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Abstract. In this note, we study the Laplacian comparison theorem and the sub-
mean-value theorem for a special type of Hermitian manifolds called multiplier Hermitian
manifolds. By conformal change of the metrics, this covers much wider objects than in
the case of ordinary Kidhler manifolds.

1. Introduction.

The purpose of this paper is to show a sub-mean-value property for multiplier
Hermitian manifolds (cf. Theorem B below), where a key of the proof lies in proving a
Laplacian comparison result (cf. Theorem A below; see Greene-Wu for Riemannian
cases) for multiplier Hermitian manifolds.

A multiplier Hermitian manifold (cf. [8]) is a quantitive generalization of a Kéhler-
Ricci soliton (see also a recent result of Wang and Zhu [13]). A multiplier
Hermitian manifold can possibly be noncompact, while by the associated conformal
changes of a Kihler metric, we can have a large varieties of Ricci forms, as in passing
from the theory of projective algebraic surfaces, in algebraic geometry, to that of open
algebraic surfaces.

Let (M, ) be an n-dimensional connected complete Kdhler manifold with complex
structure J. For a system of holomorphic local coordinates (z!,z2,...,z") on M, we
write

w = \/—IZgaﬂ—dZ“/\dzﬂ_.
Ly

Fix a holomorphic vector field X € HO(M,0(T"°M)) on M, assuming that the cor-
responding real vector field Xz = X + X is Hamiltonian, i.e. there exists a real-valued
smooth function u on M satistfying i(Xg)w = du. Let I be the interval defined as the
image of u: M — R. For a real-valued nonconstant smooth function ¢ on I, we put
Y :=o0(u). Let & be the conformal change of w defined by

@ = exp(—y /n)w,

and the pair (M,®) is called a multiplier Hermitian manifold (cf. [10]). The associated
Ricci form is
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Ric’(w) = V—130log(@") = Ric(w) + vV —130y,

where Ric(w) = v/ —1001og(w™) is the Ricci form of w. As an operator on functions on
M, the Laplacian [, of the multiplier Hermitian manifold (M,®) is

O = 3. ¢M(@0z028) = 3 P (ow/0=%) (/") = O+ V=Tow)X,  (L1)
o, f  f

where [] is the Laplacian for the Kéhler manifold (M,w). This operator [J, plays an
important role in the study of “Kéhler-Einstein metrics” in the sense of [7]. Define the
real part Re [, of [, by 2Re [, := [y + -

Given a Riemannian manifold (K,g), a point p on K is called a pole if the
exponential map exp, : 7,K — K is a diffeomorphism. It is easily seen that a manifold
with a pole is always complete. For a geodesic y joining p to a point g in K\{p}, the
vector field tangent to y with unit speed is called a radial vector field and is denoted by
y. A radial curvature is the restriction of the sectional curvature to a plane containing
the radial vector field. For a pole p of K, the manifold K is called a model if every
linear isometry ¢ of T,K extends to @, for some isometry @ of K satistying @(p) = p
and @, , = ¢. Namely if K is a model, then the linear isotropy group at p is the full
orthogonal group. For a manifold K with a pole, we always denote by p the distance
function on K from the pole.

Let (N,wy) be a Kéhler manifold with a pole py, and let (N',wy/) be a Kahler
manifold with a point py: such that dim N = dim N’ =n. Let Xy, X5/ be holomorphic
vector fields on N, N’ vanishing at py, py: respectively, so that

i((XN>R)CON = dLlN and i((XN/)R)Cl)N/ = dLlN/

for some real-valued smooth functions uy,uy on N, N’ respectively. Let py,py be
distance functions on N, N’ from py, py: respectively. Set yy = on(uy) and Yy, :=
O'N/(MN/).

THEOREM A. Assume that (N, py) is a model with non-positive radial curvature.
Assume furthermore that for any (q,q') € (N\{pn}) x (N'\({pn'}U Cut(pn'))), the in-
equalities

Ric™ (jy+, Jin)(q") = Ric™ (jy, Tyn)(q), (1.2)
V=10 Gy, Tin)(@') = V=1000 5 (Gx, Tin) (9) (1.3)

hold whenever py(q) = pni(q'), where Cut(py+) denotes the cut locus of pn: and yy,yn:
are the geodesics in N,N' joining py,pn' with q,q’, respectively. Then

{00, f(px)}@") < {00y f(pn)}(q) (1.4)

for all (q,q") as above, if [ is a non-decreasing smooth function on [0, c0).

Let inj, , be the injectivity radius of (N',wy) at py:, and let B = B(r), B' = B'(r)
be balls of radius r less than inj, centered at py,pys in N, N ', respectively.
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THEOREM B. We assume that uy is written as a function in py alone. Under the
same assumption as in Theorem A, let h be a non-negative real-valued smooth function on
N’ such that Re (,,,h <0. Then

J hél, /nl < h(py)V, (1.5)
B/

where @y = exp(—yy/n)oy, Oy = exp(—yy./n)oy and V := [zd /n!.
Next, we formulate special cases of the above theorems as a corollary.

COROLLARY. Let (N' wy+) be a multiplier Hermitian manifold with sy, such that
Xy vanishes at py in N'.
(1) Assume that, for all q' € N'\(pn'U Cut(py)), the inequalities

Ric™ (py, J7n)(q) = 1, (1.1a)
V=100, (3 o) (q") = 1, (1.2a)

hold, then for any non-negative real-valued smooth function h satisfying Re (s, h <0, the
following holds:

n efrer(nfk)
Jm) hédly, /n! < h(pyr) (1 - ;W) ", (1.4a)
(i) Assume that, for all q' € N'\(pn'U Cut(py')), the inequalities
Ric™" (py:, Jin)(4') 2 0, (1.1b)
V=100y (9w, Tin)(g') = 1, (1.2b)

hold, then for any non-negative real-valued smooth function h satisfying Re [, h <0,
J hay, /n! < h(pn)Qy, (1.4b)
B'(r)

where Q, denotes the volume of the unit ball of hyperbolic n-space.

To see (i) above, let N = C", oy =+/—13.dz* Adz* and oy = id in Theorem A.
Then for Xy = —/—13.2z%(0/0z*) and oy = /id, the conditions and (1.3) in
Theorem A reduce to and [1.2a). In additon, by taking py =0 in Thoerem B,
we obtain [T.4a). We also have [, e "V wf,/n! < ar*/n! by taking Xy =0 and h = 1.

In the original comparison theorem as in Greene-Wu [3], the conditions and
are replaced by the following condition on the Ricci curvature:

Ric(wn') Py, Py )(q") =0 for all ¢'e N'. (1.6)

By letting /=0, we obtain the ordinary Laplacian comparison theorem for Kéihler
manifolds. Moreover, in view of the equality Ric™' (5., J7y/) = Ric(on/) (P, JPyN:) +
V=100 5 (951, 1), choosing /=130y . (q") > 1, say by letting /> 1, we see that
both [(1.1a) and |1.2a) hold even if (1.6) does not hold. In this sense, Theorems A and
B above give some generalization of the classical results of Greene-Wu and are ap-
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plicable to many cases which the original comparison theorem in Greene-Wu [3] cannot
cover.

We also obtain (ii) of the corollary by setting N ={ze C";|z|| <1}, oy =
V=T SH{(1 = [|2)1))00p + 2227 }(1 = ||217) 2 dz* AdzP, oy =id and uy = log(1 — ||z||*) .

We wish to thank Professor Toshiki Mabuchi for useful suggestions and en-
couragement.

2. Laplacian and star operators.

In this section, we define multiplier analogues of the star operator. For a mul-
tiplier Hermitian manifold (M, @), where @ is as in Introduction, we put ¥ = ¢ ¥ and
% = eV, where * is the Hodge star operator of the Kihler manifold (M,w). For a
real-valued smooth function f,

$0%0f = eV x 0(e™V x Of) = eV x (—e VoY Axdf + eV x Of)

= (Y, of Y+ x0x Of =3 gP@y/az)(of foP) + OUf, ie. [, = %0%0.
o B

REmMARK 2.1. Both % and % are real operators. Moreover we have the identities

LemMA 2.2. Let U be an open subset of M with smooth boundary oU. For any
real-valued smooth functions h,hy on a neighborhood of U,

J (hl:]aho — hoigh)d)n/l’l! = J {h(igho) - ho(i@h)}
U ou

PROOF. By 0h A %0hg = 0hg A %0h, we have
d{h(x0ho) — ho(*0h)} = 0h A %0ho + h(0%0ho) — dho A %0h — ho(3%0h)
= h(¥#0%0hg) — ho(¥*0%0h) = *(hsho — hoOsh).

Hence, by Stokes’ theorem and [J, = %0%d, we have the required equality. O

3. Preliminaries.

In this section, we show a couple of lemmas peculiar to multiplier Hermitian
manifolds. For M,w,X,u,}y as in Introduction, fix a point p in M. Let
py M —[0,inj,) be the distance function from p and let y:[0,inj,) — M be the
geodesic emanating from p such that y coincides with the gradient vector field of p,,
restricted to y.

LemMmA 3.1, If X vanishes at pe M, then (Xg)py = (X +X)p,, = 0.

PrOOF. We use a technique in Mabuchi [8]. For a point ¢ € M, let b e R such
that ¢ = y(b). On a small neighborhood of ¢ in M, we choose a local coordinates

(z',2%,...,2") centered at ¢ such that

j(b) = (o/0x") and J9(b) = (2/dy").



Laplacian comparison and sub-mean-value theorem 1215

Here z* = x*+ +/—1y* for all «. We may assume that the local expression 9,p of w
with respect to this holomorphic local coordinates satisfies g ;(¢) =J,;/2 and dyg,;(q) =
0. A direct calculation gives

2(Xpar)(g) = V—=1(0u/2z")(q) (3.1)

by X = /—13(du/0z*)(0/dz"). Consider the exponential map exp, : T,M — M at q.
Defining &(s) := exp,(sJp(b)) on sufficiently small interval —¢ <s <¢, we have

§(1) = 7.(0/01) = (0/0x") + O(|t — b]*), (3.2)
£.(0/0s) = (8/0y") + O(s|)

in a neighborhood of ¢. Since X is holomorphic, we have (3/3z")*(u)(¢) =0, i.e.
(8/0x1)*(u)(q) = (8/0y")*(u)(¢) =0 and (8*/0x'dy")(u)(g) =0 in the corresponding
real coordinates. Now we consider a map F from [—¢ ¢ x [0,b] to M defined by
F(s,1) :==exp,(sJy(¢)) and set u:=F*u and Y = F*y. Obviously ¥ =a(@1). It
follows from (3.2) that

{(a/aw) {(8/ox"u} + O(|t — b|?)
(0/0s)(i)],—p = E*{(8/0y")u} + O(|s]?)

*

(3.3)

in a neighborhood of (s,#) = (0,b). In (3.3), differentiating the upper equation with
respect to ¢ at t = b and differentiating the lower equation with respect to s at s = 0, we
have (0/01)*(i1) = (0/ds)*(@) on {0} x [0,b4]. From

Va/al(a/as)|(s,z):(0,b) = Va/as(a/af)\(s,z):(o,b) =0 and F*(5/53)|(s,z):(o,b) = (a/dy"),
we obtain  F.(d/ds) = (0/dy') + O(|s|* + |t — b|*). Together ~with (3.2) and
(02 /0x'dy")(u)(x) = 0, we have (8%/0tds)(it) =0 on {0} x [0,b]. It follows that dii/ds
is constant on {0} x [0,b] and then for all ¢ in [0, 5]

(0i1/5)(0,0) = (dit/ds)(0, 7) = 0,

because u is critical at p. This together with (3.1) and (3.2) completes the proof.
[

Lemma 3.2, If X vanishes at p, then for y(t) as in the proof of Lemma 3.1,
b
|, V=108, 37) i = 2V =To(w) (Xpar) (@)
Proor. For the holomorphic coordinates as in [Lemma 3.1, we have

00 (5, J7) = Y _(6(u)(0u/0z*)(0u/0z") + 6(u) (9%u/0z*02F)) (d=* A d=P) (5, J5)
= 2V~ 1(6(u)(Pu/0z") (Bu/6") + 6(u)(2%u/0z' 62Y))
= —2V=1(8/02") (6(u) (Bu/oz")).



1216 T. Nopa and M. Opa

Hence, (5 + vV—1J){V=16(u)Xp,} = —/—130y(j,J9)/2 = —I(t)/2. Using
3.1, we obtain

- §1<z> = (7 + V=IIP{V=16() Xpy} = Re{(7 + V=177)(V=16(u) Xp,,)}

— H{VT6(u) X ppr} = (d/dr){V=T6(u) X py}.

Integrating this equalities, by our assumption X (py) =0, we now complete the proof.

[

4. Proof of Theorem A.

Let (K,g) be a Riemannian manifold with a fixed point p, and let ¢ be a point in
B\{p}, where B is a ball centered at p with radius less than or equal to the injectivity
radius at p. Let y be the geodesic with unit speed such that y(0) = p and y(b) = ¢ for a
suitable » > 0. Choose an orthonormal basis {E/}, 2 <i < dim K, for the orthogonal
complement of Ry in the tangent space 7,K at gq. For each ie {2,...,dim K}, choose a
vector field E;(7), 0 < ¢ < b, along y such that E;(0) =0, E;(b) = E and that | E:(7)|| =
|Ej(2)|| for all 1€ [0,b]. We use the following fact in Greene-Wu [3, Proposition 2.15
and its proof]|:

Fact 4.1.  For the Laplacian A of (K,g),

b (dim K o )
ap< | {Z |E? ~ £ RicG. y)}dz-
i=2

0
The equality holds if and only if Ei(t) is a Jacobi field along y for all i.

REMARK 4.2. In the case where K is the underlying Riemannian structure of
(N,wy) in Theorem A, let W(z), t € [0,b], be the Jacobi field defined by W;(0) = 0 and
W;i(b) = EF. Each W;() can be mapped to each Wj(¢) by an isometry of N fixing py,
the orthogonality of Wi(b), 2 <i < n, shows W;(t), 2 <i < n, are mutually orthogonal
for every ¢ €[0,b] (Greene-Wu [3, Corollary 2.14]). Hence if W;’s are chosen as E;’s,
then the inequality in Fact 4.1 reduces to an equality.

ProoF OF THEOREM A. Recall that [,/ (p) = (1/2)f(p)+fOep on N or N’,
according as (a,p) is (an,py) or (on7,py/), respectively. Hence we may, without loss
of generality, that /' =id on [0, ). It is now sufficient to show that (C,,,py/)(¢") <
(Oovpw)(q). By [1.2), Lemma 3.2 and Remark 4.2, (o, py)(q) is

1 b 2n ) o . _ . .
§L {Z I Wil = 11W2l|* Ric(y, Ji) - v—laaeb(yN,Jm} d.
i=2

For vector fields {E;}, 2 <i < 2n, along yy, with valued in TN’ satisfying ||E;||(?) =
| Wil|(£) and ||E;||(¢) = || W] () for all £ € [0,b], we see that ([I,py)(g") does not exceed

TR e e
EL {Z ||E,||2 - ||E2H2RIC(yN’7JyN’) - _laalp(yzvu])’zv')} dr,
i=2
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by (1.2), Lemma 3.2 and Fact 4.1. Since || W>||*(7) is a convex function in  because
(N, wy) is of non-positive radius curvature and since || W,||*(0) = 0 and || W,||*(b) = 1
from our assumption, we have 0 < |[W,||> <1 for all 1€ [0,b]. Since ||E|* = ||Wi|*
holds for all 7€ [0,b], we have

(Ooypn)(x) = (Ooy, oy ) (x)

1(° o e
> 5| I Ricthy. 7x) = Rictiy,T3)

— =100y (G, Tin) + V=100 (. TPy 1) } dt

1

b
> EJO .l W2‘|2(RiCJN(7)N7J7>N) — Ric™ (1, Joy1)) dt,

where the last inequality follows from (1.3) and 0 < ||W,|* < 1. Finally by [T.2], we
obtain the required inequality. ]

5. Proof of Theorem B.
For (M,») and ¥ = o(u) as in Introduction we first observe

LemMA 5.1.  Let S(r) be the sphere in M centered at p of radius r and let v(r) be the
volume of S(r) with respect to the multiplier Hermitian metric é&. If u is written as a
function in p,, alone, then dv/dr =2([spys)0-

ProOOF. The volume v(r) is nothing but v(r) = fs(r) e VQ,, where Q, is the volume
form on S(r) induced by Kéhler metric @ on M. Let Y be a complex gradient vector
field of p), with respect to the Kéhler form w on M, ie. Y =", ;4"(3p,,/02F)(3/0z").
By [Lemma 3.1, Yzy = —2v—16(u)Xp,,. By[Lemma 3.2, [(p,, and Ygy depends only
on r, and so does [,p,;,- Hence,

dv_df v b 4 eV
—=— e VQ, = Ly, (e77Q,) = {(=YrYn)e V2, +e YLy, Q2,}
dr—dr Js() S0 S0

:J (){<_YR1//>€l//Qr+ (dpy)e V@2, ) (cf. [2,p. 273-274))
Sr

=2 (Do + VETs@Tpy et =2 | @arie e,
S(r) S(r)

—20upw) | €@ =2Tapag)e(r). 0

S(r)
Proor oF THEOREM B. We define the real-valued function f on [0,00) by
1) = oo ar
1

where v(¢) is the volume of a sphere S(¢) in N centered at py of radius 7. Since

2000,/ (py) = F(pn) +2f Ooypy, it follows that [,/ (py) =0 on N\{py} by Lemma
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5.1. Next, we consider the real-valued function f(py,) on N'\{py/}. By Theorem A,

Coy f(pyr) <0 on N'\{py'}.
Let ©Q, be the volume form of S(7) in terms of the multiplier Hermitian metric @y,

and let U be the open subset B(r)\B(ry) with 0 < ry < r, where B(ry) denotes the closure
of B(rg) in N’. By fixing r, we define a function /g in py: by ho(py/) := f(r) — f(pN1),
so that ho(r) =0 if py, =r. We have that [0, /o = O, ho in view of Lemma 3.1.
Since & and [J,hy are non-negative, implies

J ho(Re Dah)d)l’(,,/n' > J (h() Re 0,4 — hDghO)&)X///”'
U U

_ LU{ho(:kdh) — h(#dho)} = P(re) + O(r) — O(ro),

where  P(ro) := {f(r0) — }IS ¥dh and Q(f) := v(1)™ jS hxdpy. Since h is
smooth, there exists a posmve real number M such that J"S *dh < J"S Vol /n.
By the definiton of f(ry), the vanishing order of fs . Me™ ‘/’a)N, /n! as rg — O is deﬁmtely
greater than that of f(rp). Hence we have P(rp) — 0 as rp — 0. If ry — 0, then the
open set U approaches to B’(r). Since *dp,, restricted to S(7) is Q,, we have Q(ry) —
h(py') as ro — 0. By passing to the limit, we have

ozj {(ReDJN,h)J v(z)ldz}z—h(pN,HLJ e,
) o(r) Jse

PN’ (
Hence, fs(,,) hQy < o(r)h(py). We now conclude that

r

JB/( ) haoy, /n! = J(: dt L([) hQ, < h(pn') Jo o(t)dt = h(pn)V(r),

as required. ]
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