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Socle deformations of selfinjective algebras of tubular type
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Abstract. We classify all selfinjective finite dimensional algebras over an algebrai-

cally closed field which are socle equivalent to the tame selfinjective algebras which admit

simply connected Galois coverings and whose Auslander-Reiten quiver consists only of

stable tubes.

1. Introduction.

Throughout the paper K will denote a fixed algebraically closed field. By an

algebra we mean a finite dimensional K-algebra with an identity, which we shall assume

(without loss of generality) to be basic and connected. For an algebra L, we denote by

modL the category of finite dimensional right L-modules and by D the standard duality

HomKð�;KÞ on modL. An algebra L is called selfinjective if LGDðLÞ in modL, that

is, the projective L-modules are injective.

We are concerned with the problem of classification of all selfinjective algebras

whose stable Auslander-Reiten quiver consists only of stable tubes. A large class of

such algebras is provided by the selfinjective algebras of tubular type. By [3], a self-

injective algebra of tubular type is a tame selfinjective having a simply connected Galois

covering and the stable Auslander-Reiten quiver consisting only of stable tubes (see Section

2 for more details). We would like to mention that there are also wild selfinjective algebras

whose stable Auslander-Reiten quiver consists only of stable tubes (see [1], [9]).

If L is a selfinjective algebra, then the left and the right socle of L coincide, and

we denote them by socL. Two selfinjective algebras L and A are said to be socle

equivalent if the factor algebras L=socL and A=socA are isomorphic. Frequently,

selfinjective algebras are socle equivalent to (socle deformations of ) selfinjective algebras

having simply connected Galois coverings, and then we may reduce the study of such

algebras and their representations to that for the corresponding algebras of finite global

dimension. This is the case for all selfinjective algebras of finite representation type (see

[6], [15], [16]). We also note that if a selfinjective algebra L is socle equivalent to a

selfinjective algebra A of tubular type then L is tame and the stable Auslander-Reiten

quiver of L consists only of stable tubes.

The main aim of this paper is to prove the following theorem.

Theorem 1.1. Let L be a basic connected selfinjective K-algebra. Then L is socle

equivalent to a selfinjective algebra of tubular type if and only if exactly one of the

following cases holds:
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(1) L is of tubular type,

(2) K is of characteristic 3 and L is isomorphic to one of the bound quiver algebras

a
g

b
a

g

b

a2 ¼ bg

gab ¼ ga2b

bgab ¼ 0

gabg ¼ 0

L1

ga2 ¼ 0; a2b ¼ 0

gbg ¼ 0; bgb ¼ 0

gb ¼ gab

a3 ¼ bg

L2

(3) K is of characteristic 2 and L is isomorphic to one of the bound quiver algebras

a
s

g
b

a g
d

b

b

g

a
d

s

a4 ¼ 0; a2g ¼ 0; sa2 ¼ 0

a2 ¼ gsþ a3; lb2 ¼ sg

ag ¼ gb; bs ¼ sa

L3ðlÞ

l A Knf0; 1g

dbd ¼ ga; ðbdÞ3b ¼ 0

gabg ¼ 0; abga ¼ 0

abg ¼ abdbg

L4

a2 ¼ bg; a3 ¼ sd; db ¼ 0

gs ¼ 0; da ¼ 0; as ¼ 0

gbg ¼ 0; bgb ¼ 0; gb ¼ gab

L5

a

b

d

g

a

s g
d

b
a

s g
d

bdgda ¼ 0; bgdg ¼ 0

aba ¼ 0; bab ¼ 0

ba ¼ bgda

ab ¼ gdgd

L6

db ¼ dab; sa ¼ 0; da ¼ gs

abg ¼ 0; a2 ¼ bd; dbg ¼ 0

bdb ¼ 0; dbd ¼ 0

L7

bd ¼ bad; as ¼ 0; ad ¼ sg

gba ¼ 0; a2 ¼ db; gbd ¼ 0

bdb ¼ 0; dbd ¼ 0

L8

d g

a

b

e

x

h
g d

m

a
x s

b

ab þ gdþ xe ¼ 0

dg ¼ 0; ex ¼ 0; aba ¼ 0

bab ¼ 0; ba ¼ bgda

L9

bm ¼ 0; ha ¼ 0; ab ¼ gd

sx ¼ mh; ds ¼ xgþ dsds

sdsd ¼ 0; gxgx ¼ 0

L10

The algebras L1 and L2 have been already discovered in [18], [19]. We refer to [3],

[4] and [19] for a description of selfinjective algebras of tubular type. A prominent role

in the proof of the above theorem is also played by results one socle deformations of

selfinjective algebras established in [22] and [23].

For basic background on the representation theory of algebras we refer to [2], [17],

and on selfinjective algebras to [8], [24].

2. Selfinjective algebras of tubular type.

An important class of selfinjective algebras is formed by the algebras of the form

B̂B=G where B̂B is the repetitive algebra [11] (locally finite dimensional, without identity)
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B̂B ¼ 0
m AZ

ðBm lQmÞ

of an algebra B, where Bm ¼ B and Qm ¼ DðBÞ for all m A Z, the multiplication in B̂B is

defined by

ðam; fmÞm � ðbm; gmÞm ¼ ðambm; amgm þ fmbm�1Þm

for am; bm A Bm, fm; gm A Qm, and G is an admissible group of automorphisms of B̂B.

Let B be an algebra and E ¼ fei j 1a iamg a fixed set of primitive orthogonal

idempotents of B with 1B ¼ e1 þ � � � þ en. Then we have the canonical set ÊE ¼ fej;k j

1a ja n; k A Zg of primitive orthogonal idempotents of B̂B such that ej;kB̂B ¼ ðejBÞk l

ðejDðBÞÞk for 1a ja n and k A Z. By an automorphism of B̂B we mean a K-algebra

automorphism of B̂B which fixes the chosen set ÊE of primitive orthogonal idempotents of

B̂B. A group G of automorphisms of B̂B is said to be admissible if the induced action of

G on ÊE is free and has finitely many orbits. Then the orbit algebra B̂B=G is a self-

injective algebra and the G-orbits in ÊE form a canonical set of primitive orthogonal

idempotents of B̂B=G whose sum is the identity of B̂B=G ([10]). Moreover, there are

a Galois covering F : B̂B ! B̂B=G and the associated push-down functor Fl : mod B̂B !

mod B̂B=G ([5]). We denote by nB̂B the Nakayama automorphism of B̂B such that

nB̂Bðej;kÞ ¼ ej;kþ1 for all 1a ja n, k A Z. Then the infinite cyclic group ðnB̂BÞ generated

by nB̂B is admissible and B̂B=ðnB̂BÞ is the trivial extension of ByDðBÞ of B by DðBÞ.

An automorphism j of B̂B is said to be positive (respectively, rigid ) when, for each j A

f1; . . . ; ng, k A Z, we have jðej;kÞ ¼ em; r for some m A f1; . . . ; ng, and rb k (respec-

tively, jðej;kÞ ¼ em;k for some m A f1; . . . ; ng). We refer to [14] for some results on

the structure of automorphisms of repetitive algebras, and to [23] for results on the

presentations of selfinjective algebras A in the form AG B̂B=ðjnB̂BÞ with B an algebra and

j a positive automorphism of B̂B.

Following [17] by a tubular algebra we mean a tubular extension (equivalently,

tubular coextension) B of a tame concealed algebra C of tubular type ð2; 2; 2; 2Þ,

ð3; 3; 3Þ, ð2; 4; 4Þ, or ð2; 3; 6Þ. Then the rank of the Grothendieck group K0ðBÞ of B is

equal to 6, 8, 9, or 10, respectively. By a selfinjective algebra of tubular type we mean

an algebra of the form B̂B=G, where B is a tubular algebra and G is an admissible group

of automorphisms of B̂B. This is the class of all nondomestic polynomial growth

algebras having simply connected Galois coverings [19]. Moreover, it has been recently

shown [3] that a selfinjective algebra A is of tubular type if and only if A is tame, admits

a simply connected Galois covering, and the stable Auslander-Reiten quiver of A

consists only of tubes. We shall exhibit here basic facts on the repetitive algebras of

tubular algebras and selfinjective algebras of tubular type, established in [13] and [19],

needed in our further considerations.

Let B be a tubular algebra of tubular type nB ¼ ðnlÞl AP1ðKÞ consisting of positive

integers nl, l A P1ðKÞ, and all but finitely many equal 1. We shall write instead of

ðnlÞl AP1ðKÞ the finite sequence consisting of all nl which are larger than 1, and arranged

in nondecreasing order. Then nB is one of the types ð2; 2; 2; 2Þ, ð3; 3; 3Þ, ð2; 4; 4Þ, or

ð2; 3; 6Þ. It follows from [13, Section 3] that the Auslander-Reiten quiver GB̂B of B̂B is of

the form

GB̂B ¼ 4
p AZ

Tp4Xp
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where, for each p A Z, Tp is a nonstable P1ðKÞ-family of quasi-tubes (in the sense of [20,

(1.2)]) whose stable part T
s

p is a P1ðKÞ-family of stable tubes of tubular type nB,

Xp ¼ 4
g AQ

p

pþ1
Tg, Q

p
pþ1 ¼ QV ðp; pþ 1Þ, and, for each g A Q

p
pþ1, Tg is a P1ðKÞ-family of

stable tubes of tubular type nB. Further, there exists sb 3 such that nB̂BðTpÞ ¼ Tpþs and

nB̂BðXpÞ ¼ Xpþs for all p A Z. In particular, the stable Auslander-Reiten quiver G s

B̂B
of B̂B

consists of the rational family of P1ðKÞ-families of stable tubes, all of them are of

tubular type nB. Let G be an admissible group of automorphisms of B̂B and A ¼ B̂B=G

the associated selfinjective algebra (of tubular type nB). Since G is, by [19, Proposition

2.2], infinite cyclic (hence torsion-free) the push-down functor Fl : mod B̂B ! mod B̂B=G ¼

modA associated to the Galois covering F : B̂B ! B̂B=G ¼ A preserves the indecompos-

able modules and Auslander-Reiten sequences [10, Section 3]. Moreover, B̂B is locally

support-finite [13, Section 3], and hence invoking the main result of [7] we conclude that

Fl : mod B̂B ! modA is dense. As a consequence, the Auslander-Reiten quiver GA of A

is the orbit quiver GB̂B=G, and so is obtained from GB̂B by identifying (via Fl) Tp with Tpþr

and Xp with Xpþr for some rb 1 and all p A Z. Thus GA has the following ‘‘clock

structure’’:

FlðT0Þ

k

FlðTrÞ

FlðXr�1Þ FlðX0Þ

FlðTr�1Þ FlðT1Þ

FlðXr�2Þ FlðX1Þ

3. Selfinjective algebras with standard stable tubes.

The following known fact gives a characterization of selfinjective algebras of tubular

type whose Auslander-Reiten quiver admits a (generalized) standard stable tube (in the

sense of [17], [21]).

Proposition 3.1. The Auslander-Reiten quiver of a selfinjective algebra A of tubular

type admits a (generalized ) standard stable tube if and only if AG B̂B=ðcnB̂BÞ, for a tubular

algebra B and a positive automorphism c of B̂B.

Proof. See [13], [17, Section 5], and [19, Section 3]. r
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The main aim of this section is to prove that this class of selfinjective algebras is

invariant with respect to socle equivalences.

Proposition 3.2. Let A be a selfinjective algebra of the form B̂B=ðcnB̂BÞ, for a tubular

algebra B and a positive automorphism c of B̂B, and L be a selfinjective algebra socle

equivalent to A. Then L is isomorphic to an algebra of the form B̂B=ðjnB̂BÞ for a positive

automorphism j of B̂B. In particular, L is of tubular type.

Proof. It is known [2, (V.5.5)] that if P is an indecomposable projective L-module

then we have in modL an Auslander-Reiten sequence of the form

0 ! radP ! Pl radP=socP ! P=socP ! 0:

Since by our assumption L=socLGA=socA we conclude that the Auslander-Reiten

quivers GL and GA are isomorphic. Further, since A ¼ B̂B=ðcnB̂BÞ with c a positive

automorphism of B̂B, B is a factor algebra of A=socA, and consequently there is an ideal

I in L such that L=I is isomorphic to B. Without loss of generality we may assume

that L=I ¼ B. We may choose a complete set fei; 1a ia sg of primitive orthogonal

idempotents of L such that 1 ¼ e1 þ � � � þ es and fei; 1a ia tg, for some ta s, is the

subset of fei; 1a ia sg consisting of all idempotents ei which are not in I . Then

e ¼ e1 þ � � � þ et is an idempotent of L such that eþ I is the identity of B ¼ L=I , called

a residual identity of B. We note that such an idempotent e is uniquely determined by

I up to an inner automorphism of L, BG eLe=eIe naturally and 1� e A I . Since GL
and GA are isomorphic, it follows from the description of the Auslander-Reiten quivers

of selfinjective algebras of tubular type, presented in Section 2, that GL has the following

‘‘clock structure’’

T
�
0

X
�
r�1 X

�
0

T
�

r�1 T
�
1

X
�
r�1 X

�
1

.
.

.

.
.

.

where, for each p A f0; . . . ; r� 1g, T�
p is a nonstable P1ðKÞ-family of quasi-tubes and

X
�
p ¼ 4

g AQ
p

pþ1
T

�
g , Q

p
pþ1 ¼ QV ðp; pþ 1Þ, and, for g A Q

p
pþ1, T

�
g is a P1ðKÞ-family of

stable tubes. In fact, since A ¼ B̂B=ðcnB̂BÞ with c a positive automorphism of B̂B, we have

rb 3 (see [13]). Further, since GL and GA are isomorphic, it follows from [13, Section 3]

that there is m A f2; . . . ; r� 1g such that the (indecomposable) projective modules in the

P1ðKÞ-families T
�
0 ;T

�
1 ; . . . ;T

�
m are the indecomposable projective L-modules of the

form eiL with i A f1; . . . ; tg, and X
�
m ¼ 4

g AQm
mþ1

T
�
g consists of all sincere stable tubes of

the Auslander-Reiten quiver GB of B (see [17, Section 5]). In fact, by [17, (5.2)(2)],

every P1ðKÞ-family T
�

g is a separating family of stable tubes of GB (in the sense of [17,

(3.1)]), and consequently all tubes in T
�

g are faithful stable tubes of GB. Fix g A Qm
mþ1

and put T ¼ T
�

g . Since B ¼ L=I , then I is the annihilator annLðTÞ of T in L, that is,

the intersection of annihilators annLðMÞ of all indecomposable modules M in T.

Denote by J the trace ideal of T in L, that is, the two-sided ideal of L generated by
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the images of all L-homomorphisms from modules in T to L. We claim that JJ I .

Take l A J and a L-homomorphism f : L ! X with X in T. We show that f ðlÞ ¼ 0.

Suppose that f ðlÞ0 0. Since l A J, there is a L-homomorphism g : N ! L such that

N is a direct sum of a finite number of indecomposable modules from T and l ¼ gðnÞ

for some n A N. Then fg : N ! X is a nonzero morphism which factorizes through the

projective L-module LL, and consequently belongs to the infinite radical radyðmodLÞ

of modL, because T does not contain projective modules. But then fg is a nonzero

morphism from the infinite radical radyðmodBÞ of modB (see [2, (V.7)]). This con-

tradicts the fact that T is a (generalized) standard family of stable tubes of GB (see

[17, (5.2)]). Therefore, every l A J belongs to the intersection of kernels of all L-

homomorphisms f : L ! M with M AT, and so JJ I . Since I ¼ annT and J is the

trace ideal of T in L, we have also JI ¼ 0, and hence J is a B-submodule of L. We

shall prove now that J is isomorphic to the injective cogenerator DðBÞB of modB. For

each i A f1; . . . ; tg, we have a commutative diagram of monomorphisms

eiL=eiðradLÞ ¼ eiB=eiðradBÞ ,! DðBeiÞ
K
�
�!

�
�
�
�
�
�
�
�
�
�
�
�
��!

L

and hence L contains a B-submodule Qi which is isomorphic to the indecomposable

injective B-module DðBeiÞ. On the other hand, T is a faithful family of tubes in

GB, and hence there is an epimorphism N ri
i ! Qi for some rib 1 and a direct sum Ni

of finitely many indecomposable modules from T. Hence Qi J J. Finally, observe

that the largest B-submodule of LL is a minimal injective cogenerator in modB.

Therefore, we have J ¼ 0
1aiat

Qi GDðBÞB. Our next aim is to prove the equality

Ie ¼ J. Observe that J ¼ JeJ Ie because J is a B-module and JJ I . Since soc JG
socDðBÞB and soc Ie ¼ ðsoc IÞeGHomLðeL; soc IÞ is a B-module, we have soc Ie ¼

soc J. Therefore, it is enough to show that J=soc J ¼ Ie=soc Ie. Observe also that

I=soc I G annL=socLðTÞ, Ie=soc Ie ¼ ðI=soc IÞeGHomL=socLðeðL=socLÞ; I=soc IÞ, and

eðL=socLÞ ¼ eL=e socL. Take a nonzero homomorphism f : eL=e socL ! I=soc I in

modL=socL. Since L=socLGA=socA, A ¼ B̂B=ðcnB̂BÞ, c is a positive automorphism

of B̂B and there is a Galois covering of module categories Fl : mod B̂B ! mod B̂B=ðcnB̂BÞ,

it follows from the structure of mod B̂B described in [13, Section 3] that f factorizes

through a direct sum of modules lying in T, and consequently its image is contained

in J=soc J. Then Ie=soc IeJ J=soc J, and so Ie=soc Ie ¼ J=soc I . Hence J ¼ Ie. In

particular, we have IeI ¼ JI ¼ 0. We also note that the ordinary quiver QB of B has

no oriented cycles, because B is a tubular algebra. Summing up our considerations

above, we have proved that the following conditions are satisfied:

(1) The ordinary quiver QB of B has no oriented cycles,

(2) IeI ¼ 0,

(3) Ie is an injective cogenerator in modB.

We note that then I is a deforming ideal in the sense of [22, (2.1)]. Applying [23,

Theorem 4.1] we obtain that L is isomorphic to B̂B=ðjnB̂BÞ, for a positive automorphism j

of B̂B. In particular, L is a selfinjective algebra of tubular type. r
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4. Selfinjective algebras without standard stable tubes.

It follows from Proposition 3.1 and [19, Section 3] that the Auslander-Reiten quiver

of a selfinjective algebra A of tubular type has no (generalized) standard stable tubes if

and only if A is of the form A ¼ B̂B=ðsjkÞ, where B is a tubular algebra, s is a rigid

automorphism of B̂B, j is an automorphism of B̂B such that j l ¼ %nB̂B for some lb 2 and

a rigid automorphism % of B̂B, and 1a k < l. We call such a selfinjective algebra of

tubular type exceptional, and normal otherwise. Following [19] a tubular algebra B is

said to be exceptional if there is an automorphism j of B̂B such that jd ¼ %nB̂B for some

db 2 and a rigid automorphism % of B̂B, and normal otherwise. Consider the following

family of bound quiver algebras (where a dotted line means that the sum of paths indi-

cated by this line is zero if it indicates exactly three parallel paths, the commutativity of

paths if it indicates exactly two parallel paths, and the zero path if it indicates only one

path):

f c

g s

a b

x

h z

o

a

s g

b

agf ¼ bsf

agc ¼ lbsc

B1ðlÞ

l A Knf0; 1g

ax ¼ gh; az ¼ go

sx ¼ bh; sz ¼ lbo

B2ðlÞ

l A Knf0; 1g

B3 B4 B5

B6 B7 B8

B9 B10 B11
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B12 B13 B14

Then we have the following description of exceptional tubular algebras and their

repetitive algebras.

Theorem 4.1. Let B be a tubular algebra. Then the following equivalences

hold:

(i) B is exceptional of tubular type ð2; 2; 2; 2Þ if and only if B̂B is isomorphic to dB1ðlÞB1ðlÞ

or dB2ðlÞB2ðlÞ, for some l A Knf0; 1g.

(ii) B is exceptional of tubular type ð3; 3; 3Þ if and only if B̂B is isomorphic to B̂B3, B̂B4,

B̂B5, B̂B6, B̂B7, or B̂B8.

(iii) B is exceptional of tubular type ð2; 4; 4Þ if and only if B̂B is isomorphic to B̂B9,

B̂B10, B̂B11, B̂B12, or B̂B13.

(iv) B is exceptional of tubular type ð2; 3; 6Þ if and only if B̂B is isomorphic to

B̂B14.

Proof. For tubular types ð2; 2; 2; 2Þ, ð3; 3; 3Þ and ð2; 4; 4Þ it is proved in [3,

(4.1),(5.1),(6.1)], and for tubular type ð2; 3; 6Þ in [12, (5.3)]. r

In order to describe the exceptional selfinjective algebras of tubular type, consider

the following family of bound quiver algebras:

a s

g b
a

s

g
b

aga ¼ bsa

agb ¼ lbsb

gag ¼ gbs

sag ¼ lsbs

A1ðlÞ

l A Knf0; 1g

a2 ¼ gs

lb2 ¼ sg

ag ¼ gb

bs ¼ sa

A2ðlÞ

l A Knf0; 1g

d g

a e

b x

d g

a e

b x

a
g

b

ab þ gdþ xe ¼ 0

ba ¼ 0; ex ¼ 0

dg ¼ 0

A3

ab þ gdþ xe ¼ 0

ba ¼ 0; eg ¼ 0

dx ¼ 0

A4

a2 ¼ bg

gab ¼ 0

A5
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a
g

b

a d e

b g x

d

s b
a

g

x
a3 ¼ bg

gb ¼ 0

a2b ¼ 0

ga2 ¼ 0

A6

ab ¼ gd

dg ¼ xe

eda ¼ 0

bgx ¼ 0

A7

abx ¼ 0

bad ¼ 0

gab ¼ 0

sba ¼ 0

aba ¼ xs; gx ¼ 0

bab ¼ dg; sd ¼ 0

A8

d

a
b

e g

s

a b

x
g

d

b x z

a g d

ad ¼ be; eg ¼ sb

bsa ¼ 0; dge ¼ 0; gegs ¼ 0

A9

bax ¼ xgdx

dba ¼ dxgd

ab ¼ 0; ðgdxÞ2g ¼ 0

A10

bag ¼ gxg

xba ¼ xgx

ab ¼ 0; gd ¼ 0

zx ¼ 0; ðxgÞ2 ¼ dz

A11

a g
d

b

b
a

d

g s

a d

b g

dbd ¼ ga

abg ¼ 0; bðdbÞ3 ¼ 0

A12

a2 ¼ bg; db ¼ 0; gb ¼ 0

gs ¼ 0; da ¼ 0; as ¼ 0

a3 ¼ sd

A13

ab ¼ gdgd

dgda ¼ 0

bgdg ¼ 0

ba ¼ 0

A14

a

s g

d

b
a

s g
d

b

abg ¼ 0; a2 ¼ bd

db ¼ 0; sa ¼ 0; da ¼ gs

A15

gba ¼ 0; a2 ¼ db

bd ¼ 0; as ¼ 0; ad ¼ sg

A16

a s

g b
a

s

g
b

a

z
o g s x

h

bagb ¼ bsb

agaþ bsa ¼ 0

gag ¼ gbs

sagþ sbs ¼ 0

A17

charK0 2

ag ¼ gb

a2 ¼ gs

sg ¼ b2

saþ bs ¼ 0

A18

charK0 2

ax ¼ gh; az ¼ go; sx ¼ bh

xs ¼ za; xb ¼ zg; hs ¼ oa

szþ bo ¼ 0; hb þ og ¼ 0

A19

charK0 2

a

x
h g s z

o

b

d g

a e

b x

b3 g3
a3

g1 a1a2 b2
b1 g2

ax ¼ gh; az ¼ go; sx ¼ bh

xa ¼ zs; xg ¼ zb; ha ¼ os

sz ¼ lbo; hg ¼ lob

A20ðlÞ

l A Knf0; 1g

ab þ gdþ xe ¼ 0

da ¼ 0; bx ¼ 0

eg ¼ 0

A21

giaibi ¼ 0; bigi ¼ aiþ1aiþ2

for i A f1; 2; 3g; a4 ¼ a1; a5 ¼ a2

A22
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b3 g3

a1 a2
g1 a3 b2

b1
g2

d

h

g

s b
2 m a

g1
s2 a2

d2 b2

b1 d1
a1 s1

g2

gibi ¼ 0; bigi ¼ aiaiþ1aiþ2

giaiaiþ1 ¼ 0; aiþ1aiþ2bi ¼ 0

for i A f1; 2; 3g; a4 ¼ a1; a5 ¼ a2

A23

abhs%d ¼ 0; gabhs% ¼ 0

dsmbga ¼ 0; %dsmbg ¼ 0

ga ¼ hsm; %d ¼ mbh

abg ¼ 0; ds% ¼ 0

A24

aiþ1ai ¼ bigi ; aiaiþ1ai ¼ si di
aisiþ1 ¼ 0; gibi ¼ 0; gisiþ1 ¼ 0

diaiþ1 ¼ 0; dibi ¼ 0; for i A f1; 2g

a3 ¼ a1; s3 ¼ s1

A25

b g d m

a h z
s

d1

b1
s2

g1 a1 a2 g2
s1 b2

d2

d1

b1
s2

g1 a1 a2 g2
s1 b2

d2

ab ¼ gdzh; ms ¼ zhgd

ba ¼ 0; sm ¼ 0; dzha ¼ 0

hgdm ¼ 0; bgdz ¼ 0; szhg ¼ 0

A26

diaiþ1 ¼ gisi ; dibi ¼ 0; siai ¼ 0

aiþ1ai ¼ bi di ; aibigi ¼ 0; for

i A f1; 2g; a3 ¼ a1

A27

aiþ1di ¼ sigi; bi di ¼ 0; aisi ¼ 0

aiaiþ1 ¼ dibi; gibiai ¼ 0; for

i A f1; 2g; a3 ¼ a1

A28

h
g d

m

a
x s

b

b g x m

a d s h

bm ¼ 0; ha ¼ 0; ds ¼ xg

ab ¼ gd; sx ¼ mh

A29

ba ¼ 0; hm ¼ 0; dg ¼ xs

ab ¼ gd; sx ¼ mh

A30

Theorem 4.2. A selfinjective algebra A of tubular type is exceptional if and only if

A is isomorphic to one of the algebras A1ðlÞ, A2ðlÞ, A20ðlÞ, l A Knf0; 1g, Ai, 17a ia 19

(if charK 0 2), or Ai, for i A f3; . . . ; 16; 21; . . . ; 30g, listed above.

Proof. It is a direct consequence of [3, (4.2),(5.2),(6.2)] and [12, (5.4)]. r

5. Proof of the main result.

We know from Proposition 3.2 that the class of normal selfinjective algebras of

tubular type is closed under socle equivalences. Hence, in order to prove Theorem 1.1,

it is su‰cient to show that the class of all selfinjective algebras which are socle equiv-

alent to the exceptional selfinjective algebras of tubular type (presented in Section 4)

but nonisomorphic to these algebras coincides with the class of algebras L1, L2, L3ðlÞ,

l A Knf0; 1g, L4, L5, L6, L7, L8 and L10, for the corresponding characteristic of K .

The proof of this fact will be a combination of several facts established bellow. We

start with some general observations.

Let A be an exceptional selfinjective algebra of tubular type. Then A ¼ KQ=I

where Q is a finite connected Gabriel quiver of A and I is an admissible ideal in the

path algebra KQ of Q, generated by a finite system of linear combinations (called

relations) ui ¼ li1ui1 þ li2ui2 þ � � � þ litiuiti , 1a iam ¼ mA, and, for each i A f1; . . . ;mg,

li1; li2; . . . ; liti are elements of Knf0g and ui1; ui2; . . . ; uiti are paths in Q having common

source and common target. Moreover, for the systems of relations generating I chosen

in Section 4, the following facts hold:

J. BiaŁkowski and A. Skowroński696



(a) The quiver Q does not contain a subquiver of one of the forms or .

(b) If A0A11;A13;A25, and i is an element of f1; . . . ;mg with tib 2, then

uij þ I B socA for any j A f1; . . . ; tig.

(c) If A ¼ A11;A13, or A25, there are elements i A f1; . . . ;mg such that

ui ¼ ui1 � ui2 with ui1 þ I A socA and ui2 þ I A socA.

Further, we have the following lemma.

Lemma 5.1. Let A be an exceptional selfinjective algebra of tubular type. Then the

canonical epimorphism A ! A=socA induces an isomorphism AutðAÞ ! AutðA=socAÞ of

automorphism groups.

Proof. For A di¤erent from A11;A13, and A25, it follows from the above property

(b). A direct checking shows that the algebras A11, A11=socA11, A13, and A13=socA13

have only trivial automorphisms groups. Finally, the automorphisms groups AutðA25Þ

and AutðA25=socA25Þ consist of the identity homomorphism and the canonical auto-

morphism of order 2 given by the automorphism of the quiver Q exchanging the arrows

a1 and a2, b1 and b2, g1 and g2, d1 and d2, s1 and s2. r

Let A 0 be a selfinjective algebra which is socle equivalent to an exceptional self-

injective algebra A ¼ KQ=I of tubular type. Observe that then Q is the Gabriel quiver

of A 0, and consequently A 0
GKQ=I 0 for an admissible ideal I 0 of KQ, generated by

a finite system u 0
1; u

0
2; . . . ; u

0
n of relations. Without loss of generality, we may assume

that A 0 ¼ KQ=I 0. Invoking Lemma 5.1 and the property (a), we conclude that there

is an algebra isomorphism f : A=socA ! A 0=socA 0 induced by a K-linear map f �
:

KQ ! KQ such that f �ðeiÞ ¼ ei for all primitive idempotents ei associated to the vertices

i of Q and f �ðaÞ ¼ aaaþ wa for all arrows a of Q, with aa A Knf0g and wa a linear

combination of paths (with coe‰cients in K) of length b2 having the same source and

target as a. We also note that if w is an element of KQ such that wþ I A socA, then

wx and hw A I 0 for all arrows x and h of Q. In particular, it is the case for all relations

u1; . . . ; un generating the ideal I . Therefore, the relations u 0
1; u

0
2; . . . ; u

0
n generating the

ideal I 0 can be obtained from the relations u1; u2; . . . ; um generating the ideal I by:

(1) replacing some relations ui by relations of the form ui �Yivi, Yi A K , for any

path vi in Q with 00 vi þ I A socA having the same source and target as the paths uij
occuring in ui;

(2) replacing, for A equal A11;A13 or A25, the relations ui ¼ ui1 � ui2 with

ui1 þ I ; ui2 þ I A soc I , by relations of the forms Yi1ui1 �Yi2ui2, for Yi1;Yi2 A K ;

(3) keeping all the remaining relations ui unchanged;

(4) adding the relations uix and hui, for all relations ui replaced in (1), and arrows

x (respectively, h) having the same target (respectively, source) as the paths uij occuring

in ui;

(5) adding, for A equal A11;A13, or A25, the relations uijx and huij , for all paths uij
in Q, j A f1; 2g, occuring in the relations ui ¼ ui1 � ui2 replaced in (2), and arrows x

(respectively, h) having the same target (respectively, source) as uij .

Clearly, all algebras A 0 ¼ KQ=I 0 for I 0 obtained from I by applying the procedures

(1), (3), (4) are socle equivalent to A. We note that the procedure (4) can be replaced

by:
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(4 0) adding the relations vix and hvi, for all paths vi in Q with 00 vi þ I A socA

used in (1).

We may also use the procedure (4) for some relations ui which have been replaced in

(1), and the procedure (4 0) for the remaining i for which the relations ui were replaced

in (1).

We will prove in Lemmas 5.6, 5.14, and 5.15 that Yi1 and Yi2 in (2) have to be

both nonzero. In those lemmas we also prove that any algebra obtained by the pro-

cedures (1)–(5) is isomorphic to some algebra obtained by the procedures (1), (3) and

(4). Finally, we note that many from the relations added in (4) (respectively, in (4 0))

and (5) follow from the other relations and hence can be omitted. For example, it is

the case in the lemma below.

In order to simplify notation, we will identify below the elements from KQ with

their residue classes in KQ=I and KQ=I 0.

Lemma 5.2. Let L be a selfinjective algebra which is socle equivalent to A5 but

nonisomorphic to A5. Then charK ¼ 3 and L is isomorphic to L1.

Proof. It follows from the above remarks that L is isomorphic to an algebra A 0
5

given by the quiver of A5 and bound by relations

bgab ¼ 0; gabg ¼ 0; a5 ¼ 0; gab ¼ Y1ga
2b; a2 � bg ¼ Y2a

4;

for some parameters Y1;Y2 A K . Note that we may omit the relations a4b ¼ 0 and

ga4 ¼ 0 of type (4 0), because a3b ¼ bgab þY2a
5b ¼ 0 and ga3 ¼ gabgþY2ga

5 ¼ 0.

Assume that A5 and A 0
5 are isomorphic, and let f : A5 ! A 0

5 be an algebra iso-

morphism. Then f is given by

f ðaÞ ¼ a1aþ a2a
2 þ a3a

3 þ a4a
4;

f ðbÞ ¼ b1b þ b2ab þ b3a
2b; f ðgÞ ¼ c1gþ c2gaþ c3ga

2;

for some parameters a1; b1; c1 A Knf0g, ai A K , 2a ia 4, bi; ci A K , 2a ia 3. Denote

a ¼ a�1
1 a2, b ¼ b�1

1 b2, c ¼ c�1
1 c2. We have the following equalities:

f ða2 � bgÞ ¼ a21a
2 þ 2a1a2a

3 þ ð2a1a3 þ a22Þa
4

� ðb1c1bgþ ðb1c2 þ b2c1Þa
3 þ ðb1c3 þ b2c2 þ b3c1Þa

4Þ;

f ðgabÞ ¼ a1b1c1gab þ ða1b1c2 þ a1b2c1 þ a2b1c1Þga
2b:

Hence, we obtain a21 ¼ b1c1, 2a ¼ bþ c and 3a ¼ aþ bþ c ¼ �Y1. Therefore, if K is

of characteristic 3, then we have Y1 ¼ 0. Thus, for Y1 0 0 and charK ¼ 3, the alge-

bras A5 and A 0
5 are not isomorphic, but clearly A5 and A 0

5 are socle equivalent. We will

prove now that, if charK ¼ 3 and Y1 0 0, then A 0
5 is the unique (up to isomorphism)

selfinjective algebra socle equivalent to A5 but nonisomorphic to A5.

Observe first that if charK0 3 then there is an algebra isomorphism f : A5 ! A 0
5

given by

f ðaÞ ¼ a�
Y1

3
a2; f ðbÞ ¼ b �

Y1

3
ab; f ðgÞ ¼ g�

Y1

3
gaþY2ga

2;
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whose inverse f �1
: A 0

5 ! A5 is given by

f �1ðaÞ ¼ aþ
Y1

3
a2 þ

2Y2
1

9
a3 þ

5Y3
1

27
a4;

f �1ðbÞ ¼ b þ
Y1

3
ab þ

2Y2
1

9
a2b; f �1ðgÞ ¼ gþ

Y1

3
gaþ

2Y2
1

9
�Y2

� �

ga2;

and, if charK ¼ 3 and Y1 ¼ 0, then there is an algebra isomorphism f : A5 ! A 0
5 given

by

f ðaÞ ¼ a; f ðbÞ ¼ b; f ðgÞ ¼ gþY2ga
2
;

whose inverse f �1
: A 0

5 ! A5 is given by

f �1ðaÞ ¼ a; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g�Y2ga
2
:

Assume now that charK ¼ 3. Let A 0
5 be as above with Y1 0 0 and A 00

5 be an algebra

given by the quiver of A5 and bound by relations

bgab ¼ 0; gabg ¼ 0; a5 ¼ 0; gab ¼ Y 0
1ga

2b; a2 � bg ¼ Y 0
2a

4
;

for some parameters Y 0
1;Y

0
2 A K with Y 0

1 0 0. Denote Q ¼ Y�1
1 Y 0

1. Then we have an

algebra isomorphism g : A 0
5 ! A 00

5 given by

gðaÞ ¼ Qa; gðbÞ ¼ b þ ðY 0
2 � Q2Y2Þa

2b; gðgÞ ¼ Q2g;

and its inverse g�1
: A 00

5 ! A 0
5 is given by

g�1ðaÞ ¼ Q�1a; g�1ðbÞ ¼ b þ ðY2 � Q�2Y 0
2Þa

2b; g�1ðgÞ ¼ Q�2g:

This ends the proof, because L1 is equal to A 0
5 for Y1 ¼ 1, Y2 ¼ 0. r

Lemma 5.3. Let L be a selfinjective algebra which is socle equivalent to A6 but

nonisomorphic to A6. Then charK ¼ 3 and L is isomorphic to L2.

Proof. The algebra L is isomorphic to an algebra A 0
6 given by the quiver of A6

and relations

bgb ¼ 0; gbg ¼ 0; gb ¼ Y1gab;

ga2 ¼ 0; a2b ¼ 0; a5 ¼ 0; a3 � bg ¼ Y2a
4
;

for some parameters Y1;Y2 A K . We note that L2 is equal to A 0
6 with Y1 ¼ 1 and

Y2 ¼ 0.

Assume that the algebras A6 and A 0
6 are isomorphic, and let f : A6 ! A 0

6 be an

algebra isomorphism. Then f is given by

f ðaÞ ¼ a1aþ a2a
2 þ a3a

3 þ a4a
4
;

f ðbÞ ¼ b1b þ b2ab; f ðgÞ ¼ c1gþ c2ga;

for some parameters a1; b1; c1 A Knf0g, b2; c2 A K , ai A K , 2a ia 4. Denote a ¼ a�1
1 a2,

b ¼ b�1
1 b2, c ¼ c�1

1 c2. Then the following equalities hold:
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f ðgbÞ ¼ b1c1gb þ ðb1c2 þ b2c1Þgab;

f ða3 � bgÞ ¼ a31a
3 þ 3a21a2a

4 � ðb1c1bgþ ðb1c2 þ b2c1Þa
4Þ:

Therefore, we obtain bþ c ¼ �Y1, a
3
1 ¼ b1c1 and Y2 þ 3a ¼ bþ c ¼ �Y1. Thus, if K is

of characteristic 3, then we have Y1 þY2 ¼ 0. Hence, for Y1 þY2 0 0 and charK ¼ 3,

the algebras A6 and A 0
6 are not isomorphic, but clearly A6 and A 0

6 are socle equivalent.

We will prove now that, if charK ¼ 3 and Y1 þY2 0 0, then A 0
6 is the unique (up to

isomorphism) selfinjective algebra socle equivalent to A6 but nonisomorphic to A6.

If charK 0 3 then there is an algebra isomorphism f : A6 ! A 0
6 given by

f ðaÞ ¼ a�
Y1 þY2

3
a2; f ðbÞ ¼ b �Y1ab; f ðgÞ ¼ g;

whose inverse f �1
: A 0

6 ! A6 is given by

f �1ðaÞ ¼ aþ
Y1 þY2

3
a2 þ

2ðY1 þY2Þ
2

9
a3 þ

5ðY1 þY2Þ
3

27
a4;

f �1ðbÞ ¼ b þY1ab; f �1ðgÞ ¼ g;

and, if charK ¼ 3 and Y1 þY2 ¼ 0, then there is an algebra isomorphism f : A6 ! A 0
6

given by

f ðaÞ ¼ a; f ðbÞ ¼ b �Y1ab; f ðgÞ ¼ g;

whose inverse f �1
: A 0

6 ! A6 is given by

f �1ðaÞ ¼ a; f �1ðbÞ ¼ b þY1ab; f �1ðgÞ ¼ g:

Assume now that charK ¼ 3. Let A 0
6 be as above with Y1 þY2 0 0 and A 00

6 be an

algebra given by the quiver of A6 bound by relations

bgb ¼ 0; gbg ¼ 0; gb ¼ Y 0
1gab;

ga2 ¼ 0; a2b ¼ 0; a5 ¼ 0; a3 � bg ¼ Y 0
2a

4
;

for some parameters Y 0
1;Y

0
2 A K with Y 0

1 þY 0
2 0 0. Denote Q ¼ ðY1 þY2Þ

�1ðY 0
1 þY 0

2Þ.

Then we have an algebra isomorphism g : A 0
6 ! A 00

6 given by

gðaÞ ¼ Qa; gðbÞ ¼ Q3b; gðgÞ ¼ gþ ðQY1 �Y 0
1Þga

(note that QY1 �Y 0
1 ¼ Y 0

2 � QY2), whose inverse g�1
: A 00

6 ! A 0
6 is given by

g�1ðaÞ ¼ Q�1a; g�1ðbÞ ¼ Q�3b; g�1ðgÞ ¼ gþ ðQ�1Y 0
1 �Y1Þga:

This ends the proof, because L2 is equal to A 0
6 for Y1 ¼ 1 and Y2 ¼ 0. r

Lemma 5.4. Let L be a selfinjective algebra which is socle equivalent to A2ðlÞ but

nonisomorphic to A2ðlÞ. Then charK ¼ 2 and L is isomorphic to L3ðlÞ.

Proof. It follows from the above remarks that L is isomorphic to an algebra

A 0
2ðlÞ given by the quiver of A2ðlÞ and bound by relations
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ags ¼ a3 ¼ gsa; ag ¼ gb; lgb2 ¼ gsg ¼ a2g;

bsg ¼ lb3 ¼ sgb; bs ¼ sa; lb2s ¼ sgs ¼ sa2;

a2 � gs ¼ Y1a
3
; lb2 � sg ¼ Y2lb

3
;

for some parameters Y1;Y2 A K . Note that we have gb2 ¼ 0, b2s ¼ 0, a4 ¼ 0, and

b4 ¼ 0, because lgb2 ¼ gsg ¼ a2g ¼ agb ¼ gb2, lb2s ¼ sgs ¼ sa2 ¼ bsa ¼ b2s, and

10 l A K .

Assume that A2ðlÞ and A 0
2ðlÞ are isomorphic. Then there exists an algebra iso-

morphism f : A2ðlÞ ! A 0
2ðlÞ given by

f ðaÞ ¼ a1aþ a2a
2 þ a3a

3
; f ðbÞ ¼ b1b þ b2b

2 þ b3b
3
;

f ðgÞ ¼ c1gþ c2ag; f ðsÞ ¼ d1sþ d2sa;

for some parameters a1; b1; c1; d1 A Knf0g, ai; bi; ci; di A K , 2a ia 3. Denote a ¼ a�1
1 a2,

b ¼ b�1
1 b2, c ¼ c�1

1 c2, d ¼ d�1
1 d2. We obtain the following equalities:

f ða2 � gsÞ ¼ a21a
2 þ 2a1a2a

3 � ðc1d1gsþ ðc1d2 þ c2d1ÞgsaÞ

¼ a21a
2 � c1d1gs� ðc1d2 þ c2d1 � 2a1a2Þa

3
;

f ðlb2 � sgÞ ¼ lðb21b
2 þ 2b1b2b

3Þ � ðc1d1sgþ ðc1d2 þ c2d1ÞsagÞ

¼ b21lb
2 � c1d1sg� ðc1d2 þ c2d1 � 2b1b2Þlb

3
:

Hence, we get a21 ¼ c1d1, Y1 ¼ cþ d � 2a, b21 ¼ c1d1 and Y2 ¼ cþ d � 2b. Therefore,

if K is of characteristic 2, then we have Y1 ¼ cþ d ¼ Y2. Thus, for Y1 0Y2 and

charK ¼ 2, the algebras A2ðlÞ and A 0
2ðlÞ are not isomorphic, but clearly A2ðlÞ and

A 0
2ðlÞ are socle equivalent. We will prove now that, if charK ¼ 2, then A 0

2ðlÞ is the

unique (up to isomorphism) selfinjective algebra socle equivalent to A2ðlÞ but non-

isomorphic to A2ðlÞ.

Observe first that if charK0 2 then there is an algebra isomorphism f : A2ðlÞ !

A 0
2ðlÞ given by

f ðaÞ ¼ a�
Y1

2
a2; f ðbÞ ¼ b �

Y2

2
b2
; f ðgÞ ¼ g; f ðdÞ ¼ d;

whose inverse f �1
: A 0

2ðlÞ ! A2ðlÞ is given by

f �1ðaÞ ¼ aþ
Y1

2
a2 þ

Y2
1

2
a3; f �1ðbÞ ¼ b þ

Y2

2
b2 þ

Y2
2

2
b3
;

f �1ðgÞ ¼ g; f �1ðdÞ ¼ d;

and, if charK ¼ 2 and Y1 ¼ Y2, then there is an algebra isomorphism f : A2ðlÞ ! A 0
2ðlÞ

given by

f ðaÞ ¼ a; f ðbÞ ¼ b; f ðgÞ ¼ gþY1ag; f ðdÞ ¼ d;

whose inverse f �1
: A 0

2ðlÞ ! A2ðlÞ is given by
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f �1ðaÞ ¼ a; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g�Y1ag; f �1ðdÞ ¼ d:

Finally, assume that charK ¼ 2. Let A 0
2ðlÞ be as above with Y1 0Y2 and let A 00

2 ðlÞ be

an algebra given by the quiver of A2 bound by relations

ags ¼ a3 ¼ gsa; ag ¼ gb; lgb2 ¼ gsg ¼ a2g;

bsg ¼ lb3 ¼ sgb; bs ¼ sa; lb2s ¼ sgs ¼ sa2;

a2 � gs ¼ Y 0
1a

3
; lb2 � sg ¼ Y 0

2lb
3
;

for some parameters Y 0
1;Y

0
2 A K , Y 0

1 0Y 0
2. Denote Q ¼ ðY1 �Y2Þ

�1ðY 0
1 �Y 0

2Þ. Then

we have an algebra isomorphism g : A 0
2ðlÞ ! A 00

2 ðlÞ given by

gðaÞ ¼ Qa; gðbÞ ¼ Qb; gðgÞ ¼ Qg; gðsÞ ¼ Qsþ QðY 0
1 � QY1Þsa

(note that Y 0
1 � QY1 ¼ Y 0

2 � QY2), and its inverse g�1
: A 00

2 ðlÞ ! A 0
2ðlÞ is given by

g�1ðaÞ ¼ Q�1a; g�1ðbÞ ¼ Q�1b; g�1ðgÞ ¼ Q�1g;

g�1ðsÞ ¼ Q�1sþ Q�1ðY1 � Q�1Y 0
1Þsa:

This ends the proof, because L3ðlÞ is equal to A 0
2ðlÞ with Y1 ¼ 1 and Y2 ¼ 0. r

Lemma 5.5. Let L be a selfinjective algebra which is socle equivalent to A12ðlÞ but

nonisomorphic to A12ðlÞ. Then charK ¼ 2 and L is isomorphic to L4ðlÞ.

Proof. The algebra L is isomorphic to an algebra A 0
12 given by the quiver of A12

and relations

abg ¼ Yabdbg; abga ¼ 0; gabg ¼ 0; dbd ¼ ga; bðdbÞ3 ¼ 0;

for some parameter Y A K .

Assume that A12 and A 0
12 are isomorphic. Then there exists an algebra iso-

morphism f : A12 ! A 0
12 given by

f ðaÞ ¼ a1aþ a2abd; f ðbÞ ¼ b1b þ b2bdb þ b3bdbdb;

f ðgÞ ¼ c1gþ c2dbg; f ðdÞ ¼ d1dþ d2dbdþ d3dbdbd;

for some parameters a1; b1; c1; d1 A Knf0g, a2; b2; b3; c2; d2; d3 A K. Denote a ¼ a�1
1 a2,

b ¼ b�1
1 b2, c ¼ c�1

1 c2, d ¼ d�1
1 d2. We have the following equalities:

f ðabgÞ ¼ a1b1c1abgþ ða2b1c1 þ a1b2c1 þ a1b1c2Þabdbg;

f ðdbd� gaÞ ¼ b1d
2
1 dbdþ ð2b1d1d2 þ b2d

2
1 � a1c2 � a2c1Þdbdbd� a1c1ga:

Hence, we obtain the relations aþ bþ cþY ¼ 0, a1c1 ¼ b1d
2
1 and 2d þ b ¼ aþ c.

Therefore, if K is of characteristic 2, we have Y ¼ �ðaþ bþ cÞ ¼ �2ðbþ dÞ ¼ 0.

Then, for Y0 0 and charK ¼ 2, the algebras A12 and A 0
12 are nonisomorphic, so L4

is socle equivalent but nonisomorphic to A12. Now we prove that there is only one

algebra (up to isomorphism) with this property.
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Observe that A12 ¼ A 0
12 if Y ¼ 0. Moreover, if charK0 2 then there exists an

algebra isomorphism f : A12 ! A 0
12 given by

f ðaÞ ¼ a; f ðbÞ ¼ b �Ybdb; f ðgÞ ¼ g; f ðdÞ ¼ dþ
Y

2
dbd;

whose inverse f �1
: A 0

12 ! A12 is given by

f �1ðaÞ ¼ a; f �1ðbÞ ¼ b þYbdb þ
3

2
Ydbdbd;

f �1ðgÞ ¼ g; f �1ðdÞ ¼ d�
Y

2
dbd:

Assume now that charK ¼ 2. Let A 0
12 be as above with Y0 0 and A 00

12 be an algebra

given by the quiver of A12 bound by the relations

abg ¼ Y 0abdbg; abga ¼ 0; gabg ¼ 0; dbd ¼ ga; bðdbÞ3 ¼ 0;

for some parameter Y 0 A Knf0g. Denote Q ¼ Y�1Y 0. Then we have an algebra iso-

morphism g : A 0
12 ! A 00

12 given by

gðaÞ ¼ Qa; gðbÞ ¼ Qb; gðgÞ ¼ g; gðdÞ ¼ d:

This ends the proof, because, for Y ¼ 1, A 0
12 is equal to L4. r

Lemma 5.6. Let L be a selfinjective algebra which is socle equivalent to A13 but

nonisomorphic to A13. Then charK ¼ 2 and L is isomorphic to L5.

Proof. Let L be a selfinjective algebra socle equivalent to A13 and let A 0
13 be an

algebra isomorphic to L of the form described at the beginning of this section. We

claim that in A 0
13 we have a3 ¼ Ysd0 0 for some nonzero parameter Y A K .

In fact, since a3; sd A socA 0
13 and the socle of any indecomposable projective A 0

13-

module is one-dimensional, we have either a3 ¼ 0, or sd ¼ 0, or a3 ¼ Ysdð0 0Þ for some

Y A Knf0g. If sd ¼ 0, then d is left-maximal in A 0
13, but d A A13nsocA13, a contra-

diction. Suppose that a3 ¼ 0. Then a2 0 0, because a2 B socA13. Let a2o be a non-

zero element of socA 0
13. We may assume that o ¼ ao1 þ bgo2 þ so3. Since a2a ¼

a3 ¼ 0, a2bg ¼ bðgbÞg ¼ 0 and a2s ¼ aðasÞ ¼ 0, we get a2o ¼ 0, a contradiction.

Therefore a3 ¼ Ysd0 0 and the algebra A 0
13 is given by the quiver of A13 bound by

relations

gb ¼ Y1gab; db ¼ 0; gs ¼ 0; da ¼ 0;

a2 ¼ bgþY2a
3
; as ¼ 0; dsd ¼ 0; sds ¼ 0;

a3 ¼ Ysd; a4 ¼ 0; gbg ¼ 0; bgb ¼ 0;

for some parameters Y1;Y2 A K , Y A Knf0g. Note that, for Y1 ¼ 1 and Y2 ¼ 0, A 0
13 is

equal to L5.

Assume that A13 and A 0
13 are isomorphic, and let f : A13 ! A 0

13 be an algebra

isomorphism. Then f is given by
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f ðaÞ ¼ a1aþ a2a
2 þ a3a

3
; f ðbÞ ¼ b1b þ b2ab;

f ðgÞ ¼ c1gþ c2ga; f ðdÞ ¼ dd; f ðsÞ ¼ ss;

for some parameters a1; b1; c1; d; s A Knf0g, a2; a3; b2; c2 A K . Denote a ¼ a�1
1 a2, b ¼

b�1
1 b2, c ¼ c�1

1 c2. Then we obtain the following equalities:

f ðgbÞ ¼ b1c1gb þ ðb1c2 þ b2c1Þgab;

f ða2 � bgÞ ¼ a21a
2 � b1c1bg� ðb1c2 þ b2c1 � 2a1a2Þa

3
;

f ða3 � sdÞ ¼ a31a
3 � dssd:

Hence, we have the relations a21 ¼ b1c1, bþ cþY1 ¼ 0, Y2 ¼ bþ c� 2a, a31Y ¼ ds.

Therefore Y1 þY2 ¼ �2a, and Y1 þY2 ¼ 0 if charK ¼ 2. In particular, if Y1 þY2 0 0

and charK ¼ 2, then the algebras A13 and A 0
13 are nonisomorphic. On the other hand,

if charK0 2, then there is an algebra isomorphism f : A13 ! A 0
13 given by

f ðaÞ ¼ a�
Y1 þY2

2
a2; f ðbÞ ¼ b �Y1ab;

f ðgÞ ¼ g; f ðdÞ ¼ Yd; f ðsÞ ¼ s;

whose inverse f �1
: A 0

13 ! A13 is given by

f �1ðaÞ ¼ aþ
Y1 þY2

2
a2 þ

ðY1 þY2Þ
2

2
a3; f �1ðbÞ ¼ b þY1ab;

f �1ðgÞ ¼ g; f �1ðdÞ ¼ Y�1d; f �1ðsÞ ¼ s;

and, if Y1 þY2 ¼ 0 and K is of characteristic 2, then there is an algebra isomorphism

f : A13 ! A 0
13 given by

f ðaÞ ¼ a; f ðbÞ ¼ b �Y1ab; f ðgÞ ¼ g; f ðdÞ ¼ Yd; f ðsÞ ¼ s:

Assume now that charK ¼ 2. Let A 0
13 be as above with y ¼ Y1 þY2 0 0, and A 00

13

be an algebra given by the quiver of A13 bound by relations

gb ¼ Y 0
1gab; db ¼ 0; gs ¼ 0; da ¼ 0;

a2 ¼ bgþY 0
2a

3
; as ¼ 0; dsd ¼ 0; sds ¼ 0;

a3 ¼ Y 0sd; a4 ¼ 0; gbg ¼ 0; bgb ¼ 0;

for some parameters Y 0
1;Y

0
2 A K , Y 0

A Knf0g with y 0 ¼ Y 0
1 þY 0

2 0 0. We will show

that A 0
13 and A 00

13 are isomorphic. Denote Q ¼ y�1y 0. Then there exists an algebra

isomorphism g : A 0
13 ! A 00

13 given by

gðaÞ ¼ Qa; gðbÞ ¼ Qb þ QðQY 0
1 �Y1Þab;

gðgÞ ¼ Qg; gðdÞ ¼ d; gðsÞ ¼ Q3Y�1Y 0s;

and its inverse g�1
: A 00

13ðlÞ ! A 0
13ðlÞ is given by
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g�1ðaÞ ¼ Q�1a; g�1ðbÞ ¼ Q�1b � Q�1ðQ�1Y1 þY 0
1Þab;

g�1ðgÞ ¼ Q�1g; g�1ðdÞ ¼ d; g�1ðsÞ ¼ Q�3Y 0�1Ys: r

Lemma 5.7. Let L be a selfinjective algebra which is socle equivalent to A14 but

nonisomorphic to A14. Then charK ¼ 2 and L is isomorphic to L6.

Proof. The algebra L is isomorphic to an algebra A 0
14 given by the quiver of A14

and relations

dgda ¼ 0; bgdg ¼ 0; ðgdÞ3g ¼ 0; dðgdÞ3 ¼ 0;

ba ¼ Y1bgda; ab ¼ ðgdÞ2 þY2ðgdÞ
3
; aba ¼ 0; bab ¼ 0;

for some parameters Y1;Y2 A K .

Assume that A14 and A 0
14 are isomorphic, and let f : A14 ! A 0

14 be an algebra

isomorphism. Then f is given by

f ðaÞ ¼ a1aþ a2gda; f ðgÞ ¼ c1gþ c2gdgþ c3gdgdg;

f ðbÞ ¼ b1b þ b2bgd; f ðdÞ ¼ d1dþ d2dgdþ d3dgdgd;

for some parameters a1; b1; c1; d1 A Knf0g, a2; b2; c2; c3; d2; d3 A K . Denote a ¼ a�1
1 a2,

b ¼ b�1
1 b2, c ¼ c�1

1 c2, d ¼ d�1
1 d2. Then the following equalities hold:

f ðbaÞ ¼ a1b1baþ ða1b2 þ a2b1Þbgda;

f ðab � dgdgÞ ¼ a1b1ab � c21d
2
1 ðgdÞ

2

þ ða1b2 þ a2b1 � 2ðc1c2d
2
1 þ c21d1d2ÞÞðgdÞ

3
:

Therefore, we have the relations a1b1 ¼ c21d
2
1 , aþ bþY1 ¼ 0, Y2 ¼ 2ðd þ cÞ � ðaþ bÞ.

Hence Y2 �Y1 ¼ 2ðcþ dÞ, and Y1 ¼ Y2 if charK ¼ 2. In particular, if Y1 0Y2 and

charK ¼ 2, then the algebras A14 and A 0
14 are nonisomorphic. Observe also that, if

charK0 2, then there is an algebra isomorphism f : A14 ! A 0
14 given by

f ðaÞ ¼ a�Y1gda; f ðbÞ ¼ b; f ðgÞ ¼ gþ
Y2 �Y1

2
gdg; f ðdÞ ¼ d;

whose inverse f �1
: A 0

14 ! A14 is given by

f �1ðaÞ ¼ aþY1gda; f �1ðbÞ ¼ b;

f �1ðgÞ ¼ gþ
Y1 �Y2

2
gdgþ

ðY1 �Y2Þ
2

2
gdgdg; f �1ðdÞ ¼ d;

and, if Y1 ¼ Y2 and K is of characteristic 2, then there is an algebra isomorphism

f : A14 ! A 0
14 given by

f ðaÞ ¼ a�Y1gda; f ðbÞ ¼ b; f ðgÞ ¼ g; f ðdÞ ¼ d:

Assume now that charK ¼ 2. Let A 0
14 be as above with y ¼ Y2 �Y1 0 0, and A 00

14

be an algebra given by the quiver of A14 bound by relations
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dgda ¼ 0; bgdg ¼ 0; ðgdÞ3g ¼ 0; dðgdÞ3 ¼ 0;

ba ¼ Y1bgda; ab ¼ ðgdÞ2 þY2ðgdÞ
3
; aba ¼ 0; bab ¼ 0;

for some parameters Y 0
1;Y

0
2 A K with y 0 ¼ Y 0

1 �Y 0
2 0 0. We will show that A 0

14 and

A 00
14 are isomorphic. Denote Q ¼ y�1y 0. Then there exists an algebra isomorphism

g : A 0
14 ! A 00

14 given by

gðaÞ ¼ Qaþ QðQY1 �Y 0
1Þgda; gðbÞ ¼ Qb; gðgÞ ¼ Qg; gðdÞ ¼ d;

and whose inverse g�1
: A 00

14ðlÞ ! A 0
14ðlÞ is given by

g�1ðaÞ ¼ Q�1aþ Q�1ðQ�1Y 0
1 �Y1Þgda;

g�1ðbÞ ¼ Q�1b; g�1ðgÞ ¼ Q�1g; g�1ðdÞ ¼ d:

This finishes the proof, because L6 is equal to A 0
14 for Y1 ¼ 1, Y2 ¼ 0. r

Lemma 5.8. Let L be a selfinjective algebra which is socle equivalent to A15 but

nonisomorphic to A15. Then charK ¼ 2 and L is isomorphic to L7.

Proof. The algebra L is isomorphic to an algebra A 0
15 given by the quiver of A15

and relations

db ¼ Y1dab; sa ¼ 0; da ¼ gs; abg ¼ 0;

a2 ¼ bdþY2a
3
; dbg ¼ 0; bdb ¼ 0; dbd ¼ 0; a4 ¼ 0;

for some parameters Y1;Y2 A K . Clearly, for Y1 ¼ 1 and Y2 ¼ 0, A 0
15 is equal to L7.

Assume that A15 and A 0
15 are isomorphic, and let f : A15 ! A 0

15 be an algebra iso-

morphism. Then f is given by

f ðaÞ ¼ a1aþ a2a
2 þ a3a

3
; f ðbÞ ¼ b1b þ b2ab;

f ðgÞ ¼ cg; f ðdÞ ¼ d1dþ d2da; f ðsÞ ¼ ss;

for some parameters a1; b1; c; d1; s A Knf0g, a2; a3; b2; d2 A K . Denote a ¼ a�1
1 a2, b ¼

b�1
1 b2, d ¼ d�1

1 d2. Then we have the following equalities:

f ðda� gsÞ ¼ a1d1da� csgs;

f ðdbÞ ¼ b1d1db þ ðb1d2 þ b2d1Þdab;

f ða2 � bdÞ ¼ a21a
2 � b1d1bd� ðb1d2 þ b2d1 � 2a1a2Þa

3
:

Hence we obtain the relations a1d1 ¼ cs, a21 ¼ b1d1, bþ d þY1 ¼ 0, Y2 ¼ bþ d � 2a.

Therefore Y1 þY2 ¼ �2a, and Y1 þY2 ¼ 0 if charK ¼ 2. In particular, if Y1 þY2 0 0

and charK ¼ 2, then the algebras A15 and A 0
15 are nonisomorphic. On the other hand,

if charK0 2, then there is an algebra isomorphism f : A15 ! A 0
15 given by

f ðaÞ ¼ a�
Y1 þY2

2
a2; f ðbÞ ¼ b �Y1ab;

f ðgÞ ¼ g; f ðdÞ ¼ d; f ðsÞ ¼ s;
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whose inverse f �1
: A 0

15 ! A15 is given by

f �1ðaÞ ¼ aþ
Y1 þY2

2
a2 þ

ðY1 þY2Þ
2

2
a3; f �1ðbÞ ¼ b þY1ab;

f �1ðgÞ ¼ g; f �1ðdÞ ¼ d; f �1ðsÞ ¼ s;

and, if Y1 þY2 ¼ 0 and K is of characteristic 2, then there is an algebra isomorphism

f : A15 ! A 0
15 given by

f ðaÞ ¼ a; f ðbÞ ¼ b �Y1ab; f ðgÞ ¼ g; f ðdÞ ¼ d; f ðsÞ ¼ s:

Assume now that charK ¼ 2. Let A 0
15 be as above with y ¼ Y1 þY2 0 0, and let

A 00
15 be an algebra given by the quiver of A15 bound by relations

db ¼ Y 0
1dab; sa ¼ 0; da ¼ gs; abg ¼ 0;

a2 ¼ bdþY 0
2a

3
; dbg ¼ 0; bdb ¼ 0; dbd ¼ 0; a4 ¼ 0;

for some parameters Y 0
1;Y

0
2 A K with y 0 ¼ Y 0

1 þY 0
2 0 0. We will show that A 0

15 and

A 00
15 are isomorphic. Denote Q ¼ y�1y 0. Then there exists an algebra isomorphism

g : A 0
15 ! A 00

15 given by

gðaÞ ¼ Qa; gðbÞ ¼ Qb þ QðQY1 �Y 0
1Þab;

gðgÞ ¼ Qg; gðdÞ ¼ Qd; gðsÞ ¼ Qs;

and whose inverse g�1
: A 00

15ðlÞ ! A 0
15ðlÞ is given by

g�1ðaÞ ¼ Q�1a; g�1ðbÞ ¼ Q�1b þ Q�1ðQ�1Y 0
1 �Y1Þab;

g�1ðgÞ ¼ Q�1g; g�1ðdÞ ¼ Q�1d; g�1ðsÞ ¼ Q�1s: r

Lemma 5.9. Let L be a selfinjective algebra which is socle equivalent to A16 but

nonisomorphic to A16. Then charK ¼ 2 and L is isomorphic to L8.

Proof. This is a consequence of the above lemma, because A16 GA
op
15 and

L8 GL
op
7 . r

Lemma 5.10. Let L be a selfinjective algebra which is socle equivalent to A3 but

nonisomorphic to A3. Then charK ¼ 2 and L is isomorphic to L9.

Proof. The algebra L is isomorphic to an algebra A 0
3 given by the quiver of A3

and relations

ab þ gdþ xe ¼ Y1abgd; ba ¼ Y2bgda; dg ¼ Y3dxeg; ex ¼ Y4eabx;

dabgd ¼ 0; eabgd ¼ 0; abgda ¼ 0; abgdx ¼ 0;

bab ¼ 0; dgd ¼ 0; gdg ¼ 0; exe ¼ 0; xex ¼ 0;

for some parameters Y1;Y2;Y3;Y4 A K . Assume that A3 and A 0
3 are isomorphic, and

let f : A3 ! A 0
3 be an algebra isomorphism. Then f is given by
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f ðaÞ ¼ a1aþ a2gdaþ a3xea; f ðbÞ ¼ b1b þ b2bgdþ b3bxe;

f ðgÞ ¼ c1gþ c2xegþ c3abg; f ðdÞ ¼ d1dþ d2dxeþ d3dab;

f ðxÞ ¼ e1xþ e2abxþ e3gdx; f ðeÞ ¼ z1eþ z2eab þ z3egd;

for some parameters a1; b1; c1; d1; e1; z1 A Knf0g, ai; bi; ci; di; ei; zi A K with i A f2; 3g.

Denote a ¼ a�1
1 ða2 � a3Þ, b ¼ b�1

1 ðb2 � b3Þ, c ¼ c�1
1 ðc2 � c3Þ, d ¼ d�1

1 ðd2 � d3Þ, e ¼

e�1
1 ðe2 � e3Þ, z ¼ z�1

1 ðz2 � z3Þ. Then the following equalities hold:

f ðbaÞ ¼ a1b1baþ ða1ðb2 � b3Þ þ ða2 � a3Þb1Þbgda;

f ðdgÞ ¼ c1d1dgþ ðc1ðd2 � d3Þ þ ðc2 � c3Þd1Þdxeg;

f ðexÞ ¼ e1z1exþ ðe1ðz2 � z3Þ þ ðe2 � e3Þz1Þeabx;

f ðab þ gdþ xeÞ ¼ a1b1ab þ c1d1gdþ e1z1xe

þ ða1ðb2 � b3Þ � ða2 � a3Þb1 þ c1ðd2 � d3Þ

� ðc2 � c3Þd1 þ e1ðz2 � z3Þ � ðe2 � e3Þz1Þabgd:

Hence, we have the relations aþ bþY2 ¼ 0, cþ d þY3 ¼ 0, eþ zþY4 ¼ 0, a1b1 ¼

c1d1 ¼ e1z1, �aþ b� cþ d � eþ zþY1 ¼ 0. Therefore, 2ðbþ d þ zÞ þY1 þY2 þY3

þY4 ¼ 0, and Y1 þY2 þY3 þY4 ¼ 0 if charK ¼ 2. In particular, if Y1 þY2 þY3 þ

Y4 0 0 and charK ¼ 2, then the algebras A3 and A 0
3 are nonisomorphic. Observe also

that, if K is of characteristic 2 and Y1 þY2 þY3 þY4 ¼ 0, then there is an algebra

isomorphism f : A3 ! A 0
3 given by

f ðaÞ ¼ a�Y2gda; f ðbÞ ¼ b; f ðgÞ ¼ g�Y3xeg;

f ðdÞ ¼ d; f ðxÞ ¼ x�Y4abx; f ðeÞ ¼ e;

and, if charK0 2, then there is an algebra isomorphism f : A3 ! A 0
3 given by

f ðaÞ ¼ a�Y2gda; f ðbÞ ¼ b; f ðxÞ ¼ xþ
Y1 þY2 þY3 �Y4

2
abx;

f ðgÞ ¼ g�Y3xeg; f ðdÞ ¼ d; f ðeÞ ¼ e�
Y1 þY2 þY3 þY4

2
eab:

Assume now that charK ¼ 2. Let A 0
3 be as above with y ¼ Y1 þY2 þY3 þY4 0

0, and A 00
3 be an algebra given by the quiver of A3 bound by relations

ab þ gdþ xe ¼ Y 0
1abgd; ba ¼ Y 0

2bgda; dg ¼ Y 0
3dxeg; ex ¼ Y 0

4eabx;

dabgd ¼ 0; eabgd ¼ 0; abgda ¼ 0; abgdx ¼ 0;

bab ¼ 0; dgd ¼ 0; gdg ¼ 0; exe ¼ 0; xex ¼ 0;

for some (di¤erent) parameters Y 0
1;Y

0
2;Y

0
3;Y

0
4 A K with y 0 ¼ Y 0

1 þY 0
2 þY 0

3 þY 0
4 0 0.

We will show that the algebras A 0
3 and A 00

3 are isomorphic. Denote Q ¼ y�1y 0. Then

we have an algebra isomorphism g : A 0
3 ! A 00

3 given by
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gðaÞ ¼ aþ ðQY2 �Y 0
2Þgda; gðbÞ ¼ Qb;

gðgÞ ¼ gþ ðQY3 �Y 0
3Þxeg; gðdÞ ¼ Qd;

gðxÞ ¼ xþ ðQY4 �Y 0
4Þabx; gðeÞ ¼ Qe;

and whose inverse g�1
: A 00

3 ! A 0
3 is given by

g�1ðaÞ ¼ aþ ðQ�1Y 0
2 �Y2Þgda; g�1ðbÞ ¼ Q�1b;

g�1ðgÞ ¼ gþ ðQ�1Y 0
3 �Y3Þxeg; g�1ðdÞ ¼ Q�1d;

g�1ðxÞ ¼ xþ ðQ�1Y 0
4 �Y4Þabx; g�1ðeÞ ¼ Q�1e:

This ends the proof, because L9 is equal to A 0
3 for Y1 ¼ 1, Y2 ¼ Y3 ¼ Y4 ¼ 0. r

Lemma 5.11. Let L be a selfinjective algebra which is socle equivalent to A29 but

nonisomorphic to A29. Then charK ¼ 2 and L is isomorphic to L10.

Proof. The algebra L is isomorphic to an algebra A 0
29 given by the quiver of A29

and relations

bm ¼ Y1bsdm; ha ¼ Y2hgxa; ab ¼ gdþY3gdsd;

ds ¼ xgþY4dsds; sx ¼ mhþY5sdsx;

bmh ¼ 0; abm ¼ 0; hab ¼ 0; mha ¼ 0;

dsdsd ¼ 0; sdsds ¼ 0; dsdsx ¼ 0; gdsds ¼ 0;

gdsdm ¼ 0; gdsds ¼ 0; xgdsd ¼ 0; hgdsd ¼ 0;

sdsxa ¼ 0; sdsxg ¼ 0; bsdsx ¼ 0; dsdsx ¼ 0;

for some parameters Y1;Y2;Y3;Y4;Y5 A K . Clearly, L10 is equal to A 0
29 with Y4 ¼ 1,

Y1 ¼ Y2 ¼ Y3 ¼ Y5 ¼ 0. Assume that the algebras A29 and A 0
29 are isomorphic, and let

f : A29 ! A 0
29 be an algebra isomorphism. Then f is given by

f ðaÞ ¼ a1aþ a2gxa; f ðbÞ ¼ b1b þ b2bsd; f ðgÞ ¼ c1gþ c2gxg;

f ðdÞ ¼ d1dþ d2dsd; f ðhÞ ¼ n1hþ n2hgx; f ðmÞ ¼ m1mþm2sdm;

f ðxÞ ¼ z1xþ z2xgx; f ðsÞ ¼ s1sþ s2sds;

for some parameters a1; b1; c1; d1;m1; n1; s1; z1 A Knf0g, a2; b2; c2; d2;m2; n2; s2; z2 A K .

Denote a ¼ a�1
1 a2, b ¼ b�1

1 b2, c ¼ c�1
1 c2, d ¼ d�1

1 d2, m ¼ m�1
1 m2, n ¼ n�1

1 n2, s ¼ s�1
1 s2,

z ¼ z�1
1 z2. We have then the following equalities:

f ðbmÞ ¼ b1m1bmþ ðb1m2 þ b2m1Þbsdm;

f ðhaÞ ¼ a1n1haþ ða1n2 þ a2n1Þhgxa;
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f ðab � gdÞ ¼ a1b1ab � c1d1gdþ ða1b2 þ a2b1 � c1d2 � c2d1Þgdsd;

f ðds� xgÞ ¼ d1s1ds� c1z1xgþ ðd1s2 þ d2s1 � c1z2 � c2z1Þdsds;

f ðsx� mhÞ ¼ s1z1sx�m1n1mhþ ðs1z2 þ s2z1 �m1n2 �m2n1Þsdsx:

Hence, we obtain the relations d1s1 ¼ c1z1, a1b1 ¼ c1d1, s1z1 ¼ m1n1, bþmþY1 ¼ 0,

aþ nþY2 ¼ 0, aþ bþY3 ¼ cþ d, cþ z ¼ d þ sþY4, mþ n ¼ sþ zþY5. Therefore,

Y1 þY2 þY3 þY4 þY5 ¼ �2ðaþ b� cþ sÞ, and Y1 þY2 þY3 þY4 þY5 ¼ 0 if

charK ¼ 2. In particular, if Y1 þY2 þY3 þY4 þY5 0 0 and charK ¼ 2, then the

algebras A29 and A 0
29 are nonisomorphic. On the other hand, if charK0 2, then there

is an algebra isomorphism f : A29 ! A 0
29 given by

f ðaÞ ¼ a; f ðbÞ ¼ b; f ðgÞ ¼ gþY3gxg;

f ðdÞ ¼ d; f ðhÞ ¼ h�Y2hgx; f ðmÞ ¼ m�Y1sdm;

f ðxÞ ¼ x�
Y1 þY2 þY3 �Y4 þY5

2
xgx; f ðsÞ ¼ s�

Y1 þY2 �Y3 þY4 þY5

2
sds;

and, if charK ¼ 2 and Y1 þY2 þY3 þY4 þY5 ¼ 0, then there is an algebra iso-

morphism f : A29 ! A 0
29 given by

f ðaÞ ¼ a; f ðbÞ ¼ b; f ðgÞ ¼ gþY3gxg; f ðdÞ ¼ d; f ðsÞ ¼ s;

f ðhÞ ¼ hþY2hgx; f ðmÞ ¼ mþY1sdm; f ðxÞ ¼ xþ ðY3 þY4Þxgx:

Assume now that charK ¼ 2. Let A 0
29 be as above with y ¼ Y1 þY2 þY3 þY4 þ

Y5 0 0, and A 00
29 be an algebra given by the quiver of A29 bound by relations

bm ¼ Y 0
1bsdm; ha ¼ Y 0

2hgxa; ab ¼ gdþY 0
3gdsd;

ds ¼ xgþY 0
4dsds; sx ¼ mhþY 0

5sdsx;

bmh ¼ 0; abm ¼ 0; hab ¼ 0; mha ¼ 0;

dsdsd ¼ 0; sdsds ¼ 0; dsdsx ¼ 0; gdsds ¼ 0;

gdsdm ¼ 0; gdsds ¼ 0; xgdsd ¼ 0; hgdsd ¼ 0;

sdsxa ¼ 0; sdsxg ¼ 0; bsdsx ¼ 0; dsdsx ¼ 0;

for some (di¤erent) parameters Y 0
1;Y

0
2;Y

0
3;Y

0
4;Y

0
5 A K with y 0 ¼ Y 0

1 þY 0
2 þY 0

3 þY 0
4 þ

Y 0
5 0 0. We will show that the algebras A 0

29 and A 00
29 are isomorphic. Denote

Q ¼ y�1y 0. Then we have an algebra isomorphism g : A 0
29 ! A 00

29 given by

gðaÞ ¼ a; gðbÞ ¼ Qb; gðgÞ ¼ Qgþ QðQY3 þY 0
3Þgxg;

gðdÞ ¼ d; gðhÞ ¼ Qhþ QðQY2 þY 0
2Þhgx; gðmÞ ¼ mþ ðQY1 þY 0

1Þsdm;

gðxÞ ¼ xþ ðQðY3 þY4Þ þ ðY 0
3 þY 0

4ÞÞxgx; gðsÞ ¼ Qs;

and its inverse g�1
: A 00

29 ! A 0
29 is given by
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g�1ðaÞ ¼ a; g�1ðbÞ ¼ Q�1b; g�1ðgÞ ¼ Q�1gþ Q�1ðQ�1Y 0
3 þY3Þgxg;

g�1ðdÞ ¼ d; g�1ðxÞ ¼ xþ ðQ�1ðY 0
3 þY 0

4Þ þ ðY3 þY4ÞÞxgx; g�1ðsÞ ¼ Q�1s;

g�1ðhÞ ¼ Q�1hþ Q�1ðQ�1Y 0
2 þY2Þhgx; g�1ðmÞ ¼ mþ ðQ�1Y 0

1 þY1Þsdm: r

Lemma 5.12. Let A be one of the algebras A1ðlÞ;A20ðlÞ, l A Knf0; 1g, Ai, for

i A f17; 19g (if charK0 2), or Ai for i A f8; 22; 23; 24; 26; 27; 28g. Then every self-

injective algebra socle equivalent to A is isomorphic to A.

Proof. It follows directly from the remarks at the beginning of this section,

because for all these algebras, in the chosen sets of generators of I , we have no relations

which can be replaced by the procedures (1) or (2). r

Lemma 5.13. Let K be of characteristic di¤erent from 2. There are no selfinjective

algebras which are socle equivalent to A18 but nonisomorphic to A18.

Proof. Assume that L is a selfinjective algebra socle equivalent to A18. Then L

is isomorphic to an algebra A 0
18 given by the quiver of A18 bound by relations

a2 ¼ gs; ag ¼ gb þY1agb; agb2 ¼ a2gb ¼ 0; agbs ¼ gbsa ¼ 0;

sg ¼ b2
; saþ bs ¼ Y2bsa; b2sa ¼ bsa2 ¼ 0; bsag ¼ sagb ¼ 0;

for some parameters Y1;Y2 A K . Note that we have a3 ¼ 0 and b3 ¼ 0, because

a3 ¼ ags ¼ gbs ¼ �gsa ¼ �a3 and b3 ¼ sgb ¼ sag ¼ �bsg ¼ �b3. Then there exists

an algebra isomorphism f : A18 ! A 0
18 given by

f ðaÞ ¼ a�
Y1

2
a2; f ðbÞ ¼ b þ

Y1

2
b2
; f ðgÞ ¼ g; f ðsÞ ¼ sþ

Y2

2
sa;

and whose inverse f �1
: A 0

18 ! A18 is given by

f �1ðaÞ ¼ aþ
Y1

2
a2; f �1ðbÞ ¼ b �

Y1

2
b2
;

f �1ðgÞ ¼ g; f �1ðsÞ ¼ s�
Y2

2
saþ

ðY1 �Y2ÞY2

4
sa2:

This finishes the proof. r

Lemma 5.14. There are no selfinjective algebras which are socle equivalent to A25

but nonisomorphic to A25.

Proof. Assume that there exists an algebra L which is socle equivalent to the

algebra A25 but nonisomorphic to A25. Then L is isomorphic to an algebra A 0
25 given

by the quiver of A25 and relations

aiþ1ai ¼ bigi; aisiþ1 ¼ 0; gibi ¼ 0; gisiþ1 ¼ 0; diaiþ1 ¼ 0; dibi ¼ 0;

ðaiaiþ1Þ
2 ¼ 0; giaiþ1aiaiþ1 ¼ 0; aiaiþ1aib ¼ 0; disiþ1di ¼ 0; siþ1disiþ1 ¼ 0;

for i A f1; 2g, a3 ¼ a1, s3 ¼ s1, exactly one of the relations
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a1a2a1 ¼ Y1s1d1; a1a2a1 ¼ 0; s1d1 ¼ 0;

and exactly one of the relations

a2a1a2 ¼ Y2s2d2; a2a1a2 ¼ 0; s2d2 ¼ 0;

for some Y1;Y2 A Knf0g. We claim that in both cases the first relations from the

above triples are satisfied. Since a1a2a1; s1d1 A socA 0
25 and the socle of indecompos-

able projective module at each vertex is one-dimensional, we have either a1a2a1 ¼ 0, or

s1d1 ¼ 0, or a1a2a1 ¼ Y1s1d1ð0 0Þ for some Y1 A Knf0g. If s1d1 ¼ 0, then d1 is left-

maximal in A 0
25, but d1 A A25nsocA25, a contradiction. Assume that a1a2a1 ¼ 0. Then

a1a2 0 0, because a1a2 B socA25. Let a1a2o be a nonzero element of socA 0
25. We may

assume that o ¼ a1o1 þ b2g2o2 þ s1o3. Then a1a2a1 ¼ 0, a1a2b2g2 ¼ b2ðg2b2Þg2 ¼ 0,

and a1a2s1 ¼ a1ða2s1Þ ¼ 0. Therefore a1a2o ¼ 0, a contradiction. Similarly we prove

that s2d2 ¼ 0 and a2a1a2 ¼ 0. Finally, A 0
25 is bound by relations

aiþ1ai ¼ bigi; aiaiþ1ai ¼ Yisidi;

aisiþ1 ¼ 0; gibi ¼ 0; gisiþ1 ¼ 0; daiþ1 ¼ 0; dibi ¼ 0;

for i A f1; 2g, a3 ¼ a1, s3 ¼ s1, and some Y1;Y2 A Knf0g. Therefore, we have an alge-

bra isomorphism f : A25 ! A 0
25 given by

f ðaiÞ ¼ ai; f ðbiÞ ¼ bi; f ðgiÞ ¼ gi; f ðdiÞ ¼ di; f ðsiÞ ¼ Yisi;

for i A f1; 2g, and whose inverse f �1
: A 0

25 ! A25 is given by

f �1ðaiÞ ¼ ai; f �1ðbiÞ ¼ bi; f �1ðgiÞ ¼ gi; f �1ðdiÞ ¼ di; f �1ðsiÞ ¼ Y�1
i si;

for i A f1; 2g. r

Lemma 5.15. There are no selfinjective algebras which are socle equivalent to A11

but nonisomorphic to A11.

Proof. Assume that L is a selfinjective algebra socle equivalent to the algebra A11.

Then L is isomorphic to an algebra A 0
11 given by the quiver of A11 bound by relations

bag ¼ gxg; gd ¼ 0; aba ¼ 0; ab ¼ Y1agxb;

xba ¼ xgx; zx ¼ 0; bab ¼ 0; ðxgÞ2 ¼ Y2dz;

for some parameters Y1 A K, Y2 A Knf0g. Indeed, since the socle of the indecompos-

able projective module at each vertex is one-dimensional and dz; ðxgÞ2 A socA 0
11, then

exactly one of the following equalities holds:

dz ¼ 0; ðxgÞ2 ¼ 0; ðxgÞ2 ¼ Y2dz for some Y2 A Knf0g:

If dz ¼ 0, then d is right-maximal in A 0
11, which contradicts d A A11nsocA11. Assume

that ðxgÞ2 ¼ 0. Then xgx is right-maximal, because xgxg ¼ 0 and xgxb ¼ xbab ¼ 0, a

contradiction. Hence ðxgÞ2 ¼ Y2dz for some Y2 A Knf0g. Then there exists an algebra

isomorphism f : A11 ! A 0
11 given by
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f ðaÞ ¼ a�Y1agx; f ðbÞ ¼ b; f ðgÞ ¼ g;

f ðdÞ ¼ Y2d; f ðzÞ ¼ z; f ðxÞ ¼ x;

and whose inverse f �1
: A 0

11 ! A11 is given by

f �1ðaÞ ¼ aþY1agx; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g;

f �1ðdÞ ¼ Y�1
2 d; f �1ðzÞ ¼ z; f �1ðxÞ ¼ x:

This finishes the proof. r

Lemma 5.16. Let A be one of the algebras A4;A21, and L be a selfinjective algebra

socle equivalent to A. Then L is isomorphic to A.

Proof. Assume that L is a selfinjective algebra socle equivalent to A4. Then L is

isomorphic to an algebra A 0
4 given by the quiver of A4 bound by relations

ab þ gdþ xe ¼ Y1abgd; ba ¼ Y2bgda; eg ¼ 0; dx ¼ 0;

bab ¼ 0; dabgd ¼ 0; eabgd ¼ 0; abgda ¼ 0; abgdg ¼ 0;

for some parameters Y1;Y2 A K . Then we have an algebra isomorphism f : A4 ! A 0
4

given by

f ðaÞ ¼ a�Y2gda; f ðbÞ ¼ b; f ðgÞ ¼ g;

f ðdÞ ¼ dþ ðY1 �Y2Þdgd; f ðxÞ ¼ x; f ðeÞ ¼ e;

and with the inverse f �1
: A 0

4 ! A4 is given by

f �1ðaÞ ¼ aþY2gda; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g;

f �1ðdÞ ¼ dþ ðY2 �Y1Þdgd; f �1ðxÞ ¼ x; f �1ðeÞ ¼ e:

Assume now that L is a selfinjective algebra socle equivalent to A21. Then, by the

facts mentioned at the beginning of this section, L is isomorphic to an algebra A 0
21 given

by the quiver of A21 bound by relations

ab þ gdþ xe ¼ Yabgd; da ¼ 0; bx ¼ 0; eg ¼ 0;

babgd ¼ 0; eabgd ¼ 0; abgdg ¼ 0; abgdx ¼ 0;

for some parameter Y A K . Then there exists an algebra isomorphism f : A21 ! A 0
21

given by

f ðaÞ ¼ a; f ðbÞ ¼ b þYbab; f ðgÞ ¼ g;

f ðdÞ ¼ d; f ðxÞ ¼ x; f ðeÞ ¼ e;

and whose inverse f �1
: A 0

21 ! A21 is given by

f �1ðaÞ ¼ a; f �1ðbÞ ¼ b �Ybab; f �1ðgÞ ¼ g;

f �1ðdÞ ¼ d; f �1ðxÞ ¼ x; f �1ðeÞ ¼ e:

This finishes the proof. r
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Lemma 5.17. There are no selfinjective algebras which are socle equivalent to A7 but

nonisomorphic to A7.

Proof. Let A 0
7 be a selfinjective algebra socle equivalent to the algebra A7. By

previous considerations we may assume that A 0
7 is isomorphic to an algebra given by the

quiver of A7 bound by relations

ab ¼ gdþY1gdgd; dg ¼ xeþY2xexe; eda ¼ 0; bgx ¼ 0;

gdgdg ¼ 0; dgdgd ¼ 0; gdgda ¼ 0; bgdgd ¼ 0;

xexex ¼ 0; exexe ¼ 0; gxexe ¼ 0; xexed ¼ 0;

for some parameters Y1;Y2. In this case, there exists an algebra isomorphism

f : A7 ! A 0
7 given by

f ðaÞ ¼ a�Y1aba; f ðbÞ ¼ b; f ðgÞ ¼ g;

f ðdÞ ¼ d; f ðxÞ ¼ x; f ðeÞ ¼ eþY2exe;

and with the inverse f �1
: A 0

7 ! A7 given by

f �1ðaÞ ¼ aþY1aba; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g;

f �1ðdÞ ¼ d; f �1ðxÞ ¼ x; f �1ðeÞ ¼ e�Y2exe:

This finishes the proof. r

Lemma 5.18. There are no selfinjective algebras which are socle equivalent to A9 but

nonisomorphic to A9.

Proof. Assume that L is a selfinjective algebra socle equivalent to the algebra A9.

Therefore, L is isomorphic to an algebra A 0
9 given by the quiver of A9 bound by

relations

ad ¼ be; eg ¼ sb þYsadg; bsa ¼ 0; dge ¼ 0;

gegs ¼ 0; gsadg ¼ 0; sadgs ¼ 0;

for some parameter Y A K. Note that we have sadg ¼ sbeg ¼ sbsb. Then there exists

an algebra isomorphism f : A9 ! A 0
9 given by

f ðaÞ ¼ a; f ðbÞ ¼ b; f ðgÞ ¼ g;

f ðdÞ ¼ d; f ðsÞ ¼ sþYsbs; f ðeÞ ¼ e;

and whose inverse f �1
: A 0

9 ! A9 is given by

f �1ðaÞ ¼ a; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g;

f �1ðdÞ ¼ d; f �1ðsÞ ¼ s�Ysbs; f �1ðeÞ ¼ e:

This finishes the proof. r
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Lemma 5.19. There are no selfinjective algebras which are socle equivalent to A10

but nonisomorphic to A10.

Proof. Let A 0
10 be a selfinjective algebra socle equivalent to the algebra A10. We

may assume that A 0
10 is isomorphic to an algebra given by the quiver of A10 bound by

relations

bax ¼ xgdx; dba ¼ dxgd; ab ¼ Yaxgdb;

ðgdxÞ2g ¼ 0; aba ¼ 0; bab ¼ 0;

for some parameter Y A K . Then we have an algebra isomorphism f : A10 ! A 0
10 given

by

f ðaÞ ¼ a�Yaxgd; f ðbÞ ¼ b; f ðgÞ ¼ g; f ðdÞ ¼ d; f ðxÞ ¼ x;

and its inverse f �1
: A 0

10 ! A10 is given by

f �1ðaÞ ¼ aþYaxgd; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g; f �1ðdÞ ¼ d; f �1ðxÞ ¼ x: r

Lemma 5.20. There are no selfinjective algebras which are socle equivalent to A30

but nonisomorphic to A30.

Proof. Assume that L is a selfinjective algebra socle equivalent to the algebra A30.

Then L is isomorphic to an algebra A 0
30 given by the quiver of A30 bound by relations

ba ¼ 0; hm ¼ 0; ab ¼ gd; sx ¼ mh;

dg ¼ xsþYdgdg; dgdgx ¼ 0; sdgdg ¼ 0;

for some parameter Y A K . We have an algebra isomorphism f : A30 ! A 0
30 given by

f ðaÞ ¼ a; f ðbÞ ¼ b; f ðgÞ ¼ g; f ðdÞ ¼ d�Ydsd;

f ðhÞ ¼ h; f ðmÞ ¼ m; f ðxÞ ¼ x; f ðsÞ ¼ s;

and whose inverse f �1
: A 0

30 ! A30 is given by

f �1ðaÞ ¼ a; f �1ðbÞ ¼ b; f �1ðgÞ ¼ g; f �1ðdÞ ¼ dþYdsd;

f �1ðhÞ ¼ h; f �1ðmÞ ¼ m; f �1ðxÞ ¼ x; f �1ðsÞ ¼ s:

This finishes the proof. r
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