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Abstract. We extend, in the context of real semisimple Lie group, a result
of T. Yamamoto which asserts that limm→∞[si(X

m)]1/m = |λi(X)|, i = 1, . . . , n,
where s1(X) ≥ · · · ≥ sn(X) are the singular values, and λ1(X), . . . , λn(X) are the
eigenvalues of the n× n matrix X, in which |λ1(X)| ≥ · · · ≥ |λn(X)|.

1. Introduction.

Let X ∈ Cn×n. It is well known [9, p. 70] that

lim
m→∞

‖Xm‖1/m = r(X), (1.1)

where r(X) denotes the spectral radius of X and ‖X‖ denotes the spectral norm of X.
Since ‖X‖m ≥ ‖Xm‖ ≥ r(Xm) = rm(X),

‖X‖ ≥ ‖Xm‖1/m ≥ r(X), m = 1, 2, . . . (1.2)

Yamamoto [10, p. 174] showed that when mi+1 is divisible by mi, i = 1, 2, . . . , the
sequence {‖Xmi‖1/mi}i∈N is monotonically decreasing, that is,

‖X‖ ≥ ‖Xmi‖1/mi ≥ ‖Xmi+1‖1/mi+1 ≥ r(X). (1.3)

Suppose that the singular values s1(X), . . . , sn(X) of X and the eigenvalues
λ1(X), . . . , λn(X) of X are arranged in nonincreasing order

s1(X) ≥ s2(X) ≥ · · · ≥ sn(X), |λ1(X)| ≥ |λ2(X)| ≥ · · · ≥ |λn(X)|. (1.4)

Since ‖X‖ = s1(X) and r(X) = |λ1(X)|, the following result of Yamamoto [10] is a
direct generalization of (1.1):

lim
m→∞

[si(Xm)]1/m = |λi(X)|, i = 1, . . . , n. (1.5)
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Loesener [6] rediscovered (1.5). We remark that (1.1) remains true for Hilbert space
operators [1, p. 45]. Also see [3], [4], [8] for some generalizations of Yamamoto’s theorem.

Equation (1.5) relates the two important sets of scalars of X in (1.4) in a very
nice asymptotic way. It may be interpreted as a relation between the singular value
decomposition and the complete multiplicative Jordan decomposition of a nonsingular
matrix. Since GLn(C) is dense in Cn×n and the eigenvalues and singular values of
a matrix are continuous functions of its entries [9, p. 44], it is sufficient to consider
X ∈ GLn(C) or SLn(C) when we study (1.5). Let A+ ⊂ GLn(C) denote the set of all
positive diagonal matrices with diagonal entries in nonincreasing order. Recall that the
singular value decomposition of X ∈ GLn(C) asserts [9, p. 129] that there exist unitary
matrices U , V such that

X = Ua+(X)V, (1.6)

where a+(X) = diag (s1(X), . . . , sn(X)) ∈ A+. Though U and V in the decomposition
(1.6) are not unique, a+(X) ∈ A+ is uniquely defined. The complete multiplicative
Jordan decomposition [2, p. 430–431] of X ∈ GLn(C) asserts that X = ehu where e is
diagonalizable with eigenvalues of modulus 1, h is diagonalizable over R with positive
eigenvalues and u = exp ` where ` is nilpotent [2]. The eigenvalues of h are the moduli
of the eigenvalues of X, counting multiplicities. The elements e, h, u commute with each
others and are uniquely defined. Moreover h is conjugate to a unique element in A+,
namely, b(X) = diag (|λ1(X)|, . . . , |λn(X)|) ∈ A+. Thus (1.5) may be rewritten as

lim
m→∞

a+(Xm)1/m = b(X), X ∈ GLn(C). (1.7)

Our main result is to establish (1.7) in the context of real semisimple Lie groups.

2. Extension of Yamamoto’s theorem.

Let g = k+p be a fixed Cartan decomposition of a real semisimple Lie algebra g and
let G be any connected Lie group having g as its Lie algebra. Let K ⊂ G be the subgroup
with Lie algebra k. Then K is connected and closed and that AdG(K) is compact [2,
pp. 252–253]. Let a ⊂ p be a maximal abelian subspace. Fix a closed Weyl chamber a+

in a and set A+ := exp a+. The Cartan decomposition [5, p. 434], [2, p. 402] asserts that

G = KA+K.

Though k1, k2 ∈ K are not unique in g = k1ak2 (g ∈ G, k1, k2 ∈ K, a ∈ A+), the element
a = a+(g) ∈ A+ is unique.

An element h ∈ G is called hyperbolic if h = exp(X) where X ∈ g is real semisimple,
that is, ad X ∈ End (g) is diagonalizable over R. An element u ∈ G is called unipotent if
u = exp(N) where N ∈ g is nilpotent, that is, ad N ∈ End (g) is nilpotent. An element
e ∈ G is elliptic if Ad(e) ∈ Aut (g) is diagonalizable over C with eigenvalues of modulus
1. The complete multiplicative Jordan decomposition [5, Proposition 2.1] for G asserts
that each g ∈ G can be uniquely written as
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g = ehu,

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h, u

commute. We write g = e(g)h(g)u(g).

Remark 2.1. By [5, Proposition 3.4] and its proof, if π is a representation of G,
then π(g) = π(e)π(h)π(u) ∈ SL(Vπ) is the complete multiplicative Jordan decomposition
of π(g) in SL(Vπ), where Vπ is the representation space.

It turns out that h ∈ G is hyperbolic if and only if it is conjugate to a unique element
b(h) ∈ A+ [5, Proposition 2.4]. Denote

b(g) := b(h(g)).

Since exp : a → A is bijective, log b(g) is well-defined. We denote

A(g) := exp
(
conv (W log b(g))

)
, (2.1)

where convWx denotes the convex hull of the orbit of x ∈ a under the action of the
Weyl group of (g, a), which may be defined as the quotient of the normalizer of A in K

modulo the centralizer of A in K. Notice that A(g) = A(b(g)) is compact in G since the
Weyl group W is finite.

Given any g ∈ G, we consider the two sequences {(a+(gm))1/m}m∈N and
{(b(gm))1/m}m∈N . The latter is simply a constant sequence since if g = ehu, then
h(gm) = h(g)m (because e, h, u commute) so that b(gm) = b(g)m and thus (b(gm))1/m =
b(g) for all m ∈ N . The following is an extension of Yamamoto’s theorem (1.5).

Theorem 2.2. Given g ∈ G, let b(g) ∈ A+ be the unique element in A+ conjugate
to the hyperbolic part h(g) of g. Then

lim
m→∞

[a+(gm)]1/m = b(g).

When mi+1 is divisible by mi, i = 1, 2, . . . , the sequence of compact sets
{A([a+(gmi)]1/mi)}i∈N is monotonically decreasing and converges to A(b(g)) with re-
spect to set inclusion.

Proof. Denote by I(G) the set of irreducible representations of G, Vπ the repre-
sentation space of π ∈ I(G), r(X) the spectral radius of the endomorphism X. For each
π ∈ I(G), there is an inner product structure [5, p. 435] such that

(1) π(k) is unitary for all k ∈ K,
(2) π(a) is positive definite for all a ∈ A+.

We will assume that Vπ is endowed with this inner product. Thus for any g ∈ G, if
g = k1a+(g)k2, where a+(g) ∈ A+, k1, k2 ∈ K, then
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‖π(g)‖ =
∥∥π(k1a+(g)k2)

∥∥ =
∥∥π(k1)π(a+(g))π(k2)

∥∥

=
∥∥π(a+(g))

∥∥ = r
(
π(a+(g))

)
, (2.2)

since the spectral norm ‖ · ‖ is invariant under unitary equivalence, and ‖X‖ = r(X) for
every positive definite matrix X.

Now the sequence {‖π(gm)‖1/m}m∈N = {‖π(g)m‖1/m}m∈N converges to r(π(g)) by
(1.1). According to (2.2),

∥∥π(gm)
∥∥1/m = r

(
π[a+(gm)]

)1/m = r
(
[π(a+(gm))]1/m

)
= r

(
π[a+(gm)1/m]

)
. (2.3)

So {r(π[a+(gm)1/m])}m∈N converges to r(π(g)), and by (1.2) and (2.2)

r(π[a+(g)]) ≥ r
(
π[a+(gm)1/m]

) ≥ r(π(g)), m = 1, 2, . . . . (2.4)

A result of Kostant [5, Theorem 3.1] asserts that if f, g ∈ G, then A(f) ⊃ A(g) if and
only if r(π(f)) ≥ r(π(g)) for all π ∈ I(G), where A(g) is defined in (2.1). Thus by (2.4),

A(a+(g)) ⊃ A
(
a+(gm)1/m

) ⊃ A(g), m = 1, 2, . . . . (2.5)

Thus the sequence {a+(gm)1/m}m∈N lies in the compact set A(a+(g)) by (2.5). Let
` ∈ A(a+(g))∩A+ be any limit point of the sequence {a+(gm)1/m}m∈N ⊂ A(a+(g))∩A+,
that is,

lim
i→∞

a+(gpi)1/pi = `,

for some natural number sequence p1 < p2 < · · · . Since r and π are continuous,

r
(
π
(
a+(gpi)1/pi

)) → r(π(`)).

So r(π(`)) = r(π(g)) for all π ∈ I(G), which implies that A(`) = A(g) = A(b(g)) by the
result of Kostant [5, Theorem 3.1] again. Both ` and b(g) are in A+. Thus ` = b(g) and

lim
m→∞

a+(gm)1/m = b(g).

If mi+1 is divisible by mi, i = 1, 2, . . . , by (1.3) and the argument above,

A(a+(g)) ⊃ A
(
a+(gmi)1/mi

) ⊃ A
(
a+(gmi+1)1/mi+1

) ⊃ A(g), m = 1, 2, . . . .

So the sequence of compact sets {A((a+(gmi))1/mi)}i∈N is monotonically decreasing and
converges to A(b(g)) with respect to set inclusion. ¤

Remark 2.3. When G = SLn(C), Theorem 2.2 is reduced to Yamamoto’s theo-



Extension of Yamamoto’s result 1201

rem (1.5) whose proof in [10] uses compound matrices which are corresponding to the
fundamental representations on the exterior spaces. Also see [7] for an elementary proof
of (1.5).

Example 2.4. The following example exhibits that a subgroup G ⊂ G′ may not
have the same a+(g) component in the KA+K decomposition when g ∈ G is viewed as
an element of G′. But the complete multiplicative Jordan decomposition remains the
same (See Remark 2.1). Let G = SO2n(C) := {g ∈ SL2n(C) : gT g = 1} be a connected
group [2, p. 449] whose Lie algebra is

g := so2n(C) =
{
X ∈ C2n×2n : XT = −X

}
.

Fix a Cartan decomposition g = k + p where

k = {X ∈ R2n×2n : XT = −X}, p = ik,

that is, the corresponding Cartan involution is θ(Y ) = −Y ∗, Y ∈ g. So K = SO(2n).
Pick

a =
{(

0 it1
−it1 0

)
⊕

(
0 it2

−it2 0

)
⊕ · · · ⊕

(
0 itn

−itn 0

)
: t1, . . . , tn ∈ R

}
,

and

a+ =
{(

0 it1
−it1 0

)
⊕

(
0 it2

−it2 0

)
⊕ · · · ⊕

(
0 itn

−itn 0

)
: t1 ≥ · · · ≥ tn−1 ≥ |tn|

}
.

Thus

A+ =
{(

cosh t1 i sinh t1
−i sinh t1 cosh t1

)
⊕

(
cosh t2 i sinh t2
−i sinh t2 cosh t2

)
⊕ · · ·⊕

(
cosh tn i sinh tn
−i sinh tn cosh tn

)
: t1 ≥ · · · ≥ tn−1 ≥ |tn|

}
.

According to the Cartan decomposition, each g ∈ SO2n(C) may be written as g = k1ak2

where a ∈ A+ and k1, k2 ∈ SO(2n) (Notice that it is different from the singular value
decomposition of g in SL2n(C)). By Remark 2.1 we may view g ∈ SO2n(C) ⊂ SL2n(C) as
an element in SL2n(C) while computing its complete multiplicative Jordan decomposition
g = ehu. Of course h is conjugate to a+(h) ∈ A+ via some element in SO2n(C). Notice
that if t2 6= 0, then

h1 =
(

cosh t1 i sinh t1
−i sinh t1 cosh t1

)
⊕

(
cosh t2 i sinh t2
−i sinh t2 cosh t2

)
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and

h2 =
(

cosh t1 i sinh t1
−i sinh t1 cosh t1

)
⊕

(
cosh t2 −i sinh t2
i sinh t2 cosh t2

)

are not in the same coset in SO(4)\SO4(C)/SO(4). If g1 := yh1y
−1 and g2 := yh2y

−1,
where y ∈ SO2n(C), then

lim
m→∞

(
a+(gm

1 )
)1/m = h1, lim

m→∞
(
a+(gm

2 )
)1/m = h2.

But in SL4(C), if we pick A+ ⊂ SL4(C) to be the group of positive diagonal matrices
and K = SU(4), then

lim
m→∞

(
a+(gm

1 )
)1/m = lim

m→∞
(
a+(gm

2 )
)1/m = diag (et1 , et2 , e−t2 , e−t1),

if t1 ≥ t2 ≥ 0, since g1, g2 have the same set of singular values.

Acknowledgement. The authors are thankful to the referee for pointing out a
misquote from [10] in the first version, that is, the sequence {‖Xm‖1/m}m∈N is not
monotonically decreasing in general: X =

(
0 2

−1/2 0

)
.
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