An extension of Yamamoto's theorem on the eigenvalues and singular values of a matrix

By Tin-Yau Tam and Huajun Huang

(Received Sep. 12, 2005)
(Revised Dec. 6, 2005)

Abstract

We extend, in the context of real semisimple Lie group, a result of T. Yamamoto which asserts that $\lim _{m \rightarrow \infty}\left[s_{i}\left(X^{m}\right)\right]^{1 / m}=\left|\lambda_{i}(X)\right|, i=1, \ldots, n$, where $s_{1}(X) \geq \cdots \geq s_{n}(X)$ are the singular values, and $\lambda_{1}(X), \ldots, \lambda_{n}(X)$ are the eigenvalues of the $n \times n$ matrix X, in which $\left|\lambda_{1}(X)\right| \geq \cdots \geq\left|\lambda_{n}(X)\right|$.

1. Introduction.

Let $X \in \boldsymbol{C}_{n \times n}$. It is well known [9, p. 70] that

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left\|X^{m}\right\|^{1 / m}=r(X) \tag{1.1}
\end{equation*}
$$

where $r(X)$ denotes the spectral radius of X and $\|X\|$ denotes the spectral norm of X. Since $\|X\|^{m} \geq\left\|X^{m}\right\| \geq r\left(X^{m}\right)=r^{m}(X)$,

$$
\begin{equation*}
\|X\| \geq\left\|X^{m}\right\|^{1 / m} \geq r(X), \quad m=1,2, \ldots \tag{1.2}
\end{equation*}
$$

Yamamoto [10, p. 174] showed that when m_{i+1} is divisible by $m_{i}, i=1,2, \ldots$, the sequence $\left\{\left\|X^{m_{i}}\right\|^{1 / m_{i}}\right\}_{i \in N}$ is monotonically decreasing, that is,

$$
\begin{equation*}
\|X\| \geq\left\|X^{m_{i}}\right\|^{1 / m_{i}} \geq\left\|X^{m_{i+1}}\right\|^{1 / m_{i+1}} \geq r(X) \tag{1.3}
\end{equation*}
$$

Suppose that the singular values $s_{1}(X), \ldots, s_{n}(X)$ of X and the eigenvalues $\lambda_{1}(X), \ldots, \lambda_{n}(X)$ of X are arranged in nonincreasing order

$$
\begin{equation*}
s_{1}(X) \geq s_{2}(X) \geq \cdots \geq s_{n}(X), \quad\left|\lambda_{1}(X)\right| \geq\left|\lambda_{2}(X)\right| \geq \cdots \geq\left|\lambda_{n}(X)\right| . \tag{1.4}
\end{equation*}
$$

Since $\|X\|=s_{1}(X)$ and $r(X)=\left|\lambda_{1}(X)\right|$, the following result of Yamamoto [10] is a direct generalization of (1.1):

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left[s_{i}\left(X^{m}\right)\right]^{1 / m}=\left|\lambda_{i}(X)\right|, \quad i=1, \ldots, n \tag{1.5}
\end{equation*}
$$

[^0]Loesener [6] rediscovered (1.5). We remark that (1.1) remains true for Hilbert space operators [1, p. 45]. Also see [3], [4], [8] for some generalizations of Yamamoto's theorem.

Equation (1.5) relates the two important sets of scalars of X in (1.4) in a very nice asymptotic way. It may be interpreted as a relation between the singular value decomposition and the complete multiplicative Jordan decomposition of a nonsingular matrix. Since $G L_{n}(\boldsymbol{C})$ is dense in $\boldsymbol{C}_{n \times n}$ and the eigenvalues and singular values of a matrix are continuous functions of its entries $[\mathbf{9}, \mathrm{p} .44]$, it is sufficient to consider $X \in G L_{n}(\boldsymbol{C})$ or $S L_{n}(\boldsymbol{C})$ when we study (1.5). Let $A_{+} \subset G L_{n}(\boldsymbol{C})$ denote the set of all positive diagonal matrices with diagonal entries in nonincreasing order. Recall that the singular value decomposition of $X \in G L_{n}(\boldsymbol{C})$ asserts [$\mathbf{9}$, p. 129] that there exist unitary matrices U, V such that

$$
\begin{equation*}
X=U a_{+}(X) V \tag{1.6}
\end{equation*}
$$

where $a_{+}(X)=\operatorname{diag}\left(s_{1}(X), \ldots, s_{n}(X)\right) \in A_{+}$. Though U and V in the decomposition (1.6) are not unique, $a_{+}(X) \in A_{+}$is uniquely defined. The complete multiplicative Jordan decomposition [2, p. 430-431] of $X \in G L_{n}(\boldsymbol{C})$ asserts that $X=e h u$ where e is diagonalizable with eigenvalues of modulus $1, h$ is diagonalizable over \boldsymbol{R} with positive eigenvalues and $u=\exp \ell$ where ℓ is nilpotent [2]. The eigenvalues of h are the moduli of the eigenvalues of X, counting multiplicities. The elements e, h, u commute with each others and are uniquely defined. Moreover h is conjugate to a unique element in A_{+}, namely, $b(X)=\operatorname{diag}\left(\left|\lambda_{1}(X)\right|, \ldots,\left|\lambda_{n}(X)\right|\right) \in A_{+}$. Thus (1.5) may be rewritten as

$$
\begin{equation*}
\lim _{m \rightarrow \infty} a_{+}\left(X^{m}\right)^{1 / m}=b(X), \quad X \in G L_{n}(\boldsymbol{C}) \tag{1.7}
\end{equation*}
$$

Our main result is to establish (1.7) in the context of real semisimple Lie groups.

2. Extension of Yamamoto's theorem.

Let $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ be a fixed Cartan decomposition of a real semisimple Lie algebra \mathfrak{g} and let G be any connected Lie group having \mathfrak{g} as its Lie algebra. Let $K \subset G$ be the subgroup with Lie algebra \mathfrak{k}. Then K is connected and closed and that $\operatorname{Ad}_{G}(K)$ is compact [2, pp. 252-253]. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal abelian subspace. Fix a closed Weyl chamber \mathfrak{a}_{+} in \mathfrak{a} and set $A_{+}:=\exp \mathfrak{a}_{+}$. The Cartan decomposition [5, p. 434], [2, p. 402] asserts that

$$
G=K A_{+} K
$$

Though $k_{1}, k_{2} \in K$ are not unique in $g=k_{1} a k_{2}\left(g \in G, k_{1}, k_{2} \in K, a \in A_{+}\right)$, the element $a=a_{+}(g) \in A_{+}$is unique.

An element $h \in G$ is called hyperbolic if $h=\exp (X)$ where $X \in \mathfrak{g}$ is real semisimple, that is, ad $X \in \operatorname{End}(\mathfrak{g})$ is diagonalizable over \boldsymbol{R}. An element $u \in G$ is called unipotent if $u=\exp (N)$ where $N \in \mathfrak{g}$ is nilpotent, that is, ad $N \in \operatorname{End}(\mathfrak{g})$ is nilpotent. An element $e \in G$ is elliptic if $\operatorname{Ad}(e) \in \operatorname{Aut}(\mathfrak{g})$ is diagonalizable over \boldsymbol{C} with eigenvalues of modulus 1. The complete multiplicative Jordan decomposition [5, Proposition 2.1] for G asserts that each $g \in G$ can be uniquely written as

$$
g=e h u
$$

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h, u commute. We write $g=e(g) h(g) u(g)$.

Remark 2.1. By [5, Proposition 3.4] and its proof, if π is a representation of G, then $\pi(g)=\pi(e) \pi(h) \pi(u) \in S L\left(V_{\pi}\right)$ is the complete multiplicative Jordan decomposition of $\pi(g)$ in $S L\left(V_{\pi}\right)$, where V_{π} is the representation space.

It turns out that $h \in G$ is hyperbolic if and only if it is conjugate to a unique element $b(h) \in A_{+}[\mathbf{5}$, Proposition 2.4]. Denote

$$
b(g):=b(h(g)) .
$$

Since $\exp : \mathfrak{a} \rightarrow A$ is bijective, $\log b(g)$ is well-defined. We denote

$$
\begin{equation*}
A(g):=\exp (\operatorname{conv}(W \log b(g))), \tag{2.1}
\end{equation*}
$$

where conv $W x$ denotes the convex hull of the orbit of $x \in \mathfrak{a}$ under the action of the Weyl group of $(\mathfrak{g}, \mathfrak{a})$, which may be defined as the quotient of the normalizer of A in K modulo the centralizer of A in K. Notice that $A(g)=A(b(g))$ is compact in G since the Weyl group W is finite.

Given any $g \in G$, we consider the two sequences $\left\{\left(a_{+}\left(g^{m}\right)\right)^{1 / m}\right\}_{m \in N}$ and $\left\{\left(b\left(g^{m}\right)\right)^{1 / m}\right\}_{m \in \boldsymbol{N}}$. The latter is simply a constant sequence since if $g=e h u$, then $h\left(g^{m}\right)=h(g)^{m}$ (because e, h, u commute) so that $b\left(g^{m}\right)=b(g)^{m}$ and thus $\left(b\left(g^{m}\right)\right)^{1 / m}=$ $b(g)$ for all $m \in \boldsymbol{N}$. The following is an extension of Yamamoto's theorem (1.5).

Theorem 2.2. Given $g \in G$, let $b(g) \in A_{+}$be the unique element in A_{+}conjugate to the hyperbolic part $h(g)$ of g. Then

$$
\lim _{m \rightarrow \infty}\left[a_{+}\left(g^{m}\right)\right]^{1 / m}=b(g)
$$

When m_{i+1} is divisible by $m_{i}, i=1,2, \ldots$, the sequence of compact sets $\left\{A\left(\left[a_{+}\left(g^{m_{i}}\right)\right]^{1 / m_{i}}\right)\right\}_{i \in \boldsymbol{N}}$ is monotonically decreasing and converges to $A(b(g))$ with respect to set inclusion.

Proof. Denote by $I(G)$ the set of irreducible representations of G, V_{π} the representation space of $\pi \in I(G), r(X)$ the spectral radius of the endomorphism X. For each $\pi \in I(G)$, there is an inner product structure [5, p. 435] such that
(1) $\pi(k)$ is unitary for all $k \in K$,
(2) $\pi(a)$ is positive definite for all $a \in A_{+}$.

We will assume that V_{π} is endowed with this inner product. Thus for any $g \in G$, if $g=k_{1} a_{+}(g) k_{2}$, where $a_{+}(g) \in A_{+}, k_{1}, k_{2} \in K$, then

$$
\begin{align*}
\|\pi(g)\| & =\left\|\pi\left(k_{1} a_{+}(g) k_{2}\right)\right\|=\left\|\pi\left(k_{1}\right) \pi\left(a_{+}(g)\right) \pi\left(k_{2}\right)\right\| \\
& =\left\|\pi\left(a_{+}(g)\right)\right\|=r\left(\pi\left(a_{+}(g)\right)\right) \tag{2.2}
\end{align*}
$$

since the spectral norm $\|\cdot\|$ is invariant under unitary equivalence, and $\|X\|=r(X)$ for every positive definite matrix X.

Now the sequence $\left\{\left\|\pi\left(g^{m}\right)\right\|^{1 / m}\right\}_{m \in N}=\left\{\left\|\pi(g)^{m}\right\|^{1 / m}\right\}_{m \in N}$ converges to $r(\pi(g))$ by (1.1). According to (2.2),

$$
\begin{equation*}
\left\|\pi\left(g^{m}\right)\right\|^{1 / m}=r\left(\pi\left[a_{+}\left(g^{m}\right)\right]\right)^{1 / m}=r\left(\left[\pi\left(a_{+}\left(g^{m}\right)\right)\right]^{1 / m}\right)=r\left(\pi\left[a_{+}\left(g^{m}\right)^{1 / m}\right]\right) \tag{2.3}
\end{equation*}
$$

So $\left\{r\left(\pi\left[a_{+}\left(g^{m}\right)^{1 / m}\right]\right)\right\}_{m \in \boldsymbol{N}}$ converges to $r(\pi(g))$, and by (1.2) and (2.2)

$$
\begin{equation*}
r\left(\pi\left[a_{+}(g)\right]\right) \geq r\left(\pi\left[a_{+}\left(g^{m}\right)^{1 / m}\right]\right) \geq r(\pi(g)), \quad m=1,2, \ldots \tag{2.4}
\end{equation*}
$$

A result of Kostant [5, Theorem 3.1] asserts that if $f, g \in G$, then $A(f) \supset A(g)$ if and only if $r(\pi(f)) \geq r(\pi(g))$ for all $\pi \in I(G)$, where $A(g)$ is defined in (2.1). Thus by (2.4),

$$
\begin{equation*}
A\left(a_{+}(g)\right) \supset A\left(a_{+}\left(g^{m}\right)^{1 / m}\right) \supset A(g), \quad m=1,2, \ldots \tag{2.5}
\end{equation*}
$$

Thus the sequence $\left\{a_{+}\left(g^{m}\right)^{1 / m}\right\}_{m \in N}$ lies in the compact set $A\left(a_{+}(g)\right)$ by (2.5). Let $\ell \in A\left(a_{+}(g)\right) \cap A_{+}$be any limit point of the sequence $\left\{a_{+}\left(g^{m}\right)^{1 / m}\right\}_{m \in N} \subset A\left(a_{+}(g)\right) \cap A_{+}$, that is,

$$
\lim _{i \rightarrow \infty} a_{+}\left(g^{p_{i}}\right)^{1 / p_{i}}=\ell
$$

for some natural number sequence $p_{1}<p_{2}<\cdots$. Since r and π are continuous,

$$
r\left(\pi\left(a_{+}\left(g^{p_{i}}\right)^{1 / p_{i}}\right)\right) \rightarrow r(\pi(\ell)) .
$$

So $r(\pi(\ell))=r(\pi(g))$ for all $\pi \in I(G)$, which implies that $A(\ell)=A(g)=A(b(g))$ by the result of Kostant [5, Theorem 3.1] again. Both ℓ and $b(g)$ are in A_{+}. Thus $\ell=b(g)$ and

$$
\lim _{m \rightarrow \infty} a_{+}\left(g^{m}\right)^{1 / m}=b(g)
$$

If m_{i+1} is divisible by $m_{i}, i=1,2, \ldots$, by (1.3) and the argument above,

$$
A\left(a_{+}(g)\right) \supset A\left(a_{+}\left(g^{m_{i}}\right)^{1 / m_{i}}\right) \supset A\left(a_{+}\left(g^{m_{i+1}}\right)^{1 / m_{i+1}}\right) \supset A(g), \quad m=1,2, \ldots
$$

So the sequence of compact sets $\left\{A\left(\left(a_{+}\left(g^{m_{i}}\right)\right)^{1 / m_{i}}\right)\right\}_{i \in N}$ is monotonically decreasing and converges to $A(b(g))$ with respect to set inclusion.

Remark 2.3. When $G=S L_{n}(\boldsymbol{C})$, Theorem 2.2 is reduced to Yamamoto's theo-
rem (1.5) whose proof in $[\mathbf{1 0}]$ uses compound matrices which are corresponding to the fundamental representations on the exterior spaces. Also see [7] for an elementary proof of (1.5).

Example 2.4. The following example exhibits that a subgroup $G \subset G^{\prime}$ may not have the same $a_{+}(g)$ component in the $K A_{+} K$ decomposition when $g \in G$ is viewed as an element of G^{\prime}. But the complete multiplicative Jordan decomposition remains the same (See Remark 2.1). Let $G=S O_{2 n}(\boldsymbol{C}):=\left\{g \in S L_{2 n}(\boldsymbol{C}): g^{T} g=1\right\}$ be a connected group [2, p. 449] whose Lie algebra is

$$
\mathfrak{g}:=\mathfrak{s o}_{2 n}(\boldsymbol{C})=\left\{X \in \boldsymbol{C}_{2 n \times 2 n}: X^{T}=-X\right\} .
$$

Fix a Cartan decomposition $\mathfrak{g}=\mathfrak{k}+\mathfrak{p}$ where

$$
\mathfrak{k}=\left\{X \in \boldsymbol{R}_{2 n \times 2 n}: X^{T}=-X\right\}, \quad \mathfrak{p}=i \mathfrak{k},
$$

that is, the corresponding Cartan involution is $\theta(Y)=-Y^{*}, Y \in \mathfrak{g}$. So $K=S O(2 n)$. Pick

$$
\mathfrak{a}=\left\{\left(\begin{array}{cc}
0 & i t_{1} \\
-i t_{1} & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & i t_{2} \\
-i t_{2} & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & i t_{n} \\
-i t_{n} & 0
\end{array}\right): t_{1}, \ldots, t_{n} \in \boldsymbol{R}\right\}
$$

and

$$
\mathfrak{a}_{+}=\left\{\left(\begin{array}{cc}
0 & i t_{1} \\
-i t_{1} & 0
\end{array}\right) \oplus\left(\begin{array}{cc}
0 & i t_{2} \\
-i t_{2} & 0
\end{array}\right) \oplus \cdots \oplus\left(\begin{array}{cc}
0 & i t_{n} \\
-i t_{n} & 0
\end{array}\right): t_{1} \geq \cdots \geq t_{n-1} \geq\left|t_{n}\right|\right\} .
$$

Thus

$$
\begin{aligned}
& A_{+}=\{ \left(\begin{array}{cc}
\cosh t_{1} & i \sinh t_{1} \\
-i \sinh t_{1} & \cosh t_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
\cosh t_{2} & i \sinh t_{2} \\
-i \sinh t_{2} & \cosh t_{2}
\end{array}\right) \oplus \cdots \oplus \\
&\left.\left(\begin{array}{cc}
\cosh t_{n} & i \sinh t_{n} \\
-i \sinh t_{n} & \cosh t_{n}
\end{array}\right): t_{1} \geq \cdots \geq t_{n-1} \geq\left|t_{n}\right|\right\}
\end{aligned}
$$

According to the Cartan decomposition, each $g \in S O_{2 n}(\boldsymbol{C})$ may be written as $g=k_{1} a k_{2}$ where $a \in A_{+}$and $k_{1}, k_{2} \in S O(2 n)$ (Notice that it is different from the singular value decomposition of g in $S L_{2 n}(\boldsymbol{C})$). By Remark 2.1 we may view $g \in S O_{2 n}(\boldsymbol{C}) \subset S L_{2 n}(\boldsymbol{C})$ as an element in $S L_{2 n}(\boldsymbol{C})$ while computing its complete multiplicative Jordan decomposition $g=e h u$. Of course h is conjugate to $a_{+}(h) \in A_{+}$via some element in $S O_{2 n}(\boldsymbol{C})$. Notice that if $t_{2} \neq 0$, then

$$
h_{1}=\left(\begin{array}{cc}
\cosh t_{1} & i \sinh t_{1} \\
-i \sinh t_{1} & \cosh t_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
\cosh t_{2} & i \sinh t_{2} \\
-i \sinh t_{2} & \cosh t_{2}
\end{array}\right)
$$

and

$$
h_{2}=\left(\begin{array}{cc}
\cosh t_{1} & i \sinh t_{1} \\
-i \sinh t_{1} & \cosh t_{1}
\end{array}\right) \oplus\left(\begin{array}{cc}
\cosh t_{2} & -i \sinh t_{2} \\
i \sinh t_{2} & \cosh t_{2}
\end{array}\right)
$$

are not in the same coset in $S O(4) \backslash S O_{4}(\boldsymbol{C}) / S O(4)$. If $g_{1}:=y h_{1} y^{-1}$ and $g_{2}:=y h_{2} y^{-1}$, where $y \in S O_{2 n}(\boldsymbol{C})$, then

$$
\lim _{m \rightarrow \infty}\left(a_{+}\left(g_{1}^{m}\right)\right)^{1 / m}=h_{1}, \quad \lim _{m \rightarrow \infty}\left(a_{+}\left(g_{2}^{m}\right)\right)^{1 / m}=h_{2}
$$

But in $S L_{4}(\boldsymbol{C})$, if we pick $A_{+} \subset S L_{4}(\boldsymbol{C})$ to be the group of positive diagonal matrices and $K=S U(4)$, then

$$
\lim _{m \rightarrow \infty}\left(a_{+}\left(g_{1}^{m}\right)\right)^{1 / m}=\lim _{m \rightarrow \infty}\left(a_{+}\left(g_{2}^{m}\right)\right)^{1 / m}=\operatorname{diag}\left(e^{t_{1}}, e^{t_{2}}, e^{-t_{2}}, e^{-t_{1}}\right)
$$

if $t_{1} \geq t_{2} \geq 0$, since g_{1}, g_{2} have the same set of singular values.
Acknowledgement. The authors are thankful to the referee for pointing out a misquote from $[\mathbf{1 0}]$ in the first version, that is, the sequence $\left\{\left\|X^{m}\right\|^{1 / m}\right\}_{m \in N}$ is not monotonically decreasing in general: $X=\left(\begin{array}{cc}0 & 2 \\ -1 / 2 & 0\end{array}\right)$.

References

[1] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1974.
[2] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[3] C. R. Johnson and P. Nylen, Yamamoto's theorem for generalized singular values, Linear Algebra Appl., 128 (1990), 147-158.
[4] C. R. Johnson and P. Nylen, Erratum: Yamamoto's theorem for generalized singular values [Linear Algebra Appl., 128 (1990), 147-158]. Linear Algebra Appl., 180 (1993), 4.
[5] B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973), 413-460.
[6] C. R. Loesener, Sur la recherche des valeurs propres de matrices mal conditionées, Thèse, Universitd́es sciences et techniques du Languedoc, Montpellier, 1976.
[7] R. Mathias, Two theorems on singular values and eigenvalues, Amer. Math. Monthly, 97 (1990), 47-50.
[8] P. Nylen and L. Rodman, Approximation numbers and Yamamoto's theorem in Banach algebras, Integral Equations Operator Theory, 13 (1990), 728-749.
[9] D. Serre, Matrices: Theory and Applications, Springer, New York, 2002.
[10] T. Yamamoto, On the extreme values of the roots of matrices, J. Math. Soc. Japan, 19 (1967), 173-178.

Tin-Yau Tam
Department of Mathematics and Statistics 221 Parker Hall
Auburn University
AL 36849-5310
USA
E-mail: tamtiny@auburn.edu

Huajun Huang

Department of Mathematics and Statistics 221 Parker Hall
Auburn University
AL 36849-5310
USA
E-mail: huanghu@auburn.edu

[^0]: 2000 Mathematics Subject Classification. Primary 15A45, 22E46.
 Key Words and Phrases. Yamamoto's theorem, Cartan decomposition, complete multiplicative Jordan decomposition.

