e R"\{0}, set H(y) = H(y/|y|) = {x € R"; {y,x)» = 0}, which is the boundary
of {x;{y,x) <0} and is oriented accordingly. Let w, e Q" '(H(y)) be the surface-
area element of H(y) and n be the orthogonal projection from R" to H(y). Put

wy(x) = '@y, y-dx=3", yjdx;. Then

(2.1) (y-dx) Awy(x) = |yldxi A -+ Adx,.

Set v(y) = Z}’zl(—l)j_lyjdyl NERE /\afy\j Ao Adyn, y-dy =31, yydy;. Then
(2:2) (y-dy) no(y) =y dyr A - Adyn,

At each point on {x-y =0}, we have
(2.3) (x-dy)nv(y)=(x-y)dyin - Ady, =0.

LEmMA 2.1. At each point on {x-y=|y| — |x| =0}, we have
d(x-y) ~d(y]? = X% Av(y) Awy(x) = 2(=1D)"|xPdy1 A - Adyy Adxi A - Adox,.

Proor.

SdCe- y) Ay — ) A o(y) Ay ()
=(y-dx+x-dy)A(y-dy —x-dx)rv(y) Awy(x)

=(y-dx)A(y-dy) Av(y) Awy(x) — (x-dy) A(x - dx) Av(y) Awy(x)

because (n+ 1)-forms in x or y are 0
= (=D)"|yPdyi A - Adyyndxi A - Adx, by [21),[22) and [23) O
LEMMA 2.2. At each point on {|y| — |x| =0}, we have
d(x-y) nd(|y]> = |xI?) A (dx ady)" " = 4(=1D)"" D2 1x2dyy A - Adyp Adxi A - Adxy.

ProoF. First we can see easily that (dxAdy)"' =3/ [T, dxx Adyk, which
implies that (dx, Ady,) A (dx A dy)" ' =0 if p+#q. Therefore



Fourier-Ehrenpreis integral formula for harmonic functions 731

(y-dx)A(y-dy)A(dxndy)" (Zyj dxj/\dyj>/\ZH dx A dyy

1 k#/
= | *(dx1 Adyr) A - A (dXy A dyy).

In a similar way, we are led to

(- y) nd(1y)” = ) A (dx ndy)"™!

=(y-di+x-dy)n(y-dy—x-dx)n(dxndy)"”
= (|x]* + [p1*)(dx1 Adyi) Ao A (dxy Adyn). O
On account of Lemmas 2.1 and 2.2, we arrive at

LEMMA 2.3. At each point on V\{0}, we have
d(x - y) nd(|y® = [xI*) A (dx ndy)"™!

=2(=1)"" V2 d(x - y) ad([y]? = X)) A X" (/1 9]) Awy(x),

where o is the surface-area element of S"™™' and a(y/|y|) = |y|"v(») is its pullback by the
projection R"\{0} — S™ ' y— y/|y|.

Lemma 2.4. Let fi and f, be €~ -functions on an m-dimensional manifold M such
that dfi ndfy # 0 near N ={f1 = f, =0}. If an (m — 2)-form w satisfies w A dfy Adf> =
0 at each point on the submanifold N, then ¢*w = 0 where ¢ : N — M is the embedding.

Proor. Choose a local coordinate system x = (xi,...,X,) With x; = f; (j=1,2).
An (m —2)-form o can be written in the form

o(x) =n(x)dxs A -+« Adx, + dx) A Z Wiy oo s (X) Ay A - A dX,

1< <./m 3

+dxa A Z ’7/1 ----- - 3 x)dxj, A e AdX;,

< fms
Then at each point on N we get
o ANdfi Adfy = o Adxp Adxy =n0(0,0,x3,...,x,) dX1 A -+ Adxy.
On the other hand, we have ¢*w =#(0,0,x3,...,x,)dx3 A -+ Adx,. O
By virtue of Lemmas and 24 (with fi = x-y, fo =|y|* = |x|*) we deduce

PropPOSITION 2.5.
®*((dx ndy)"™ ") = 0 (2(=1)"" V25" a(y/1¥]) Awy(x)).

3. Integrals.

In this section, we will show below which will be used in the proof of
IProposition 4.1|.
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LemMa 3.1. Put anJ"gsin”x/(a+zpcosx)”+ldx for a>0, peR, neNy=
0,1,2,...}. Then we have K, =y (a*>+ p? 7("“)/2, where y, = [ sin” x dx.
n n 0

Proor. It is well-known that

dn—1N - it -
=2 R G s odd), 5, =" R (i 22 ks even), =
We have

K, *  sin”

0 _ —i(n J sin xcosx+2 dx,

op 0 (a+ipcosx)”

%K, _ © sin"?

22:n(n—1J sm- X —dx (n>=2).

oa 0 (a+ipcosx)”

By integrating K, = [[(—cosx)’sin""' x/(a + ipcosx)""" dx by parts, we obtain

0 1 o2
(”%*”)K" = aaafer (n=2).

Note that pd/dp + n is injective on the set of power series in p. OJ
LemMa 3.2. If n>3, a>0 and (by,...,b,_1) € R""", then
dV/<X) Can
I, = | n—2 n—1 1 o\(n1—2)/2
s (a+i) .-y brXy) (@ + 3271 b7)

dv/(X) Cn_za

In 1= J ) 1 n—1 ) n—1 po\n/2’
s (a+1i) ;- brXy) (@®+ >/ b7)

where C,, (m > 1) is the surface-area of S™ and V' is the surface-area measure of S" 2.
Proor. It is well-known that C,, =2y,---7,_; and that

(2n)(n’l+1)/2 2(2n)n’l/2

Cn = )i (m— D!

(if m is odd), (if m is even).
We have only to calculate I, because J, = (2 —n) ' dl,/da.
The group SO(n — 1) acts on S"2 transitively. So we may replace (b1,...,b, 1)

by (p,0,...,0) with p = (Z?;ll b?)l/z. By using the polar coordinates we find that

/ 2n n=3 pn n s n—3
J _ ) J d0, HJ sin" 270, do), J sin” vt
s (a+ipX) 0 0 0 (a+ipcosb)

=2
=290 Vn-aKn-s.
By using [Lemma 3.1, we get the formula for I,. O

4. Main result.

Putr=|x| = |y|,s=y/r, £ =x/ron V\{0}. We see that ¢ is an element of S(s) =
{xe H(s);|x] =1} ~ 8" 2 for each fixed se S""!. Let u,m and v be the surface-area
measures of S”~! < R", H(s) ~ R"™' and S(s) respectively.



Fourier-Ehrenpreis integral formula for harmonic functions 733

Since (zy,...,2z,...,2,) 18 @ holomorphic coordinate system of V'\{0}, the 2(n — 1)-
form @*([], ., dxi ndyr) (/ =1,...,n) is positive with respect to its natural orientation
and so are the forms in [Proposition 2.5

For a function F on V\{0} we have

j F&* ((dx ady)™™") = j Fo* (2(—1)" 21" (/1)) A wy (x)
\{0} \{0}

= 2J du(s) J r"UF dm(x)
Sn-1 H(s)

=2 Lnl du(s) L(S) dv(&) Joc r?"3F dr.

0

PROPOSITION 4.1.  Assume n > 3. Put F; = r~ =15 (=G0 DY £ (6) (j = 0,1)
on V\{0} where fe@°(S""). Then if |t| <1, we have

(1= <5 0)/6)

* "1 =2(n—2)IC,_ s
(4.1) jV\{O}Foqb (e nds)™) =2n =201, | E= D),
(4.2) J Fch*((dX/\dy)"1):2(n—3)!Cn_2J SO s,
\{0} srt |s — 1|

ProorF. Put a =1— {s,t), then a > 0 because |s| =1, |7 < 1. It implies the con-
vergence of the following integral:

o0
(4.3) J Fjé*((dX/\dy)”*l) = 2J f(s) dﬂ(S)J dv(é)J =2 p=r(atiCE,0) g,
\{0} s S(s) 0
. dv(¢)
=2(n—-2-— !J s)d SJ -,
( J) S’Hf() u(s) s @ T KE )T
Let {uy,...,u,—1} be an orthonormal system of the linear subspace H(s) of R".

Then each &= x/re S(s) = H(s) is expressed as &= S"/"1 Xyu,, S22 X2 =1. Set
by = {uy, t), then (&, 1) = Z?;ll bsX,. We have

J dv(&) _J dv'(X)
s (a+ K& )" s (a+ i) beXy)" T
where X = (Xi,..., X,—1).

Recall that r=|y|, s= y/r. Since {s,u,...,u, 1} is an orthonormal system of
R", by = {uy,ty satisfies (s,0>> + S 71b2 = |1|*. Hence a® + S/ b2 =1 —2(s,1> +
7|* = |s—1|*. By using we complete the proof of Proposition 4.1. [

We introduce two integral operators Qp, Q; : €°(S""!) — ¥*(B,) by

n—1
[, sonspeeeti(EE)
4 |yl

n—1
- e )

Qol/1(1)
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On V we have —iz,t) —|y| =<y, t) — |y| —ilx,t) = —{(1 =<5, ))r+ilx,t)}. We
can use [Proposition 4.1 to calculate Q;. The result is

0l =201~ 21,2 | BE SR g,
R T e =L

We find that {1/(2C,—2C,—1)}{20Q0[f](2)/(n —2)! — O1[f](¢)/(n — 3)!} is nothing but
the Poisson integral of f. By using C,_C,_» = 2(27)"""/(n — 2)!, we obtain our main

result:

THEOREM 4.2.  Assume that u(t) € 6°(B,) (n>=3) is harmonic in B, and let f =
ulop € %°(S""1) be its Dirichlet boundary value. Then in B,, we have

0= ﬁf (1 - %)f(y/lyl)e"@ D¢l (W)l

In particular u(t) is given by superposition of the exponentials exp(—i{z,t)y) with
2=3,2 =0 and y/|y| esupp f.

5. 2-dimensional case.

Only (4.1) in [Proposition 4.1 holds if n =2. (The left hand side of (4.2) is diver-
gent.) Here we set Cp =2. We have

— 8,0

J FOQD*(dX/\dy)=4J ———=f(s) du(s).
\{0}

st |s—1
In the same way as in the previous section, define Qp: ¢°(S') — €™ (B,) by

i€, =11 dx"\‘dy _
Y

Then Qolf1(1) =4 [ (1 =<5, 80) /s — t|*)f(s) du(s). Hence (87) " (20Q0[f](1) —
0o0[f](0)) equals the Poisson integral of f.

Oulf)(1) = JVf(y/IyDe‘

THEOREM 5.1. If u(t) € 6°(B,) is harmonic in By and f e ¢°(S') is its Dirichlet
boundary value, then in B, we have

u(t) = Jf(y/|y|) |y( z,t>_%>dx’;dy.
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