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Abstract. We consider holomorphic mappings of complex manifolds with ball model

into complex manifolds which are quotients of bounded domains and estimate the di-

mension of the moduli space of holomorphic mappings in terms of the essential boundary

dimension of target manifolds. For this purpose, we generalize a classical uniqueness

theorem of Fatou-Riesz for bounded holomorphic functions on the unit disk to one for

bounded holomorphic mappings on a bounded C 2 domain. This generalization enables

us to establish rigidity and finiteness theorems for holomorphic mappings. We also

discuss the rigidity for holomorphic mappings into quotients of some symmetric bounded

domains. In the final section, we construct examples related to our results.

1. Introduction.

We consider the rigidity of holomorphic mappings of a complex manifold M ¼

B
m=G , a quotient manifold of the unit ball B

m in C
m, into a complex manifold

(possibly orbifold) N ¼ ~NN=G which is a quotient of a bounded domain ~NN in C
n by a

discrete subgroup G of Autð ~NNÞ. In this paper, we say that the rigidity of holomorphic

mappings holds if two holomorphic mappings on a complex manifold are the same map

when they are homotopic to each other.

There are a lot of rigidity theorems for holomorphic mappings which are useful for

the study of complex analysis. Under certain conditions, the rigidity of holomorphic

mappings yields the finiteness of holomorphic mappings (cf. [9], [10], [19], [24] etc.).

In [10], we have shown a rigidity theorem for holomorphic mappings of Riemann

surfaces of finite type to moduli spaces of Riemann surfaces and succeeded in proving

Parshin-Arakelov theorem which asserts finiteness of the number of locally non-trivial

holomorphic families of Riemann surfaces. Sunada [24] estimates the dimension of the

space of non-constant holomorphic mappings of M to N in terms of the boundary di-

mension of ~NN when M is a compact Kähler manifold and N is a compact quotient of a

symmetric bounded domain ~NN. Noguchi [18] investigates holomorphic mappings de-

fined on a Zariski open subset of a compact Kähler manifold to an arithmetic quotient

of a symmetric bounded domain. A comprehensive survey of them is given in [19].

However, in this paper, we assume that M is a complex hyperbolic manifold of di-

vergence type (see the definition in the next section) but we do not assume that M is

compact nor embedded into a compact manifold.
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To study the rigidity we generalize a classical uniqueness theorem of Fatou-Riesz

for bounded holomorphic functions (§3 Theorem 3.1). Using this generalization, we

estimate the dimension of the moduli space of holomorphic mappings in terms of the

(essential) boundary dimension of the target manifold. This result enables us to show

rigidity and finiteness theorems for holomorphic mappings from M to N.

Generally speaking, the rigidity is too strong to hold for any case. For example,

consider a complex manifold M and put N ¼ M � D, where D is the unit disk on C .

Then, for any l A D a holomorphic mapping fl : M ! N defined by flðpÞ ¼ ðp; lÞ is

homotopic to f0, but fl 0 f0 when l0 0.

This simple example suggests us that the complex analytic structure of N influences

the structure of the space of all non-constant holomorphic mappings of M to N which

is denoted by HolðM;NÞ. If the image f ðMÞ of a mapping f A HolðM;NÞ contains

a non-empty open set in N, then the mapping is called a dominant map. The set of

dominant mappings in HolðM;NÞ is denoted by HoldomðM;NÞ.

When M is compact, the space HolðM;NÞ has a natural complex structure so that

point evaluation maps wpð�Þ ðp A MÞ on HolðM;NÞ defined by wpð f Þ ¼ f ðpÞ for f A

HolðM;NÞ are holomorphic ([6], [13]). As for the structure of HolðM;NÞ, we shall

show the following (see §2 for terminologies):

Theorem 1.1. Let M ¼ B
m=G be an m-dimensional complex hyperbolic manifold

of divergence type and N ¼ ~NN=G an n-dimensional complex manifold ( possibly orbifold ),

where ~NNHC
n is a bounded domain and G is a discrete subgroup of the set of biho-

lomorphic automorphisms of ~NN. Let lð ~NNÞ denote the essential boundary dimension of
~NN. Then, the dimension of holomorphic deformation of any f0 in HolðM;NÞ is not

greater than lð ~NNÞ. More precisely, for any holomorphic mapping f : Dk �M ! N with

f ð0; xÞ ¼ f0ðxÞ ðx A MÞ,

max
x AM

ðrankD k f ð� ; xÞÞa lð ~NNÞ;

where D is the unit disk in C . In particular, if M is compact, then we have

dimHolðM;NÞa lð ~NNÞ:

The proof of Theorem 1.1 gives us a su‰cient condition for the rigidity of holo-

morphic mappings of M in terms of the action of G on ~NN.

Theorem 1.2. Let M and N be the same ones as in Theorem 1.1. Furthermore, we

assume that the following condition (A)

(A): For any compact subset K of ~NN and for any infinite sequence fgkg of distinct

elements of G, we have

lim
k!y

diamðgkðKÞÞ ¼ 0;

where diamðEÞ is the Euclidean diameter of a set E in C
m.

Then, any two non-constant holomorphic mappings h1; h2 of M to N which belong to the

same homotopy class are the same holomorphic mapping.

Remark 1.1. From Lemma 2.2 in §2, we see that if N ¼ ~NN=G admits a non-

constant holomorphic map from a complex hyperbolic manifold M of divergence type,
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then G is an infinite group (Corollary 2.1). Thus, the assumption in the condition (A) is

not empty. In Corollary 2.1, we also show that M admits no non-constant positive

pluriharmonic function.

The proof of the theorems yields the following two corollaries.

Corollary 1.1. Let M and N be the same ones as in Theorem 1.1. If a holo-

morphic mapping f A HoldomðM;NÞ is homotopic to some g A HolðM;NÞ, then f ¼ g.

Corollary 1.2. Let M and N ¼ ~NN=G be the same ones as in Theorem 1.1.

Suppose that lð ~NNÞ ¼ 0. If f ; g A HolðM;NÞ are homotopic to each other, then f ¼ g.

From Corollaries 1.1 and 1.2, we obtain a finiteness theorem for holomorphic

mappings of complex hyperbolic manifolds of divergence type.

Theorem 1.3. Let M ¼ B
m=G be a complex hyperbolic manifold of divergence type

and N ¼ ~NN=G an n-dimensional ðnb 1Þ complex manifold which is of geometrically

finite. Suppose that G is of finitely generated and that ~NN is complete with respect to the

Kobayashi distance. Then, HoldomðM;NÞ consists of at most finitely many elements.

Furthermore, if lð ~NNÞ ¼ 0, then HolðM;NÞ is also a finite set.

Remark 1.2. S. Kobayashi and T. Ochiai [16] show the finiteness of surjective

holomorphic mappings of a compact Kähler manifold onto a compact complex space of

general type.

When m ¼ 1, the complex hyperbolic manifold M in Theorem 1.3 is a topologically

finite Riemann surface of divergent type. Therefore, M is a compact Riemann surface

with at most finitely many punctures. For m > 1, Bowditch ([4]) shows the following.

Proposition 1.1. If a hyperbolic manifold M ¼ B
m=G is of geometrically finite,

then every z A qBm is a point of approximation of G . Thus, G is of divergence type.

Therefore, from Theorem 1.3 we have the following theorem which is a higher

dimensional generalization of de Franchis’ theorem (cf. [8]).

Theorem 1.4. Let M;N be geometrically finite complex hyperbolic manifolds.

Then, HolðM;NÞ consists of at most finitely many elements.

We shall show Theorem 1.1 in §4 as well as Theorem 1.2 after giving a gener-

alization of Fatou-Riesz theorem in §3. The proof of Theorem 1.3 will be given in §5.

In §6, we discuss a rigidity theorem for holomorphic mappings from complex hyperbolic

manifolds to some symmetric bounded domains. Examples concerning to these results

are constructed in §7.

The author thanks H. Masaoka for his valuable suggestion.

2. Definitions and preliminary results.

2.1. Complex hyperbolic geometry.

At first, we shall briefly describe complex hyperbolic spaces. For more detail, see

[5] or [7].

Holomorphic mappings on complex manifolds 1089



Let V ¼ V 1;m ðmb 1Þ denote the vector space C
mþ1 with the Hermitian form

Fðz;wÞ ¼ �z0w0 þ
X

m

j¼1

z jw j

for z ¼ ðz0; . . . ; zmÞ and w ¼ ðw0; . . . ;wmÞ in V . A linear isomorphism g of V satisfying

FðgðzÞ; gðwÞÞ ¼ Fðz;wÞ ðz;w A VÞ

is called a unitary transformation. The set of unitary transformations is denoted by

Uð1;m : CÞ.

Let PðVÞ be the complex projective space obtained from V and the projective map

P : V � f0g ! PðVÞ. For V� ¼ fz A V jFðz; zÞ < 0g, we define H nðCÞ ¼ PðV�Þ. It is

just a higher dimensional complex analog of Klein’s model of the 2-dimensional real

hyperbolic space.

Since gðV�Þ ¼ V�, and gðczÞ ¼ cgðzÞ for g A Uð1;m : CÞ, Uð1;m : CÞ acts on

HmðCÞ. In fact, Uð1;m : CÞ acts transitively on HmðCÞ.

For z ¼ ðz0; z1; . . . ; zmÞ A V�, we have z0 0 0. Thus, HmðCÞ is identified with the

unit ball

B
m ¼ z ¼ ðz1; . . . ; zmÞ A C

m j kzk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

m

j¼1

z jz j

v

u

u

t < 1

8

<

:

9

=

;

via

z 7! z ¼ ðz1=z0; . . . ; zm=z0Þ:

Hence, a unitary transformation is regarded as a biholomorphic self-mapping of B
m.

Actually, the action is realized by an element of PUðm; 1Þ, which is an isometry for the

Bergman metric on B
m.

Definition 2.1. A complex manifold M is called a complex manifold with ball

model or a complex hyperbolic manifold if it is represented as B
m=G , where G is a

discrete torsion-free subgroup of PUðm; 1Þ.

A typical example of a complex hyperbolic manifold is a hyperbolic Riemann

surface represented by a Fuchsian group. For Fuchsian groups and Riemann surfaces,

there is a notion ‘‘divergence type’’ as follows.

Definition 2.2. A Fuchsian group G acting on the unit disk D is said to be

divergence type if

X

g AG

ð1� jgðzÞjÞ ¼ þy ðz A DÞ:

It is easily seen that the definition does not depend on the choice of z in D.

Definition 2.3. A hyperbolic Riemann surface R is called divergence type if it is

represented by a Fuchsian group of divergence type.
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Any compact Riemann surface of genus gb 1 is of divergence type and an open

Riemann surface with ‘‘small boundary’’ can be of divergence type. That is, the fol-

lowing holds (cf. [17], [26]).

Lemma 2.1. Let R ¼ D=G be a hyperbolic Riemann surface. Then the following

conditions are equivalent.

(1) R is a Riemann surface of divergence type.

(2) R has no Green’s functions.

(3) Almost every point on qD is a point of approximation, that is, for almost every

x on qD there exists a sequence fgng
y

n¼1 of G such that fgnðzÞg
y

n¼1 converges to x

conically for all z A D.

As for complex hyperbolic manifolds, we have a similar notion.

Definition 2.4. Let G be a subgroup of PUðm; 1Þ acting on B
m. It is called a

group of divergence type if

X

g AG

ð1� kgðzÞkÞm ¼ þy

for one (and all) z A B
m. A hyperbolic manifold M ¼ B

m=G is called of divergence

type if G is of divergence type.

Recently, S. Kamiya [12] shows a characterization of divergence subgroups of

PUðm; 1Þ which is similar to that of Lemma 2.1. To state the result, we need the

notion of ‘‘points of approximation’’ for G .

For a > 1 and z ¼ ðz1; . . . ; zmÞ A qBm, we define DaðzÞ as the set of z A B
m sat-

isfying

1�
X

n

j¼1

z jz j

�

�

�

�

�

�

�

�

�

�

<
a

2
ð1� kzk2Þ:

Definition 2.5. Let G be a discrete subgroup of PUðm; 1Þ. A point z A qBm

is called a point of approximation if there exist a sequence fgkg
y

k¼1 of G and a > 1

such that fgkg
y

k¼1 converges to z from the inside of DaðzÞ for some and any z in

B
m.

The following is shown in [12].

Proposition 2.1. Let G be a discrete subgroup of PUðm; 1Þ. Then G is a group of

divergence type if and only if the set of points of approximation has full Lebesgue measure

on qBm.

2.2. Bounded holomorphic functions on B
m.

Here, we note Fatou-Riesz type theorems for bounded holomorphic functions on

B
m.

Definition 2.6. A function f on B
m is said to have a K-limit at z A qBm if the

limit
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f �ðzÞ ¼ lim
j!y

f ðzjÞ

exists for every a > 1 and for every sequence fzjg in DaðzÞ which converges to z.

As for K-limits of holomorphic functions on B
m, the following results are known

(cf. [21], Theorems 5.5.9 and 5.6.4).

Proposition 2.2. Let f be a bounded holomorphic function (or H p-function, more

generally) on B
m. Then it has K-limits f �ðzÞ at almost all points z A qBm.

Proposition 2.3. Let f be a bounded holomorphic function (or H p-function, more

generally) on B
m. If there exists a measurable set EH qBm with positive Lebesgue

measure such that f � 1 0 on E, then f 1 0.

Let f : M ! N be a holomorphic mapping of a complex hyperbolic manifold M ¼

B
m=G of divergence type to a complex manifold N ¼ ~NN=G, where ~NN is a bounded

domain of C n. Then a lift F of f is a bounded holomorphic mapping of Bm. From

Proposition 2.2, F � has a K-limit F �ðzÞ in ~NN U q ~NN at almost all point z in qBm. Here,

we show that the mapping F is almost proper.

Lemma 2.2. For almost all points z in qBm, F �ðzÞ A q ~NN if f : M ! N is a non-

constant holomorphic mapping.

Proof. Since M is a complex hyperbolic manifold of divergence type, almost all

points in qBm are points of approximation for G . Therefore, the mapping F has K-

limits at almost all points z A qBm which are points of approximation for G. Let

EH qBm denote the set of such points z.

For any z A E, there exists a sequence fgkg
y

k¼1 of G such that fgkðzÞg
y

k¼1 converges

to z from the inside of DaðzÞ for any z A B
m and for some a > 1. Since F : B

m ! ~NN is

a lift of a holomorphic mapping f of M ¼ B
m=G to N ¼ ~NN=G, there exists a homo-

morphism y of G to G such that

FðgðzÞÞ ¼ yðgÞðFðzÞÞð1Þ

holds for any g A G and for any z A B
m. Thus, we have

F �ðzÞ ¼ lim
k!y

F ðgkðzÞÞ ¼ lim
k!y

yðgkÞðF ðzÞÞ;ð2Þ

for any z A E and for any z A B
m. On the other hand, F is non-constant, F ðzÞ0Fðz 0Þ

for some z; z 0 A B
m. Hence, we have

0 < d ~NNðFðzÞ;Fðz
0ÞÞ ¼ d ~NNðyðgkÞðF ðzÞÞ; yðgkÞðFðz

0ÞÞÞð3Þ

¼ d ~NNðFðgkðzÞÞ;F ðgkðz
0ÞÞÞ;

where d ~NNð� ; �Þ is the Kobayashi distance on ~NN. Thus, if F �ðzÞ A ~NN, then we have a

contradiction 0 < d ~NNðF
�ðzÞ;F �ðzÞÞ ¼ 0 by letting k !y in (3). The proof of Lemma

2.2 is completed. r

From the above argument, we have the following.
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Corollary 2.1. Let M ¼ B
m=G be a complex hyperbolic manifold of divergence

type. If a complex manifold N ¼ ~NN=G admits a non-constant holomorphic mapping from

M, then the group G is infinite. Moreover, there are no non-constant positive pluri-

harmonic functions on M. In other words, every complex hyperbolic manifold of di-

vergence type belongs to OHP.

Proof. If G is a finite group, then so is yðGÞ, where y is a homomorphism defined

by (1). Therefore, fyðgÞðFðzÞÞgg AG ¼ fF ðgðzÞÞgg AG is a finite subset of ~NN. Hence,

F �ðzÞ is in ~NN for all z A qBm. It contradicts Lemma 2.2.

Let u be a positive pluriharmonic function on M. Then, we may take a lift U of

u, which is a pluriharmonic function on B
m. It follows from a theorem of Forelli

(cf. [21], Theorem 4.4.4) that there exists a pluriharmonic function V on B
m such that

F ðzÞ ¼ UðzÞ þ
ffiffiffiffiffiffiffi

�1
p

VðzÞ is a holomorphic function on B
m. Put GðzÞ ¼ expð�FðzÞÞ,

then G is a bounded holomorphic function on B
m. Proposition 2.3 guarantees that

GðzÞ has the K-limit G �ðzÞ at almost all z A qBm and so does UðzÞ ¼ �logjGðzÞj.
Now, assume that UðzÞ is not a constant function. Then, there exist z1; z2 in B

m

such that Uðz1Þ0Uðz2Þ. Since U is a lift of u, we have

UðgðzÞÞ ¼ UðzÞ;

for every g A G . We may assume that z A qBm is a point of approximation of G .

Hence, there exists a sequence fgkgyk¼1 such that

UðzjÞ ¼ lim
k!y

UðgkðzjÞÞ ¼ U �ðzÞ ð j ¼ 1; 2Þ:

Thus, we have a contradiction. r

Remark 2.1. Kamiya ([12]) shows that if M is a complex hyperbolic manifold of

divergence type, then it has no non-constant bounded M-harmonic function. Since the

set of M-harmonic functions is a subclass of the set of pluriharmonic functions (cf. [21]),

our result is an extension of his one.

2.3. Essential boundary dimensions.

The boundary dimension of a bounded domain D in C
n is the maximal of the

dimensions of analytic spaces in qD. Here, we introduce another notion, the essential

boundary dimension, to study boundary behavior of holomorphic mappings.

Definition 2.7. Let E be a subset of C
n. The set E is called a pluripolar set

if there exists a plurisuperharmonic function s in C
n such that sðpÞ ¼ þy for every

p A E. The set E is a complete pluripolar set if there exists a plurisuperharmonic

function s in C
n such that E ¼ fp A C

n j sðpÞ ¼ þyg.

Remark 2.2. Usually, the definition of pluripolarity is local, that is, a subset E of

C
n is pluripolar if for each z A E there exist a neighbourhood U of z and a pluri-

superharmonic function s in U such that E VU ¼ fp A U j sðpÞ ¼ þyg. This definition

seems to be di¤erent from Definition 2.7 using a global plurisuperharmonic function.

In fact, both definitions are the same from a theorem of B. Josefson which shows that

local pluripolarity means global one (cf. [14], Theorem 4.7.4).
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We define the essential boundary dimension by the following way (cf. [25]).

Definition 2.8. Let D be a bounded domain in C
n. Consider a family fRjg

y
j¼1

of countable complete pluripolar sets with Rj V qD ¼ q ð j ¼ 1; 2; . . .Þ. We denote by

lðD; fRjg
y
j¼1Þ the maximal dimension of analytic spaces contained in qD�6y

j¼1
Rj. We

define the essential boundary dimension of D, which is denoted by lðDÞ, by

lðDÞ ¼ inf lðD; fRjg
y
j¼1Þ;

where the infimum is taken over all families fRjg
y
j¼1 of countable complete pluripolar

sets as above.

It is not hard to see that lðBnÞ ¼ 0 and lðDnÞ ¼ n� 1. Let Tg ðg > 1Þ denote the

Teichmüller space of compact Riemann surfaces of genus g. It is well known that Tg is

regarded as a bounded domain in C
3g�3 by Bers’ embedding (cf. [11]). In [22], we show

that the essential boundary dimension lðTgÞ of Tg is zero (see Example 7.4). Similarly,

we may show that lðTg � B
nÞ ¼ 0 and lðTg � DnÞ ¼ n� 1.

2.4. Geometrically finite manifolds.

Here, we define geometrically finite manifolds which appear in Theorem 1.3.

For every connected subset S of N ¼ ~NN=G, we say that a set ~SS in ~NN is a lift of S if

it is a connected component of p�1ðSÞ, where p is the canonical projection of ~NN onto N.

Definition 2.9. Let N ¼ ~NN=G be a complex manifold (possibly orbifold) which is

a quotient space of a bounded domain ~NN in C
n by a discrete subgroup G of Autð ~NNÞ.

An end V of N is called a parabolic end of N if there exist a lift ~VV of V in ~NN and at

most countably many pluripolar sets fRjg
y
j¼1 in C

n � ~NN such that ~VV V q ~NNH6y

j¼1
Rj .

The manifold N is said to be of geometrically finite if it has only finitely many ends

and all of them are parabolic ends.

3. Fatou-Riesz theorem for holomorphic mappings.

Let D be a bounded domain in C
m. We assume that D is a C2-domain, that is,

there exists a real valued C 2 function l in a neighbourhood of D such that D ¼

fz j lðzÞ < 0g, qD ¼ fz j lðzÞ ¼ 0g and

ql

qnz
> 0; ðz A qDÞ

where nz is the outward unit normal vector at z.

For each a > 0 and for each z A qD, we define an approach region AaðzÞ by

AaðzÞ ¼ fz A D j jðz� z; nzÞj < ð1þ aÞdzðzÞ; kz� zk2 < adzðzÞg;ð4Þ

where ð� ; �Þ means the standard inner product in C
m and dzðzÞ is the minimum of the

distances from z to qD and from z to the tangent plane at z. We shall say that a

mapping F has an admissible limit F �ðzÞ at z A qD if the limit

F �ðzÞ ¼ lim
j!y

F ðzjÞ
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exists for every sequence fzjg converging to z in AaðzÞ and for any a > 0. Note that

when D is the unit ball B
m the admissible limit F �ðzÞ is nothing but the K-limit at

z A qBm. The following generalization of Proposition 2.2 holds (cf. Stein [23]).

Proposition 3.1. Let f be a bounded holomorphic function in a bounded C2 domain

D in C
m. Then f has admissible limits at almost all points on qD.

In this section, we shall extend Proposition 2.3 for holomorphic mappings defined

on a bounded C2 domain D in C
m. The proposition says that if f is non-constant

bounded holomorphic function on the unit ball B
m, then E �

f ¼ ð f �Þ�1ð0ÞH qBm is of

measure zero. In other words, the preimage of a small set via f � is also small in qBm.

Therefore, to extend this result to one for bounded holomorphic mappings of D to C
n,

we need to obtain a notion of small sets in C
n. We use complete pluripolar sets.

Theorem 3.1. Let j be a non-constant bounded holomorphic mapping of a bounded

C 2 domain D in C
m to C

n and E a countable union of complete pluripolar sets in C
n.

Let E �
j H qD denote the preimage of E via the admissible limit j� of j. Suppose that

jðDÞVE c is not empty. Then, E �
j is of measure zero.

Proof. Let gð� ; z0Þ be Green’s function for D with the pole at z0. Then for suf-

ficiently small e > 0, De ¼ fz A D j gðz; z0Þ > eg defines an approximating region of D,

and ge ¼ g� e is Green’s function for De. It is known that �qg=qnz and �qge=qn
e
z are

the Poisson kernels for D and De, respectively, where nez is the outward unit normal

vector at z A qDe.

For each z A qD and for small e > 0, there exists k ¼ kðeÞ < 0 such that ze ¼ zþ knz
belongs to qDe and a mapping z 7! ze is surjective from qD to qDe.

Now, we assume that E itself is a complete pluripolar set. Let s be a pluri-

superharmonic function on C
n defining the complete pluripolar set E. We may assume

that there exists an open set U in C
n such that U contains the closure of jðDÞ and s

is positive in U . Since j is holomorphic, s � j is also plurisuperharmonic and Dþy.

Since jðDÞVE c 0q, there exists a point a0 A D such that s � jða0Þ < þy.

From the superharmonicity, we have

ð

qDe

s � jðzeÞ �
qgðze; a0Þ

qneze

 !

dseðzÞa s � jða0Þ < þy;ð5Þ

where dse is the induced measure on qDe.

Since qgðze; a0Þ=qn
e
ze

uniformly converges to qgðz; a0Þ=qnz as e ! 0, we have

lim inf
e!0

ð

qDe

s � jðzeÞ �
qgðze; a0Þ

qneze

 !

dseðzeÞð6Þ

b

ð

qD

lim inf
e!0

s � jðzeÞ �
qgðz; a0Þ

qnz

� �

dsðzÞ;

where ds is the induced measure on qD. If E �
j has positive measure, then

ð

qD

lim inf
e!0

s � jðzeÞ dsðzÞ ¼ þy;
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since ze A AaðzÞ for any e > 0. Combining (5) and (6) with this equation, we have a

contradiction.

Now, we consider a general case, E ¼ 6y

k¼1
Ek, where Ek ðk ¼ 1; 2; . . .Þ are

complete pluripolar sets in C
n. If E �

j is of positive measure, then so is ðEkÞ
�
j for some k

because E �
j ¼ 6y

k¼1
ðEkÞ

�
j. From the above argument, we have a contradiction. r

Remark 3.1. The assumption that jðDÞVE c is not empty is necessary. For ex-

ample, if E is the zero set of a holomorphic function j on C
n with the dimensionbm,

then E is complete pluripolar and there exists an embedding i of D into E such that

iðDÞHE. Obviously E �
i ¼ qD, but i is not constant. Thus, the conclusion of Theorem

3.1 does not hold.

4. Proofs of rigidity theorems and their corollaries.

In this section, we shall prove Theorems 1.1, 1.2 and Corollaries 1.1, 1.2.

4.1. Proof of Theorem 1.1.

Suppose that there exists a holomorphic mapping f ð� ; �Þ : Dk �M ! N for some

k A N such that

max
x AM

ðrankl AD k f ðl; xÞÞ > lð ~NNÞ:ð7Þ

and f ð0; �Þ : M ! N is a non-constant holomorphic mapping.

Let Fð� ; �Þ : Dk � B
m ! ~NN be a holomorphic mapping which is a lift of f . Hence,

it satisfies

Fðl; gðzÞÞ ¼ yðgÞðFðl; zÞÞ

for all g A G , where y : G ! G is a homomorphism induced by f . Note that y does not

depend on l because of the discreteness of G.

From Proposition 2.2, for each l A Dk there exists a measurable subset El of qBm

with full Lebesgue measure such that F ðl; �Þ has a K-limit F �ðl; zÞ at every z in

El. Take a countable dense subset fljg
y

j¼1 of Dk and set

E ¼ 7
y

j¼1

Elj :

Then, the set E is also a measurable subset of qBm of full Lebesgue measure and F ðlj; �Þ

has a K-limit F �ðlj; zÞ at every z in E for each jb 1.

Since Fð� ; zÞ ðz A B
mÞ is a bounded holomorphic mapping, a family F ¼

fF ð� ; zÞ j z A B
mg is equicontinuous and it is a normal family. Hence we see that when

z ! z in a DaðzÞ for any z A E, F ð� ; zÞ converges to a function F �ð� ; zÞ uniformly on

every compact subset of Dk. This implies that F �ð� ; zÞ is a holomorphic mapping for

each z A E. Furthermore, from Lemma 2.2 it is a holomorphic mapping of Dk to q ~NN.

From (7) there exists a point z0 A B
m such that

rankl ADk Fðl; z0Þ ¼ l > lð ~NNÞ:ð8Þ

For F ¼ ðF 1; . . . ;F nÞ and l ¼ ðl1; . . . ; lkÞ, we set two matrices by
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Aðl; zÞ ¼
qF j

ql i
ðl; zÞ

� �

1aiak;1a jan

and

A�ðl; zÞ ¼
qF j

ql i

� ��

ðl; zÞ

� �

1aiak;1a jan

for z A E. Then from (8), we may take a point l0 A Dk such that rankAðl0; z0Þ ¼

l > lð ~NNÞ. Therefore, there exists an ðl� lÞ submatrix aðl0; zÞ of Aðl0; zÞ such that

det aðl0; z0Þ0 0:ð9Þ

Since Fðl; zÞ converges to F �ðl; zÞ uniformly on every compact subset of Dk for each

z A E as zðA DaðzÞÞ ! z, we see that

qF j

ql i
ðl; zÞ !

qFj

ql i

� ��

ðl; zÞ

uniformly on every compact subset of Dk when zðA DaðzÞÞ converges to z ði ¼ 1; . . . ; k;

j ¼ 1; . . . ; nÞ. In particular, the matrix aðl; zÞ converges to a�ðl; zÞ of A�ðl; zÞ con-

sisting of elements with the same indices as aðl; zÞ. In fact, a�ðl; zÞ is a K-limit of

aðl; zÞ at z.

From the definition of lð ~NNÞ, rankA�ðl; zÞa lð ~NNÞ for any z A E. Indeed, if

rankA�ðl; zÞ > lð ~NNÞ, then dimFðDk
; zÞ > lð ~NNÞ and we have F �ðl;EÞH6y

k¼1
Rj , where

fRjg
y

j¼1 is a family of countable complete pluripolar sets with lð ~NN; fRjg
y

j¼1Þ ¼ lð ~NNÞ.

Hence, it follows from Theorem 3.1 that F �ðl; �Þ is a constant. It is a contradiction.

Thus,

det a�ðl0; zÞ ¼ 0ð10Þ

for any z A E. Therefore, it follows from Proposition 2.3 that

aðl0; zÞ ¼ 0

for any z A B
m. It contradicts (9). The proof of Theorem 1.1 is completed.

4.2. Proofs of Theorem 1.2, Corollaries 1.1 and 1.2.

The proofs of Theorem 1.2, Corollaries 1.1 and 1.2 are done simultaneously.

Let f1; f2 be non-constant holomorphic mappings of M to N which are homotopic

to each other. Then f1; f2 induces the same monodromy. That is, there exists a ho-

momorphism y : G ! G such that

FiðgðzÞÞ ¼ yðgÞðFiðzÞÞ ði ¼ 1; 2Þ;ð11Þ

for all g A G and for all z A B
m, where Fi are lifts of fi ði ¼ 1; 2Þ. By the same ar-

gument as in the proof of Theorem 1.1, we may find a measurable subset E of qBm with

full Lebesgue measure such that every z A E is a point of approximation for G and

admits K-limits F �ðzÞ and F2ðzÞ for F1 and F2, respectively.

Let fgkg
y

k¼1 be a sequence for z A E such that gkðzÞ converges to z from the inside

of DaðzÞ for some a > 1 as k ! y. From Lemma 2.2 and (11), we have

Holomorphic mappings on complex manifolds 1097



yðgkÞðF1ðzÞÞ ¼ F1ðgkðzÞÞ ! F �
1 ðzÞ A q ~NNð12Þ

and

yðgkÞðF2ðzÞÞ ¼ F2ðgkðzÞÞ ! F �
2 ðzÞ A q ~NN:ð13Þ

Thus, fyðgkÞg
y

k¼1 is an infinite sequence of distinct elements of G.

Now we suppose that N satisfies the condition (A) in Theorem 1.2. Applying the

condition (A) for gk ¼ yðgkÞ and K ¼ fF1ðzÞ;F2ðzÞg, we verify that F �
1 ðzÞ ¼ F �

2 ðzÞ.

Hence, from Proposition 2.3 we conclude that F1 ¼ F2 and f1 ¼ f2. The proof of

Theorem 1.2 is completed.

Next, we show Corollary 1.2. Take two holomorphic mappings F1;F2 : B
m ! ~NN

as above. We note that the mapping yðgÞ : ~NN ! ~NN ðg A GÞ defined in (11) is a bounded

holomorphic mapping. Thus, fyðgkÞg
y

k¼1 forms a normal family on ~NN and we may

assume that fyðgkÞg
y

k¼1 converges to a holomorphic mapping gz : ~NN ! ~NN U q ~NN uniformly

on every compact subset of ~NN as k !y. Since G is discrete, the mapping gz is a

holomorphic mapping of ~NN to the boundary qN for every z A E. We assert that gz is a

constant mapping for almost every z A qBm.

Indeed, if not, we may take a measurable set E 0 HE with positive measure so that

gz is not a constant for every z A E 0. Then gzð ~NNÞH6y

j¼1
Rj from the definition of

lð ~NNÞ ¼ 0, where Rj ð j ¼ 1; 2; . . .Þ are complete pluripolar sets in Definition 2.8. Since

fRjg
y

j¼1 is countable, we may assume that gzð ~NNÞHRj0 for some j0 and for every z A E 0.

Therefore, we have that

F �
i ðzÞ ¼ gzðFiðzÞÞ A Rj0 ; ði ¼ 1; 2Þ

for every z A E 0 from (12) and (13). It follows from Theorem 3.1 that both F1 and F2

are constant. Thus, we have a contradiction and we conclude that gz are constants for

almost all z A qBm.

Using (12) and (13) again, we have

F �
1 ðzÞ ¼ gzðF1ðzÞÞ ¼ gzðF2ðzÞÞ ¼ F �

2 ðzÞ

because gz is a constant. Hence, we verify that f1 ¼ f2 and we complete the proof of

Corollary 1.2.

Finally, we show Corollaries 1.1. Suppose that f1 A HoldomðM;NÞ and f2 A

HolðM;NÞ are homotopic to each other. Then, there exist an open subset O of ~NN with

OHF1ðB
mÞ. Noting that (12) and (13) hold for any z A B

m, we see that gzðOÞ ¼

fF �
1 ðzÞg and F �

2 ðzÞ A gzð ~NNÞ for every z A E, where gz is a holomorphic mapping obtained

in the proof of Corollary 1.2. Since O is an open subset of ~NN, the mapping g is a

constant mapping and we have F �
1 ðzÞ ¼ F �

2 ðzÞ. Hence, we obtain that f1 ¼ f2 and the

proof of Corollary 1.1 is completed.

5. Proof of finiteness theorem.

We prove the finiteness theorem (Theorem 1.3) by using the rigidity of holomorphic

mappings. Here, we only show that HoldomðM;NÞ is finite by using Corollary 1.1 since

the same argument and Corollary 1.2 give the proof of the theorem for the case

lð ~NNÞ ¼ 0.
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Let p : B
m ! M ¼ B

m=G and p 0
: ~NN ! N ¼ ~NN=G denote the natural projections on

M and N, respectively. Take p0 in M as p0 ¼ pð0Þ. Since N is of geometrically finite,

there exists a compact subset K of N such that N � K are contained in the union of

finitely many parabolic ends, say V1; . . . ;VJ .

First, we shall show that there are only finitely many holomorphic mappings f A

HoldomðM;NÞ with f ðp0Þ A K . We take a compact subset ~KK of ~NN and lifts F of f so

that p 0ð ~KKÞ ¼ K and Fð0Þ A ~KK . Let yF denote a monodromy homomorphism defined by

F , that is, yF is a group homomorphism of G to G with

F � g ¼ yF ðgÞ � F

for all g A G. Because of Corollary 1.1, it su‰ces to show that there are only finitely

many possible homomorphisms for the monodromies. Since G is finitely generated, we

may take fd1; d2; . . . ; dlg as a system of generators of G . We show that there are only

finitely many possible elements in G for yF ðdiÞ ði ¼ 1; 2; . . . ; lÞ.

Set

a ¼ max
i¼1;2; ...;l

dBmð0; dið0ÞÞ;ð14Þ

where dBmð� ; �Þ stands for the Kobayashi distance of B
m. For the Kobayashi distance

d ~NNð� ; �Þ of ~NN we have

dBmð0; dið0ÞÞb d ~NNðFð0Þ;F ðdið0ÞÞÞ ¼ d ~NNðF ð0Þ; yF ðdiÞðFð0ÞÞÞ

from the decreasing property of holomorphic mappings with respect to the Kobayashi

distances. Therefore,

d ~NNðF ð0Þ; yF ðdiÞðFð0ÞÞÞa a:

Since F ð0Þ A ~KK H ~NN, we verify that fyF ðdiÞðFð0ÞÞg is in a subset ~KKa ¼ fq A ~NN j

d ~NNð
~KK ; qÞa ag. Since ~NN is complete with respect to the Kobayashi distance, ~KKa is

compact in ~NN. Noting that G acts properly discontinuously on ~NN, we verify that there

exists a finite subset G 0 of G such that gðF ð0ÞÞ A ~KKa implies g A G 0. Therefore, yF ðdiÞ is

in G 0 ði ¼ 1; 2; . . . ; lÞ. This shows that there are only finitely many possible elements in

G for yF ðdiÞ ði ¼ 1; 2; . . . ; lÞ.

Since fd1; d2; . . . ; dlg is a system of generators of G, we see that there are only

finitely many possible homomorphisms for fyFg. From Corollary 1.1, we verify that

there are only finitely many holomorphic mappings f with f ðp0Þ A K .

Next, we suppose that f ðp0Þ A Vj � K ð1a ja JÞ. We may assume that j ¼ 1.

We take a lift ~VV1 H ~NN of V1 so that ~VV1 V q ~NN is contained in 6y

j¼1
Rj, where fRjg

y

j¼1 is

the set of complete pluripolar sets as in Definition 2.9. Considering a larger K if

necessary, we may assume that

dNð f ðp0Þ; qV1Þ > a;ð15Þ

where a > 0 is a constant defined by (14) and dNð� ; �Þ is the Kobayashi distance on N.

From (14), there exist closed curves Li ði ¼ 1; 2; . . . ; lÞ on M corresponding to di such

that Li C p0 and the length of Li with respect to the Kobayashi distance is not greater

than a. The length of f ðLiÞ is also not greater than a from the decreasing property of
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the Kobayashi distance. Hence, it follows from (15) that f ðLiÞ is entirely contained

in V1.

We take a lift F of f so that F ð0Þ A ~VV1. Since the curve Li corresponds to di, we

see that Fðdið0ÞÞ ¼ yF ðdiÞðFð0ÞÞ A ~VV1. Hence, we have yF ðdiÞð ~VV1Þ ¼ ~VV1 ði ¼ 1; 2; . . . ; lÞ

and we verify that yF ðGÞð ~VV1Þ ¼ ~VV1 because G is generated by d1; . . . ; dl. In particular,

yF ðgÞðFð0ÞÞ A ~VV1 for every g A G .

Now, we may take a measurable subset E in qBm with full measure as before such

that every z A E is a point of approximation for G and F has a K-limit F �ðzÞ at z.

There exists a sequence fgkg
y
k¼1 in G such that gkð0Þ converges to z in Da ða > 1Þ and

Fðgkð0ÞÞ ¼ yF ðgkÞðF ð0ÞÞ ! F �ðzÞ

as k ! y. Since F �ðzÞ A q ~NN (Lemma 2.2) and yF ðgkÞðF ð0ÞÞ A ~VV1, we see that F �ðzÞ A
~VV1 V q ~NNH6y

j¼1
Rj for every z A E. Thus, it follows from Theorem 3.1 that the map-

ping F must be a constant and we have a contradiction.

6. Classical domains.

In this section, we consider irreducible symmetric bounded domains and discuss a

su‰cient condition to hold a rigidity theorem for holomorphic mappings of a complex

hyperbolic manifold M to a quotient manifold of an irreducible symmetric bounded

domain.

Let D be an irreducible symmetric bounded domain. According to a work of E.

Cartan, the domain D is biholomorphic to one of the following types if it is not

exceptional.

I: RI ¼ fZ A Mm;n j Im � ZZ � > 0g,

II: RII ¼ fZ A Mn jZ ¼ tZ; In � ZZ � > 0g,

III: RIII ¼ fZ A Mn jZ ¼ � tZ; In � ZZ � > 0g,

IV: RIV ¼ fz ¼ ðz1; . . . ; znÞ A C
n j jz tzj2 þ 1� 2z tz > 0; jz tzj < 1g,

where Mm;n is the space of m� n-matrices with complex coe‰cients, Mn ¼ Mn;n, and

Z � ¼ tZ.

Note that via the Cayley transform, RII is biholomorphically equivalent to the

Siegel upper half space Hn of degree n, where

Hn ¼ fZ A Mn jZ ¼ tZ; ImZ > 0g:

Definition 6.1. A set V HC
n is said to be holomorphically connected if for any

points z; z 0 A V there exist finitely many holomorphic mappings f1; . . . ; fk from the unit

disk D to V such that

f1ð0Þ ¼ z 0; fkð0Þ ¼ z 0 and fjðDÞV fjþ1ðDÞ0q:

A subset V of a set U in C
n is called a holomorphic component of U if it is a maximal

set in the family of holomorphically connected subsets of U containing a common point

in U .

Now, we assume that M ¼ B
m=G is a complex hyperbolic manifold of divergence

type and N ¼ D=G is a quotient manifold of D ¼ RI ;RII , or RIII .
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Let f : M ! N be a non-constant holomorphic mapping and F : B
m ! D a lift of

f . Then, as we noted in Lemma 2.2, the mapping F has K-limits F �ðzÞ at almost all

points z of qBm and the images F �ðzÞ belong to qD. Under these circumstances, we

may show

Theorem 6.1. Suppose that there exists a measurable subset E of qBm with positive

Lebesgue measure such that F �ðEÞH qD and F �ðEÞ intersects with at most countably

many holomorphic components of qD. Then, f is rigid, that is, if a non-constant

holomorphic mapping g : M ! N is homotopic to f , then g ¼ f .

Proof. We give a proof only for the case D ¼ RI because the following argument

works also for D ¼ RII and D ¼ RIII .

Take any Z0 A qD and fix it. From the definition, the matrix Im � Z0Z
�
0 is semi-

positive definite but it is not positive definite. Therefore, there exists an x0 A C
m � f0g

such that

kx0k
2 � x0Z0Z

�
0
tx0 ¼ 0

while

kxk2 � xZ0Z
�
0
txb 0

for any x A C
m � f0g. We may assume that kx0k ¼ 1. Thus, we have

1� x0Z0Z
�
0
tx0 ¼ 0ð16Þ

and

1� x0ZZ
� tx0 > 0ð17Þ

for every Z A D.

We define a holomorphic mapping of Mm;n to C
m by

FðZÞ ¼ x0Z:ð18Þ

From (16), FðZ0Þ A qBm and for any Z A D we have FðZÞ A B
m from (17).

We assume that there exists a holomorphic mapping j : D ! qD such that jð0Þ ¼Z0

and put

cðlÞ ¼ F � jðlÞ ðl A DÞ:

Then, cðDÞHB
m
U qBm and cð0Þ A qBm. It follows from the maximum principle that

c is a constant mapping. In other words,

FðZÞ ¼ FðZ0Þ

for any Z A jðDÞ. Repeating this argument, we have

Lemma 6.1. Let V be a holomorphic component of qD containing Z0. Then

FðZÞ ¼ FðZ0Þ for any Z A V .

Let h be a holomorphic mapping of M to N homotopic to f . Then, both f and h

induce the same monodromy y. Hence, we have
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F � g ¼ yðgÞ � F

H � g ¼ yðgÞ �H

for some lift H of h.

Since G is of divergence type and F ;H is bounded holomorphic functions on B
m,

we may assume that every point of EH qBm is a point of approximation for G and

F ;H have K-limits F �ðzÞ;H �ðzÞ at every z A E. Therefore, for each z A E there exists

fgkg
y

k¼1 HG such that

lim
k!y

yðgkÞðFðzÞÞ ¼ lim
k!y

F ðgkðzÞÞ ¼ F �ðzÞ;ð19Þ

lim
k!y

yðgkÞðHðzÞÞ ¼ lim
k!y

HðgkðzÞÞ ¼ H �ðzÞð20Þ

hold for every z A B
m.

On the other hand, since D is a bounded domain in C
mn, fyðgkÞg

y

k¼1 is a normal

family on D and it converges to a holomorphic mapping hz : D ! DU qD uniformly on

every compact subset of D. Hence, from (19) and (20) we have

hzðF ðzÞÞ ¼ F �ðzÞ;ð21Þ

hzðHðzÞÞ ¼ H �ðzÞ:ð22Þ

Here, we assume that there exists a subset E 0 of E with positive Lebesgue measure

such that hz is not a constant function if z belongs to E 0.

Noting that F �ðzÞ;H �ðzÞ A qD (Lemma 2.2), we verify that F �ðzÞ and H �ðzÞ belong

to the same holomorphic component on qD. From the assumption, only countably

many holomorphic components of qD intersects with F �ðEÞ. Hence, there exist a

holomorphic component V of qD and a subset E 00 of E 0 with positive Lebesgue measure

such that F �ðzÞ and H �ðzÞ belong to V for every z A E 00.

We consider a holomorphic mapping F of Mm;n to C
m for V as (18). Then, from

Lemma 6.1, there exists a constant CV in C
m with kCVk ¼ 1 such that

F � F �ðzÞ ¼ F �H �ðzÞ ¼ CV

holds for any z A E 00. Two values F � F �ðzÞ and F �H �ðzÞ are still K-limits at z A E 00 of

F � F and F �H, respectively. Therefore, from Proposition 2.3, we conclude that both

F � F and F �H are constant functions on B
m and kF � F ðzÞk ¼ kF �HðzÞk ¼ 1 for all

z A B
m. This is a contradiction because Fð0Þ;Hð0Þ A D and kFðF ð0ÞÞk; kFðHð0ÞÞk < 1

from (17).

Therefore, hz must be a constant function for almost all z in E, then we have

F �ðzÞ ¼ H �ðzÞ for almost all z A E. It follows from Proposition 2.3 that F ¼ H and

f ¼ h. r

7. Examples.

In this section, we shall exhibit some examples related to our arguments.

Example 7.1. The complex unit ball.
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It is easy to see that lðB nÞ ¼ 0. Thus, all of our results are valid for holomorphic

mappings of M to B
n=G if M is of divergence type. In particular, a generalization of

de Franchis’ theorem (Theorem 1.4) holds.

We discuss a complex manifold N ¼ ~NN=G which admits a non-constant holomorphic

mapping from a complex hyperbolic manifold M of divergence type. From Lemma 2.2

the discrete group G consists of infinitely many elements. Thus, the group of biholo-

morphic automorphisms Autð ~NNÞ of ~NN must be non-compact. From this point of view,

the complex unit ball B
n is somewhat general because any strongly pseudo-convex

bounded domain bounded by C2 boundary with non-compact automorphisms is au-

tomatically biholomorphic to a complex unit ball (cf. a theorem of Wong-Rosay

[20]).

There are another natural domains which have non-compact automorphism groups.

Example 7.2. The complex ellipsoid.

For m ¼ ðm1; . . . ;mn�1Þ A N
n�1 with m1am2a � � �amn�1 which is not ð1; . . . ; 1Þ,

we consider a complex ellipsoid Em in C
n,

Em ¼ fz ¼ ðz1; z2; . . . ; znÞ A C
n j jz1j2 þ jz2j2m1 þ � � � þ jznj2mn�1 < 1g:

It is known that Em is not biholomorphic to the unit ball B
n and AutðEmÞ is non-

compact. Obviously, lðEmÞ ¼ 0, thus the rigidity holds for the space of non-constant

holomorphic mappings of a complex hyperbolic manifold of divergence type to a quo-

tient manifold of Em.

Bedford-Pinchuk [1] shows that in C
2 the converse is true if the domain is bounded

by real analytic boundary, that is, they show that if AutðDÞ is non-compact for a

bounded domain D in C
2 with real analytic boundary, then the domain D is biholo-

morphic to either the unit ball or a complex ellipsoid.

As we noted in §1, if ~NN has the product structure, then the rigidity of holomorphic

mappings of M to N ¼ ~NN=G is hard to hold. However, using Theorem 1.2, we may

construct a discrete group G so that the rigidity holds for HolðM;NÞ even if ~NN is a

product space.

Example 7.3. Product space with good action.

Let M ¼ B
m=G be a complex hyperbolic manifold of divergence type and ~NN ¼

B
m1 � B

m2 � � � � � B
mt . Suppose that there exist homomorphisms aj ð j ¼ 1; 2; . . . ; tÞ

from an infinite group G to AutðBmj Þ such that ajðGÞ is a discrete subgroup of AutðBmj Þ

and ker aj is a finite subgroup of G . We set a homomorphism a : G ! Autð ~NNÞ by

aðgÞ ¼ ~gg ¼ ða1ðgÞ; a2ðgÞ; . . . ; atðgÞÞ:

Since ker aj ð j ¼ 1; 2; . . . ; tÞ are finite subgroups, we verify that if f~ggkg
y

k¼1 is an infinite

sequence of distinct elements of aðGÞ, then so is each fajðgkÞg
y

k¼1 ð1a ja tÞ. It is

easily seen that each ajðGÞ has the property (A) in Theorem 1.2. Hence, aðGÞ has also

the property (A) and the statement of Theorem 1.2 (the rigidity of HolðM;NÞ) holds for

N ¼ ~NN=aðGÞ.

Example 7.4. Teichmüller spaces.
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Let Tg be the Bers embedding of the Teichmüller space of compact Riemann

surfaces of genus g > 1. It is known that Tg is a bounded domain in C
3g�3 and the

group of biholomorphic automorphisms of Tg is the Teichmüller modular group Modg,

the mapping class group. As for the fundamental facts of Tg and Modg, see [2] and

[11].

The boundary qTg contains the set of so-called regular b-groups which are Kleinian

groups representing pinched surfaces (stable curves). We may consider a non-trivial

complex analytic deformation space of a regular b-group on the boundary of Teich-

müller space unless the group is a terminal regular b-group. More precisely, a boundary

point called a cusp may have its non-trivial deformation space on the boundary of the

Teichmüller space. Since a set of countably many algebraic equations defines the set of

cusps, each cusp belongs to a complete pluripolar set in C
3g�3. On the other hand, it is

known (cf. [2]) that any boundary point which is not a cusp is a totally degenerate

group. Also, we know (cf. [22]) that any totally degenerate group has no non-trivial

complex analytic deformation. Thus, we verify that lðTgÞ ¼ 0. We also use the same

argument as in §5 (cf. [3]) and we may show the following (cf. [10], [25]).

Proposition 7.1. Let M ¼ B
m=G be a complex hyperbolic manifold of divergence

type. If two mappings f ; g A HolðM;Tg=ModgÞ are homotopic to each other, then f ¼ g.

Moreover, the space HolðM;Tg=ModgÞ consists of at most finitely many elements if G is

of finitely generated.

Let Mg denote the moduli space of compact Riemann surfaces of genus g > 0.

For a canonical homology basis wðRÞ of R A Mg, we have a period matrix ZðwðRÞÞ in

Hg, where Hg is the Siegel upper half space of degree g, that is, it is the space of g� g

symmetric matrices whose imaginary parts are positive definite.

From a theorem of Torelli, a period matrix in Hg determines a unique point in

Mg. Changing homology basis arises the action of PSpðg;ZÞHPSpðg;RÞ on Hg (see

the definition below for PSpðg;RÞ). Thus, we have a natural identification

Mg ¼ Pg=PSpðg;ZÞ ¼ Tg=Modg;

where Pg HHg is the space of period matrices of all R A Mg and for all wðRÞ.

Therefore, if one sees Proposition 7.1, it is natural to expect that the rigidity holds for

HolðM;Hg=GÞ and for a discrete subgroup G of PSpð2;RÞ. Unfortunately, we can

show by the following example that the rigidity does not hold for holomorphic mappings

of a complex hyperbolic manifold to a manifold which is a quotient space of Hg.

Example 7.5. Non-rigid holomorphic mappings to Siegel upper half spaces.

Let M be a hyperbolic Riemann surface. The Riemann surface M is represented

by M ¼ H=G , where G is a discrete group of PSLð2;RÞ. We consider the Siegel upper

half space H2 of degree 2. It is well known that the space H2 is biholomorphic to a

bounded domain D2 in C
2, where D2 is the space of 2� 2 symmetric matrices with

I2 � ZZ � > 0:

The biholomorphic automorphism group of H2 is the projective symplectic group

PSpð2;RÞ defined by Spð2;RÞ=fG1g, where Spðg;RÞ ðg > 0Þ is the space of real 2g� 2g

matrices m satisfying
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tmjm ¼ jð23Þ

for

j ¼
0 Ig

�Ig 0

� �

:

The space of all matrices m in PSpðg;RÞ with integral entries is denoted by PSpðg;ZÞ.

For m A PSpðg;RÞ with g� g blocks,

m ¼
A B

C D

� �

;

the equation (23) holds if and only if tAC; tBD are symmetric and

tAD� tCD ¼ Ig:

For m A PSpðg;RÞ, the action of m for Z A Hg is defined by

Z 7! mðZÞ ¼ ðAZ þ BÞðCZ þDÞ�1:

Taking t A H , we define a holomorphic mapping Ft of H to H2 by

FtðzÞ ¼
t 0

0 z

� �

ðz A HÞ:

For each gðzÞ ¼ ðazþ bÞðczþ dÞ�1
A G , we set

yðgÞ ¼
AðgÞ BðgÞ

CðgÞ DðgÞ

� �

;

where

AðgÞ ¼
1 0

0 a

� �

; BðgÞ ¼
0 0

0 b

� �

;

CðgÞ ¼
0 0

0 c

� �

; DðgÞ ¼
1 0

0 d

� �

:

Then, y is an isomorphism of G into PSpð2;RÞ, and the image yðGÞ is a discrete

subgroup of PSpð2;RÞ. We also see that

FtðgðzÞÞ ¼ yðgÞðFtðzÞÞ:ð24Þ

Therefore, the mapping Ft is regarded as a lift of a holomorphic mapping ft of

M ¼ H=G to N ¼ H2=yðGÞ.

Since y does not depend on t A H , ft 0 is a holomorphic mapping of M to N for

another t 0ð0tÞ A H . Obviously, ft 0 is homotopic to ft and the rigidity does not hold.

Finally, we exhibit an example of a holomorphic mapping from a hyperbolic

Riemann surface to a quotient space of the Siegel upper half space which satisfied the

condition of Theorem 6.1. Hence the mapping is rigid.
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Example 7.6. Let M ¼ H=G be a Riemann surface as above. We consider a

holomorphic mapping F̂F of H to H2 by

F̂FðzÞ ¼
z 0

0 z

� �

ðz A HÞ:

For each gðzÞ ¼ ðazþ bÞðczþ dÞ�1
A G , we set

ŷyðgÞ ¼
ÂAðgÞ B̂BðgÞ

ĈCðgÞ D̂DðgÞ

� �

;

where

ÂAðgÞ ¼
a 0

0 a

� �

; B̂BðgÞ ¼
b 0

0 b

� �

;

ĈCðgÞ ¼
c 0

0 c

� �

; D̂DðgÞ ¼
d 0

0 d

� �

:

Then, ŷy is an isomorphism of G into PSpð2;RÞ, ŷyðGÞ is discrete and

ŷyðgÞðF̂FðzÞÞ ¼ F̂FðgðzÞÞ

holds for any z A H . Hence F̂F is regarded as a lift of a holomorphic mapping f̂f of

M to N̂N ¼ H2=ŷyðGÞ as in Example 7.5. However, it is easily seen that any point in

F̂F �ðqHÞ is not contained in any holomorphic component in qH2. Hence it follows from

Theorem 6.1 that f̂f : M ! N̂N is rigid.
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