Fourier-Ehrenpreis integral formula for harmonic functions

By Hideshi YAMANE

(Received Apr. 24, 2002) (Revised Feb. 17, 2003)

Abstract. We give a Fourier-Ehrenpreis integral representation formula that expresses a harmonic function in a ball with a prescribed boundary value by superposition of harmonic exponentials.

1. Introduction.

The exponential $e^{-i\langle z,t\rangle}$ is harmonic in $t=(t_1,\ldots,t_n)$ if $z=(z_1,\ldots,z_n)$ satisfies $z\in V=\{z\in C^n; z^2=\sum_{j=1}^n z_j^2=0\}$. According to the Ehrenpreis fundamental principle, harmonic functions are represented as integrals over this kind of harmonic exponentials with respect to some measures supported on V. The original proof was a very abstract argument based on the Hahn-Banach theorem and gave no explicit construction of such a measure.

On the other hand, integral formulas in Several Complex Variables led to explicit versions of the fundamental principle; see [2] and the references in [1] and [4].

The power of [2] resides in its generality. When applied to the particular case of the Laplacian, it has some redundancy: it involves not only the Dirichlet boundary value but also some other data. We have given a formula free from such superfluous data in the case n = 3 in [4]. In the present paper we give a result for an arbitrary n in a different formulation.

Let $B_n = \{t \in \mathbb{R}^n; |t| = (\sum_{j=1}^n t_j^2)^{1/2} < 1\}$ be the open unit ball of \mathbb{R}^n and $u(t) \in \mathscr{C}^0(\overline{B}_n)$ be harmonic in B_n . We denote its Dirichlet boundary value by $f \in \mathscr{C}^0(S^{n-1})$. Let \int_V be the (1,1)-current of integration along $V \setminus \{0\}$, which is the smooth locus of V and has a natural orientation as a complex manifold. For a (n-1,n-1)-form (possibly with singularities) ω on \mathbb{C}^n , we have $\int_V \omega = \int_{V \setminus \{0\}} \Phi^*(\omega)$, where $\Phi: V \setminus \{0\} \to \mathbb{C}^n$ is the natural embedding.

Set $x_j = \operatorname{Re} z_j$, $y_j = \operatorname{Im} z_j$ (j = 1, ..., n) and $x = (x_1, ..., x_n)$, $y = (y_1, ..., y_n)$. Put $dx \wedge dy = \sum_{j=1}^n dx_j \wedge dy_j$. We will prove that in B_n $(n \ge 3)$ we have the Fourier-Ehrenpreis integral representation formula:

$$u(t) = \frac{1}{2(2\pi)^{n-1}} \int_{V} \left(1 - \frac{n-2}{2|y|} \right) f(y/|y|) e^{-i\langle z, t \rangle} e^{-|y|} \left(\frac{dx \wedge dy}{|y|} \right)^{n-1}.$$

If n = 2 we have a slightly different formula:

$$u(t) = \frac{1}{4\pi} \int_{V} f(y/|y|) e^{-|y|} \left(e^{-i\langle z, t \rangle} - \frac{1}{2} \right) \frac{dx \wedge dy}{|y|}.$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 32C30; Secondary 31A05, 31A25. Key Words and Phrases. currents, the fundamental principle, harmonic functions. The author thanks Hiroyuki Ochiai for valuable suggestions.

730 H. Yamane

2. Geometry.

The equation $z^2 = |x|^2 - |y|^2 + 2i\langle x, y \rangle = 0$ is satisfied if and only if $|x| - |y| = \langle x, y \rangle = 0$. For a fixed value of $s = y/|y| \in S^{n-1}$, r = |x| = |y| can take an arbitrary positive value and x can be any vector which is orthogonal to s. Therefore there is a diffeomorphism

$$V\setminus\{0\}\to TS^{n-1}\setminus S^{n-1},\quad (x,y)\mapsto (y/|y|,x),$$

where TS^{n-1} is the tangent bundle of S^{n-1} whose fiber at s is $H(s) = \{x \in \mathbb{R}^n; \langle s, x \rangle = 0\}$. Here S^{n-1} is identified with the zero section $S^{n-1} \times \{0\} \subset TS^{n-1}$. The inverse mapping is

$$TS^{n-1} \setminus S^{n-1} \to V \setminus \{0\}, \quad (s, x) \mapsto (x, |x|s).$$

For $y \in \mathbb{R}^n \setminus \{0\}$, set $H(y) = H(y/|y|) = \{x \in \mathbb{R}^n; \langle y, x \rangle = 0\}$, which is the boundary of $\{x; \langle y, x \rangle < 0\}$ and is oriented accordingly. Let $\omega_y \in \Omega^{n-1}(H(y))$ be the surfacearea element of H(y) and π be the orthogonal projection from \mathbb{R}^n to H(y). Put $w_y(x) = \pi^* \omega_y$, $y \cdot dx = \sum_{j=1}^n y_j dx_j$. Then

$$(2.1) (y \cdot dx) \wedge w_{\nu}(x) = |y| dx_1 \wedge \cdots \wedge dx_n.$$

Set
$$v(y) = \sum_{j=1}^{n} (-1)^{j-1} y_j dy_1 \wedge \cdots \wedge \widehat{dy_j} \wedge \cdots \wedge dy_n, \ y \cdot dy = \sum_{j=1}^{n} y_j dy_j.$$
 Then

$$(2.2) (y \cdot dy) \wedge v(y) = |y|^2 dy_1 \wedge \cdots \wedge dy_n.$$

At each point on $\{x \cdot y = 0\}$, we have

$$(2.3) (x \cdot dy) \wedge v(y) = (x \cdot y) dy_1 \wedge \cdots \wedge dy_n = 0.$$

LEMMA 2.1. At each point on $\{x \cdot y = |y| - |x| = 0\}$, we have

$$d(x \cdot y) \wedge d(|y|^2 - |x|^2) \wedge v(y) \wedge w_y(x) = 2(-1)^n |x|^3 dy_1 \wedge \cdots \wedge dy_n \wedge dx_1 \wedge \cdots \wedge dx_n.$$

PROOF.

$$\frac{1}{2}d(x \cdot y) \wedge d(|y|^2 - |x|^2) \wedge v(y) \wedge w_y(x)$$

$$= (y \cdot dx + x \cdot dy) \wedge (y \cdot dy - x \cdot dx) \wedge v(y) \wedge w_y(x)$$

$$= (y \cdot dx) \wedge (y \cdot dy) \wedge v(y) \wedge w_y(x) - (x \cdot dy) \wedge (x \cdot dx) \wedge v(y) \wedge w_y(x)$$
because $(n+1)$ -forms in x or y are 0

$$= (-1)^n |y|^3 dy_1 \wedge \cdots \wedge dy_n \wedge dx_1 \wedge \cdots \wedge dx_n \quad \text{by } (2.1), (2.2) \text{ and } (2.3). \quad \square$$

LEMMA 2.2. At each point on $\{|y| - |x| = 0\}$, we have

$$d(x \cdot y) \wedge d(|y|^{2} - |x|^{2}) \wedge (dx \wedge dy)^{n-1} = 4(-1)^{n(n+1)/2} |x|^{2} dy_{1} \wedge \cdots \wedge dy_{n} \wedge dx_{1} \wedge \cdots \wedge dx_{n}.$$

PROOF. First we can see easily that $(dx \wedge dy)^{n-1} = \sum_{\ell=1}^n \prod_{k \neq \ell} dx_k \wedge dy_k$, which implies that $(dx_p \wedge dy_q) \wedge (dx \wedge dy)^{n-1} = 0$ if $p \neq q$. Therefore

$$(y \cdot dx) \wedge (y \cdot dy) \wedge (dx \wedge dy)^{n-1} = \left(\sum_{j=1}^{n} y_j^2 dx_j \wedge dy_j\right) \wedge \sum_{\ell=1}^{n} \prod_{k \neq \ell} dx_k \wedge dy_k$$
$$= |y|^2 (dx_1 \wedge dy_1) \wedge \cdots \wedge (dx_n \wedge dy_n).$$

In a similar way, we are led to

$$\frac{1}{2}d(x \cdot y) \wedge d(|y|^2 - |x|^2) \wedge (dx \wedge dy)^{n-1}$$

$$= (y \cdot dx + x \cdot dy) \wedge (y \cdot dy - x \cdot dx) \wedge (dx \wedge dy)^{n-1}$$

$$= (|x|^2 + |y|^2)(dx_1 \wedge dy_1) \wedge \cdots \wedge (dx_n \wedge dy_n).$$

On account of Lemmas 2.1 and 2.2, we arrive at

LEMMA 2.3. At each point on $V\setminus\{0\}$, we have

$$d(x \cdot y) \wedge d(|y|^2 - |x|^2) \wedge (dx \wedge dy)^{n-1}$$

= $2(-1)^{n(n-1)/2} d(x \cdot y) \wedge d(|y|^2 - |x|^2) \wedge |x|^{n-1} \sigma(y/|y|) \wedge w_y(x),$

where σ is the surface-area element of S^{n-1} and $\sigma(y/|y|) = |y|^{-n}v(y)$ is its pullback by the projection $\mathbb{R}^n \setminus \{0\} \to S^{n-1}$, $y \mapsto y/|y|$.

LEMMA 2.4. Let f_1 and f_2 be \mathscr{C}^{∞} -functions on an m-dimensional manifold M such that $df_1 \wedge df_2 \neq 0$ near $N = \{f_1 = f_2 = 0\}$. If an (m-2)-form ω satisfies $\omega \wedge df_1 \wedge df_2 = 0$ at each point on the submanifold N, then $\phi^*\omega = 0$ where $\phi: N \to M$ is the embedding.

PROOF. Choose a local coordinate system $x = (x_1, ..., x_m)$ with $x_j = f_j$ (j = 1, 2). An (m-2)-form ω can be written in the form

$$\omega(x) = \eta(x) \, dx_3 \wedge \dots \wedge dx_n + dx_1 \wedge \sum_{j_1 < \dots < j_{m-3}} \eta_{j_1, \dots, j_{m-3}}(x) \, dx_{j_1} \wedge \dots \wedge dx_{j_{m-3}}$$
$$+ dx_2 \wedge \sum_{j_1 < \dots < j_{m-3}} \eta'_{j_1, \dots, j_{m-3}}(x) \, dx_{j_1} \wedge \dots \wedge dx_{j_{m-3}}.$$

Then at each point on N we get

$$\omega \wedge df_1 \wedge df_2 = \omega \wedge dx_1 \wedge dx_2 = \eta(0, 0, x_3, \dots, x_n) dx_1 \wedge \dots \wedge dx_n.$$

On the other hand, we have $\phi^*\omega = \eta(0,0,x_3,\ldots,x_n) dx_3 \wedge \cdots \wedge dx_n$.

By virtue of Lemmas 2.3 and 2.4 (with $f_1 = x \cdot y$, $f_2 = |y|^2 - |x|^2$) we deduce Proposition 2.5.

$$\Phi^*((dx \wedge dy)^{n-1}) = \Phi^*(2(-1)^{n(n-1)/2}|x|^{n-1}\sigma(y/|y|) \wedge w_y(x)).$$

3. Integrals.

In this section, we will show Lemma 3.2 below which will be used in the proof of Proposition 4.1.

732 H. Yamane

Lemma 3.1. Put $K_n = \int_0^{\pi} \sin^n x/(a+ip\cos x)^{n+1} dx$ for a>0, $p \in \mathbb{R}$, $n \in \mathbb{N}_0 = \{0,1,2,\ldots\}$. Then we have $K_n = \gamma_n (a^2 + p^2)^{-(n+1)/2}$, where $\gamma_n = \int_0^{\pi} \sin^n x \, dx$.

PROOF. It is well-known that

$$\gamma_n = \frac{2(n-1)!!}{n!!}$$
 (if *n* is odd), $\gamma_n = \frac{\pi(n-1)!!}{n!!}$ (if $n \ge 2$ is even), $\gamma_0 = \pi$.

We have

$$\frac{\partial K_n}{\partial p} = -i(n+1) \int_0^\pi \frac{\sin^n x \cos x}{(a+ip\cos x)^{n+2}} dx,$$

$$\frac{\partial^2 K_{n-2}}{\partial a^2} = n(n-1) \int_0^\pi \frac{\sin^{n-2} x}{(a+ip\cos x)^{n+1}} dx \quad (n \ge 2).$$

By integrating $K_n = \int_0^{\pi} (-\cos x)' \sin^{n-1} x/(a+ip\cos x)^{n+1} dx$ by parts, we obtain

$$\left(p\frac{\partial}{\partial p}+n\right)K_n=\frac{1}{n}\frac{\partial^2}{\partial a^2}K_{n-2}\quad (n\geq 2).$$

Note that $p\partial/\partial p + n$ is injective on the set of power series in p.

LEMMA 3.2. If $n \ge 3$, a > 0 and $(b_1, ..., b_{n-1}) \in \mathbf{R}^{n-1}$, then

$$I_n := \int_{S^{n-2}} \frac{dv'(X)}{(a+i\sum_{\ell=1}^{n-1}b_\ell X_\ell)^{n-2}} = \frac{C_{n-2}}{(a^2 + \sum_{\ell=1}^{n-1}b_\ell^2)^{(n-2)/2}},$$

$$J_n := \int_{S^{n-2}} \frac{dv'(X)}{(a+i\sum_{\ell=1}^{n-1}b_\ell X_\ell)^{n-1}} = \frac{C_{n-2}a}{(a^2 + \sum_{\ell=1}^{n-1}b_\ell^2)^{n/2}},$$

where C_m $(m \ge 1)$ is the surface-area of S^m and v' is the surface-area measure of S^{n-2} .

PROOF. It is well-known that $C_m = 2\gamma_0 \cdots \gamma_{m-1}$ and that

$$C_m = \frac{(2\pi)^{(m+1)/2}}{(m-1)!!}$$
 (if m is odd), $\frac{2(2\pi)^{m/2}}{(m-1)!!}$ (if m is even).

We have only to calculate I_n because $J_n = (2 - n)^{-1} \partial I_n / \partial a$.

The group SO(n-1) acts on S^{n-2} transitively. So we may replace (b_1,\ldots,b_{n-1}) by $(p,0,\ldots,0)$ with $p=(\sum_{\ell=1}^{n-1}b_\ell^2)^{1/2}$. By using the polar coordinates we find that

$$\int_{S^{n-2}} \frac{dv'(X)}{(a+ipX_1)^{n-2}} = \int_0^{2\pi} d\theta_{n-2} \left(\prod_{j=2}^{n-3} \int_0^{\pi} \sin^{n-2-j}\theta_j d\theta_j \right) \int_0^{\pi} \frac{\sin^{n-3}\theta_1 d\theta_1}{(a+ip\cos\theta_1)^{n-2}}$$
$$= 2\gamma_0 \cdots \gamma_{n-4} K_{n-3}.$$

By using Lemma 3.1, we get the formula for I_n .

4. Main result.

Put $r=|x|=|y|, s=y/r, \xi=x/r$ on $V\setminus\{0\}$. We see that ξ is an element of $S(s)=\{x\in H(s); |x|=1\}\simeq S^{n-2}$ for each fixed $s\in S^{n-1}$. Let μ,m and ν be the surface-area measures of $S^{n-1}\subset {\bf R}^n, \ H(s)\simeq {\bf R}^{n-1}$ and S(s) respectively.

Since $(z_1, \ldots, \widehat{z_\ell}, \ldots, z_n)$ is a holomorphic coordinate system of $V \setminus \{0\}$, the 2(n-1)-form $\Phi^*(\prod_{k \neq \ell} dx_k \wedge dy_k)$ $(\ell = 1, \ldots, n)$ is positive with respect to its natural orientation and so are the forms in Proposition 2.5.

For a function F on $V \setminus \{0\}$ we have

$$\int_{V\setminus\{0\}} F\Phi^*((dx \wedge dy)^{n-1}) = \int_{V\setminus\{0\}} F\Phi^*(2(-1)^{n(n-1)/2}|x|^{n-1}\sigma(y/|y|) \wedge w_y(x))$$

$$= 2\int_{S^{n-1}} d\mu(s) \int_{H(s)} r^{n-1}F dm(x)$$

$$= 2\int_{S^{n-1}} d\mu(s) \int_{S(s)} dv(\xi) \int_0^\infty r^{2n-3}F dr.$$

PROPOSITION 4.1. Assume $n \ge 3$. Put $F_j = r^{-(n-1+j)}e^{-\{(1-\langle s,t\rangle)r+i\langle x,t\rangle\}}f(s)$ (j=0,1) on $V\setminus\{0\}$ where $f\in\mathscr{C}^0(S^{n-1})$. Then if |t|<1, we have

(4.1)
$$\int_{V\setminus\{0\}} F_0 \Phi^*((dx \wedge dy)^{n-1}) = 2(n-2)! C_{n-2} \int_{S^{n-1}} \frac{(1-\langle s,t\rangle)f(s)}{|s-t|^n} d\mu(s),$$

(4.2)
$$\int_{V\setminus\{0\}} F_1 \Phi^*((dx \wedge dy)^{n-1}) = 2(n-3)! C_{n-2} \int_{S^{n-1}} \frac{f(s)}{|s-t|^{n-2}} d\mu(s).$$

PROOF. Put $a = 1 - \langle s, t \rangle$, then a > 0 because |s| = 1, |t| < 1. It implies the convergence of the following integral:

$$(4.3) \int_{V\setminus\{0\}} F_j \Phi^*((dx \wedge dy)^{n-1}) = 2 \int_{S^{n-1}} f(s) \, d\mu(s) \int_{S(s)} d\nu(\xi) \int_0^\infty r^{n-2-j} e^{-r(a+i\langle\xi,t\rangle)} \, dr$$
$$= 2(n-2-j)! \int_{S^{n-1}} f(s) \, d\mu(s) \int_{S(s)} \frac{d\nu(\xi)}{(a+i\langle\xi,t\rangle)^{n-1-j}}.$$

Let $\{u_1,\ldots,u_{n-1}\}$ be an orthonormal system of the linear subspace H(s) of \mathbb{R}^n . Then each $\xi=x/r\in S(s)\subset H(s)$ is expressed as $\xi=\sum_{\ell=1}^{n-1}X_\ell u_\ell, \sum_{\ell=1}^{n-1}X_\ell^2=1$. Set $b_\ell=\langle u_\ell,t\rangle$, then $\langle \xi,t\rangle=\sum_{\ell=1}^{n-1}b_\ell X_\ell$. We have

$$\int_{S(s)} \frac{d\nu(\xi)}{(a+i\langle\xi,t\rangle)^{n-1-j}} = \int_{S^{n-2}} \frac{d\nu'(X)}{(a+i\sum_{\ell=1}^{n-1} b_{\ell}X_{\ell})^{n-1-j}},$$

where $X = (X_1, ..., X_{n-1})$.

Recall that r = |y|, s = y/r. Since $\{s, u_1, \ldots, u_{n-1}\}$ is an orthonormal system of \mathbb{R}^n , $b_\ell = \langle u_\ell, t \rangle$ satisfies $\langle s, t \rangle^2 + \sum_{\ell=1}^{n-1} b_\ell^2 = |t|^2$. Hence $a^2 + \sum_{\ell=1}^{n-1} b_\ell^2 = 1 - 2\langle s, t \rangle + |t|^2 = |s-t|^2$. By using Lemma 3.2 we complete the proof of Proposition 4.1. \square

We introduce two integral operators $Q_0, Q_1 : \mathscr{C}^0(S^{n-1}) \to \mathscr{C}^\infty(B_n)$ by

$$Q_0[f](t) = \int_V f(y/|y|) e^{-i\langle z, t \rangle} e^{-|y|} \left(\frac{dx \wedge dy}{|y|} \right)^{n-1},$$

$$Q_1[f](t) = \int_V \frac{f(y/|y|)}{|y|} e^{-i\langle z, t \rangle} e^{-|y|} \left(\frac{dx \wedge dy}{|y|}\right)^{n-1}.$$

734 H. Yamane

On V we have $-i\langle z,t\rangle - |y| = \langle y,t\rangle - |y| - i\langle x,t\rangle = -\{(1-\langle s,t\rangle)r + i\langle x,t\rangle\}$. We can use Proposition 4.1 to calculate Q_i . The result is

$$Q_0[f](t) = 2(n-2)!C_{n-2} \int_{S^{n-1}} \frac{(1-\langle s,t\rangle)f(s)}{|s-t|^n} d\mu(s),$$

$$Q_1[f](t) = 2(n-3)!C_{n-2} \int_{S^{n-1}} \frac{f(s)}{|s-t|^{n-2}} d\mu(s).$$

We find that $\{1/(2C_{n-2}C_{n-1})\}\{2Q_0[f](t)/(n-2)!-Q_1[f](t)/(n-3)!\}$ is nothing but the Poisson integral of f. By using $C_{n-1}C_{n-2}=2(2\pi)^{n-1}/(n-2)!$, we obtain our main result:

THEOREM 4.2. Assume that $u(t) \in \mathcal{C}^0(\overline{B}_n)$ $(n \geq 3)$ is harmonic in B_n and let $f = u|_{\partial B_n} \in \mathcal{C}^0(S^{n-1})$ be its Dirichlet boundary value. Then in B_n , we have

$$u(t) = \frac{1}{2(2\pi)^{n-1}} \int_{V} \left(1 - \frac{n-2}{2|y|} \right) f(y/|y|) e^{-i\langle z, t \rangle} e^{-|y|} \left(\frac{dx \wedge dy}{|y|} \right)^{n-1}.$$

In particular, u(t) is given by superposition of the exponentials $\exp(-i\langle z, t \rangle)$ with $z^2 = \sum_{j=1}^n z_j^2 = 0$ and $y/|y| \in \operatorname{supp} f$.

5. 2-dimensional case.

Only (4.1) in Proposition 4.1 holds if n = 2. (The left hand side of (4.2) is divergent.) Here we set $C_0 = 2$. We have

$$\int_{V\setminus\{0\}} F_0 \Phi^*(dx \wedge dy) = 4 \int_{S^1} \frac{1 - \langle s, t \rangle}{|s - t|^2} f(s) \, d\mu(s).$$

In the same way as in the previous section, define $Q_0:\mathscr{C}^0(S^1) \to \mathscr{C}^\infty(B_2)$ by

$$Q_0[f](t) = \int_V f(y/|y|) e^{-i\langle z, t \rangle} e^{-|y|} \frac{dx \wedge dy}{|y|}.$$

Then $Q_0[f](t) = 4 \int_{S^1} ((1 - \langle s, t \rangle)/|s - t|^2) f(s) d\mu(s)$. Hence $(8\pi)^{-1} (2Q_0[f](t) - Q_0[f](0))$ equals the Poisson integral of f.

THEOREM 5.1. If $u(t) \in \mathcal{C}^0(\overline{B}_2)$ is harmonic in B_2 and $f \in \mathcal{C}^0(S^1)$ is its Dirichlet boundary value, then in B_2 , we have

$$u(t) = \frac{1}{4\pi} \int_{V} f(y/|y|) e^{-|y|} \left(e^{-i\langle z, t \rangle} - \frac{1}{2} \right) \frac{dx \wedge dy}{|y|}.$$

References

- [1] C. A. Berenstein, R. Gay, A. Vidras and A. Yger, Residue currents and Bezout identities, Birkhäuser, Basel, 1993.
- [2] B. Berndtsson and M. Passare, Integral formulas and an explicit version of the fundamental principle, J. Funct. Anal., 84 (1989), 358–372.
- [3] A. S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. Roy. Soc. London Ser. A, 453 (1997), 1411–1443.

[4] H. Yamane, Fourier integral representation of harmonic functions in terms of a current, J. Math. Soc. Japan, 54 (2002), 901–909.

Hideshi Yamane

Department of Physics Kwansei Gakuin University Gakuen 2-1, Sanda, Hyougo 669-1337 Japan

E-mail: yamane@ksc.kwansei.ac.jp