
J. Math. Soc. Japan
Vol. 56, No. 4, 2004

Foliated CR manifolds

Dedicated to Professor Philippe Tondeur on his seventieth birthday

By Sorin Dragomir and Seiki Nishikawa*

(Received May 15, 2003)

Abstract. We study foliations on CR manifolds and show the following. (1) For a

strictly pseudoconvex CR manifold M, the relationship between a foliation F on M and

its pullback p�
F on the total space CðMÞ of the canonical circle bundle of M is given,

with emphasis on their interrelation with the Webster metric on M and the Fe¤erman

metric on CðMÞ, respectively. (2) With a tangentially CR foliation F on a nondegen-

erate CR manifold M, we associate the basic Kohn-Rossi cohomology of ðM;FÞ and

prove that it gives the basis of the E2-term of the spectral sequence naturally associated

to F. (3) For a strictly pseudoconvex domain W in a complex Euclidean space and a

foliation F defined by the level sets of the defining function of W on a neighborhood U of

qW, we give a new axiomatic description of the Graham-Lee connection, a linear con-

nection on U which induces the Tanaka-Webster connection on each leaf of F. (4) For

a foliation F on a nondegenerate CR manifold M, we build a pseudohermitian analogue

to the theory of the second fundamental form of a foliation on a Riemannian manifold,

and apply it to the flows obtained by integrating infinitesimal pseudohermitian transfor-

mations on M.

1. Introduction.

Foliations on CR manifolds appear naturally in several contexts. For instance, if a

CR manifold ðM;T1;0ðMÞÞ is Levi flat, then the maximally complex distribution HðMÞ

of M is completely integrable so that M carries a foliation (the Levi foliation) by

complex manifolds (cf. [16], [38]). Cf. Section 2 for notation and conventions. To see

another example of this sort, let W ¼ fj < 0gHC
nþ1 be a strictly pseudoconvex domain

with real analytic boundary M ¼ qW. Let OðWÞ be the algebra of functions on W which

admit a holomorphic extension to some neighborhood of W. Let SHM be a real

analytic submanifold which is not C-tangent at any of its points. By a result in [8], if

S is locally a maximum modulus set for OðWÞ (cf., e.g., [14] for definitions), then L ¼

TðSÞVHðMÞ is completely integrable and gives rise to on S a C-tangent foliation F of

codimension one. On the other hand, by a result in [5], if S is tangent to the char-

acteristic direction T of a pseudohermitian structure y on M, then S is a contact CR

submanifold (in the sense of [43], and thus a CR manifold), F is a Riemannian folia-

tion and the metric gS induced on S by the Webster metric of ðM; yÞ, where y ¼

ði=2Þðq� qÞj, is bundle-like (also, S is Levi flat and F is its Levi foliation).
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Opposite to the Levi flat case, if ðM;T1;0ðMÞÞ is a nondegenerate CR manifold of

hypersurface type whose pseudohermitian structure y is a contact form on M, then the

characteristic direction T of ðM; yÞ defines a flow on M (the contact flow, cf., e.g., [17]).

Also, foliations by Riemann spheres appear (cf. [27]) on twistor spaces (nondegenerate

5-dimensional CR manifolds) of 3-dimensional conformal manifolds (a generalization of

the example to n dimensions is due to [39]). A converse of this situation is known as

well, namely if M is a nondegenerate CR manifold of CR dimension n ¼ 2m carrying

a foliation by compact complex manifolds of complex dimensionbm, then m ¼ 1, the

leaves are CP1’s, and M arises from a twistor construction (cf. [28]).

Furthermore, it should be noted that in [10] one considers foliations F on a CR

manifold M such that, for any defining local submersion f : U ! U 0 (i.e., the leaves of

FjU are the fibres of f ), the local quotient manifold U 0 is a CR manifold, f is a CR

map, and df : HðUÞ ! HðU 0Þ is surjective. Such F has a transverse CR structure (in

the sense of [6]) and also a ‘‘tangential’’ CR structure (so that each leaf of F becomes

a CR submanifold of M). While foliations with transverse CR structure have been

investigated (cf. [3] and [1]), a systematic treatment of foliations with tangential CR

structure is still missing in the mathematical literature.

The purpose of the present paper is to study basic properties of foliations on CR

manifolds, in particular, tangentially CR foliations on nondegenerate CR manifolds, and

prove the following as the first step.

If M is a strictly pseudoconvex CR manifold with a fixed contact form y whose

corresponding Levi form Gy is positive definite, and F is a foliation on M which is

tangent to the characteristic direction T of y, then the pullback foliation p�
F of F to

the total space of the canonical circle bundle p : CðMÞ ! M of M is nondegenerate with

respect to the Fe¤erman metric Fy on CðMÞ. Furthermore, Fy is bundle-like for p�
F if

and only if the Webster metric gy of ðM; yÞ is bundle-like for F. For a transversally

oriented codimension q foliation F on M, we show that if (1) F is tangent to T , (2)

the transverse volume element of F in ðM; gyÞ is holonomy invariant, and (3) the mean

curvature form k of F in ðM; gyÞ is dB-exact, then the q-dimensional basic cohomology

H
q
B ðFÞ of F is nonvanishing. Thus we generalize a result in [23] (cf. also Corollary

9.22 in [41], p. 125) to the case of foliations on CR manifolds.

With any tangentially CR foliation F on M we associate a cohomology algebra

H
0;�
B ðFÞ, the basic Kohn-Rossi cohomology of ðM;FÞ, which has the property that

H
0;0
B ðFÞ ¼ CRyðMÞ [the space of CR functions on M] and that H

0;1
B ðFÞ injects into

the ordinary Kohn-Rossi cohomology group H 0;1ðMÞ of M on ð0; 1Þ-forms. We build

a decreasing filtration fF rW0;�grb0 of W0;�ðMÞ by qM -di¤erential ideals, and show that

if fE r; s
i gib0 is the corresponding spectral sequence, then E

r;0
2 AH

0; r
B ðFÞ.

Given a smoothly bounded strictly pseudoconvex domain W ¼ fj < 0gHC
nþ1 and

a foliation F defined by the level sets of j on a neighborhood U of qW, we give a new

axiomatic description of the Graham-Lee connection, a linear connection ‘ on U which

induces the Tanaka-Webster connection on each leaf of F, and then compute Faran’s in-

variants ha

b
and k a (cf. [15]) in terms of the pseudohermitian torsion of the Graham-

Lee connection and transverse curvature of j, respectively. Also, for a foliation F on

a nondegenerate CR manifold M we use the adapted connection determined by the Bott

connection of F and the Tanaka-Webster connection (associated to a choice of contact
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form y on M) to produce a pseudohermitian analogue to the theory of the second

fundamental form of a foliation on a Riemannian manifold (cf. [41], p. 62).

The theory is applied to foliations which are tangent to the characteristic direction

of y and orthogonal to a semi-Levi foliation, and to flows obtained by integrating in-

finitesimal pseudohermitian transformations on a nondegenerate CR manifold.

Acknowledgments. During the completion of this paper the first named author

was a guest of the Erwin Schrödinger International Institute for Mathematical Physics

(November 2002) and wishes to express his gratitude to the organizers of the program

Aspects of Foliation Theory in Geometry, Topology and Physics (J. Glazebrook, F.

Kamber and K. Richardson) for their kind invitation and support. Also, he had useful

discussions on the matters in this paper with K. Richardson.

2. Foliations and the Fe¤erman metric.

Given a foliation F on a strictly pseudoconvex CR manifold M with a contact

form y, whose corresponding real Levi form Gy being positive definite, our main tech-

nique in this section is to consider the pullback foliation p�
F of F on the total space

CðMÞ of the canonical circle bundle over M.

This pullback foliation p�
F enjoys many of the properties of the original folia-

tion F. For instance, p�
F is tangentially oriented , F is tangentially oriented, the

(canonical) transverse volume element of p�
F is holonomy invariant , the transverse

volume element of F is holonomy invariant, p�
F is harmonic (with respect to the

Fe¤erman metric Fy on CðMÞ) , F is harmonic (with respect to the Webster metric

gy on M), etc. Furthermore, p�
F ‘‘lives’’ in the presence of a Lorentz metric (the Fef-

ferman metric Fy). The resulting philosophy then is that one might get a better under-

standing of the geometry of a foliated (strictly pseudoconvex) CR manifold by establish-

ing general theorems about foliated Lorentz manifolds.

2.1. CR and pseudohermitian geometry.

We start by recalling a few notions of CR and pseudohermitian geometry, which

are needed throughout the paper. Let ðM;T1;0ðMÞÞ be a CR manifold of type ðn; kÞ,

where M is a real ð2nþ kÞ-dimensional Cy manifold and T1;0ðMÞ is its CR structure,

that is, a complex rank n subbundle of the complexified tangent bundle TðMÞnC of M

such that

T1;0ðMÞVT0;1ðMÞ ¼ f0g;

i.e., T1;0ðMÞ is totally complex, and

½GyðT1;0ðMÞÞ;GyðT1;0ðMÞÞ�JG
yðT1;0ðMÞÞ;

i.e., T1;0ðMÞ is involutive, or ( formally) Frobenius integrable, where T0;1ðMÞ stands

for the complex conjugate of T1;0ðMÞ. The integers n and k are called the CR di-

mension and CR codimension of ðM;T1;0ðMÞÞ, respectively. Clearly, if k ¼ 0, then ðM;

T1;0ðMÞÞ is a complex manifold of complex dimension n. We shall be mainly inter-

ested in CR manifolds of type ðn; 1Þ, which are commonly referred to as CR manifolds

of hypersurface type.
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Let ðM;T1;0ðMÞÞ be a CR manifold of arbitrary but fixed type. Let

HðMÞ ¼ RefT1;0ðMÞlT0;1ðMÞg

be the Levi, or maximally complex, distribution of M. It carries the complex structure

J : HðMÞ ! HðMÞ given by

JðZ þ ZÞ ¼ iðZ � ZÞ; Z A T1;0ðMÞ; i ¼
ffiffiffiffiffiffiffi

�1
p

:

The Levi form L is then defined by

LðZ;WÞ ¼ ipð½Z;W �Þ; Z;W A T1;0ðMÞ;

where p : TðMÞnC ! fTðMÞnCg=fHðMÞnCg is the natural bundle map. A CR

manifold with L ¼ 0 is called Levi flat. Note that if k ¼ 0, then L ¼ 0 (i.e., a complex

manifold is Levi flat). A CR manifold is called nondegenerate if L is nondegenerate.

Assume now that k ¼ 1 and M is orientable. Let y be a pseudohermitian structure

on M, that is, a global nowhere zero Cy section of HðMÞ? HT �ðMÞ, the conormal

bundle of HðMÞ defined by HðMÞ?x ¼ fo A T �
x ðMÞ jKerðoÞKHðMÞxg for x A M.

Consider

GyðX ;YÞ ¼ dyðX ; JY Þ; X ;Y A HðMÞ;

(the real Levi form). It is also customary to consider the complex bilinear form

LyðZ;WÞ ¼ �i dyðZ;WÞ; Z;W A T1;0ðMÞ:

Then Ly and the complex linear extension of Gy to HðMÞnC coincide on T1;0ðMÞn
T0;1ðMÞ. Also, Ly and L coincide up to a bundle isomorphism HðMÞ?ATðMÞ=
HðMÞ.

A CR manifold ðM;T1;0ðMÞÞ, of hypersurface type, is strictly pseudoconvex if Gy is

positive definite for some pseudohermitian structure y on M.

When ðM;T1;0ðMÞÞ is nondegenerate (of hypersurface type), any pseudohermitian

structure y is a contact form on M so that y5ðdyÞn is a volume form on M. If this is

the case, let T be the characteristic direction of ðM; yÞ, that is, a unique tangent vector

field on M, transverse to HðMÞ, determined by yðTÞ ¼ 1 and T c dy ¼ 0. As usual, we

extend Gy to a degenerate metric ~GGy ¼ p�
HGy on M given by ~GGyðX ;YÞ ¼ GyðpHðX Þ;

pHðY ÞÞ for any X ;Y A TðMÞ, where pH : TðMÞ ! HðMÞ is the canonical projection as-

sociated to the direct sum decomposition TðMÞ ¼ HðMÞlRT [in particular, ~GGyðT ;TÞ
¼ 0]. The Webster metric of ðM; yÞ is then defined by

gy ¼ ~GGy þ yn y:

If ð2r; 2sÞ is the signature of Gy (rþ s ¼ n), then gy is a semi-Riemannian metric on M

of signature ð2rþ 1; 2sÞ [and if M is strictly pseudoconvex with Gy positive definite, then

gy is a Riemannian metric on M]. For instance, let Hn ¼ C
n � R be the Heisenberg

group with the multiplication law ðz; tÞ � ðw; sÞ ¼ ðzþ w; tþ sþ 2 Imhz;wiÞ; where hz;wi

¼ dijz
iw j, and consider the Lewy operators

La ¼
q

qza
� iza

q

qt
; 1a aa n:
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Then

T1;0ðHnÞx ¼
X

n

a¼1

CLa;x; x A Hn;

where La ¼ La, is a CR structure on Hn making Hn into a strictly pseudoconvex CR

manifold of CR dimension n (and actually into a CR Lie group, that is, a Lie group

which is a CR manifold whose CR structure is left invariant).

A Cy map of CR manifolds f : M ! M 0 is a CR map if dfxðT1;0ðMÞxÞJ

T1;0ðM
0Þf ðxÞ for any x A M. A CR isomorphism, or CR equivalence, is a CR map which

is a Cy di¤eomorphism.

Any Cy real hypersurface M in C
nþ1 is a CR manifold of CR dimension n, with

the CR structure T1;0ðMÞ ¼ fTðMÞnCgVT 1;0ðC nþ1Þ, where T 1;0ðC nþ1Þ is the span of

fq=qz j j 1a ja nþ 1g. In particular, the boundary qWnþ1 of the Siegel domain

Wnþ1 ¼ ðz;wÞ A C
n � C

�

�

�

�

ImðwÞ >
X

n

a¼1

jzaj2
( )

is a CR manifold which is CR isomorphic to the Heisenberg group (the CR isomor-

phism is given by f ðz; tÞ ¼ ðz; tþ ijzj2Þ, ðz; tÞ A Hn).

For any nondegenerate CR manifold M of hypersurface type, on which a contact

form y has been fixed, there is a unique linear connection ‘ (the Tanaka-Webster con-

nection of ðM; yÞ, cf., e.g., [13]) such that (1) HðMÞ is ‘-parallel, (2) ‘gy ¼ 0 and ‘J ¼ 0,

(3) the torsion T‘ of ‘ is pure, that is, T‘ðZ;WÞ ¼ 0 and T‘ðZ;WÞ ¼ iLyðZ;WÞT for

any Z;W A T1;0ðMÞ, and t � J þ J � t ¼ 0, where tðXÞ ¼ T‘ðT ;XÞ, X A TðMÞ. The

vector valued 1-form t on M is called the pseudohermitian torsion of ‘ and satisfies

gyðtðXÞ;YÞ ¼ gyðX ; tðYÞÞ for any X ;Y A TðMÞ, that is, t is self-adjoint with respect to

gy.

2.2. The normal bundle.

Generally, given a codimension q foliation F on a Cy manifold N, we denote by

TðFÞ the tangent bundle of F and by nðFÞ ¼ TðNÞ=TðFÞ its normal (or transverse)

bundle, and by P : TðNÞ ! nðFÞ the natural bundle map.

Let ðM;T1;0ðMÞÞ be a strictly pseudoconvex CR manifold of CR dimension n.

Let y be a contact form on M such that Gy is positive definite. Let F be a codimen-

sion q foliation of M. Note that if 2nb q, then y is not basic. Indeed, if TðFÞ c y ¼

0, then TðFÞJHðMÞ, and if TðFÞ c dy ¼ 0, then for any X A TðFÞ

0 ¼ dyðX ; JX Þ ¼ GyðX ;X Þ ) X ¼ 0:

Hence F is the foliation by points, that is, q ¼ 2nþ 1. Let us extend Gy to the whole

of TðMÞ as a degenerate metric ~GGy, by requesting that T is orthogonal to each V A

TðMÞ, and consider

TðFÞ0 ¼ fY A TðMÞ j ~GGyðX ;YÞ ¼ 0 for all X A TðFÞg:

We collect a few elementary facts in the following
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Proposition 1. The tangent bundle TðFÞ is nondegenerate in ðTðMÞ; ~GGyÞ if

and only if the characteristic direction T of ðM; yÞ is transverse to TðFÞ. In general, let

TðFÞHðMÞ ¼ pHðTðFÞÞ be the projection of TðFÞ to HðMÞ. Then we obtain

TðFÞ0 ¼ ½TðFÞHðMÞ�
?
lRT ;ð2:1Þ

where the orthogonal complement ½TðFÞHðMÞ�
?
of TðFÞHðMÞ is taken in ðHðMÞ;GyÞ. If

T is tangent to F, then the following hold:

(1) TðFÞHðMÞ ¼ HðMÞVTðFÞ.

(2) The natural bundle map s0 : nðFÞ ! TðFÞ0 is a bundle monomorphism and

corestricts to a bundle isomorphism

nðFÞA ½TðFÞHðMÞ�
?
:

(3) Hyðr; sÞ ¼ ~GGyðs0ðrÞ; s0ðsÞÞ, r; s A nðFÞ, is a Riemannian metric on the normal

bundle nðFÞ ! M.

Proof. Let us prove the first statement in Proposition 1. Assume that T is trans-

verse to TðFÞ. Let X A TðFÞ such that ~GGyðX ;YÞ ¼ 0 for any Y A TðFÞ. Then

0 ¼ ~GGyðX ;XÞ ¼ GyðpHðXÞ; pHðX ÞÞ ¼ kpHðXÞk2;

so that pHðXÞ ¼ 0. Thus TðFÞ C X ¼ yðXÞT , which yields yðXÞ ¼ 0 so that X ¼ 0.

Vice versa, assume that TðFÞ is nondegenerate in ðTðMÞ; ~GGyÞ. The proof is

done by contradiction. If Tx A TðFÞx for some x A M, then ~GGy;xðv;TxÞ ¼ 0 for any v A

TxðMÞITðFÞx, which yields Tx ¼ 0 by the nondegeneracy of TðFÞx in ðTxðMÞ; ~GGy;xÞ,

a contradiction.

To prove the second statement in Proposition 1, let TðFÞHðMÞ be the projection of

TðFÞ to HðMÞ, namely,

TðFÞHðMÞ ¼ fX � yðXÞT jX A TðFÞg:

Since

½TðFÞHðMÞ�
?
VRT JHðMÞVRT ¼ f0g;

the sum in (2.1) is direct. To prove (2.1), first note that T A TðFÞ0. Next, if Z A

½TðFÞHðMÞ�
?, then ~GGyðZ;YÞ ¼ 0 for any Y A TðFÞHðMÞ, which is written as Y ¼ X �

yðX ÞT with X A TðFÞ. Thus

0 ¼ ~GGyðZ;Y Þ ¼ ~GGyðZ;X Þ;

and hence Z A TðFÞ0. To check the opposite inclusion, let Z A TðFÞ0 HHðMÞlRT .

Then Z ¼ Y þ fT for some Y A HðMÞ and f A CyðMÞ. Since ~GGyðZ;XÞ ¼ 0 for any

X A TðFÞ, it follows that

GyðY ;X � yðXÞTÞ ¼ ~GGyðZ;X Þ ¼ 0;

which implies Y A ½TðFÞHðMÞ�
?.

Consider the bundle map s0 : nðFÞ ! TðFÞ0 defined by

s0ðPðY ÞÞ ¼ ðY � yðYÞTÞ?; Y A TðMÞ;
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where ðY � yðY ÞTÞ? is the ½TðFÞHðMÞ�
?-component of Y � yðYÞT in HðMÞ. To see

that s0ðPðYÞÞ is well-defined, suppose that PðY Þ ¼ PðZÞ. Then Y � Z A TðFÞ, and

hence Y � Z � yðY � ZÞT A TðFÞHðMÞ so that ðY � Z � yðY � ZÞTÞ? ¼ 0.

Assume now that T A TðFÞ. The proof of (1) is immediate. To check that s0 is

a bundle monomorphism, let s0ðPðYÞÞ ¼ 0, that is,

Y � yðY ÞT A TðFÞHðMÞ ¼ HðMÞVTðFÞJTðFÞ:

Thus, by T A TðFÞ,

0 ¼ PðY � yðYÞTÞ ¼ PðYÞ:

The isomorphism claimed in (2) of Proposition 1 follows by a dimension argument.

Indeed, since dimR nðFÞx ¼ q, the fact that HðMÞ þ TðFÞKHðMÞ þ RT ¼ TðMÞ im-

plies that

2nþ 1 ¼ dimR HðMÞx þ dimR TðFÞx � dimRfHðMÞx VTðFÞxg;

and hence dimR½TðFÞHðMÞ�x ¼ 2n� q for any x A M.

Let us now prove (3) of Proposition 1. As the image of s0 lies in HðMÞ,

Hyðr; rÞ ¼ ks0ðrÞk
2
b 0 and ¼ 0 if and only if Y � yðY ÞT A TðFÞHðMÞ for each Y A

TðMÞ such that PðYÞ ¼ r. Therefore, Hyðr; rÞ ¼ 0 if and only if r A RPðTÞ. In par-

ticular, if T A TðFÞ, then Hy is a Riemannian metric in nðFÞ. Proposition 1 is proved.

r

Remark 1. As the Webster metric gy is a Riemannian metric on M, one may

consider as well the normal bundle

TðFÞ? ¼ fY A TðMÞ j gyðY ;X Þ ¼ 0 for all X A TðFÞg

with the corresponding bundle isomorphism s : nðFÞ ! TðFÞ? given by sðPðYÞÞ ¼

Y?, where Y? is the TðFÞ?-component of Y A TðMÞ ¼ TðFÞlTðFÞ?, and the metric

induced by gy on nðFÞ via s. However, when T A TðFÞ, it follows that TðFÞ? ¼

½TðFÞHðMÞ�
?, s ¼ s0, and the metric on nðFÞ induced by gy is precisely Hy. Indeed, let

Y A TðFÞ?, namely gyðY ;XÞ ¼ 0 for any X A TðFÞ. Since gyðY ;TÞ ¼ 0 in particular,

Y A HðMÞ. Therefore

~GGyðY ;X � yðXÞTÞ ¼ ~GGyðY ;XÞ ¼ gyðY ;X Þ � yðYÞ
|ffl{zffl}

¼0

yðXÞ ¼ 0

for any X A TðFÞ, which shows that TðFÞ?J ½TðFÞHðMÞ�
?. The opposite inclusion

may be proved in a similar manner. Also, it is immediate to see

sðPðY ÞÞ ¼ sðPðY � yðY ÞTÞÞ ½as T A TðFÞ�

¼ ðY � yðYÞTÞ? ½as TðFÞ? ¼ ½TðFÞHðMÞ�
?�

¼ s0ðPðYÞÞ

for any Y A TðMÞ.
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2.3. The Fe¤erman metric.

The first statement in Proposition 1 shows that, under the natural assumption that

T be tangent to the leaves of F; TðFÞ is degenerate in ðTðMÞ; ~GGyÞ. However, the

pullback of F to the total space of the principal S1-bundle

CðMÞ ¼ fKðMÞnfzero sectiongg=Rþ ! M

turns out to be nondegenerate in ðCðMÞ;FyÞ, where Fy is the Fe¤erman metric of

ðM; yÞ. Here KðMÞ ¼ Lnþ1;0ðMÞ is the canonical line bundle over M. To be more

precise, a complex p-form o on M is said to be a ðp; 0Þ-form, or a form of type ðp; 0Þ if

T0;1ðMÞ co ¼ 0, and Lp;0ðMÞ ! M denotes the bundle of the ðp; 0Þ-forms on M.

We proceed by recalling a few notions regarding the Fe¤erman metric (cf., e.g.,

[29]). Consider the 1-form h on CðMÞ given by

h ¼
1

nþ 2
dgþ p� ioa

a �
i

2
hab dh

ab
�

R

4ðnþ 1Þ
y

� �� �

;

where g is the (local) fibre coordinate on CðMÞ, p : CðMÞ ! M is the projection, h
ab

are

the (local) components of the Levi form with respect to a (local) frame fTag of T1;0ðMÞ,

i.e., h
ab

¼ LyðTa;TbÞ, o
b
a are the connection 1-forms of the Tanaka-Webster connection ‘

of ðM; yÞ, that is,

‘Tb ¼ oa
bTa;

and R ¼ habR
ab

is the pseudohermitian scalar curvature (again cf. [29]). Also, R
ab

is the

pseudohermitian Ricci tensor. The Fe¤erman metric Fy of ðM; yÞ is the Lorentz metric

on CðMÞ given by

Fy ¼ p� ~GGy þ 2ðp�yÞp h;

where p denotes the symmetric tensor product. Note that h is a connection 1-form on

the principal S1-bundle p : CðMÞ ! M (cf. also [18], p. 855). Let then

bz ¼ fdzp : KerðhzÞ ! TxðMÞg�1; z A CðMÞx; x A M;

be the horizontal lift with respect to h. For a tangent vector field X on M we adopt the

notation X " ¼ bðX Þ. Let S ¼ q=qg be the tangent vector field to the S1-action. Then

T" � S is timelike, and hence ðCðMÞ;FyÞ is time-oriented by T" � S, namely ðCðMÞ;FyÞ

is a space-time (cf., e.g., [7], p. 17). Moreover, if M is compact, then ðCðMÞ;FyÞ is not

chronological (cf. Proposition 2.6 in [7], p. 23).

Let F be a foliation of M and p�
F the pullback of F to CðMÞ, that is,

Tðp�
FÞz ¼ ðdzpÞ

�1
TðFÞpðzÞ; z A CðMÞ:

The leaves of p�
F are connected components of the inverse images (via p) of the leaves

of F. We may state the following

Proposition 2. Let F be a foliation on the strictly pseudoconvex CR manifold M,

carrying the contact form y (with Gy positive definite). Let TðFÞ" be the horizontal lift

(with respect to h) of TðFÞ, that is, TðFÞ"z ¼ bzðTðFÞpðzÞÞ for z A CðMÞ. Then for the

tangent bundle Tðp�
FÞ of the pullback foliation p�

F on CðMÞ we obtain

Tðp�
FÞ ¼ TðFÞ" lKerðdpÞ:ð2:2Þ

S. Dragomir and S. Nishikawa1038



Let T be the characteristic direction of ðM; yÞ. If T is tangent to F, then the following

hold:

(1) Tðp�
FÞ is nondegenerate in ðTðCðMÞÞ;FyÞ and each leaf ~LL of p�

F is a

Lorentz manifold with the induced metric i�Fy, where i : ~LL ,! CðMÞ denotes the

inclusion.

(2) The metric hy induced by Fy on nðp�
FÞ ¼ TðCðMÞÞ=Tðp�

FÞ, the normal

bundle of p�
F, is positive definite.

(3) The Fe¤erman metric Fy is bundle-like for ðCðMÞ; p�
FÞ if and only if the

Webster metric gy is bundle-like for ðM;FÞ.

Here, by slightly generalizing the definition in, e.g., [32], p. 79, given a semi-

Riemannian manifold ðN; gÞ (i.e., g is nondegenerate, of constant index) and a foliation

F on N, we call g a bundle-like metric for ðN;FÞ if (1) TðFÞ is nondegenerate in

ðN; gÞ and (2) the metric h induced by g on nðFÞ is holonomy invariant, that is, LXh ¼ 0

for any X A TðFÞ, where LX stands for the Lie di¤erentiation with respect to X .

Proof. Let us first prove (2.2) in Proposition 2. Since h is a connection 1-form, it

follows that

TðFÞ" VKerðdpÞJKerðhÞVKerðdpÞ ¼ f0g:

Therefore the sum in (2.2) is direct. The inclusion ‘‘K’’ holds by the very definition of

p�
F. Vice versa, if

V A Tðp�
FÞJTðCðMÞÞ ¼ KerðhÞlKerðdpÞ;

then V ¼ X " þ fS for some X A TðMÞ and f A CyðCðMÞÞ, where X " ¼ bðXÞ is the

horizontal lift of X with respect to h. Also, V A Tðp�
FÞ yields that X ¼ dpðVÞ A

TðFÞ. Hence X " A TðFÞ", that is, V A TðFÞ" þKerðdpÞ. The identity (2.2) is thus

proved.

Assume now that T A TðFÞ. To see (1), consider V A Tðp�
FÞ such that FyðV ;WÞ

¼ 0 for any W A Tðp�
FÞ. Then we have

ðp� ~GGyÞðV ;WÞ þ ðp�yÞðVÞhðWÞ þ ðp�yÞðWÞhðVÞ ¼ 0;

which implies, by taking the decomposition V ¼ VH þ VV A KerðhÞlKerðdpÞ into ac-

count, that

~GGyðdpðVHÞ; dpðWHÞÞ þ yðdpðVHÞÞhðWV Þ þ yðdpðWHÞÞhðVV Þ ¼ 0ð2:3Þ

for any W A Tðp�
FÞ. If W ¼ S A KerðdpÞHTðp�

FÞ, then WH ¼ 0. Since

h ¼ fdgþ p�h0g=ðnþ 2Þ

for some 1-form h0 on M, which is determined in terms of y, and dgðSÞ ¼ 1, it follows

that hðWV Þ ¼ 1=ðnþ 2Þ. Then from (2.3) we see that yðdpðVHÞÞ ¼ 0, which implies

dpðVHÞ A HðMÞ;ð2:4Þ

with the corresponding simpler form of (2.3) as

~GGyðdpðVHÞ; dpðWHÞÞ þ yðdpðWHÞÞhðVV Þ ¼ 0:ð2:5Þ
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If W ¼ V , then it follows from (2.4) that kdpðVHÞk
2 ¼ 0, that is, dpðVHÞ ¼ 0 and hence

VH A KerðdpÞVKerðhÞ ¼ f0g. Substituting VH ¼ 0 into (2.5), we then see

yðdpðWHÞÞhðVV Þ ¼ 0ð2:6Þ

for any W A Tðp�
FÞ. Setting W ¼ T" A TðFÞ" HTðp�

FÞ in (2.6) then yields that

hðVV Þ ¼ 0, that is, VV ¼ 0. Hence we conclude that V ¼ 0, that is, Tðp�
FÞ is non-

degenerate in ðTðCðMÞÞ; gyÞ.

Note now that FyðS;SÞ ¼ 0, and hence Fy is indefinite on Tðp�
FÞ. Since Fy is

nondegenerate on Tðp�
FÞ, there Fy must have signature ð2nþ 1� q; 1Þ. Yet Fy is a

Lorentz metric, therefore Fy is positive definite on Tðp�
FÞ?. Consequently, the metric

hyðr; sÞ ¼ FyðrðrÞ; rðsÞÞ, r; s A nðp�
FÞ, induced by Fy on the normal bundle nðp�

FÞ of

p�
F is positive-definite, where r : nðp�

FÞ ! Tðp�
FÞ? is the natural isomorphism.

This proves (2).

To prove (3), note first that L~XXhy ¼ 0 if and only if

~XXðFyðV ;WÞÞ ¼ Fyð½ ~XX ;V �;WÞ þ FyðV ; ½ ~XX ;W �Þð2:7Þ

for any ~XX A Tðp�
FÞ and V ;W A Tðp�

FÞ?. We now need the following

Lemma 1. Tðp�
FÞ? JKerðhÞ and consequently

KerðhÞ ¼ TðFÞ" lTðp�
FÞ?:ð2:8Þ

Moreover, dpðTðp�
FÞ?ÞJHðMÞ.

Proof of Lemma 1. For any

V A Tðp�
FÞ? HTðCðMÞÞ ¼ KerðhÞlKerðdpÞ;

one has the decomposition V ¼ VH þ fS with VH A KerðhÞ. On the other hand, since

FyðS;T
"Þ ¼ ðp�yÞðT"ÞhðSÞ ¼ yðdpðT"ÞÞ=ðnþ 2Þ ¼ 1=ðnþ 2Þ;

we have

FyðV ;T"Þ ¼ f =ðnþ 2Þ þ FyðVH ;T
"Þ:

As T A TðFÞ, it follows that

T" A TðFÞ" HTðp�
FÞ;

so that T" is orthogonal to V . Hence we obtain

f ¼ �ðnþ 2ÞFyðVH ;T
"Þ ¼ �ðnþ 2Þðp� ~GGyÞðVH ;T

"Þ

¼ �ðnþ 2Þ ~GGyðdpðVHÞ;TÞ ¼ 0;

that is, V A KerðhÞ. Then the identity (2.8) follows, by (2.2), from the facts

TðCðMÞÞ ¼ fTðFÞ" lKerðdpÞglTðp�
FÞ?;

TðFÞ" lTðp�
FÞ? JKerðhÞ:
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To prove the last statement in Lemma 1, let

V A Tðp�
FÞ? HTðCðMÞÞ ¼ HðMÞ" lRT";

that is, V ¼ Y " þ fT" for some Y A HðMÞ. Since S A KerðdpÞHTðp�
FÞ, S and V

are orthogonal. Thus we have

0 ¼ FyðV ;SÞ ¼ FyðY
";SÞ þ f =ðnþ 2Þ

¼ ðp�yÞðY "ÞhðSÞ þ f =ðnþ 2Þ:

Hence yðY Þ ¼ 0 yields f ¼ 0. Lemma 1 is proved. r

By Lemma 1, (2.7) holds if and only if it is satisfied for vector fields V ;W of the

form V ¼ Y ", W ¼ Z" for some Y ;Z A HðMÞ. Also, (2.7) is identically satisfied when
~XX A KerðdpÞ. Indeed, if this is the case, then (by a result in [25], Vol. I, p. 78) one has

½ ~XX ;Y "� ¼ ½ ~XX ;Z"� ¼ 0. Hence

~XXðFyðY
";Z"ÞÞ ¼ ~XXðGyðY ;ZÞ � pÞ ¼ 0;

since dpðX Þ ¼ 0.

Assume from now on that ~XX A TðFÞ", that is, ~XX ¼ X " for some X A TðFÞ. By

Proposition 1.3 in [25], Vol. I, p. 65, ½X ;Y �" is the KerðhÞ-component of ½X ";Y "�.

Then it follows from yðY Þ ¼ yðZÞ ¼ 0 that the identity (2.7) is equivalent to

Xð ~GGyðY ;ZÞÞ ¼ ~GGyð½X ;Y �;ZÞ þ ~GGyðY ; ½X ;Z�Þð2:9Þ

for any X A TðFÞ and Y ;Z A HðMÞ such that Y ";Z" A Tðp�
FÞ?. Finally, note that

for each V ¼ Y " A Tðp�
FÞ? with Y A HðMÞ one has

0 ¼ FyðX
";VÞ ¼ ~GGyðX ;YÞ � p

for any X A TðFÞ, and hence

Y A HðMÞVTðFÞ? ¼ ½TðFÞHðMÞ�
?:

Therefore, L~XXhy ¼ 0 if and only if (2.9) holds for any X A TðFÞ and Y ;Z A

½TðFÞHðMÞ�
?, that is, if and only if LXFy ¼ 0. This completes the proof of Proposition

2. r

2.4. Foliated Lorentz manifolds.

Let N be a Cy manifold and F a codimension q foliation of N. A di¤erential p-

form o on N is called basic if

X co ¼ 0; LXo ¼ 0

for all X A TðFÞ. Note that the exterior derivative d preserves basic forms, since

X c do ¼ LXo� dðX coÞ ¼ 0; LX do ¼ dLXo ¼ 0:

Hence, denoting by W
p
B ðFÞ the set of basic p-forms, we obtain the basic complex of F

(cf. [41], p. 119)

W0
BðFÞ !

dB
W1
BðFÞ !

dB
� � � !

dB
W

q
BðFÞ !

dB
0;
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where dB ¼ djWB, and the corresponding basic cohomology of F

H
j
B ðFÞ ¼ H jðW�

BðFÞ; dBÞ; 0a ja q:

Also, we consider the spectral sequence determined by the following multiplicative fil-

tration of the de Rham complex W
�ðNÞ (a decreasing filtration by di¤erential ideals, cf.

[41], p. 120)

F r
W

m ¼ fo A W
mðNÞ jX1 c � � �Xm�rþ1 co ¼ 0 for X1; . . . ;Xm�rþ1 A TðFÞg:

Let us now consider a codimension q foliation F on an n-dimensional connected

Lorentz manifold ðN; gÞ such that TðFÞ is nondegenerate in ðTðNÞ; gÞ. The second

fundamental form a of F in ðN; gÞ is defined by

a : TðFÞnTðFÞ ! nðFÞ; aðX ;YÞ ¼ Pð‘N
X YÞ; X ;Y A TðNÞ;

where ‘
N is the Levi-Civita connection of ðN; gÞ. As in the Riemannian case, the

involutivity of TðFÞ implies that a is symmetric, since ‘
N is torsion-free. Next, by

mere linear algebra (cf., e.g., [34], p. 49), TðNÞ ¼ TðFÞlTðFÞ? and we have a bundle

isomorphism

s : Q ¼ nðFÞ ! TðFÞ?; sðsÞ ¼ the TðFÞ-component of Ys; s A nðFÞ;

where Ys A TðNÞ with PðYsÞ ¼ s. Let gQ be the induced metric on Q defined by

gQðr; sÞ ¼ gðsðrÞ; sðsÞÞ; r; s A nðFÞ:

We set indðFÞ ¼ �1 if each leaf L of F is Lorentzian, and indðFÞ ¼ 1 if each leaf

L of F is Riemannian, with respect to the induced metric gL ¼ i
�g on L, where

i : L ,! N is the inclusion, respectively. It should be remarked here that if g is a

bundle-like metric for F, then no other possibility occurs. Indeed, let ‘ be the connec-

tion in Q given by

‘X s ¼
Pð½X ; sðsÞ�Þ if X A G

yðPÞ;

Pð‘N
X sðsÞÞ if X A G

yðP?Þ;

�

where s A G
yðQÞ and P ¼ TðFÞ. A verbatim repetition of the proof of Theorem 5.11

in [41], p. 53, shows that g is bundle-like for F if and only if ‘gQ ¼ 0. Let x; y A N

and aðtÞ a piecewise smooth curve joining x and y. If g is bundle-like, a standard

argument based on ‘-parallel translation along a then shows that indðgQÞx ¼ indðgQÞy,

where indðgQÞ is the index of gQ (in the sense of [34], p. 55). Hence ðQ; gQÞ is a semi-

Riemannian bundle. Now, let gP be the leafwise metric induced by g on P. Namely,

if x A N and L A N=F is the leaf through x, then gP;x ¼ ði�gÞx ¼ gL;x. Clearly, we have

indðgÞ ¼ indðgPÞ þ indðgQÞ at each point of N, and hence gP also has constant index.

For any Z A TðFÞ?, the Weingarten map WðZÞ : TðFÞ ! TðFÞ of F is given by

gPðWðZÞðX Þ;X 0Þ ¼ gQðaðX ;X 0Þ; s�1ðZÞÞ; X ;X 0 A TðFÞ;

where gP is the semi-Riemannian bundle metric on P ¼ TðFÞ induced by g. Then
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WðZÞ is self-adjoint. The mean curvature form of F in ðN; gÞ is the 1-form k A W1ðNÞ

defined by

kðZÞ ¼ traceWðZÞ; Z A GyðP?Þ;

X c k ¼ 0; X A GyðPÞ:

Assume from now on that F is tangentially oriented, that is, F is equipped with

a principal GLþðp;RÞ-subbundle B ! N of the principal GLðp;RÞ-bundle LðPÞ ! N,

where p ¼ n� q and the fibre LðPÞx is the set of R-linear isomorphisms u : R
p ! Px,

x A N. Let fE1; . . . ;Epg be a local gP-orthonormal frame of P, adapted to B, defined

on an open set UJN, satisfying gPðEi;EjÞ ¼ ei dij with e2i ¼ 1 (thus indðFÞ ¼ e1 � � � ep).

The characteristic form of F is a p-form w
F

A W pðNÞ defined by

w
F
ðY1; . . . ;YpÞ ¼ detðgðYi;EjÞÞ; Y1; . . . ;Yp A GðTNÞ:

Note that P? c wF ¼ 0. The Lorentzian analogue of Rummler’s formula (cf., e.g., [41],

p. 68) still holds, namely,

Z c dw
F
þ kðZÞw

F
¼ 0 along Pð2:10Þ

for any Z A GyðP?Þ. Indeed, as w
F
ðE1; . . . ;EpÞ ¼ indðFÞ,

ðLZwFÞðE1; . . . ;EpÞ ¼ �
Xp

i¼1

w
F
ðE1; . . . ; p

?ð½Z;Ei�Þ; . . . ;EpÞ

¼ �
Xp

i¼1

ei indðFÞgð½Z;Ei�;EiÞ;

where LZ is the Lie di¤erentiation and p? : TðNÞ ! P is the natural bundle morphism.

On the other hand, by the definition of k, we obtain

kðZÞ ¼
Xp

i¼1

eigPðWðZÞðEiÞ;EiÞ ¼
Xp

i¼1

eigð½Z;Ei�;EiÞ;

and thus (2.10) is proved.

Assume further that F is transversally oriented (i.e., P? is oriented), and let n be

the characteristic form of P? defined in a completely analogous manner with w
F
. Let

m ¼ d volðgÞ be the Lorentz volume form on N. Assume also that N is oriented, and let

fEA j 1aAa ng be an oriented local g-orthonormal frame, satisfying gðEA;EBÞ ¼ eAdAB,

of TðNÞ such that fEi j 1a ia pg and fEa j pþ 1a aa ng are frames in P and P?,

respectively, and denote its dual coframe by foA j 1aAa ng. Then for any a A WrðNÞ

ð�aÞðEA1
; . . . ;EAn�r

Þ � m ¼ eA1
� � � eAn�r

a5oA1
5� � �5oAn�r

;

where � : WrðNÞ ! Wn�rðNÞ is the Hodge operator. In particular, for n we have

ð�nÞðE1; . . . ;EpÞ � m ¼ indðFÞn5o15� � �5op:ð2:11Þ

Also, a calculation based on the identity

nðYpþ1; . . . ;YnÞ ¼ detðgðYa;EbÞÞ
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leads to

n ¼ epþ1 � � � enopþ15� � �5on:

Hence n is proportional to the transverse volume element opþ15� � �5on of F, and (2.11)

may be written as

ð�nÞðE1; . . . ;EpÞ � m ¼ ð�1Þpqþ1
o15� � �5on:

Since �n; w
F

A WpðNÞ and P? c �n ¼ 0, P? c w
F

¼ 0 as well, there is a function f A

CyðNÞ such that �n ¼ f w
F
. A calculation shows that f ¼ ð�1Þpqþ1 indðFÞ so that

�n ¼ ð�1Þpqþ1 indðFÞw
F
:ð2:12Þ

As a corollary of (2.12), we have

n5wF ¼ ð�1Þpq indðFÞm:ð2:13Þ

At this point we may prove the following

Proposition 3. Let F be a transversally oriented foliation on a compact orientable

Lorentz manifold ðN; gÞ. Assume that the transverse volume element n of F is holonomy

invariant; hence n A W
q
BðFÞ and dn ¼ 0. If F is harmonic (i.e., k ¼ 0), then ½n�0 0 in

H
q
B ðFÞ.

The proof is a verbatim repetition of the proof of Theorem 9.21 in [41], p. 124

(and Proposition 3 is the Lorentzian analogue of a result by Kamber and Tondeur [23]).

Indeed, Rummler’s formula (2.10) yields (when k ¼ 0)

dwF A F 2W pþ1
;

and the assumption that n ¼ dBa for some a A W
q�1
B ðFÞ leads, by (2.13), to

dða5wFÞ ¼ ð�1Þpq indðFÞm;

and then, by Green’s lemma, to a contradiction.

We may also establish the following

Proposition 4. Let F be a foliation on a strictly pseudoconvex CR manifold M,

and assume that F is tangent to the characteristic direction T of ðM; yÞ for some contact

form y on M. Then the following hold:

(1) F is transversally oriented if and only if p�
F is transversally oriented and, if

this is the case, the transverse volume element n of F in ðM; gyÞ is holonomy

invariant if and only if the transverse volume element ~nn of p�
F in ðCðMÞ;FyÞ is

holonomy invariant.

(2) F is harmonic in ðM; gyÞ if and only if p�
F is harmonic in ðCðMÞ;FyÞ.

Proposition 3 together with Proposition 4 then shows that for any transversally

oriented codimension q foliation F on a compact strictly pseudoconvex CR manifold M,

if (1) F is tangent to the characteristic direction T of ðM; yÞ, (2) the transverse volume

element n of F in ðM; gyÞ is holonomy invariant, and (3) F is harmonic in ðM; gyÞ, then

½n�0 0 in H
q
B ðFÞ. Indeed, if M is compact, then so is CðMÞ and, given a local coor-

dinate system ðU ; xAÞ on M, ðp�1ðUÞ; uA ¼ xA � p; u2nþ2 ¼ gÞ yields a local coordinate

on CðMÞ. Hence an orientation of M induces that of CðMÞ.
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This is only illustrative of our ideas as to the use of the Fe¤erman metric. [The pre-

ceding statement also follows by directly applying the aforementioned result of Kamber

and Tondeur (Theorem 9.21 in [23], p. 124) to F on ðM; gyÞ.] We may further exploit

the relationship between pseudohermitian geometry and conformal Lorentzian geometry

to prove the following

Corollary 1. Let F be a transversally oriented codimension q foliation on a com-

pact strictly pseudoconvex CR manifold M, which is tangent to the characteristic direction

T of ðM; yÞ for a fixed contact form y. Assume that the transverse volume element n of

F in ðM; gyÞ is holonomy invariant and that the mean curvature form k of F in ðM; gyÞ is

closed (i.e., dk ¼ 0Þ. If ½k� ¼ 0 in H 1
B ðFÞ, then H

q
B ðFÞ0 0.

Proof. We shall need the following

Lemma 2. Let F be a transversally oriented codimension q foliation on an n-

dimensional Lorentz manifold ðN; gÞ, and assume that TðFÞ is nondegenerate in ðTðNÞ; gÞ.

Then F is harmonic in ðN; e2ugÞ, with u A CyðNÞ, if and only if

duðZÞ ¼ p�1
kðZÞ; Z A TðFÞ?;ð2:14Þ

where p ¼ n� q and k is the mean curvature form of F in ðN; gÞ. Furthermore, the

following are equivalent:

(1) u is a basic function, i.e., u A W
0
BðFÞ.

(2) The transverse volume element n̂n of F in ðN; ĝg ¼ e2ugÞ is holonomy invariant if

and only if the transverse volume element n of F in ðN; gÞ is holonomy invariant.

The statement (1) in Lemma 2, that is, if du ¼ p�1k, then the leaves of F are

minimal in ðN; e2ugÞ, was first discovered in [24] for the case of a Riemannian metric g

(and our argument below follows closely the proof of Proposition 12.6 in [41], p. 151).

The relationship between the Levi-Civita connections ‘
ĝg and ‘

g of Lorentz metrics ĝg ¼

e2ug and g, respectively, is given by

‘
ĝg ¼ ‘

g þ ðduÞn I þ I n ðduÞ � gn gradg u;

which implies that the second fundamental forms âa and a of F in ðN; ĝgÞ and ðN; gÞ,

respectively, are related by

âa ¼ a� gnPðgradg uÞ:

Hence, for the corresponding Weingarten maps, we have

ŴWðZÞ ¼ WðZÞ � duðZÞI ; Z A G
yðP?Þ;

where I denotes the identity transformation. Consequently, the corresponding mean

curvature forms satisfy

k̂kðZÞ ¼ kðZÞ � pZðuÞ;

where p ¼ n� q. Therefore k̂k ¼ 0 if and only if u satisfies (2.14).

The statement (2) in Lemma 2 follows from the formula

LX n̂n ¼ equfq duðXÞnþLX ng; X A G
yðPÞ:

This completes the proof of Lemma 2. r
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Let us go back to the proof of Corollary 1. Since ½k� ¼ 0 in H 1
B ðFÞ by assump-

tion, there is a basic function v A W0
BðFÞ such that k ¼ dv. Set u ¼ ðpþ 1Þ�1

v, where

p ¼ 2nþ 1� q and dimM ¼ 2nþ 1. Then it is immediate from (2.17) in the proof of

Proposition 4 that

dðu � pÞðZ"Þ ¼ ðpþ 1Þ�1
~kkðZ"Þ; Z A TðFÞ?:

Hence it follows from Lemma 2 that p�
F is harmonic in ðCðMÞ; e2u�pFyÞ, from which

we see that p�
F is harmonic in ðCðMÞ;F

ŷy
Þ, since, by a result of Lee [29], the Fe¤erman

metric changes conformally F
ŷy
¼ e2u�pFy under a transformation ŷy ¼ e2uy.

Now note that, by Proposition 4, the transverse volume element ~nn of p�
F in

ðCðMÞ;FyÞ is holonomy invariant. Since u A W0
BðFÞ, it follows that u � p A W0

Bðp
�
FÞ

so that, again by Lemma 2, the transverse volume element n̂n of p�
F in ðCðMÞ;F

ŷy
Þ is

holonomy invariant. In consequence, by Proposition 3, we may conclude that 00

H
q
B ðp

�
FÞAH

q
B ðFÞ. r

Proof of Proposition 4. First we note that

nðFÞATðFÞ? !
b
½TðFÞ?�" ¼ Tðp�

FÞ?Anðp�
FÞ;

from which it is immediate that F is transversally oriented if and only if so is p�
F.

We only need to justify here the equality in the sequence. To this end, let ~XX A Tðp�
FÞ

and write ~XX ¼ X " þ V for some X A P ¼ TðFÞ and V A V ¼ KerðdpÞ. Then for any

Y A P? we have

Fyð ~XX ;Y "Þ ¼ ðp� ~GGyÞð ~XX ;Y "Þ þ ðp�yÞðY "Þhð ~XX Þ

¼ ~GGyðX ;YÞ þ yðYÞhðVÞ ¼ ~GGyðpHðXÞ þ yðXÞT ;Y Þ;

since P?
HHðMÞ. Therefore we see

Fyð ~XX ;Y "Þ ¼ GyðpHðX Þ;YÞ ¼ gyðpHðXÞ þ yðXÞT ;Y Þ

¼ gyðX ;Y Þ ¼ 0;

which shows ½P?�" JTðp�
FÞ? and hence the desired equality holds, for both bundles

have rank q.

At this point we may relate the Weingarten maps of F and p�
F, respectively. Let

‘CðMÞ be the Levi-Civita connection of ðCðMÞ;FyÞ. Given Z A P?, the Weingarten map
~WWðZ"Þ : Tðp�

FÞ ! Tðp�
FÞ of p�

F is given by

Fyð ~WWðZ"Þð ~XXÞ; ~XX 0Þ ¼ Fyð‘
CðMÞ
~XX

~XX 0;Z"Þ

for any ~XX ¼ X " þ V and ~XX 0 ¼ X 0" þ V 0, where X ;X 0 A P and V ;V 0 A V. As p :

CðMÞ ! M is a principal S1-bundle, the projection p is a submersion. Recall, however,

that for the vector field S ¼ q=qg tangent to the S1-action, FyðS;SÞ ¼ 0 and hence S

is null, or isotropic, so that p is not a semi-Riemannian submersion (according to the

terminology adopted in [34], p. 212). Nevertheless, we may relate ‘CðMÞ to ‘M , in the

spirit of [35]. Another di‰culty is that KerðhÞ and V are not orthogonal (with respect

S. Dragomir and S. Nishikawa1046



to the Fe¤erman metric Fy), yet HðMÞ" ?V does hold. Noting that ½Y ";V � ¼ 0 for

any Y A TðMÞ, a calculation then leads to

2Fyð ~WWðZ"Þð ~XX Þ; ~XX 0Þ ¼ �Zð ~GGyðX ;X 0ÞÞ � ~GGyðX ; ½X 0;Z�Þ � ~GGyðX
0; ½X ;Z �Þ

þ yðXÞWðX 0";Z"Þ þ yðX 0ÞWðX ";Z"Þ

þ dyðX ;ZÞhðV 0Þ þ dyðX 0;ZÞhðVÞ;

where W ¼ Dh is the curvature 2-form of h. Let HðFÞ be the gy-orthogonal com-

plement of RT in P. In particular, for any X ;X 0 A HðFÞ

2Fyð ~WWðZ"Þð ~XXÞ; ~XX 0Þ ¼ �ZðgyðX ;X 0ÞÞ � gyðX ; ½X 0;Z�Þ � gyðX
0; ½X ;Z �Þ

þ dyðX ;ZÞhðV 0Þ þ dyðX 0;ZÞhðVÞ;

or (by exploiting the explicit expression of ‘M , cf., e.g., [25], p. 160)

2Fyð ~WWðZ"Þð ~XXÞ; ~XX 0Þ ¼ 2gyðWðZÞðXÞ;X 0Þ þ dyðX ;ZÞhðV 0Þ þ dyðX 0;ZÞhðVÞ:ð2:15Þ

Similarly, we also have

Fyð ~WWðZ"ÞðT"Þ;T"Þ ¼ WðT";Z"Þ:ð2:16Þ

Next, we may calculate ~kkðZ"Þ ¼ trace ~WWðZ"Þ. Let fE1; . . . ;Ep�1;Tg be a gy-

orthonormal frame of TðFÞ. Then

E
"
1 ; . . . ;E

"
p�1;T

" þ
nþ 2

2
S;T" �

nþ 2

2
S

� �

is an Fy-orthonormal frame of Tðp�
FÞ. Note that T" � ððnþ 2Þ=2ÞS is timelike and

indðp�
FÞ ¼ �1, in particular. Since yðWðZÞðTÞÞ ¼ 0, a straightforward calculation

based on (2.15) and (2.16) now leads to

~kkðZ"Þ ¼ kðZÞ � p; Z A P?:ð2:17Þ

In particular, F is harmonic in ðM; gyÞ if and only if p�
F is harmonic in ðCðMÞ;FyÞ.

Finally, if ~nn A WqðCðMÞÞ is given by

~nnð ~YY1; . . . ; ~YYqÞ ¼ detðFyð ~YYa;E
"
aÞÞ

for some oriented gy-orthonormal frame fEa j 1a aa qg of P?, then ~nn ¼ p�n and by a

simple calculation we see that

L~XX ~nn ¼ p�ðLX nÞ

for any ~XX ¼ X " þ V with X A P and V A V. Proposition 4 is now proved. r

3. Tangentially CR foliations.

Let ðM;T1;0ðMÞÞ be a CR manifold and F a foliation on M. We say that F is a

(tangentially) CR foliation if each leaf L of F is a CR submanifold of M, that is, L is a

CR manifold and the inclusion i : L ,! M is a CR map, i.e., dixðT1;0ðLÞxÞJT1;0ðMÞx
for each x A L.

A typical example of a CR foliation is illustrated by the following
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Example 1 (A CR foliation by level sets). Let C
nþ1 be the ðnþ 1Þ-dimensional

complex Euclidean space with complex coordinates ðz1; . . . ; zn;wÞ, w ¼ uþ iv, and

a : R ! R a smooth function such that að0Þ ¼ 0 and a 0ðtÞ < 0 for any t A R. Define

f : C
nþ1 ! R by

f ðz1; . . . ; zn;wÞ ¼ aðjz1j2 þ � � � þ jznj2 � vÞeu:

Then f is a smooth submersion so that it defines a foliation F on C
nþ1 by the level sets

of f .

Note that

f �1ðcÞ ¼

fðz;wÞ A Wnþ1 j u ¼ logðc=aðrÞÞg if c > 0;

qWnþ1 if c ¼ 0;

fðz;wÞ A C
nþ1nWnþ1 j u ¼ logðc=aðrÞÞg if c < 0;

8

>

<

>

:

where r ¼
Pn

a¼1 jz
aj2 � v. Thus F is a CR foliation on C

nþ1, one of whose leaves is

the Heisenberg group HnAqWnþ1.

Now, let F be a CR foliation. Let HðFÞ ! M denote the subbundle of TðFÞ

whose portion over a leaf L of F coincides with the Levi distribution HðLÞ of L.

Similarly, let T1;0ðFÞ ! M denote the complex subbundle of TðFÞnC whose portion

over a leaf L of F coincides with the CR structure T1;0ðLÞ of L.

Assume from now on that M is a nondegenerate CR manifold (of hypersurface

type), and fix a contact form y on M and the corresponding characteristic direction T of

ðM; yÞ. It should be remarked that if M is strictly pseudoconvex, then y is holonomy

invariant if and only if HðFÞ ¼ 0. Indeed, if X A HðFÞJHðMÞ, then yðXÞ ¼ 0.

Hence,

0 ¼ LXy ¼ X c dy ) GyðX ;X Þ ¼ 0 ) X ¼ 0:

Recall that a ð0; sÞ-form on M is a complex s-form o on M such that T1;0ðMÞ co

¼ 0 and T co ¼ 0. Let L0; sðMÞ ! M be the bundle of ð0; sÞ-forms on M and set

W0; sðMÞ ¼ GyðL0; sðMÞÞ. We recall the tangential Cauchy-Riemann operator qM , which

is the first order di¤erential operator

qM : W0; sðMÞ ! W0; sþ1ðMÞ

defined as follows. If o is a ð0; sÞ-form, then qMo is the unique ð0; sþ 1Þ-form which

coincides with do on T0;1ðMÞn � � �nT0;1ðMÞ (sþ 1 terms). A smooth function f :

M ! C is called a CR function if it satisfies the tangential Cauchy-Riemann equation

qM f ¼ 0:

The space of CR functions on M is denoted by CRyðMÞ.

3.1. The basic tangentially Cauchy-Riemann complex.

We say that o A W0; sðMÞ is a basic ð0; sÞ-form if it satisfies

Z co ¼ 0; Z c qMo ¼ 0

for any Z A T1;0ðFÞ. Let W0; s
B ðFÞ denote the space of all basic ð0; sÞ-forms on ðM;FÞ.

Since q2M ¼ 0, we see easily that

qMW
0; s
B ðFÞJW

0; sþ1
B ðFÞ:
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Let CRyðFÞ be the space of smooth functions f : M ! C whose restriction f jL to

each leaf L of F is a CR function on L, namely f jL A CRyðLÞ. Note that CRyðMÞJ

CRyðFÞ. Moreover, we have

W
0;0
B ðFÞ ¼ CRyðFÞ:

Let qB be the restriction of qM to W
0; s
B ðFÞ. Then we obtain a complex

W
0;0
B ðFÞ !

qB
W

0;1
B ðFÞ !

qB
� � � !

qB
W

0;k
B ðFÞ !

qB
0;ð3:1Þ

which is called the basic tangentially Cauchy-Riemann complex of ðM;FÞ. Here we

suppose that dimM ¼ 2N þ 1 and F has codimension q ¼ 2k. For the remainder of

this section, we set n ¼ N � k and assume nb 1. The cohomology of the complex (3.1)

given by

H
0; s
B ðFÞ ¼ H sðW0;�

B ðFÞ; qBÞ ¼
KerfqB jW

0; s
B ðFÞ ! W

0; sþ1
B ðFÞg

qBW
0; s�1
B ðFÞ

;

where 0a sa k, is called the basic Kohn-Rossi cohomology of ðM;FÞ. In particular,

we obtain

H
0;0
B ðFÞ ¼ KerfqB jW

0;0
B ðFÞ ! W

0;1
B ðFÞg ¼ f f A CRyðFÞ j qB f ¼ 0g

¼ CRyðFÞVCRyðMÞ ¼ CRyðMÞ:

Let

H 0; sðMÞ ¼ H sðW0;�ðMÞ; qMÞ

be the ordinary Kohn-Rossi cohomology of the CR manifold M. For any CR foliation

F on a nondegenerate CR manifold, there exists a natural injection of H 0;1
B ðFÞ into the

Kohn-Rossi cohomology group H 0;1ðMÞ, namely the map

H
0;1
B ðFÞ ,! H 0;1ðMÞ; ½o� 7! ½o�H 0; 1ðMÞð3:2Þ

is a monomorphism. Here o A W
0;1
B ðFÞ with qBo ¼ 0. Indeed, if o;o

0 A KerfqB :

W
0;1
B ðFÞ ! W

0;2
B ðFÞg lie in the same Kohn-Rossi cohomology class, then o

0 � o ¼ qM f

for some smooth function f : M ! C . Then

0 ¼ Z co 0 ¼ Z co
|fflffl{zfflffl}

¼0

þZ c qM f

for any Z A T1;0ðFÞ, and hence f A W
0;0
B ðFÞ. Thus o

0 � o ¼ qB f , that is, ½o� ¼ ½o 0�.

Remark 2. When M has CR codimension 0, that is, M is a complex manifold,

W
0; sðMÞ is the space of all ð0; sÞ-forms, which are locally spanned by monomials con-

taining s anti-holomorphic di¤erentials dza, with respect to local complex coordinates

za on M. Note that H 0; sðMÞ is then the Dolbeaut cohomology, and given a foliation

F on M by CR submanifolds, (3.2) still holds.
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Example 1 (continued). Set bðtÞ ¼ a 0ðtÞ=ðaðtÞ � ia 0ðtÞÞ. Then T0;1ðFÞ is spanned

by

Za ¼
q

qza
� 2bðrÞza

q

qw
; 1a aa n;ð3:3Þ

where we set za ¼ za. Note that bð0Þ ¼ i, and hence along the leaf qWnþ1 of F the

vector fields (3.3) correspond, under the CR isomorphism qWnþ1 GHn, to the Lewy

operators.

We remark that H
0; s
B ðFÞ ¼ 0 for s A f1; 2g. Indeed, first it follows from (3.2)

that H
0;1
B ðFÞ ,! H 0;1ðC nþ1Þ ¼ 0. On the other hand, if we define a ð0; 1Þ-form Y A

W0;1ðC nþ1Þ by

Y ¼ dwþ 2bðrÞza dz
a;

then we obtain that

W
0;1
B ðFÞ ¼ flY j l A CyðC nþ1Þ; qMlðZaÞ ¼ �ib 0ðrÞzal; 1a aa ng;

qBW
0;0
B ðFÞ ¼ fðqf =qwÞY j f A CRyðFÞg;

and qBo ¼ 0 for any o A W
0;1
B ðFÞ as seen below. Thus the meaning of the fact

H
0;1
B ðFÞ ¼ 0 is that the system

qf

qza
¼ 2bðrÞzal;

qf

qw
¼ l

admits a solution f A CyðC nþ1Þ, provided that l satisfies the compatibility relations

qMlðZaÞ þ ib 0ðrÞzal ¼ 0.

To compute H
0;2
B ðFÞ, let o ¼ oab dz

a5dzb þ oa dz
a5dw be a basic ð0; 2Þ-form.

Then we see that the condition

0 ¼ Za co ¼ 2ðoab þ bðrÞzaobÞ dz
b þ oa dw

yields that W
0;2
B ðFÞ ¼ f0g.

Similar to the above, let Wp;0ðMÞ denote the space of ðp; 0Þ-forms o such that

T co ¼ 0, and consider the first order di¤erential operator

qM : Wp;0ðMÞ ! Wpþ1;0ðMÞ

defined as follows. If o A Wp;0ðMÞ, then qMo is a unique element of Wpþ1;0ðMÞ

which coincides with do on T1;0ðMÞn � � �nT1;0ðMÞ (pþ 1 terms). Then q2M ¼ 0 in

all degrees and one may consider the cohomology groups

H p;0ðMÞ ¼ H pðW�;0ðMÞ; qMÞ:

Moreover, if F is a CR foliation on M, then one may define the space of basic

ðp; 0Þ-forms W
p;0
B ðFÞ, consisting of all elements o A Wp;0ðMÞ satisfying

T1;0ðFÞ co ¼ 0; T1;0ðFÞ c qMo ¼ 0;
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and the corresponding cohomology

H
p;0
B ðFÞ ¼ H pðW�;0

B ðFÞ; qBÞ;

where qB denotes the restriction of qM to W
�;0
B ðFÞ. Then one sees that complex con-

jugation gives isomorphisms

H p;0ðMÞAH 0;pðMÞ; H
p;0
B ðFÞAH

0;p
B ðFÞ:

Example 2 (The contact flow). Let ðM;T1;0Þ be a nondegenerate CR manifold of

hypersurface type, and y a contact form on M. Let T be the characteristic direction of

ðM; yÞ, and denote by F the flow defined by T (cf., e.g., [41], p. 132). Following [17],

p. 160, let us consider the space U r
h of all horizontal r-forms on M, where an r-form o

on M is called horizontal if T co ¼ 0 and LTo ¼ 0. Thus U r
h is nothing but Wr

BðFÞ.

Employing Kohn’s solution (cf. [26]) to the Neumann problem for the qM operator on a

compact strictly pseudoconvex CR manifold, Gigante established the following

Theorem 1 (Gigante [17]). Let M be a compact strictly pseudoconvex CR manifold

and y a contact form on M. Let T be the characteristic direction of ðM; yÞ, and F the

flow defined by T. If the Tanaka-Webster connection of ðM; yÞ has vanishing pseudo-

hermitian torsion ðt ¼ 0Þ and strictly positive definite pseudohermitian Ricci curvature,

then H 1
B ðFÞ ¼ 0.

We may give a short proof of Theorem 1, based on a result of Lee [30], as well

as on our previous considerations. Indeed, H 1
B ðFÞ ¼ H 0;1ðMÞlH 1;0ðMÞ. Further-

more, by a result in [30], if R
ab
xaxb > 0 for any x ¼ ðx1; . . . ; xnÞ, then H 0;1ðMÞ ¼ 0

(note that the assumption t ¼ 0 was removed).

3.2. The filtration fF rW0;�grb0.

We define a multiplicative filtration of the Cauchy-Riemann complex by setting

F rW0;m ¼ fo A W0;mðMÞ jZ1 c � � �Zm�rþ1 co ¼ 0 for Z1; . . . ;Zm�rþ1 A T1;0ðFÞg:

Note that we have

W0;mðMÞ ¼ F 0W0;m
KF 1W0;m

K � � �KF mW0;m
KF mþ1W0;m ¼ f0g

for any 0amaN. Also, the following diagram is commutative:

W0;mðMÞ K � � �K F rW0;m
K F rþ1W0;m

K � � �
?

?

?

y

qM

?

?

?

y

qM

?

?

?

y

qM

W0;mþ1ðMÞK � � �KF rW0;mþ1
KF rþ1W0;mþ1

K � � �

Indeed, let

o A F rW0;m
HW0;mðMÞ !

qM
W0;mþ1ðMÞ:

Then, since T0;1ðFÞ is involutive, it follows that

Z1 c � � �Zm�rþ2 c ðqMoÞ ¼ 0
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for any Zj A T1;0ðFÞ. Thus we have

qMF r
W

0;m JF r
W

0;mþ1:

Now, setting

F r
W

0;� ¼ 0
N

m¼0

F r
W

0;m;

we obtain the following

Proposition 5. Let F be a CR foliation on the nondegenerate CR manifold

M. Then fF rW
0;�grb0 is a decreasing filtration of W0;�ðMÞ by di¤erential ideals. Also,

dimC T1;0ðFÞx ¼ n, x A M, implies that F rW
0;nþr ¼ W

0;nþrðMÞ, and dimC T1;0ðMÞx=

T1;0ðFÞx ¼ k, x A M, yields that

F kþ1
W

0;m ¼ f0g:ð3:4Þ

Proof. Since we have seen that qMF rW
0;� JF rW

0;�, it remains to check that

W
0;�ðMÞ5F r

W
0;� JF r

W
0;�:

To this end, let o ¼ o0 þ � � � þ oN with om A F rW
0;m. Then we have

a5om A F r
W

0;mþs

for any a A W
0; sðMÞ. Indeed, it is easy to see that

Z1 c � � �Zmþs�rþ1 c ða5omÞ ¼ 0

for any Zj A T1;0ðFÞ, because at most s of the Zj’s enter a, so that there are enough Zj’s

left to kill om. Hence we obtain

W
0; sðMÞ5F r

W
0;m JF r

W
0;mþs;

from which the desired inclusion follows.

To prove (3.4), we need some local considerations. Let fT1; . . . ;TNg be a local

frame of T1;0ðMÞ such that fT1; . . . ;Tng is a local frame of T1;0ðFÞ. Let fy1; . . . ; yNg

be a local dual frame determined by

y
iðTjÞ ¼ d

i
j ; y

iðTjÞ ¼ 0; y
iðTÞ ¼ 0:

Each o A F rW
0;m is then locally a sum of monomials of the form

y
a15� � �5y

ap5y
j15� � �5y

jq ;

1a a1; . . . ; apa n; nþ 1a j1; . . . ; jqaN;

with CyðMÞ-coe‰cients, where 0a pam� r and q ¼ m� p. If r ¼ k þ 1, then 0a

pam� k � 1 so that qb k þ 1. Hence y j15� � �5y jq ¼ 0, and (3.4) is proved. r

For a given CR foliation F on the nondegenerate CR manifold M with a fixed

contact form y, we set hZ;Wi ¼ LyðZ;WÞ and define

T1;0ðFÞ? ¼ fZ A T1;0ðMÞ j hZ;Wi ¼ 0 for any W A T1;0ðFÞg:

An argument of mere linear algebra then shows that T1;0ðFÞ is nondegenerate in

ðT1;0ðMÞ; h ; iÞ and T1;0ðFÞlT1;0ðFÞ? ¼ T1;0ðMÞ.
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Proposition 6. Let F be a CR foliation on the nondegenerate CR manifold

M. Let fE r; s
i gib0 be the spectral sequence associated with the filtered di¤erential space

ðW0;�ðMÞ; qM ; fF rW0;�grb0Þ. Then we have the following isomorphisms of linear spaces:

E
r; s
0 AHomðLsT0;1ðFÞ;Lr½T0;1ðFÞ?��Þ;

E
r;0
1 AW

0; r
B ðFÞ; E

r;0
2 AH

0; r
B ðFÞ;

where T0;1ðFÞ? ¼ T1;0ðFÞ? HT0;1ðMÞ.

Proof. We set

Z
r;m
i ¼ fo A F rW0;m j qMo A F rþiW0;mþ1g;

D
r;m
i ¼ ðF rW0;mÞV qMðF r�iW0;m�1Þ;

and

E r
i W

0;m ¼
Z

r;m
i

Z
rþ1;m
i�1 þD

r;m
i�1

:

(Cf., e.g., [22], Vol. III, p. 21.) Also, we set E
r; s
i ¼ E r

i W
0; rþs. Then

E
r; s
0 ¼

F rW0; rþs

F rþ1W0; rþs
AHomðLsT0;1ðFÞ;Lr½T0;1ðFÞ?��Þ:ð3:5Þ

With these understood, we now define

Z r
i ¼ 0

N

m¼0

Z
r;m
i ; E r

i ¼ 0
N

m¼0

E r
i W

0;m
:

Then qMZ r
i HZ rþi

i and qM Kerðp r
i ÞHKerðprþi

i Þ, where p r
i : Z

r
i ! E r

i is the natural

projection, and hence qM induces di¤erentials d r
i : E r

i ! E rþi
i . The resulting di¤erential

d
r; s
0 : E

r; s
0 ! E

r; sþ1
0 corresponds, under the isomorphism (3.5), to

ðqCE ~ooÞðZ1; . . . ;Zsþ1Þ ¼ Asþ1½ðZ1; . . . ;Zsþ1Þ 7! Z1 c qMð ~ooðZ2; . . . ;Zsþ1ÞÞ�

for any Zj A T1;0ðFÞ, 1a ja sþ 1. Here Asþ1 is the alternation map (cf., e.g., [25],

Vol. I, p. 28) and, for any ð0; rþ sÞ-form o which is locally (cf. the discussion preceding

Proposition 6) a sum of monomials of the form a5b with a A LsT0;1ðFÞ� and b A

Lr½T0;1ðFÞ?��, we set

~ooðZ1; . . .ZsÞ ¼ Z1 c � � �Zs co; Zj A T1;0ðFÞ:

Note that, as the notation suggests, qCE is a CR analogue of the Chevalley-Eilenberg

di¤erential in [41], p. 122. Then we have

E
r; s
1 AH sðHomðL�T0;1ðFÞ;Lr½T0;1ðFÞ?��Þ; qCEÞ;

and hence

E
r;0
1 AW

0; r
B ðFÞ:ð3:6Þ

Since d
r;0
1 induces, on the right hand side of (3.6), the di¤erential qB, it follows that

E
r;0
2 AH

0; r
B ðFÞ. r
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3.3. The Graham-Lee connection.

Let W ¼ fj < 0gHC
nþ1 be a smoothly bounded strictly pseudoconvex domain

and Dj denote the Laplacian of the Kähler metric on W whose Kähler 2-form is

ði=2Þqq logð�1=jÞ. Then, according to a result by Graham and Lee [20], if u is a local

solution to Dju ¼ 0 which is smooth up to a portion of qW, then the boundary value f

of u must satisfy Cj f ¼ 0, where Cj is a di¤erential operator on qW of order 2nþ 2,

which was first studied by Graham [19] on the Siegel domain and the unit ball. In

order to compute Cj, one needs to understand the interrelation between the tangential

pseudohermitian geometry of the leaves of the foliation F defined by level sets of j, and

the geometry of the ambient complex space.

One key instrument in this respect turns out to be a canonical connection on a

one-sided neighborhood of qW (the Graham-Lee connection, cf. Theorem 2 below) which

induces the Tanaka-Webster connection on each leaf of F. We give a new axiomatic

description of this connection and a hint on how one may recover Faran’s results (cf.

[15]) in this setting, namely in the presence of a fixed defining function for the foliation.

Actually, we merely look at Faran’s third order invariants ha

b
and k a, whereas the

problem of recovering Faran’s result on whether a given real hypersurface may be a leaf

of a Ricci flat foliation (cf. [15], p. 403) is left open.

To be more precise, let WHC
nþ1 be a strictly pseudoconvex domain. Let V J

C
nþ1 be an open set, and j : V ! R a smooth defining function for W such that W ¼

fx A V j jðxÞ < 0g and qW ¼ fx A V j jðxÞ ¼ 0g, satisfying djðxÞ0 0 for any x A qW.

For a su‰ciently small one-sided neighborhood U of the boundary qW, we set Me ¼

fx A U j jðxÞ ¼ eg so that M0 ¼ qW.

Consider now the foliation F on U whose leaves are the level sets Me of j, where

e A jðUÞ. Since W is strictly pseudoconvex, the restriction of the real ð1; 1Þ-form iqqj

to T1;0ðFÞ is definite, and by replacing j by �j if necessary, we may assume that it

is positive definite. Note that there exists a uniquely defined complex vector field x

of type ð1; 0Þ on U which is orthogonal to T1;0ðFÞ with respect to qqj and for which

qjðxÞ ¼ 1 (cf. Lee and Melrose [31], p. 163). Let us then define a function r : U ! R

by setting r ¼ qqjðx; xÞ, so that x and r are characterized by

x c qqj ¼ rqj; qjðxÞ ¼ 1:ð3:7Þ

Let fW1; . . . ;Wng be a local frame of T1;0ðFÞ. Then fWa; xg is a local frame

of T1;0ðUÞ. Let ya be the (local) complex 1-forms of type ð1; 0Þ on U determined

by yaðWbÞ ¼ dab and yaðxÞ ¼ 0. Then fya; qjg is a local frame of T 1;0ðUÞ� and, as a

consequence of the first of the formulae (3.7),

qqj ¼ h
ab
ya
5yb þ rqj5qj;ð3:8Þ

for some positive definite Hermitian matrix of functions h
ab
. It follows from (3.8) that

r is positive if and only if j is strictly plurisubharmonic, and r ¼ 0 if and only if j

satisfies the homogeneous complex Monge-Ampère equation detðqqjÞ ¼ 0 (cf. [20]). We

call r the transverse curvature of j.

Consider the real 1-form y ¼ ði=2Þðqj� qjÞ on U . Its exterior derivative is then

given by

dy ¼ ih
ab
ya
5yb þ r dj5y:ð3:9Þ
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Thus the Levi form Ly of y, that is, the restriction of �i dy to T1;0ðFÞnT0;1ðFÞ is

given by

LyðZ;VÞ ¼ h
ab
Z aV b;

where Z ¼ Z aWa, V ¼ V bWb A T1;0ðFÞ.

Let je : Me ! U be the inclusion. Then ye ¼ j �e y is a pseudohermitian structure

on ðMe;T1;0ðMeÞÞ. If we write x ¼ ð1=2ÞðN � iTÞ, with N and T real, then we have

ðdjÞðNÞ ¼ 2, yðNÞ ¼ 0, and the restriction Te of T to Me is tangent to Me. Also, (3.7)

shows that Te is the characteristic direction of ðMe; yeÞ. Among the linear connections

on U which restrict to the Tanaka-Webster connection ‘ e on each leaf Me of F, we

single out a canonical one (cf. also Proposition 1.1 in [20], p. 701) in the following

manner.

Let nðFÞ ¼ TðUÞ=TðFÞ and P : TðUÞ ! nðFÞ be the projection. Given a linear

connection ‘ on U , we consider the bundle map

a : TðFÞnTðFÞ ! nðFÞ; aðX ;YÞ ¼ Pð‘XY Þ;

where X ;Y A TðFÞ. Let T‘ be the torsion of ‘ and set tðXÞ ¼ T‘ðT ;XÞ for any

X A TðUÞ. We say T‘ is pure if

T‘ðZ;WÞ ¼ 0;ð3:10Þ

T‘ðZ;WÞ ¼ iLyðZ;WÞT ;ð3:11Þ

T‘ðN;ZÞ ¼ rZ þ itðZÞð3:12Þ

for any Z;W A T1;0ðFÞ and

t � J þ J � t ¼ 0:ð3:13Þ

Here J is the restriction of J0 (the complex structure of U) to HðFÞ.

Now, we may state the following

Theorem 2. Let WHC
nþ1 be a strictly pseudoconvex domain and j a smooth de-

fining function for W. Let F be the foliation by level sets of j on a one-sided neigh-

borhood U of qW. Then there exists a unique linear connection ‘ on U such that

(1) T1;0ðFÞ, N;T and Ly are parallel with respect to ‘, and

(2) the torsion T‘ of ‘ is pure.

Consequently, one has a ¼ 0.

The canonical connection ‘ furnished by Theorem 2 is referred to as the Graham-

Lee connection of ðU ; jÞ. Let pþ : TðUÞnC!T1;0ðFÞ, respectively p� : TðUÞnC!

T0;1ðFÞ, be the canonical projections associated with the direct sum decomposition:

TðUÞnC ¼ T1;0ðFÞlT0;1ðFÞlCT lCN:ð3:14Þ

Proof. Let us first prove the uniqueness statement in Theorem 2. The identity

(3.11) may be written as

½Z;Y � ¼ ‘ZY � ‘YZ � iLyðZ;YÞT :
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Hence, by (1), we have

‘
Y
Z ¼ pþð½Y ;Z�Þð3:15Þ

for any Y ;Z A G
yðT1;0ðFÞÞ. Next, ‘Ly ¼ 0 may be written as

X ðLyðY ;ZÞÞ ¼ Lyð‘XY ;ZÞ þ LyðY ;‘XZÞ;

from which we obtain

Lyð‘XY ;ZÞ ¼ XðLyðY ;ZÞÞ � LyðY ; p�ð½X ;Z�ÞÞð3:16Þ

for any X ;Y ;Z A G
yðT1;0ðFÞÞ.

We now compute ‘TX . To this end, set

KTX ¼ �ð1=2ÞJðLTJÞðX Þ

for X A HðFÞ. Then, since T1;0ðFÞ is ‘-parallel and ‘ is a real di¤erential operator,

it follows that T0;1ðFÞ is also ‘-parallel. Hence HðFÞ is ‘-parallel and ‘J ¼ 0.

Consequently, it follows from (3.13) that

tðX Þ ¼ KTX

for any X A HðFÞ (actually, it holds for any X A TðFÞ if one extends J to TðFÞ by

JT ¼ 0). Moreover, it is verified that

‘TX ¼ tðXÞ þLTXð3:17Þ

for any X A G
yðT1;0ðFÞÞ. Finally, by (3.12) and ‘N ¼ 0, we have

‘NZ ¼ rZ þ itðZÞ þ ½N;Z �ð3:18Þ

for any Z A G
yðT1;0ðFÞÞ. From (3.15) through (3.18) and ‘T ¼ ‘N ¼ 0, it follows

that ‘ is uniquely determined.

To establish the existence statement in Theorem 2, let

‘ : G
yðTðUÞnCÞ � G

yðTðUÞnCÞ ! G
yðTðUÞnCÞ

be given by the following identities:

‘
X
Y ¼ pþð½X ;Y �Þ; ‘XY ¼ ‘

X
Y ;ð3:19Þ

‘XY ¼ UXY ; ‘
X
Y ¼ ‘XY ;

‘T ¼ 0; ‘N ¼ 0;

‘TX ¼ LTX þ KTX ; ‘TX ¼ ‘TX ;

‘NX ¼ rX þ iKTX þLNX ; ‘NX ¼ ‘NX ;

where X ;Y A G
yðT1;0ðFÞÞ and UXY A G

yðT1;0ðFÞÞ is given by

LyðUXY ;ZÞ ¼ XðLyðY ;ZÞÞ � LyðY ; p�ð½X ;Z�ÞÞ

for Z A G
yðT1;0ðFÞÞ. Then it is immediate that ‘ extends to define a linear connection

on U .
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Hence it su‰ces to check that ‘ obeys the axioms (1) and (2). To see this, let

P?
: TðUÞ ! TðFÞ be the canonical projection associated with the direct sum decom-

position TðUÞ ¼ TðFÞlRN. Set ‘F

X Y ¼P?ð‘XYÞ for any X ;Y A GyðTðFÞÞ. Then

it is verified that ‘F restricts on each leaf Me of F to a linear connection on Me, and

we have

‘XY ¼ ‘F

X Y þ sðaðX ;YÞÞ

for any X ;Y A GyðTðFÞÞ, where s : nðFÞ ! RN denotes the natural bundle isomor-

phism. Then it follows that a ¼ 0, since by the very definition (3.19) of ‘, the N-

component of ‘XY vanishes for all X ;Y A GyðTðFÞÞ. Furthermore, it follows from

(3.19) again that ‘ restricts on each leaf Me of F to the Tanaka-Webster connection

of Me. Hence T1;0ðFÞ and Ly are parallel with respect to ‘ and the identities (3.10),

(3.11) and (3.13) are satisfied. Up to now, we see that ‘ obeys axiom (1). Finally,

note that (3.12) follows from ‘NX ¼ rX þ iKTX þLNX and ‘N ¼ 0. Hence ‘ obeys

(2) as well. The proof of Theorem 2 is now complete. r

Remark 3. The purity axiom (3.12) is natural in the following sense. Note that

we may write T‘ðN;ZÞ in the form

T‘ðN;ZÞ ¼ AaWa þ AaWa þ BT þ CN

with unknown functions Aa
;Aa

;B and C to be determined, where fWag is a local frame

of T1;0ðFÞ. Then the condition that the linear connection ‘ we look for restricts to the

Tanaka-Webster connection ‘e on each leaf Me of F together with the requirement

d 2y ¼ 0 for the exterior derivative of (3.9) and the integrability of the complex structure

on U implies that

Aa ¼ rZ a
; Aa ¼ itaðZÞ; B ¼ C ¼ 0;

where Z ¼ Z aWa A T1;0ðFÞ and t ¼ ta nWa þ ta nWa (cf. [20], p. 703). Hence we

require that T‘ðN;ZÞ ¼ rZ þ itðZÞ.

Faran [15] determined a complete system of local invariants under biholomorphic

mappings of foliations of U by nondegenerate real hypersurfaces. His study is imitative

of the work of Chern and Moser [9], and indeed the local invariants of a foliation by

real hypersurfaces turn out to be similar to the local invariants of a single real hyper-

surface. There is, however, a remarkable di¤erence between them, since one of these

invariants is the intrinsic normal direction N ¼ 2ReðxÞ. The flow along N gives a fo-

liate map (that is, a map sending leaves to leaves) whose restriction to each leaf of F is

a contact transformation, yet in general not a CR di¤eomorphism. Indeed, by (3.9) we

have

ðLNyÞðWaÞ ¼ NðyðWaÞÞ � yð½N;Wa�Þ ¼ dyðN;WaÞ

¼ ih
ab
ya
5ybðN;WaÞ þ r dj5yðN;WaÞ ¼ 0;

ðLNyÞðTÞ ¼ NðyðTÞÞ � yð½N;T �Þ ¼ dyðN;TÞ

¼ r dj5yðN;TÞ ¼ r djðNÞyðTÞ ¼ 2r;

ðLNyÞðNÞ ¼ dyðN;NÞ ¼ 0:
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Summing up, we have

LNy ¼ 2ry:

Faran [15] has built the third order invariants ha

b
and k a, that is, invariants which

may be calculated at a point by using only the 3-jet of j at that point, and gave their

geometric interpretation. Precisely, it turns out that ha

b
measures the failure of the flow

on N from being a CR map, while k a ¼ 0 if and only if there is a defining function j

of W so that detðq2j=qziqzjÞ ¼ 0, namely j has vanishing transverse curvature. As ob-

served in [20], Graham and Lee’s setting bears the same relationship to Faran’s setting

as does Webster’s (cf. [42]) to that of Chern and Moser [9]. We need the following

structure equation (cf. [20]):

dya ¼ yb
5ja

b � iqj5ta þ ira dj5yþ
1

2
r dj5ya:ð3:20Þ

Here ta ¼ Aa

b
yb and Aa

b
is given by tðWbÞ ¼ Aa

b
Wa. Also, ra ¼ habr

b
and r

b
¼ drðWbÞ ¼

Wbr. Finally, ja
b are given by ‘Wb ¼ ja

b nWa, where ‘ is the Graham-Lee connection.

Using (3.20), one may derive

ðLNy
aÞðWbÞ ¼ rdab � ja

b ðNÞ; ðLNy
aÞðW

b
Þ ¼ �iAa

b
;

ðLNy
aÞðTÞ ¼ 2ira; ðLNy

aÞðNÞ ¼ 0:

Summing up, one has

LNy
a ¼ ðrdab � ja

b ðNÞÞyb � ita þ 2iray:

In particular,

LNy
a
1�ita mod y; ya;

LNy
a
1 2iray mod ya; ya:

A comparison with (2.4) and (2.5) in [15], p. 401, shows that Faran’s third order in-

variants ha

b
and k a are essentially Aa

b
and ra, respectively. Hence, the flow along N is a

CR map (when restricted to a leaf of F) if and only if ta ¼ 0 (that is, each leaf of F has

vanishing pseudohermitian torsion).

4. Foliations and the Tanaka-Webster connection.

We adopt the following terminology. If ðM;T1;0ðMÞÞ is a CR manifold and F is

a foliation on M, then F is called a semi-Levi foliation if TðFÞJHðMÞ, where HðMÞ

is the Levi distribution of M. A semi-Levi foliation is a Levi foliation if JTðFÞ ¼ TðFÞ

with respect to the complex structure J : HðMÞ ! HðMÞ. Note that if F is a semi-

Levi foliation of codimension one, then F is a Levi foliation and ðM;T1;0ðMÞÞ is Levi

flat, that is, L ¼ 0. Let ðM;FÞ be a foliated CR manifold of hypersurface type, and

y A W1ðMÞ a pseudohermitian structure on M. If y A W1
BðFÞ, then F is a semi-Levi

foliation and (the Levi form of ) M is degenerate.

Generally, let ðN;FÞ be a foliated manifold. Then F is called a semi-Riemannian
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foliation if there is a holonomy invariant semi-Riemannian bundle metric gQ on the

normal bundle Q ¼ nðFÞ. Note that for any semi-Riemannian foliation ðF; gQÞ on N

there is a bundle-like semi-Riemannian metric h on N which induces gQ on Q.

Our aim in this section is to study foliations on nodegenerate CR manifolds, on

which a contact form y has been fixed. Recall that with any foliation F of a Rieman-

nian manifold M one has a natural connection on the normal bundle nðFÞ, induced

by both the Bott (partial) connection of F and the Levi-Civita connection of the given

Riemannian metric on M (cf., e.g., (5.3) in [41], p. 48). In the spirit of pseudohermitian

geometry (cf. [42]), when M is a CR manifold, we replace the Riemannian connection by

the Tanaka-Webster connection of y and investigate the resulting theory of the ‘‘second

fundamental form’’ of F in M (cf. also [12] and [4] where similar ideas lead to a study

of the geometry of the second fundamental form of a CR immersion).

4.1. The second fundamental form.

Let ðM;T1;0ðMÞÞ be a nondegenerate CR manifold (of hypersurface type) and y

a contact form on M. Let gy and ‘ be the Webster metric and the Tanaka-Webster

connection of ðM; yÞ, respectively. Let F be a foliation on M such that the tangent

bundle P ¼ TðFÞ is nondegenerate in ðTðMÞ; gyÞ. We denote by P? the orthogonal

complement of P in TðMÞ with respect to gy, and by gQ the bundle metric induced by

gy on the normal bundle Q ¼ nðFÞ. Let D be the connection in Q defined by

DX s ¼
‘X
�

s if X A G
yðPÞ;

Pð‘XsðsÞÞ if X A G
yðP?Þ;

(

where s A G
yðQÞ, ‘

�

is the Bott connection of ðM;FÞ, P : TðMÞ ! Q is the natural

bundle map and s : Q ! P? is the natural bundle isomorphism, respectively. Then it

is immediate (cf. [41]) to see the following

Proposition 7. Let M be a nondegenerate CR manifold and y a fixed contact

form on M. Let F be a foliation on M such that TðFÞ is nondegenerate in ðTðMÞ; gyÞ.

Then D is an adapted connection in Q and its torsion TD satisfies

(1) P cTD ¼ 0 for P ¼ TðFÞ, and

(2) TDðZ;Z
0Þ ¼ PðT‘ðZ;Z 0ÞÞ for any Z;Z 0 A G

yðP?Þ.

Moreover, F is semi-Riemannian and gy is bundle-like if and only if gQ is parallel with

respect to D.

A pseudohermitian analogue a : PnP ! Q of the second fundamental form (of a

foliation on a Riemannian manifold) is given by

aðX ;X 0Þ ¼ Pð‘XX
0Þ

for any X ;X 0 A G
yðPÞ. Also, if Z A G

yðP?Þ, we consider the Weingarten map WðZÞ :

P ! P given by

gyðWðZÞðXÞ;X 0Þ ¼ gQðaðX ;X 0Þ; s�1ðZÞÞ:

It should be noted that in general a is not symmetric and WðZÞ is not self-adjoint
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with respect to gy, since the Tanaka-Webster connection ‘ has nontrivial torsion. Next,

define a? : P? nP? ! P by setting

a
?ðZ;Z 0Þ ¼

1

2
P

?ð‘ZZ
0 þ ‘Z 0ZÞ

for any Z;Z 0 A G
yðP?Þ, where P

?
: TðMÞ ! P is the natural bundle map. Also, let

k A W
1ðMÞ be defined by

P c k ¼ 0; kðZÞ ¼ traceWðZÞ

for any Z A G
yðP?Þ. A pseudohermitian analogue t A G

yðP?Þ of the mean curvature

vector (of a foliation on a Riemannian manifold) is then given by

gyðt;ZÞ ¼ kðZÞ

for any Z A G
yðP?Þ.

Let gP be the bundle metric induced by gy on P. Since ‘gy ¼ 0, we have

ðLZgPÞðX ;X 0Þ ¼ �2gQðaðX ;X 0Þ; s�1ðZÞÞ þ gyðT‘ðX ;X 0Þ;ZÞð4:1Þ

þ gyðT‘ðZ;XÞ;X 0Þ þ gyðT‘ðZ;X 0Þ;X Þ

for any X ;X 0 A G
yðPÞ and Z A G

yðP?Þ. Also, by a similar calculation, we have

ðLXgQÞðs
�1ðZÞ; s�1ðZ 0ÞÞ ¼ �2gyða

?ðZ;Z 0Þ;XÞð4:2Þ

þ gyðT‘ðX ;ZÞ;Z 0Þ þ gyðT‘ðX ;Z 0Þ;ZÞ

for any X A G
yðPÞ and Z;Z 0 A G

yðP?Þ.

Let us now extend the complex structure J to the whole TðMÞ by setting JT ¼ 0.

This furnishes a bundle morphism J : TðMÞ ! TðMÞ satisfying J 2 ¼ �I þ ynT , I

being the identity transformation of TðMÞ, and

gyðJX ; JY Þ ¼ gyðX ;YÞ � yðXÞyðYÞ

for any X ;Y A TðMÞ. Finally, we remark that the real expression of the purity axioms

of the torsion T‘ yields the identity

T‘ ¼ y5tþ dynT ;ð4:3Þ

where T is the characteristic direction of ðM; yÞ (cf. [12], p. 174).

We apply these notions and formulas to foliations F all of whose leaves are tangent

to T . If this is the case, that is, if T A G
yðPÞ, let HðFÞ be the orthogonal complement

(with respect to gy) of RT in P. Then HðMÞ ¼ HðFÞlP?. Note that the flow de-

termined by T is a subfoliation of F, that is, each leaf of F is foliated by real curves

which are the maximal integral curves of T . The study of the corresponding exotic

characteristic classes (cf. [11]) is an open problem. We now obtain the following

Theorem 3. Let M be a nondegenerate CR manifold and y a contact form on M

with vanishing pseudohermitian torsion ðt ¼ 0Þ. Let F be a foliation of M such that

TðFÞ is nondegenerate in ðTðMÞ; gyÞ. Assume that T is tangent to the leaves of F.

Then the following hold:
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(1) D is torsion-free.

(2) a is symmetric and WðZÞ is self-adjoint for any Z A G
yðP?Þ.

(3) The induced metric gP along the leaves is invariant under the flows of vector

fields orthogonal to the foliation if and only if a ¼ 0 and HðFÞ is J-invariant.

(4) F is semi-Riemannian and gy is bundle-like if and only if a? ¼ 0.

Proof. The fact that TD ¼ 0 follows from t ¼ 0 together with Proposition 7 and

the purity axiom (4.3), for PðTÞ ¼ 0.

To see (2) through (4), let us drop the assumption t ¼ 0 for the moment. First

note that, since ‘T ¼ 0, one has

aðX ;TÞ ¼ 0ð4:4Þ

for any X A G
yðPÞ. Moreover,

aðT ;XÞ ¼ PðtðX ÞÞð4:5Þ

as a consequence of (4.4) and of

aðX ;X 0Þ ¼ aðX 0
;X Þ þPðT‘ðX ;X 0ÞÞ

for any X ;X 0 A G
yðPÞ. Then it is known from (4.4) that WðZÞ is HðFÞ-valued and

from (4.5) together with the self-adjointness of t with respect to gy that

WðZÞðTÞ ¼ P
?ðtðZÞÞð4:6Þ

for any Z A G
yðP?Þ. Finally, we note that

aðX ;X 0Þ ¼ aðX 0
;XÞ;

gyðWðZÞX ;X 0Þ ¼ gyðX ;WðZÞX 0Þ

for any X ;X 0 A G
yðHðFÞÞ, since PðT‘ðX ;X 0ÞÞ ¼ 0. Then (2) follows from the fol-

lowing more general statement that (1) a is symmetric if and only if tðPÞJP, and (2)

WðZÞ is self-adjoint (with respect to gy) if and only if tðP?ÞJP?, provided that T A

G
yðPÞ.

Using the purity axiom (4.3) and noting that t is self-adjoint with respect to gy, one

may compute the torsion terms in (4.1) to obtain

ðLZgPÞðX ;TÞ ¼ �gyððJ þ 2tÞðXÞ;ZÞ

for any X A G
yðPÞ, and

ðLZgPÞðX ;X 0Þ ¼ �2gQðaðX ;X 0Þ; s�1ðZÞÞ

for any X ;X 0 A G
yðHðFÞÞ. Then (3) is a corollary of a more general statement that

LZgP ¼ 0 along the leaves if and only if a ¼ 0 on HðFÞnHðFÞ and J þ t is a bundle

endomorphism of HðFÞ.

Finally, note that (4.2) furnishes, by a similar computation, that

ðLTgQÞðs
�1ðZÞ; s�1ðZ 0ÞÞ ¼ �2yða?ðZ;Z 0ÞÞ þ 2gyðtðZÞ;Z

0Þ;

ðLXgQÞðs
�1ðZÞ; s�1ðZ 0ÞÞ ¼ �2gyða

?ðZ;Z 0Þ;XÞ
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for any X A HðFÞ and Z;Z 0 A GyðP?Þ. Then LXgQ ¼ 0 for any X A P if and only if

a? ¼ AnT , where A A GyððP?Þ�n ðP?Þ�Þ is given by AðZ;Z 0Þ ¼ gyðtðZÞ;Z 0Þ. Hence

(4) holds when t ¼ 0. r

4.2. The characteristic form.

Let ðM;T1;0ðMÞÞ be a nondegenerate CR-manifold and y a contact form on M. If

E ! M is a vector bundle over M with standard fibre R
k, then we denote by LðEÞ ! M

the principal GLðk;RÞ-bundle of frames (in the fibres) of E. Let F be a foliation on M

such that the tangent bundle P ¼ TðFÞ is nondegenerate in ðTðMÞ; gyÞ. Let gP be the

bundle metric induced on P by the Webster metric gy and ðn; p� nÞ the signature of gP,

where p ¼ dimR Px, x A M. Denote by OðPÞ ! M the principal Oðn; p� nÞ-subbundle

of LðPÞ ! M determined by gP. From now on, we assume that F is tangentially ori-

ented, namely the structure group Oðn; p� nÞ reduces to SOðn; p� nÞ. Let then w
F

A

W pðMÞ be the characteristic form of ðM;FÞ defined by

wFðv1; . . . ; vpÞ ¼ detðgyðvi; uðejÞÞÞ

for any vi A TxðMÞ and some frame u : R
p ! TxðMÞ adapted to the ‘‘tangential’’

SOðn; p� nÞ-structure. Clearly, the definition of wFðv1; . . . ; vpÞ is independent of the

choice of adapted frames at x. Also, P? c w
F

¼ 0, where P? is the orthogonal com-

plement of P in ðM; gyÞ. We shall need the following

Lemma 3. Let M be a nondegenerate CR manifold with a fixed contact form y,

and F a tangentially oriented foliation of M whose tangent bundle P is nondegenerate in

ðTðMÞ; gyÞ. Then

LZwFjP ¼ f�kðZÞ þ yðtraceðtPÞZ þP?ððJ � tÞðZÞÞÞgw
F
jPð4:7Þ

for any Z A GyðP?Þ.

Here tP : P ! P is given by tPðXÞ ¼ P?ðtðX ÞÞ for any X A P. The identity (4.7) is the

pseudohermitian analogue of a formula in [40] (cf. also (6.17) in [41], p. 66) and will be

referred to as the pseudohermitian Rummler formula.

Proof. Let fE1; . . .Epg be an oriented local orthonormal frame of P so that

gPðEi;EjÞ ¼ ei dij , where e1 ¼ � � � ¼ en ¼ �1 and enþ1 ¼ � � � ¼ ep ¼ 1. Then it is imme-

diate from

ðLZwFÞðE1; . . . ;EpÞ ¼ �
Xp

i¼1

w
F
ðE1; . . . ;P

?ð½Z;Ei�Þ; . . . ;EpÞ

and

P?ð½Z;Ei�Þ ¼
Xp

j¼1

ejgyð½Z;Ei�;EjÞEj

that

LZwFjP ¼ �
Xp

i¼1

eigyð½Z;Ei�;EiÞwFjP:ð4:8Þ
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On the other hand, we have

kðZÞ ¼
X

p

i¼1

eigyðWðZÞEi;EiÞ ¼
X

p

i¼1

eigQðPð‘Ei
EiÞ; s

�1ðZÞÞ

¼ �
X

p

i¼1

eigyðEi;‘Ei
ZÞ ¼

X

p

i¼1

eigyð½Z;Ei� þ T‘ðZ;EiÞ;EiÞ;

since 2gyðEi;‘ZEiÞ ¼ ZðeiÞ ¼ 0. Finally, again by making use of the purity axiom (4.3),

we obtain

kðZÞ ¼
X

p

i¼1

eigyð½Z;Ei�;EiÞ þ yðtraceðtPÞZ þP?ððJ � tÞðZÞÞÞ;

and hence (4.8) yields (4.7). r

By the pseudohermitian Rummler formula, the p-form

h ¼ Z c dw
F
þ fkðZÞ � yðtraceðtPÞZ þP?ððJ � tÞðZÞÞÞgw

F

vanishes along the leaves of F. As an immediate application, we may look at the case

of a foliation tangent to the characteristic direction of ðM; yÞ and orthogonal to a semi-

Levi foliation. Then we obtain

Proposition 8. Let F be tangent to T. If P? is involutive, then the following

statements are equivalent:

(1) k ¼ 0.

(2) LZwF ¼ 0 for any Z A GyðP?Þ.

(3) dw
F

¼ 0.

The proof of this proposition mimics closely that of Theorem 6.23 in [41], p. 69,

and is therefore omitted.

In contrast with the case of foliations on Riemannian manifolds, it should be re-

marked that a foliation F with k ¼ 0 is not necessarily harmonic. To see a geometric

interpretation of this condition, let b denote the second fundamental form of (each leaf

of ) F in ðM; gyÞ (cf., e.g., (6.1) in [41], p. 62). Note that the Levi-Civita connection ‘y

of ðM; gyÞ is related to the Tanaka-Webster connection ‘ as follows (cf. [12], p. 174):

‘y ¼ ‘þ
1

2
Wy � A

� �

nT þ tn yþ yp J;ð4:9Þ

where Wy and A are given respectively by

WyðX ;YÞ ¼ gyðX ; JY Þ; AðX ;YÞ ¼ gyðtðXÞ;YÞ

for X ;Y A TðMÞ and p denotes the symmetric tensor product. It then follows from

(4.9) that b is related to a as

bðX ;X 0Þ ¼ aðX ;X 0Þ þ fð1=2ÞWyðX ;X 0Þ � AðX ;X 0ÞgPðTÞð4:10Þ

þ yðX 0ÞPðtðXÞÞ þ ð1=2ÞfyðXÞPðJX 0Þ þ yðX 0ÞPðJX Þg
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for any X ;X 0 A P. For a given Z A P?, let aðZÞ : P ! P be the Weingarten map

associated to b (cf., e.g., (6.3) in [41], p. 62). Then, by (4.10), we have

aðZÞðXÞ ¼ WðZÞðXÞ � yðZÞP?ððð1=2ÞJ þ tÞðX ÞÞ þ AðX ;ZÞP?ðTÞð4:11Þ

� ð1=2ÞyðXÞP?ðJZÞ þ ð1=2ÞgyðJX ;ZÞP?ðTÞ:

Let l A W1ðMÞ be the mean curvature of F in ðM; gyÞ (cf. e.g. (6.13) in [41], p. 65).

Taking traces in (4.11), we then obtain

lðZÞ ¼ kðZÞ � yðtraceðtPÞZ þP?ððJ � tÞðZÞÞÞ;ð4:12Þ

for any Z A P?.

As a immediate application, we may observe the following. If T is tangent to F,

then F is harmonic if and only if k ¼ 0. Or, assume that ðM; yÞ has vanishing pseudo-

hermitian torsion (e.g., M is an odd dimensional sphere, the Heisenberg group, or the

pseudoconvex locus of a pseudo-Siegel domain, cf. [4], p. 84–85). Then F is harmonic

if and only if k ¼ yðP? � JÞ.

4.3. Flows.

Let ðM;T1;0ðMÞÞ be a nondegenerate CR manifold and y a contact form on M.

Let e A fG1g and let X be a tangent vector field on M so that gyðX ;X Þ ¼ e every-

where on M. Let F be the flow determined by X , that is, the foliation whose leaves

are the integral curves of X . Let wF be defined by wFðY Þ ¼ gyðY ;XÞ for any Y A

TðMÞ. Then wF A W1ðMÞ is the characteristic form of F on ðM; gyÞ.

Now, note that the pseudohermitian analogue of the mean curvature form k A

W1ðMÞ is given by kðZÞ ¼ egyð‘XX ;ZÞ. Since 2gyð‘XX ;X Þ ¼ XðeÞ ¼ 0, it follows that

‘XX A GyðP?Þ and the mean curvature vector t A GyðP?Þ is given by

t ¼ e ‘XX :ð4:13Þ

We first prove the following

Theorem 4. Let ðM;T1;0ðMÞÞ be a nondegenerate CR manifold with a fixed contact

form y, and T the characteristic direction of ðM; yÞ. Let F be the flow on M defined by

T. Then the following hold:

(1) F is totally geodesic in ðM; gyÞ.

(2) The orbits of T are autoparallel curves of ‘.

(3) LTwF ¼ 0.

(4) gP is invariant under flows of vector fields lying in the Levi distribution of M.

(5) dwF A F 2W2ðMÞ.

Theorem 4 follows from the following

Proposition 9. Let e A fG1g and X A TðMÞ so that gyðX ;X Þ ¼ e. Let F be the

flow on M defined by X. Then the following statements are equivalent:

(1) k ¼ 0.

(2) The orbits of X are autoparallel curves of ‘.
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(3) The characteristic form w
F

satisfies

LXwF ¼ yðXÞðJX þ tðXÞÞ[ � AðX ;XÞy;

where [ denotes lowering of indices by gy, that is, X
[ðYÞ ¼ gyðX ;YÞ for X ;Y A

TðMÞ.

(4) For any Z A P? the Lie derivative LZgP satisfies

ðLZgPÞðX ;X Þ ¼ 2AðX ;XÞyðZÞ � 2yðX ÞgyððJ þ tÞðXÞ;ZÞ:

Proof. The equivalence of (1) and (2) follows from (4.13). Moreover, again by

(4.13), we have

kðZÞ ¼ �egyðX ;‘XZÞ;

and hence

ðLXwFÞZ ¼ ekðZÞ þ gyðT‘ðX ;ZÞ;X Þð4:14Þ

for any Z A TðMÞ. Also, by the purity axiom (4.3), we have

gyðT‘ðX ;ZÞ;X Þ ¼ �AðX ;XÞyðZÞ þ yðXÞgyððJ þ tÞðXÞ;ZÞð4:15Þ

for any Z A TðMÞ. Then (4.14) together with (4.15) yields the equivalence of (1) and

(3). On the other hand, it follows from (4.1) and (4.15) that

ðLZgPÞðX ;XÞ ¼ �2ekðZÞ þ 2AðX ;X ÞyðZÞ � 2yðXÞgyððJ þ tÞðXÞ;ZÞ;

which implies the equivalence of (1) and (4). r

All that remains to be checked is (5) in Theorem 4. This follows from

F 2W2ðMÞ ¼ fo A W2ðMÞ jX co ¼ 0g

and the fact that k ¼ 0 if and only if

X c dw
F

¼ �AðX ;X Þyþ yðXÞðJX þ tðXÞÞ[:

This completes the proof of Theorem 4. r

Next, we restrict our attention to flows defined by infinitesimal pseudohermitian

transformations. A Cy di¤eomorphism f : M ! M is called a pseudohermitian trans-

formation of ðM; yÞ if (1) f is a CR map and (2) f �y ¼ y. Let PshðM; yÞ denote the

group of all pseudohermitian transformations of ðM; yÞ, which has been studied by

Webster (cf. Theorem 1.2 in [42]) and Musso (cf. Theorem 4.10 in [33]). Let UðM; yÞ

! M be the principal Uðr; sÞ-subbundle of LðTðMÞÞ ! M consisting of all linear frames

of the form u ¼ ðx; fXa; JxXa;TðxÞgÞ with

gy;xðXi;XjÞ ¼ ei dij; 1a i; ja 2n;

where Xaþn ¼ JxXa, Xa A HðMÞx, 1a aa n. Then we have

Proposition 10. A Cy di¤eomorphism f of M is a pseudohermitian transforma-

tion of ðM; yÞ if and only if the induced transformation of LðTðMÞÞ maps UðM; yÞ into

itself. Any fibre preserving transformation of UðM; yÞ which leaves the canonical form of

UðM; yÞ invariant is induced by a pseudohermitian transformation f A PshðM; yÞ.
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The proof of Proposition 10 follows from the fact that f A PshðM; yÞ if and only

if f is a Cy di¤eomorphism, f �y ¼ y, and f �ya ¼ U a
b y

b for any local frame fyag of

T1;0ðMÞ� and some (locally defined) Cy functions U a
b on M (it mimics the proof of

Proposition 3.1 in [25], p. 236).

A tangent vector field X on M is said to be an infinitesimal pseudohermitian trans-

formation of ðM; yÞ if its local one-parameter group of local transformations consists

of local pseudohermitian transformations of ðM; yÞ. Let iðM; yÞ be the set of all in-

finitesimal pseudohermitian transformations of ðM; yÞ. By analogy with Proposition 3.2

in [25], p. 237, we also have

Proposition 11. For a vector field X tangent to a nondegenerate CR manifold M,

the following statements are equivalent:

(1) X A iðM; yÞ.

(2) The natural lift of X to LðTðMÞÞ is tangent to UðM; yÞ at each point of

UðM; yÞ.

(3) LXy ¼ 0 and LXy
a ¼ V a

b yb for any local frame fyag of T1;0ðMÞ� and some

local smooth functions V a
b on M.

It is verified from (3) in Proposition 11 that iðM; yÞ is a Lie algebra, as L½X ;Y � ¼

½LX ;LY �. Since each pseudohermitian transformation of ðM; yÞ preserves the Webster

metric gy,

PshðM; yÞJ IsoðM; gyÞ:ð4:16Þ

Let e A fG1g and X A iðM; yÞ such that gyðX ;XÞ ¼ e. Let F be the flow determined

by X . Then it follows from (4.16) that ½X ;Z� A P? for any Z A P?. Consequently,

we have

LXwF ¼ 0:ð4:17Þ

Assume, in particular, that M is compact. Then, by virtue of Theorem 1.2 in [42],

p. 31, PshðM; yÞ is compact. Let G be the closure in PshðM; yÞ of the one-parameter

group of transformations obtained by integrating X . Then G is compact and abelian,

and hence is a torus. Let WkðMÞG denote the space of G-invariant k-forms on M. As

a corollary of (4.17), there is a short exact sequence

0 ! Wk
B ðFÞ ,! WkðMÞG !

Xc
Wk�1
B ðFÞ ! 0;ð4:18Þ

from which one may conclude (as in [41], p. 139) that H k
B ðFÞ are finite dimensional for

0a ka 2n, and zero for k > 2n.

Note that, if t ¼ 0, then it is known by Proposition 2.2 in [42], p. 33, that T A

iðM; yÞ. If X ¼ T , then the connecting homomorphism

D : H k�1
B ðFÞ ! H kþ1

B ðFÞ;

in the long exact cohomology sequence associated with (4.18), is given by D½o� ¼

½ðdyÞ5o� for any ½o� A H k�1
B ðFÞ. As a corollary of Theorem 1 (and of Theorem 10.13

in [41], p. 139), the map ðiTÞ� : H
1ðM;RÞ ! H 0

B ðFÞ is injective.
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Foliated CR manifolds 1067



[33] E. Musso, Homogeneous pseudo-hermitian Riemannian manifolds of Einstein type, Amer. J. Math.,

113 (1990), 219–241.

[34] B. O’Neill, Semi-Riemannian Geometry, Academic Press, New York-London-Paris-San Francisco-São

Paulo-Sydney-Tokyo-Toronto, 1983.

[35] B. O’Neill, The fundamental equations of a submersion, Michigan Math. J., 13 (1966), 459–469.

[36] S. Nishikawa, On maximal spacelike hypersurfaces in a Lorentzian manifold, Nagoya Math. J., 95

(1984), 117–124.

[37] R. Penrose, Physical space-time and nonrealizable CR structures, Bull. Amer. Math. Soc. (N.S.), 8

(1983), 427–448.

[38] C. Rea, Levi-flat submanifolds and holomorphic extension of foliations, Ann. Scoula Norm. Sup. Pisa

(3), 26 (1972), 665–681.

[39] H. Rossi, LeBrun’s nonrealizability theorem in higher dimensions, Duke Math. J., 52 (1985), 457–474.
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