An extension of Yamamoto's theorem on the eigenvalues and singular values of a matrix

By Tin-Yau TAM and Huajun HUANG

(Received Sep. 12, 2005) (Revised Dec. 6, 2005)

Abstract. We extend, in the context of real semisimple Lie group, a result of T. Yamamoto which asserts that $\lim_{m\to\infty}[s_i(X^m)]^{1/m}=|\lambda_i(X)|,\ i=1,\ldots,n,$ where $s_1(X)\geq\cdots\geq s_n(X)$ are the singular values, and $\lambda_1(X),\ldots,\lambda_n(X)$ are the eigenvalues of the $n\times n$ matrix X, in which $|\lambda_1(X)|\geq\cdots\geq |\lambda_n(X)|$.

1. Introduction.

Let $X \in C_{n \times n}$. It is well known [9, p. 70] that

$$\lim_{m \to \infty} ||X^m||^{1/m} = r(X), \tag{1.1}$$

where r(X) denotes the spectral radius of X and ||X|| denotes the spectral norm of X. Since $||X||^m \ge ||X^m|| \ge r(X^m) = r^m(X)$,

$$||X|| \ge ||X^m||^{1/m} \ge r(X), \quad m = 1, 2, \dots$$
 (1.2)

Yamamoto [10, p. 174] showed that when m_{i+1} is divisible by m_i , $i=1,2,\ldots$, the sequence $\{\|X^{m_i}\|^{1/m_i}\}_{i\in\mathbb{N}}$ is monotonically decreasing, that is,

$$||X|| \ge ||X^{m_i}||^{1/m_i} \ge ||X^{m_{i+1}}||^{1/m_{i+1}} \ge r(X).$$
(1.3)

Suppose that the singular values $s_1(X), \ldots, s_n(X)$ of X and the eigenvalues $\lambda_1(X), \ldots, \lambda_n(X)$ of X are arranged in nonincreasing order

$$s_1(X) \ge s_2(X) \ge \dots \ge s_n(X), \quad |\lambda_1(X)| \ge |\lambda_2(X)| \ge \dots \ge |\lambda_n(X)|.$$
 (1.4)

Since $||X|| = s_1(X)$ and $r(X) = |\lambda_1(X)|$, the following result of Yamamoto [10] is a direct generalization of (1.1):

$$\lim_{m \to \infty} [s_i(X^m)]^{1/m} = |\lambda_i(X)|, \quad i = 1, \dots, n.$$
(1.5)

²⁰⁰⁰ Mathematics Subject Classification. Primary 15A45, 22E46.

 $Key\ Words\ and\ Phrases.$ Yamamoto's theorem, Cartan decomposition, complete multiplicative Jordan decomposition.

Loesener [6] rediscovered (1.5). We remark that (1.1) remains true for Hilbert space operators [1, p. 45]. Also see [3], [4], [8] for some generalizations of Yamamoto's theorem.

Equation (1.5) relates the two important sets of scalars of X in (1.4) in a very nice asymptotic way. It may be interpreted as a relation between the singular value decomposition and the complete multiplicative Jordan decomposition of a nonsingular matrix. Since $GL_n(\mathbf{C})$ is dense in $\mathbf{C}_{n\times n}$ and the eigenvalues and singular values of a matrix are continuous functions of its entries [9, p.44], it is sufficient to consider $X \in GL_n(\mathbf{C})$ or $SL_n(\mathbf{C})$ when we study (1.5). Let $A_+ \subset GL_n(\mathbf{C})$ denote the set of all positive diagonal matrices with diagonal entries in nonincreasing order. Recall that the singular value decomposition of $X \in GL_n(\mathbf{C})$ asserts [9, p. 129] that there exist unitary matrices U, V such that

$$X = Ua_{+}(X)V, \tag{1.6}$$

where $a_+(X) = \operatorname{diag}(s_1(X), \ldots, s_n(X)) \in A_+$. Though U and V in the decomposition (1.6) are not unique, $a_+(X) \in A_+$ is uniquely defined. The complete multiplicative Jordan decomposition [2, p. 430–431] of $X \in GL_n(\mathbb{C})$ asserts that X = ehu where e is diagonalizable with eigenvalues of modulus 1, h is diagonalizable over \mathbb{R} with positive eigenvalues and $u = \exp \ell$ where ℓ is nilpotent [2]. The eigenvalues of h are the moduli of the eigenvalues of X, counting multiplicities. The elements e, h, u commute with each others and are uniquely defined. Moreover h is conjugate to a unique element in A_+ , namely, $b(X) = \operatorname{diag}(|\lambda_1(X)|, \ldots, |\lambda_n(X)|) \in A_+$. Thus (1.5) may be rewritten as

$$\lim_{m \to \infty} a_{+}(X^{m})^{1/m} = b(X), \quad X \in GL_{n}(C).$$
(1.7)

Our main result is to establish (1.7) in the context of real semisimple Lie groups.

2. Extension of Yamamoto's theorem.

Let $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ be a fixed Cartan decomposition of a real semisimple Lie algebra \mathfrak{g} and let G be any connected Lie group having \mathfrak{g} as its Lie algebra. Let $K \subset G$ be the subgroup with Lie algebra \mathfrak{k} . Then K is connected and closed and that $\mathrm{Ad}_G(K)$ is compact [2, pp. 252–253]. Let $\mathfrak{a} \subset \mathfrak{p}$ be a maximal abelian subspace. Fix a *closed* Weyl chamber \mathfrak{a}_+ in \mathfrak{a} and set $A_+ := \exp \mathfrak{a}_+$. The Cartan decomposition [5, p. 434], [2, p. 402] asserts that

$$G = KA_+K$$
.

Though $k_1, k_2 \in K$ are not unique in $g = k_1 a k_2$ $(g \in G, k_1, k_2 \in K, a \in A_+)$, the element $a = a_+(g) \in A_+$ is unique.

An element $h \in G$ is called *hyperbolic* if $h = \exp(X)$ where $X \in \mathfrak{g}$ is real semisimple, that is, ad $X \in \operatorname{End}(\mathfrak{g})$ is diagonalizable over R. An element $u \in G$ is called *unipotent* if $u = \exp(N)$ where $N \in \mathfrak{g}$ is nilpotent, that is, ad $N \in \operatorname{End}(\mathfrak{g})$ is nilpotent. An element $e \in G$ is *elliptic* if $\operatorname{Ad}(e) \in \operatorname{Aut}(\mathfrak{g})$ is diagonalizable over C with eigenvalues of modulus 1. The complete multiplicative Jordan decomposition [5, Proposition 2.1] for G asserts that each $g \in G$ can be uniquely written as

$$g = ehu$$
,

where e is elliptic, h is hyperbolic and u is unipotent and the three elements e, h, u commute. We write g = e(g)h(g)u(g).

REMARK 2.1. By [5, Proposition 3.4] and its proof, if π is a representation of G, then $\pi(g) = \pi(e)\pi(h)\pi(u) \in SL(V_{\pi})$ is the complete multiplicative Jordan decomposition of $\pi(g)$ in $SL(V_{\pi})$, where V_{π} is the representation space.

It turns out that $h \in G$ is hyperbolic if and only if it is conjugate to a unique element $b(h) \in A_+$ [5, Proposition 2.4]. Denote

$$b(g) := b(h(g)).$$

Since exp: $\mathfrak{a} \to A$ is bijective, $\log b(g)$ is well-defined. We denote

$$A(g) := \exp\left(\operatorname{conv}\left(W\log b(g)\right)\right),\tag{2.1}$$

where conv Wx denotes the convex hull of the orbit of $x \in \mathfrak{a}$ under the action of the Weyl group of $(\mathfrak{g},\mathfrak{a})$, which may be defined as the quotient of the normalizer of A in K modulo the centralizer of A in K. Notice that A(g) = A(b(g)) is compact in G since the Weyl group W is finite.

Given any $g \in G$, we consider the two sequences $\{(a_+(g^m))^{1/m}\}_{m \in \mathbb{N}}$ and $\{(b(g^m))^{1/m}\}_{m \in \mathbb{N}}$. The latter is simply a constant sequence since if g = ehu, then $h(g^m) = h(g)^m$ (because e, h, u commute) so that $b(g^m) = b(g)^m$ and thus $(b(g^m))^{1/m} = b(g)$ for all $m \in \mathbb{N}$. The following is an extension of Yamamoto's theorem (1.5).

THEOREM 2.2. Given $g \in G$, let $b(g) \in A_+$ be the unique element in A_+ conjugate to the hyperbolic part h(g) of g. Then

$$\lim_{m \to \infty} [a_{+}(g^{m})]^{1/m} = b(g).$$

When m_{i+1} is divisible by m_i , $i=1,2,\ldots$, the sequence of compact sets $\{A([a_+(g^{m_i})]^{1/m_i})\}_{i\in\mathbb{N}}$ is monotonically decreasing and converges to A(b(g)) with respect to set inclusion.

PROOF. Denote by I(G) the set of irreducible representations of G, V_{π} the representation space of $\pi \in I(G)$, r(X) the spectral radius of the endomorphism X. For each $\pi \in I(G)$, there is an inner product structure [5, p. 435] such that

- (1) $\pi(k)$ is unitary for all $k \in K$,
- (2) $\pi(a)$ is positive definite for all $a \in A_+$.

We will assume that V_{π} is endowed with this inner product. Thus for any $g \in G$, if $g = k_1 a_+(g) k_2$, where $a_+(g) \in A_+$, $k_1, k_2 \in K$, then

$$\|\pi(g)\| = \|\pi(k_1 a_+(g)k_2)\| = \|\pi(k_1)\pi(a_+(g))\pi(k_2)\|$$

$$= \|\pi(a_+(g))\| = r(\pi(a_+(g))), \tag{2.2}$$

since the spectral norm $\|\cdot\|$ is invariant under unitary equivalence, and $\|X\| = r(X)$ for every positive definite matrix X.

Now the sequence $\{\|\pi(g^m)\|^{1/m}\}_{m\in\mathbb{N}} = \{\|\pi(g)^m\|^{1/m}\}_{m\in\mathbb{N}}$ converges to $r(\pi(g))$ by (1.1). According to (2.2),

$$\|\pi(g^m)\|^{1/m} = r(\pi[a_+(g^m)])^{1/m} = r([\pi(a_+(g^m))]^{1/m}) = r(\pi[a_+(g^m)^{1/m}]).$$
 (2.3)

So $\{r(\pi[a_+(g^m)^{1/m}])\}_{m\in\mathbb{N}}$ converges to $r(\pi(g))$, and by (1.2) and (2.2)

$$r(\pi[a_{+}(g)]) \ge r(\pi[a_{+}(g^{m})^{1/m}]) \ge r(\pi(g)), \quad m = 1, 2, \dots$$
 (2.4)

A result of Kostant [5, Theorem 3.1] asserts that if $f, g \in G$, then $A(f) \supset A(g)$ if and only if $r(\pi(f)) \ge r(\pi(g))$ for all $\pi \in I(G)$, where A(g) is defined in (2.1). Thus by (2.4),

$$A(a_{+}(g)) \supset A(a_{+}(g^{m})^{1/m}) \supset A(g), \quad m = 1, 2, \dots$$
 (2.5)

Thus the sequence $\{a_+(g^m)^{1/m}\}_{m\in\mathbb{N}}$ lies in the compact set $A(a_+(g))$ by (2.5). Let $\ell\in A(a_+(g))\cap A_+$ be any limit point of the sequence $\{a_+(g^m)^{1/m}\}_{m\in\mathbb{N}}\subset A(a_+(g))\cap A_+$, that is,

$$\lim_{i \to \infty} a_+(g^{p_i})^{1/p_i} = \ell,$$

for some natural number sequence $p_1 < p_2 < \cdots$. Since r and π are continuous,

$$r(\pi(a_+(g^{p_i})^{1/p_i})) \to r(\pi(\ell)).$$

So $r(\pi(\ell)) = r(\pi(g))$ for all $\pi \in I(G)$, which implies that $A(\ell) = A(g) = A(b(g))$ by the result of Kostant [5, Theorem 3.1] again. Both ℓ and b(g) are in A_+ . Thus $\ell = b(g)$ and

$$\lim_{m \to \infty} a_{+}(g^{m})^{1/m} = b(g).$$

If m_{i+1} is divisible by m_i , i = 1, 2, ..., by (1.3) and the argument above,

$$A(a_{+}(g)) \supset A(a_{+}(g^{m_{i}})^{1/m_{i}}) \supset A(a_{+}(g^{m_{i+1}})^{1/m_{i+1}}) \supset A(g), \quad m = 1, 2, \dots$$

So the sequence of compact sets $\{A((a_+(g^{m_i}))^{1/m_i})\}_{i\in\mathbb{N}}$ is monotonically decreasing and converges to A(b(g)) with respect to set inclusion.

REMARK 2.3. When $G = SL_n(C)$, Theorem 2.2 is reduced to Yamamoto's theo-

rem (1.5) whose proof in [10] uses compound matrices which are corresponding to the fundamental representations on the exterior spaces. Also see [7] for an elementary proof of (1.5).

EXAMPLE 2.4. The following example exhibits that a subgroup $G \subset G'$ may not have the same $a_+(g)$ component in the KA_+K decomposition when $g \in G$ is viewed as an element of G'. But the complete multiplicative Jordan decomposition remains the same (See Remark 2.1). Let $G = SO_{2n}(\mathbf{C}) := \{g \in SL_{2n}(\mathbf{C}) : g^Tg = 1\}$ be a connected group $[\mathbf{2}, p.449]$ whose Lie algebra is

$$\mathfrak{g} := \mathfrak{so}_{2n}(\mathbf{C}) = \{ X \in \mathbf{C}_{2n \times 2n} : X^T = -X \}.$$

Fix a Cartan decomposition $\mathfrak{g} = \mathfrak{k} + \mathfrak{p}$ where

$$\mathfrak{k} = \{ X \in \mathbf{R}_{2n \times 2n} : X^T = -X \}, \qquad \mathfrak{p} = i\mathfrak{k},$$

that is, the corresponding Cartan involution is $\theta(Y) = -Y^*$, $Y \in \mathfrak{g}$. So K = SO(2n). Pick

$$\mathfrak{a} = \left\{ \begin{pmatrix} 0 & it_1 \\ -it_1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & it_2 \\ -it_2 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & it_n \\ -it_n & 0 \end{pmatrix} : t_1, \ldots, t_n \in \mathbf{R} \right\},\,$$

and

$$\mathfrak{a}_+ = \left\{ \begin{pmatrix} 0 & it_1 \\ -it_1 & 0 \end{pmatrix} \oplus \begin{pmatrix} 0 & it_2 \\ -it_2 & 0 \end{pmatrix} \oplus \cdots \oplus \begin{pmatrix} 0 & it_n \\ -it_n & 0 \end{pmatrix} : t_1 \geq \cdots \geq t_{n-1} \geq |t_n| \right\}.$$

Thus

$$A_{+} = \left\{ \begin{pmatrix} \cosh t_{1} & i \sinh t_{1} \\ -i \sinh t_{1} & \cosh t_{1} \end{pmatrix} \oplus \begin{pmatrix} \cosh t_{2} & i \sinh t_{2} \\ -i \sinh t_{2} & \cosh t_{2} \end{pmatrix} \oplus \cdots \oplus \right.$$
$$\left. \begin{pmatrix} \cosh t_{n} & i \sinh t_{n} \\ -i \sinh t_{n} & \cosh t_{n} \end{pmatrix} : t_{1} \ge \cdots \ge t_{n-1} \ge |t_{n}| \right\}.$$

According to the Cartan decomposition, each $g \in SO_{2n}(\mathbb{C})$ may be written as $g = k_1 a k_2$ where $a \in A_+$ and $k_1, k_2 \in SO(2n)$ (Notice that it is different from the singular value decomposition of g in $SL_{2n}(\mathbb{C})$). By Remark 2.1 we may view $g \in SO_{2n}(\mathbb{C}) \subset SL_{2n}(\mathbb{C})$ as an element in $SL_{2n}(\mathbb{C})$ while computing its complete multiplicative Jordan decomposition g = ehu. Of course h is conjugate to $a_+(h) \in A_+$ via some element in $SO_{2n}(\mathbb{C})$. Notice that if $t_2 \neq 0$, then

$$h_1 = \begin{pmatrix} \cosh t_1 & i \sinh t_1 \\ -i \sinh t_1 & \cosh t_1 \end{pmatrix} \oplus \begin{pmatrix} \cosh t_2 & i \sinh t_2 \\ -i \sinh t_2 & \cosh t_2 \end{pmatrix}$$

and

$$h_2 = \begin{pmatrix} \cosh t_1 & i \sinh t_1 \\ -i \sinh t_1 & \cosh t_1 \end{pmatrix} \oplus \begin{pmatrix} \cosh t_2 & -i \sinh t_2 \\ i \sinh t_2 & \cosh t_2 \end{pmatrix}$$

are not in the same coset in $SO(4)\backslash SO_4(\mathbf{C})/SO(4)$. If $g_1 := yh_1y^{-1}$ and $g_2 := yh_2y^{-1}$, where $y \in SO_{2n}(\mathbf{C})$, then

$$\lim_{m \to \infty} (a_+(g_1^m))^{1/m} = h_1, \quad \lim_{m \to \infty} (a_+(g_2^m))^{1/m} = h_2.$$

But in $SL_4(\mathbf{C})$, if we pick $A_+ \subset SL_4(\mathbf{C})$ to be the group of positive diagonal matrices and K = SU(4), then

$$\lim_{m \to \infty} (a_{+}(g_{1}^{m}))^{1/m} = \lim_{m \to \infty} (a_{+}(g_{2}^{m}))^{1/m} = \operatorname{diag}(e^{t_{1}}, e^{t_{2}}, e^{-t_{2}}, e^{-t_{1}}),$$

if $t_1 \geq t_2 \geq 0$, since g_1, g_2 have the same set of singular values.

ACKNOWLEDGEMENT. The authors are thankful to the referee for pointing out a misquote from [10] in the first version, that is, the sequence $\{\|X^m\|^{1/m}\}_{m\in\mathbb{N}}$ is not monotonically decreasing in general: $X = \begin{pmatrix} 0 & 2 \\ -1/2 & 0 \end{pmatrix}$.

References

- [1] P. R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1974.
- [2] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
- [3] C. R. Johnson and P. Nylen, Yamamoto's theorem for generalized singular values, Linear Algebra Appl., 128 (1990), 147–158.
- [4] C. R. Johnson and P. Nylen, Erratum: Yamamoto's theorem for generalized singular values [Linear Algebra Appl., 128 (1990), 147–158]. Linear Algebra Appl., 180 (1993), 4.
- [5] B. Kostant, On convexity, the Weyl group and Iwasawa decomposition, Ann. Sci. Ecole Norm. Sup. (4), 6 (1973), 413–460.
- [6] C. R. Loesener, Sur la recherche des valeurs propres de matrices mal conditionées, Thèse, Universitées sciences et techniques du Languedoc, Montpellier, 1976.
- [7] R. Mathias, Two theorems on singular values and eigenvalues, Amer. Math. Monthly, 97 (1990), 47–50
- [8] P. Nylen and L. Rodman, Approximation numbers and Yamamoto's theorem in Banach algebras, Integral Equations Operator Theory, 13 (1990), 728–749.
- [9] D. Serre, Matrices: Theory and Applications, Springer, New York, 2002.
- [10] T. Yamamoto, On the extreme values of the roots of matrices, J. Math. Soc. Japan, 19 (1967), 173–178.

Tin-Yau Tam

Department of Mathematics and Statistics 221 Parker Hall Auburn University AL 36849-5310 USA

E-mail: tamtiny@auburn.edu

Huajun Huang

Department of Mathematics and Statistics 221 Parker Hall Auburn University AL 36849-5310 USA

E-mail: huanghu@auburn.edu