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Abstract. We extend, in the context of real semisimple Lie group, a result
of T. Yamamoto which asserts that limm,—oo[s;(X™)]V/™ = |N\(X)], i = 1,...,n,
where s1(X) > -+ > sp(X) are the singular values, and A1(X),..., An(X) are the
eigenvalues of the n x n matrix X, in which |A1(X)| > -+ > [An(X)].

1. Introduction.

Let X € Cpxpn. It is well known [9, p. 70] that

lim || X™||Y™ = r(X), (1.1)

m— 00

where r(X) denotes the spectral radius of X and || X|| denotes the spectral norm of X.
Since [ X" > [|X™]| = r(X™) = r™(X),

IXI| = XY™ > r(X), m=1,2,... (1.2)

Yamamoto [10, p.174] showed that when m;;; is divisible by m;, ¢ = 1,2,..., the
sequence {[|X™||*/™},cn is monotonically decreasing, that is,

IX[| = ) tme = X mie > e(X). (1.3)

Suppose that the singular values s;(X),...,s,(X) of X and the eigenvalues
A (X),. .., A (X) of X are arranged in nonincreasing order

51(X) > 52(X) > - 2 50(X), MX)] 2 Pe(0)] 2> M(X). (14)

Since || X|| = s1(X) and r(X) = |A1(X)], the following result of Yamamoto [10] is a
direct generalization of (1.1):

lim [s;(X™)]Y™ = |M(X)], i=1,...,n. (1.5)

m—0o0
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Loesener [6] rediscovered (1.5). We remark that (1.1) remains true for Hilbert space
operators [1, p. 45]. Also see [3], [4], [8] for some generalizations of Yamamoto’s theorem.

Equation (1.5) relates the two important sets of scalars of X in (1.4) in a very
nice asymptotic way. It may be interpreted as a relation between the singular value
decomposition and the complete multiplicative Jordan decomposition of a nonsingular
matrix. Since GL,(C) is dense in C, x, and the eigenvalues and singular values of
a matrix are continuous functions of its entries [9, p.44], it is sufficient to consider
X € GL,(C) or SL,(C) when we study (1.5). Let Ay C GL,(C) denote the set of all
positive diagonal matrices with diagonal entries in nonincreasing order. Recall that the
singular value decomposition of X € GL,(C) asserts [9, p.129] that there exist unitary
matrices U, V such that

X = Uay (X)V, (1.6)

where a4 (X) = diag (s1(X),...,s,(X)) € A+. Though U and V in the decomposition
(1.6) are not unique, a;(X) € A4 is uniquely defined. The complete multiplicative
Jordan decomposition [2, p.430-431] of X € GL,(C) asserts that X = ehu where e is
diagonalizable with eigenvalues of modulus 1, h is diagonalizable over R with positive
eigenvalues and u = exp ¢ where £ is nilpotent [2]. The eigenvalues of h are the moduli
of the eigenvalues of X, counting multiplicities. The elements e, h, u commute with each
others and are uniquely defined. Moreover h is conjugate to a unique element in A,

namely, b(X) = diag (|A\1 (X)], ..., |[M(X)|) € A4. Thus (1.5) may be rewritten as
lim ay (X™)Y™ =b(X), X e GL,(C). (1.7)

Our main result is to establish (1.7) in the context of real semisimple Lie groups.

2. Extension of Yamamoto’s theorem.

Let g = £+ p be a fixed Cartan decomposition of a real semisimple Lie algebra g and
let G be any connected Lie group having g as its Lie algebra. Let K C G be the subgroup
with Lie algebra . Then K is connected and closed and that Adg(K) is compact [2,
pp- 252-253]. Let a C p be a maximal abelian subspace. Fix a closed Weyl chamber a
in a and set A, :=expa;. The Cartan decomposition [5, p.434], [2, p.402] asserts that

Though k1, ko € K are not unique in g = kyjaks (9 € G, k1, ke € K, a € A, ), the element
a=ay4(g) € Ay is unique.

An element h € G is called hyperbolic if h = exp(X) where X € g is real semisimple,
that is, ad X € End (g) is diagonalizable over R. An element u € G is called unipotent if
u = exp(N) where N € g is nilpotent, that is, ad N € End (g) is nilpotent. An element
e € G is elliptic if Ad(e) € Aut (g) is diagonalizable over C' with eigenvalues of modulus
1. The complete multiplicative Jordan decomposition [5, Proposition 2.1] for G asserts
that each g € G can be uniquely written as
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g = ehu,

where e is elliptic, h is hyperbolic and « is unipotent and the three elements e, h, u
commute. We write g = e(g)h(g)u(g).

REMARK 2.1. By [5, Proposition 3.4] and its proof, if 7 is a representation of G,
then 7(g) = w(e)w(h)w(u) € SL(Vy) is the complete multiplicative Jordan decomposition
of (g) in SL(V;), where V. is the representation space.

It turns out that h € G is hyperbolic if and only if it is conjugate to a unique element
b(h) € A, [5, Proposition 2.4]. Denote

Since exp : a — A is bijective, logb(g) is well-defined. We denote
A(g) == exp (conv (W logb(g))), (2.1)

where conv Wz denotes the convex hull of the orbit of x € a under the action of the
Weyl group of (g, a), which may be defined as the quotient of the normalizer of A in K
modulo the centralizer of A in K. Notice that A(g) = A(b(g)) is compact in G since the
Weyl group W is finite.

Given any g € G, we consider the two sequences {(ay(¢™))""}men and
{((g™)Y™} men. The latter is simply a constant sequence since if g = ehu, then
h(g™) = h(g)™ (because e, h, u commute) so that b(g™) = b(g)™ and thus (b(g™))*/™ =
b(g) for all m € N. The following is an extension of Yamamoto’s theorem (1.5).

THEOREM 2.2. Given g € G, let b(g) € Ay be the unique element in A4 conjugate
to the hyperbolic part h(g) of g. Then

lim [a1(g™)]"/™ = b(g).

m—00
When m;4q1 is divisible by m;, @ = 1,2,..., the sequence of compact sets

{A([ay (™)) ™) Yien is monotonically decreasing and converges to A(b(g)) with re-
spect to set inclusion.

ProOOF. Denote by I(G) the set of irreducible representations of G, V. the repre-
sentation space of w € I(G), r(X) the spectral radius of the endomorphism X. For each
m € I(G), there is an inner product structure [5, p.435] such that

(1) w(k) is unitary for all k € K,
(2) 7(a) is positive definite for all a € A,..

We will assume that V. is endowed with this inner product. Thus for any g € G, if
g = k1a4(g)ka, where ai(g) € Ay, k1, ke € K, then
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[m(@ll = ||m(k1as(9)ks)|| = ||7(k1)7(ay(g))m(k2)]|
= |[(as(9))]| = (7(a+(9))), (2.2)

since the spectral norm || - || is invariant under unitary equivalence, and || X || = r(X) for
every positive definite matrix X.

Now the sequence {||7(¢")||*™ }men = {||7(g)™|'/™}men converges to 7(m(g)) by
(1.1). According to (2.2),

Iw (g™ = r(wlas (™)™ = r(fwlar(™NY™) = r(xlar (g™ ™).  (2:3)
So {r(n[ay(g™)™])}men converges to 7(m(g)), and by (1.2) and (2.2)

r(nfar(9)]) = r(rlar(9™)/™]) 2 r(n(g)), m=1.2,.... (2.4)

A result of Kostant [5, Theorem 3.1] asserts that if f,¢g € G, then A(f) D A(g) if and
only if r(n(f)) > r(n(g)) for all ®# € I(G), where A(g) is defined in (2.1). Thus by (2.4),

Alas(g)) D Aap(¢™Y™) > Alg), m=12,.... (2.5)

Thus the sequence {ay(g™)"™}men lies in the compact set A(ay(g)) by (2.5). Let
¢ € A(ay (9))NA, be any limit point of the sequence {a (¢")"™}men C A(ai(g9))NAL,
that is,

lim a+(gpi)1/pi =,

71— 00
for some natural number sequence p; < pa < ---. Since r and 7 are continuous,
r(m(ag(g7)/7)) — r(x(0)).

So r(m(£)) = r(n(g)) for all # € I(G), which implies that A(¢) = A(g) = A(b(g)) by the
result of Kostant [5, Theorem 3.1] again. Both £ and b(g) are in A;. Thus ¢ = b(g) and

lim ay(g™)"/™ = b(g).

m—00

If m; 41 is divisible by m;, ¢ = 1,2,..., by (1.3) and the argument above,
Aas(9)) D Alas (g™ )™) 5 Ay (¢™)m) 5 Alg), m=1,2,....

So the sequence of compact sets { A((a4 (g™))"/™)}ien is monotonically decreasing and
converges to A(b(g)) with respect to set inclusion. O

REMARK 2.3.  When G = SL,(C), Theorem 2.2 is reduced to Yamamoto’s theo-
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rem (1.5) whose proof in [10] uses compound matrices which are corresponding to the
fundamental representations on the exterior spaces. Also see [7] for an elementary proof
of (1.5).

EXAMPLE 2.4. The following example exhibits that a subgroup G C G’ may not
have the same a4 (g) component in the KAy K decomposition when g € G is viewed as
an element of G’. But the complete multiplicative Jordan decomposition remains the
same (See Remark 2.1). Let G = S04, (C) := {g € SL,,(C) : g¢Tg = 1} be a connected
group [2, p.449] whose Lie algebra is

g:= 502n(c) = {X € Conxan : X' = _X}
Fix a Cartan decomposition g = € + p where
t={X € Rynxan: X" =—X},  p=it

that is, the corresponding Cartan involution is §(Y) = =Y*, Y € g. So K = SO(2n).

Pick
0 it 0 ity 0 ity
= ty,.. € RY,
‘ {(it1 0)69(@52 0>@ @(itn 0) b tn € }
and
0 it 0 ity 0 ity
- tty > >t > |t b
“ {<—z’t1 0)@<—z’t2 0)@ @(—z‘tn 0> 2z }
Thus

A = {( cosht; isinhtl) o ( cosh g isinhtg) o

—isinht; coshty —isinhty coshty

cosht, isinht,
1> >t > |t .
(—isinhtn cosht, 12 2t 2 il
According to the Cartan decomposition, each g € SO, (C) may be written as g = kyaks
where a € A} and ky, ke € SO(2n) (Notice that it is different from the singular value
decomposition of g in SLs, (C)). By Remark 2.1 we may view g € SO3,,(C) C SLa,(C) as
an element in SLy, (C') while computing its complete multiplicative Jordan decomposition

g = ehu. Of course h is conjugate to a4 (h) € A1 via some element in SO, (C). Notice
that if t5 # 0, then

e — cosht; 4sinht; © coshty isinhty
'~ \ —isinh t1 coshty —isinhts coshis
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and

o — cosht; 4sinht; o coshty —isinhig
2~ \—isinh t1 coshty isinhts coshts

are not in the same coset in SO(4)\SO04(C)/SO(4). If g1 := yhiy~! and go := yhay*,
where y € SO3,(C), then

Tim (g ()" = b lim (g (g5)"" = ho.

But in SL4(C), if we pick Ay C SL4(C) to be the group of positive diagonal matrices
and K = SU(4), then

lim (a(g7) "™ = lim (ai(g5))""™ = diag (", e, e~ ™),
m—00 m—00

if t1 >ty > 0, since g1, g2 have the same set of singular values.
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