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The homotopy of spaces of maps between real projective spaces

By Kohhei Yamaguchi

(Received Nov. 30, 2005)

Abstract. We study the homotopy groups of spaces of continuous maps be-
tween real projective spaces and we generalize the results given in [5], [8] and [12].
In particular, we determine the rational homotopy types of these spaces and compute
their fundamental groups explicitly.

1. Introduction.

For connected spaces X and Y , we denote by Map(X, Y ) (resp. Map∗(X, Y )) the
space consisting of all continuous maps (resp. based continuous maps) f : X → Y with
compact-open topology. For K = R or C, let im,n : KPm → KPn denote the inclusion
map given by im,n([x0 : · · · : xm]) = [x0 : · · · : xm : 0 : · · · : 0] for each pair of integers
1 ≤ m ≤ n. Let Map1(KPm,KPn) denote the path component of Map(KPm,KPn)
which contains the inclusion im,n. We choose ek = [1 : 0 : · · · : 0] ∈ KPk as the base point
of KPk, and let Map∗1(KPm,KPn) be the subspace defined by Map∗1(KPm,KPn) =
Map∗(KPm,KPn)∩Map1(KPm,KPn). We define the group GK(n) by GK(n) = O(n),
U(n) for K = R or C, and define the map fK

m,n : GK(n) → Map∗1(KPm,KPn) by the
right matrix multiplication

fK
m,n(A)([x0 : · · · : xm]) = [x0 : · · · : xm : 0 : · · · : 0] ·

[
1 0n

t0n A

]

for A ∈ GK(n), where 0n = (0, 0, . . . , 0) ∈ Kn. Since the subgroup of GK(n) which fixes
KPm is GK(n−m), it induces the map

αK
m,n : ZK

n,m → Map∗1(KPm,KPn), (1)

where ZK
n,m = GK(n)/GK(n − m) denotes the K-Stiefel manifold of orthogonal m-

frames in Kn. We usually write ZR
n,m = Vn,m if K = R, and it is called the real Stiefel

manifold of orthogonal m-frames in Rn. Similarly, we define the map gK
m,n : GK(n+1) →

Map1(KPm,KPn) by

gK
m,n(A)([x0 : · · · : xm]) = [x0 : · · · : xm : 0 : · · · : 0] ·A for A ∈ GK(n + 1).
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Because the subgroup ∆m+1 ×GK(n−m) ⊂ GK(n + 1) is fixed under the map gK
m,n, it

also induces the map

βK
m,n : PZK

n+1,m+1 → Map1(KPm,KPn), (2)

where ∆k ⊂ GK(k) is the center of GK(k), PZK
n+1,m+1 denotes the space given by

PZK
n+1,m+1 = GK(n + 1)/(∆m+1 × GK(n −m)) ∼= PK(ZK

n+1,m+1), and PK(ZK
n+1,m+1)

is the space consisting of all K∗-projective classes of the Stiefel manifold ZK
n+1,m+1. We

write PZR
n+1,m+1 = PVn+1,m+1 if K = R, and it is called the real projective Stiefel

manifold of orthogonal (m + 1)-frames in Rn+1.
The principal motivation for this paper derives from the work of S. Sasao [8]

(cf. [3], [7]), in which he studies the homotopy groups of Map1(CPm,CPn) and
Map∗1(CPm,CPn) by using the maps αC

m,n and βC
m,n. Because the case K = C has

been studied well, from now on we shall study the case K = R. Now we recall the
following result.

Theorem 1.1 ([5], [12]). Let 1 ≤ m ≤ n be integers.

(i) The map βm,n = βR
m,n : PVn+1,m+1 → Map1(RPm,RPn) is a homotopy equiva-

lence up to dimension 2(n−m)− 1.

(ii) πk

(
Map1(RPn,RPn)

)⊗Q ∼=





Q if n ≡ 1 (mod 2) and k = n, or
n ≡ 0 (mod 2) and k = 2n− 1,

0 otherwise.

Remark. A map f : X → Y is called a homotopy equivalence up to dimension
D if f∗ : πk(X) → πk(Y ) is an isomorphism when k < D and an epimorphism when
k = D. Similarly, a map f : X → Y is called a rational homotopy equivalence through
the dimension D if f∗⊗ 1 : πk(X)⊗Q → πk(Y )⊗Q is an isomorphism whenever k ≤ D.
In particular, a map f : X → Y is called a rational homotopy equivalence through the
maximal dimension D, if f∗ ⊗ 1 : πk(X) ⊗Q → πk(Y ) ⊗Q is an isomorphism for any
k ≤ D and it is not an isomorphism for k = D + 1.

Sasao [8] also shows that αC
m,n and βC

m,n are rational homotopy equivalences, and one
may suppose that the maps αR

m,n and βR
m,n might be also rational homotopy equivalences.

However, recently N. Okazaki pointed out that the map βR
m,n might not be a rational

homotopy equivalence, and one may suppose that it might be not so useful to use these
maps for studying the homotopy of the spaces Map1(RPm,RPn) and Map∗1(RPm,RPn).
However, this is not true. In fact, the main purpose of this paper is to show how these
maps are useful for studying the homotopy of these spaces. We shall investigate what
extent these maps approximate their rational homotopy groups, and show that it is very
useful to study them for computing the integral homotopy groups of Map1(RPm,RPn)
and Map∗1(RPm,RPn) (see Theorem 1.4 below). More precisely, the main results of this
paper are stated as follows.

Theorem 1.2. Let 1 ≤ m < n be integers.
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(i) The map αm,n = αR
m,n : Vn,m → Map∗1(RPm,RPn) is a homotopy equivalences up

to dimension DR(m,n) = 2(n−m)− 1.
(ii) The maps

{
αm,n = αR

m,n : Vn,m → Map∗1(RPm,RPn)

βm,n = βR
m,n : PVn+1,m+1 → Map1(RPm,RPn)

are rational homotopy equivalences through the maximal dimension D(m,n), where
D(m,n) denotes the number defined by

D(m,n) =

{
2n− 3 if n ≡ 0 (mod 2) and m = 1,

2(n−m)− 1− (−1)m+n otherwise.

Proposition 1.3. Let 1 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2) and m ≡ 0 (mod 2), πk

(
Map∗1(RPm,RPn)

)⊗Q ∼= 0 for any k.
(ii) If n ≡ 1 (mod 2) and m ≡ 1 (mod 2),

πk

(
Map∗1(RPm,RPn)

)⊗Q ∼=
{

Q if k = n−m,

0 otherwise.

(iii) If n ≡ 0 and m ≡ 0 (mod 2),

πk

(
Map∗1(RPm,RPn)

)⊗Q ∼=
{

Q if k = n− 1, k = n−m,

0 otherwise.

(iv) If n ≡ 0 and m ≡ 1 (mod 2),

πk

(
Map∗1(RPm,RPn)

)⊗Q ∼=
{

Q if k = n− 1, k = 2n−m− 1,

0 otherwise.

(v) In particular, if n ≥ 2,

πk

(
Map∗1(RPn,RPn)

)⊗Q ∼=
{

Q if k = n− 1 and n ≡ 0 (mod 2),

0 otherwise.

Theorem 1.4. Let 1 ≤ m ≤ n be integers.

(i) The induced homomorphisms

{
αm,n∗ = αR

m,n∗ : π1(Vn,m) → π1

(
Map∗1(RPm,RPn)

)

βm,n∗ = βR
m,n∗ : π1(PVn+1,m+1) → π1

(
Map1(RPm,RPn)

)

are isomorphisms when 1 ≤ m < n or 1 ≤ m = n ≤ 2, and split monomorphisms
when m = n ≥ 3.

(ii) If m < n, there are isomorphisms
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π1

(
Map∗1(RPm,RPn)

) ∼=





Z if (m,n) = (1, 2),

0 if m = 1 and n ≥ 3, 2 ≤ m ≤ n− 2,

Z/2 if m = n− 1 ≥ 2.

π1

(
Map1(RPm,RPn)

) ∼=
{

Z/4 if (m,n) = (1, 2), m = n− 1 ≥ 2,

Z/2 if m = 1 and n ≥ 3, 2 ≤ m ≤ n− 2.

(iii) If m = n, there are isomorphisms

π1

(
Map∗1(RPn,RPn)

) ∼=





0 if n = 1,

Z if n = 2,

Z/2⊕Z/2 if n ≥ 3.

π1

(
Map1(RPn,RPn)

) ∼=





Z if n = 1,

Z/4 if n = 2,

Z/4⊕Z/2 if n ≥ 3.

Corollary 1.5. If n ≡ 1 (mod 2) and m ≡ 0 (mod 2) with 2 ≤ m < n, there is
a rational homotopy equivalence Map∗1(RPm,RPn) 'Q {∗}.

Corollary 1.6. Let 1 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2) and m ≡ 0 (mod 2),

πk

(
Map1(RPm,RPn)

)⊗Q ∼=
{

Q if k = n,

0 otherwise.

(ii) If n ≡ 1 (mod 2) and m ≡ 1 (mod 2),

πk

(
Map1(RPm,RPn)

)⊗Q ∼=
{

Q if k = n−m, k = n,

0 otherwise.

(iii) If n ≡ 0 and m ≡ 0 (mod 2),

πk

(
Map1(RPm,RPn)

)⊗Q ∼=
{

Q if k = 2n− 1, k = n−m,

0 otherwise.

(iv) If n ≡ 0 and m ≡ 1 (mod 2),

πk

(
Map1(RPm,RPn)

)⊗Q ∼=
{

Q if k = 2n− 1, k = 2n−m− 1,

0 otherwise.

This paper is organized as follows. In section 2, we study the basic properties of the
maps αR

m,n and βR
m,n. Next, we compute the fundamental groups π1(Map∗1(RPm,RPn))

and π1(Map1(RPm,RPn)) when m < n, and we investigate the rational homotopy
stability of these maps. In section 3, and in section 4, we determine the rational homotopy
of the spaces Map∗1(RPm,RPn) and Map1(RPm,RPn), explicitly. Finally, in section 5,
we compute the fundamental groups π1(Map∗1(RPm,RPn)) and π1(Map1(RPm,RPn))
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when m = n.

2. The maps αm,n and βm,n.

We write αm,n = αR
m,n and βm,n = βR

m,n. Let ev : Map1(RPm,RPn) → RPn denote
the evaluation map defined by ev(f) = f(em). Then we have the evaluation fibration
sequence

Map∗1(RPm,RPn) −→ Map1(RPm,RPn) ev−→ RPn. (3)

If we define the map rm : Map∗1(RPm,RPn) → Map∗1(RPm−1,RPn) by rm(f) = f |
RPm−1, we also obtain the restriction fibration sequence

Ωm
1 Sn −→ Map∗1(RPm,RPn) rm−→ Map∗1(RPm−1,RPn), (4)

where Ωm
1 Sn denotes the path component of ΩmSn consisting of all based maps f : Sm →

Sn of degree one; we note that Ωm
1 Sn = ΩmSn if m < n, because ΩmSn is connected in

this case.
Similarly, we also obtain the restriction fibration sequence

Ωm
1 Sn −→ Map1(RPm,RPn) rm−→ Map1(RPm−1,RPn). (5)

Proposition 2.1. The map αm,n : Vn,m → Map∗1(RPm,RPn) is a homotopy
equivalence up to dimension 2(n−m)− 1.

Proof. First, if we recall the commutative diagram

{∗} −−−−→ {±1} =−−−−→ {±1}y
y

y
Vn,m −−−−→ Vn+1,m+1 −−−−→ O(n + 1)/O(n) ∼= Sn

‖
y

y
Vn,m −−−−→ PVn+1,m+1 −−−−→ RPn

by using [1, Lemma 2.1], we have the fibration sequence

Vn,m −→ PVn+1,m+1 −→ RPn.

Now consider the commutative diagram

Vn,m −−−−→ PVn+1,m+1 −−−−→ RPn

αm,n

y βm,n

y ‖
Map∗1(RPm,RPn) −−−−→ Map1(RPm,RPn) ev−−−−→ RPn

(6)
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where two horizontal sequences are fibration sequences. Because βm,n is a homotopy
equivalence up to dimension 2(n−m)− 1 by Theorem 1.1, the map αm,n is so. ¤

Remark. If we use the method given in [12, (†)], we obtain the homotopy com-
mutative diagram

Sn−m −−−−→ Vn,m −−−−→ Vn,m−1

Em

y αm,n

y αm−1,n

y
ΩmSn −−−−→ Map∗1(RPm,RPn) rm−−−−→ Map∗1(RPm−1,RPn)

(∗)m

where two horizontal sequences are fibration sequences.

Proposition 2.2. (i) π1

(
Map∗1(RP1,RPn)

) ∼=
{

Z if n = 2,

0 otherwise.

(ii) π1

(
Map1(RP1,RPn)

) ∼=
{

Z if n = 1,

Z/2 if n ≥ 3.

(iii) If 2 ≤ m ≤ n− 2,

{
π1

(
Map∗1(RPm,RPn)

) ∼= 0,

π1

(
Map1(RPm,RPn)

) ∼= Z/2.

(iv) If n ≥ 3, π1

(
Map∗1(RPn−1,RPn)

) ∼= Z/2.
(v) If n ≥ 2, π1

(
Map1(RPn−1,RPn)

) ∼= Z/4.

Proof. (i) Since Map∗1(RP1,RPn) ' ΩSn, the assertion clearly holds.
(ii) We note that π1(Map∗1(RP1,RP1)) = 0 by (i). If we consider the exact sequence

induced from (3)

0 → π1

(
Map1(RP1,RP1)

) ev∗→ π1(RP1) ∼= Z → π0

(
Map∗1(RP1,RP1)

)
= 0,

we have an isomorphism π1(Map1(RP1,RP1)) ∼= Z. If n ≥ 3, by using Theorem 1.1,
π1(Map1(RP1,RPn)) ∼= π1(PVn+1,2) ∼= Z/2.

(iii) Since 2 ≤ m ≤ n− 2, by using Proposition 2.1 and Theorem 1.1, we have the
isomorphisms

{
π1

(
Map∗1(RPm,RPn)

) ∼= π1(Vn,m) ∼= 0,

π1

(
Map1(RPm,RPn)

) ∼= π1(PVn+1,m+1) ∼= Z/2.

(iv) We assume that n ≥ 3, and we note that αn−2,n∗ : π1(Vn,n−2)
∼=→

π1(Map∗1(RPn−2,RPn)) is an isomorphism (by Proposition 2.1). If we remark that
Vn,2 = SO(n)/SO(2), Vn,n−1 = SO(n) and SO(2) = S1, and consider the commutative
diagram of the exact sequences induced from (∗)n−1
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π2(Vn,n−2)
∂1−−−−→ π1(S1) −−−−→ π1(SO(n)) −→ 0

αn−2,n∗

y∼= En−1

y∼= αn−1,n∗

y
π2

(
Map∗1(RPn−2,RPn)

) ∂−−−−→ πn(Sn) −−−−→ π1

(
Map∗1(RPn−1,RPn)

) → 0

by using the Five Lemma,

αn−1,n∗ : Z/2 = π1(Vn,n−1) = π1(SO(n))
∼=−→ π1

(
Map∗1(RPn−1,RPn)

)

is an isomorphism, and the assertion (iv) follows.
(v) First, we show that π1(Map1(RPn−1,RPn)) = Z/4 if n ≥ 3.

If n ≥ 3, because π1(Map∗1(RPn−1,RPn)) = Z/2 and π2(RPn) = 0, by using the
evaluation fibration (3), we have the short exact sequence

0 → Z/2 → π1

(
Map1(RPn−1,RPn)

) ev∗→ π1(RPn) = Z/2 → 0.

Hence, π1(Map1(RPn−1,RPn)) is isomorphic to Z/4 or Z/2 ⊕ Z/2. Because
βn−1,n∗ : Z/4 = π1(PVn+1,n) → π1(Map1(RPn−1,RPn)) is surjective by Theorem 1.1,

βn−1,n∗ : Z/4 = π1(PVn+1,n)
∼=−→ π1(Map1(RPn−1,RPn)) is an isomorphism. Hence,

π1(Map1(RPn−1,RPn)) ∼= Z/4 if n ≥ 3.
Finally, consider the case n = 2. Since the induced homomorphism α1,2∗ :

π1(SO(2)) → π1(Map∗1(RP1,RP2)) is surjective (by Proposition 2.1) and π1(SO(2)) ∼=
π1(Map∗1(RP1,RP2)) ∼= Z,

α1,2∗ : Z = π1(SO(2)) = π1(V2,1)
∼=−→ π1

(
Map∗1(RP1,RP2)

)

is an isomorphism. Consider the commutative diagram

π2(RP2) ∂−−−−→ π1(SO(2)) −−−−→ π1(V3,2) −−−−→ π1(RP2) → 0

‖ α1,2∗

y∼= β1,2∗

y ‖
π2(RP2) ∂′−−−−→ π1(Map∗1) −−−−→ π1

(
Map1(RP1,RP2)

) ev∗−−−−→ π1(RP2) → 0

where Map∗1 = Map∗1(RP1,RP2) and two horizontal sequences are exact. Then it follows
from the Five Lemma that β1,2∗ : Z/4 = π1(V3,2)

∼=−→ π1(Map1(RP1,RP2)) is an
isomorphism. ¤

Corollary 2.3. The induced homomorphisms

{
αm,n∗ : π1(Vn,m) → π1

(
Map∗1(RPm,RPn)

)

βm,n∗ : π1(PVn+1,m+1) → π1

(
Map1(RPm,RPn)

)

are isomorphisms if 1 ≤ m < n or if m = n = 1, and split monomorphisms if m = n ≥ 2.
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Remark. We remark that αn,n∗ and βn,n∗ is an isomorphism for the case n = 2,
too, which will be proved in section 5 (see Theorem 5.1).

Proof. If 1 ≤ m ≤ n − 2, it follows from Proposition 2.1 and Theorem 1.1 that
αm,n∗ and βm,n∗ are isomorphisms. Moreover, we show that αn−1,n∗ and βn−1,n∗ are
isomorphisms if n ≥ 2 in the proof of Proposition 2.2.

If m = n = 1, since π1(V1,1) = π1(Map∗1(RP1,RP1)) = 0, α1,1∗ is trivially iso-
morphism. Next, we take Map∗1(1) = Map∗1(RP1,RP1) and consider the commutative
diagram

0 = π1(SO(1)) −−−−→ π1(PV2,2) −−−−→∼= π1(RP1) −−−−→ 0

β1,1∗

y ‖
0 = π1

(
Map∗1(1)

) −−−−→ π1

(
Map1(RP1,RP1)

) ev∗−−−−→∼= π1(RP1) −−−−→ 0

where two horizontal sequences are exact. Because ev∗ is an isomorphism by the proof of
Proposition 2.2, β1,1∗ is also an isomorphism. So it remains to show that αn,n∗ and βn,n∗
are split monomorphisms if n ≥ 2. First, consider the homomorphism αn,n∗. Because
SO(1) is a trivial group, we can identify Vn,n = Vn,n−1 = SO(n), and we obtain the
commutative diagram

π1(Vn,n) =−−−−→ π1(Vn,n−1)

αn,n∗

y αn−1,n∗

y∼=
π1

(
Map∗1(RPn,RPn)

) rn∗−−−−→ π1

(
Map∗1(RPn−1,RPn)

)

where π1(Vn,n−1) = Z if n = 2, or Z/2 if n ≥ 3. Then because αn−1,n∗ is an isomorphism,
αn,n∗ : π1(Vn,n) → π1(Map∗1(RPn,RPn)) is a split monomorphism. If we recall that
βn−1,n∗ is an isomorphism and consider the commutative diagram

π1(PVn+1,n+1) −−−−→∼= π1(PVn+1,n) = Z/4

βn,n∗

y βn−1,n∗

y∼=
π1

(
Map1(RPn,RPn)

) rn∗−−−−→ π1

(
Map1(RPn−1,RPn)

)
= Z/4

it is easy to see that βn,n∗ is also a split monomorphism. ¤

Remark. Because π1(X) is not always an abelian group, the rational homotopy
group π1(X) ⊗Q is not well defined, in general. However, since Map∗1(RPn,RPn) and
Map1(RPn,RPn) are H-spaces, π1(Map∗1(RPm,RPn), and π1(Map1(RPm,RPn)) are
abelian groups if m = n.

Since π1(Map∗1(RPm,RPn)) and π1(Map1(RPm,RPn)) are also abelian groups
even if m < n (by Proposition 2.2), we can consider the rational homotopy groups
π∗(Map∗1(RPm,RPn))⊗Q and π∗(Map1(RPm,RPn))⊗Q for each 1 ≤ m ≤ n.
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Lemma 2.4. Let 1 ≤ m < n be integers and let Em : Sn−m → ΩmSn denote the
m-fold suspension.

(i) If n ≡ 1 (mod 2) and m ≡ 0 (mod 2), Em : Sn−m → ΩmSn is a rational homotopy
equivalence.

(ii) If n ≡ 1 (mod 2) and m ≡ 1 (mod 2), Em : Sn−m → ΩmSn is a rational homotopy
equivalence through the maximal dimension 2(n−m)− 2.

(iii) If n ≡ 0 (mod 2) and m ≡ 0 (mod 2), Em : Sn−m → ΩmSn is a rational homotopy
equivalence through the maximal dimension 2(n−m)− 2.

(iv) If n ≡ 0 (mod 2) and m ≡ 1 (mod 2), Em : Sn−m → ΩmSn is a rational homotopy
equivalence through the maximal dimension 2n−m− 2.

Proof. We note that π2k−1(Sk) = Z · [ιk, ιk] ⊕ (finite group) if k ≡ 0 (mod 2),
πk(Sk) = Z · ιk and that πk(Sn) is a finite group except these above two cases. Then
the assertion easily follows from mod C Serre Theorem [9]. ¤

Theorem 2.5. Let 1 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2), the map αm,n : Vn,m → Map∗1(RPm,RPn) is a rational ho-
motopy equivalence through the dimension D1(m,n), where we take D1(m,n) =
D(m,n) = 2(n−m)− 1 + (−1)m.

(ii) If n ≡ 0 (mod 2), the map αm,n : Vn,m → Map∗1(RPm,RPn) is a rational homo-
topy equivalence through the dimension D2(m,n), where we take

D2(m,n) = D(m,n) =

{
2(n−m)− 1− (−1)m if m ≥ 2

2n− 3 if m = 1.

Proof. (i) We assume n ≡ 1 (mod 2). The proof is based on the induction over
m. If m = 1, the map α1,n can be identified with the suspension E : Vn,1 = Sn−1 →
ΩSn ' Map∗1(RP1,RPn) (up to homotopy equivalences), and the assertion (i) follows
from Lemma 2.4. Next, we assume m = 2 and consider the diagram (∗)m for m = 2.
Because α1,n is a rational homotopy equivalence through the dimension 2n−4 and E2 is
a rational homotopy equivalence by Lemma 2.4, α2,n is a rational homotopy equivalence
through the dimension 2n− 4 = D1(2, n). Hence, (i) also holds when m = 2.

Now we assume that the assertion (i) holds for the case m−1. If m ≡ 1 (mod 2), Em

is a rational homotopy equivalence through the dimension 2(n−m)− 2 (by Lemma 2.4)
and αm−1,n is a rational homotopy equivalence through the dimension D1(m − 1, n) =
2(n−m+1)−1+(−1)m−1 = 2(n−m)+2, by using the diagram (∗)m, αm,n is a rational
homotopy equivalence through the dimension 2(n −m) − 2 = 2(n −m) − 1 + (−1)m =
D1(m,n). So (i) is true for the map αm,n, too.

Similarly, if m ≡ 0 (mod 2), Em is a rational homotopy equivalence (by Lemma 2.4)
and αm−1,n is a rational homotopy equivalence through the dimension D1(m − 1, n) =
2(n −m + 1) − 1 + (−1)m−1 = 2(n −m). So αm,n is a rational homotopy equivalence
through the dimension 2(n−m) = 2(n−m)− 1 + (−1)m = D1(m,n) and (i) is satisfied
in this case, too. Therefore, the assertion (i) is proved.

(ii) We assume n ≡ 0 (mod 2). First, consider the case m = 1. Because α1,m is
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identified with the suspension E1 : Sn−1 → ΩSn, it follows from Lemma 2.4 that α1,n

is a rational homotopy equivalence through the dimension 2n − 3 = D2(1, n). So the
assertion (ii) is proved when m = 1.

Next, we suppose m = 2 and consider the diagram (∗)2. Then because E2 is a
rational homotopy equivalence through the dimension 2(n− 2)− 2 = 2n− 6 (by Lemma
2.4) and α1,n is a rational homotopy equivalence through the dimension 2n− 3, α2,n is a
rational homotopy equivalence through the dimension 2n− 6 = 2(n− 2)− 1− (−1)m =
D2(2, n). So the assertion (ii) holds when m = 2, too. Thirdly, we assume m = 3, and
consider the diagram (∗)3. Then because E3 is a rational homotopy equivalence through
the dimension 2n− 3− 2 = 2n− 5 and α2,n is a rational homotopy equivalence through
the dimension 2n − 6, α3,n is a rational homotopy equivalence through the dimension
2n− 6 = D2(3, n). Hence, (ii) is proved for 1 ≤ m ≤ 3.

Now we shall prove (ii) for the general case by using the induction over m. We
assume that the assertion (ii) holds for the case m − 1 with m ≥ 2, and consider the
diagram (∗)m. It follows from Lemma 2.4 that Em is a rational homotopy equivalence
through the dimension D′, where D′ denotes the number

D′ =

{
2(n−m)− 2 if m ≡ 0 (mod 2),

2n−m− 2 if m ≡ 1 (mod 2).

Then because αm−1,n is a rational homotopy equivalence through the dimension D2

(m − 1, n) = 2(n −m) + 1 + (−1)m, the map αm,n is a rational homotopy equivalence
through the dimension min(D2(m− 1, n), D′). However, because

min
(
D2(m− 1, n), D′) =

{
2(n−m)− 2 if m ≡ 0 (mod 2)

2(n−m) if m ≡ 1 (mod 2)
= D2(m,n),

the assertion (ii) holds for the case m, too. ¤

Next, we compute the rational homotopy group πk(Vn,m) ⊗ Q. For this purpose,
first we recall the following result.

Lemma 2.6. Let 1 ≤ m < n be integers and we take |ek| = k.

(i) If n ≡ 1 (mod 2) and m ≡ 0 (mod 2),

H∗(Vn,m,Q) = E
[
e2(n−m)+1, e2(n−m)+5, e2(n−m)+9, . . . , e2n−3

]
.

(ii) If n ≡ 1 (mod 2) and m ≡ 1 (mod 2),

H∗(Vn,m,Q) = E
[
en−m, e2(n−m)+3, e2(n−m)+7, e2(n−m)+11, . . . , e2n−3

]
.

(iii) If n ≡ 0 (mod 2) and m ≡ 0 (mod 2),

H∗(Vn,m,Q) = E
[
en−m, en−1, e2(n−m)+3, e2(n−m)+7, . . . , e2n−5

]
.

(iv) If n ≡ 0 (mod 2) and m ≡ 1 (mod 2),

H∗(Vn,m,Q) = E
[
en−m, e2(n−m)+1, e2(n−m)+5, e2(n−m)+9, . . . , e2n−5

]
.
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Proof. This result is well known (for example, see [6]). ¤

Proposition 2.7. Let 1 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2) and m = 2l, there is a rational homotopy equivalence

Vn,m 'Q

l−1∏

k=0

S2(n−m)+1+4k = S2(n−m)+1 × S2(n−m)+5 × · · · × S2n−3.

(ii) If n ≡ 1 (mod 2) and m = 2l + 1, there is a rational homotopy equivalence

Vn,m 'Q Sn−m ×
l−1∏

k=1

S2(n−m)−1+4k

=

{
Sn−1 if l = 0

Sn−m × S2(n−m)+3 × S2(n−m)+7 × · · · × S2n−3 if l ≥ 1.

(iii) If n ≡ 0 (mod 2) and m = 2l, there is a rational homotopy equivalence

Vn,m 'Q Sn−m × Sn−1 ×
l−1∏

k=1

S2(n−m)−1+4k

=

{
Sn−2 × Sn−1 if l = 1

Sn−m × Sn−1 × S2(n−m)+3 × S2(n−m)+7 × · · · × S2n−5 if l ≥ 2.

(iv) If n ≡ 0 (mod 2) and m = 2l + 1, there is a rational homotopy equivalence

Vn,m 'Q Sn−1 ×
l−1∏

k=0

S2(n−m)+1+4k

=

{
Sn−1 if l = 0

Sn−1 × S2(n−m)+1 × S2(n−m)+5 × · · · × S2n−5 if l ≥ 1.

Proof. The assertions easily follow from Lemma 2.6 and the standard rational
homotopy theory (cf. [4]). ¤

Corollary 2.8. Let 1 ≤ m < n be integers.

(i) If n ≡ 1 (mod 2) and m = 2l,

πk(Vn,m)⊗Q ∼=
{

Q if k = 2(n−m) + 1 + 4s (0 ≤ s < l),

0 otherwise.
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(ii) If n ≡ 1 (mod 2) and m = 2l + 1,

πk(Vn,m)⊗Q ∼=
{

Q if k = n−m, or k = 2(n−m)− 1 + 4s (0 ≤ s < l),

0 otherwise.

(iii) If n ≡ 0 (mod 2) and m = 2l,

πk(Vn,m)⊗Q ∼=





Q if k = n−m, k = n− 1 or
k = 2(n−m)− 1 + 4s (0 ≤ s < l),

0 otherwise.

(iv) If n ≡ 0 (mod 2) and m = 2l + 1,

πk(Vn,m)⊗Q ∼=
{

Q if k = n− 1, or k = 2(n−m) + 1 + 4s (0 ≤ s < l),

0 otherwise.

Proof. This easily follows from Proposition 2.7. ¤

3. Rational homotopy when n ≡ 1 (mod 2).

In section 3 and section 4, we shall compute the rational parts of the homotopy
groups

{
Ak(m,n) = πk

(
Map∗1(RPm,RPn)

)⊗Q,

Bk(m,n) = πk

(
Map1(RPm,RPn)

)⊗Q,

explicitly. In this section, we consider the case n ≡ 1 (mod 2).

Lemma 3.1. Let n ≥ 2 be an integer.

(i) If n ≡ 1 (mod 2), Ak(1, n) ∼=
{

Q if k = n− 1,

0 otherwise.

(ii) If n ≡ 0 (mod 2), Ak(1, n) ∼=
{

Q if k = n− 1, 2n− 2,

0 otherwise.

Proof. The assertion easily follows from πk(Map∗1(RP1,RPn)) ∼= πk+1(Sn), and
we omit the detail. ¤

Proposition 3.2. Let n ≥ 2 be an integer.

(i) If n ≡ 1 (mod 2), Ak(n, n) = 0 for any k.

(ii) If n ≡ 0 (mod 2), Ak(n, n) ∼=
{

Q if k = n− 1,

0 otherwise.
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Proof. (i) Because n ≡ 1 (mod 2), by Theorem 1.1, we have

Bk(n, n) = πk

(
Map1(RPn,RPn)

)⊗Q ∼=
{

Q if k = n,

0 otherwise.

If we consider the homotopy exact sequence induced from (3) for m = n

· · · → πk+1(RPn)⊗Q
∂→ Ak(n, n) → Bk(n, n) ev∗⊗1−→ πk(RPn)⊗Q

∂→ · · · ,

we obtain the following two assertions.

(i-a) Ak(n, n) = 0 for any k 6∈ {n, n− 1}.
(i-b) The sequence 0 → An(n, n) → Q → Q → An−1(n, n) → 0 is exact.

It suffices to show that An(n, n) ∼= An−1(n, n) ∼= 0. If this does not holds, An(n, n) ∼=
An−1(n, n) ∼= Q. By using the homotopy exact sequence induced from (4) for m = n

→ πn(ΩnRPn)⊗Q → An(n, n) → An(n− 1, n) ∂→ πn−1(ΩnRPn)⊗Q,

we have An(n − 1, n) ∼= Q. Similarly, by using the homotopy exact sequence induced
from (4) for m = n− 1, we have An(n− 2, n) ∼= Q. If we repeat these computations, we
obtain the equality

An(n, n) ∼= An−1(n− 1, n) ∼= An(n− 2, n) ∼= · · · · · · ∼= An(1, n) ∼= Q.

On the other hand, by Lemma 3.1, An(1, n) = 0 and this is a contradiction. Hence,
An(n, n) ∼= An−1(n, n) ∼= 0 and the assertion (i) follows.

(ii) We assume n ≡ 0 (mod 2). By Theorem 1.1, we have

Bk(n, n) = πk

(
Map1(RPn,RPn)

)⊗Q ∼=
{

Q if k = 2n− 1,

0 otherwise.

Then if we consider the homotopy exact sequence of (3) for m = n

→ πk+1(RPn)⊗Q
∂→ Ak(n, n) → Bk(n, n) ev∗⊗1−→ πk(RPn)⊗Q

∂→

and we recall πk(RPn)⊗Q ∼= Q if k ∈ {n, 2n− 1} or 0 otherwise, we easily obtain the
following two assertions.

(ii-a) An−1(n, n) ∼= Q, and Ak(n, n) = 0 if k 6∈ {n− 1, 2n− 1, 2n− 2}.
(ii-b) The sequence 0 → A2n−1(n, n) → Q → Q

∂→ A2n−2(n, n) → 0 is exact.

It remains to show that A2n−1(n, n) = A2n−2(n, n) = 0. If this does not holds,
A2n−1(n, n) ∼= A2n−2(n, n) ∼= Q. Consider the homotopy exact sequence of the re-
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striction fibration (4) for m = n,

π2n(ΩnRPn)⊗Q
∂→ A2n−1(n, n) → A2n−1(n− 1, n) → π2n−1(ΩnRPn)⊗Q.

Then because πk(ΩnRPn) ⊗Q = 0 for k 6= n − 1, we have A2n−1(n − 1, n) ∼= Q. If we
consider the homotopy exact sequence induced from (4) for m = n− 1, similarly we have
A2n−1(n− 2, n) ∼= Q. If we repeat this argument, we have

A2n−1(n, n) ∼= A2n−1(n− 1, n) ∼= · · · ∼= A2n−1(1, n) ∼= Q.

However, by Lemma 3.1, A2n−1(1, n) = 0 and this is a contradiction. ¤

Lemma 3.3. If n ≥ 3 is an odd integer and 2 ≤ m ≤ n− 1, the sequence

0 → An−m+1(m,n) → An−m+1(m− 1, n) → Q

→ An−m(m,n) → An−m(m− 1, n) → 0

is exact, and there is an isomorphism Ak(m,n) ∼= Ak(m− 1, n) for any k 6∈ {n−m + 1,

n−m}.

Proof. If we consider the exact sequence induced from the fibration (4), the
assertion easily follows from

πk(Ωm
1 Sn)⊗Q ∼= πk+m(Sn)⊗Q ∼=

{
Q if k = n−m,

0 otherwise,
¤

Lemma 3.4. If n ≥ 3 and n ≡ 1 (mod 2), Ak(2, n) = 0 for any k.

Proof. By using Lemma 3.1 and Lemma 3.3 for m = 2, there is an exact sequence
0 → An−1(2, n) → Q → Q → An−2(2, n) → 0 with Ak(2, n) = 0 if k 6= n − 1, n − 2.
So we have the equality An−1(2, n) ∼= An−2(2, n). It remains to show that An−1(2, n) =
An−2(2, n) = 0. If we use Lemma 3.3 for m = 3, 4, · · · , n, then we have An−1(2, n) ∼=
An−1(3, n) ∼= · · · ∼= An−1(n, n). However, because An−1(n, n) = 0 by Proposition 3.2, we
have An−1(2, n) = An−2(2, n) = 0 and this completes the proof. ¤

Proposition 3.5. Let 1 ≤ m < n be integers with n ≡ 1 (mod 2).

(i) If m ≡ 0 (mod 2), Ak(m,n) = 0 for any k.

(ii) If m ≡ 1 (mod 2), Ak(m,n) ∼=
{

Q if k = n−m,

0 otherwise.

Proof. The proof is based on the induction over m. If m = 1 or m = 2, the
assertion follows from Lemma 3.1 and Lemma 3.4. Now we suppose that Proposition 3.5
holds for the case m− 1 with m ≥ 3.

First, consider the case m ≡ 0 (mod 2). Then by the induction hypothesis, Ak(m−1,
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n) ∼= Q if k = n−m + 1 and Ak(m− 1, n) = 0 otherwise. Then it follows from Lemma
3.3 and the above equality that there is an exact sequence 0 → An−m+1(m,n) → Q →
Q → An−m(m,n) → 0, and Ak(m,n) = 0 for any k 6∈ {n−m + 1, n−m}. In particular,
it is easy to see that An−m+1(m,n) ∼= An−m(m,n). However, by using Proposition 3.2
and Lemma 3.3 for m = 3, 4, . . . , n, we have

An−m+1(m,n) ∼= An−m+1(m + 1, n) ∼= · · · ∼= An−m+1(n, n) ∼= 0.

Hence, An−m+1(m,n) = An−m(m,n) = 0 and so that Ak(m,n) = 0 for any k. Therefore,
Proposition 3.5 holds for the case m ≡ 0 (mod 2).

Next, consider the case m ≡ 1 (mod 2). Then by the induction hypothesis, Ak(m−1,

n) = 0 for any k. Hence, by using Lemma 3.3, we can easily show that Ak(m,n) ∼= Q if
k − n −m and Ak(m,n) = 0 otherwise. So that Proposition 3.5 also holds for the case
m when m ≡ 1 (mod 2), and this completes the proof. ¤

4. Rational homotopy when n ≡ 0 (mod2).

In this section we consider rational homotopy groups Ak(m,n) for the case n ≡ 0
(mod 2). Because the proofs are almost similar as those for the case m ≡ 1 (mod 2), we
do not explain the detail.

Lemma 4.1. Ak(1, 2) ∼= Q if k = 1 or k = 2, and Ak(1, 2) = 0 otherwise.

Proof. This follows from Lemma 3.1. ¤

Lemma 4.2. If n ≥ 4 and 2 ≤ m < n be integers such that n ≡ 0 (mod 2), the
sequences

0 → An−m+1(m,n) → An−m+1(m− 1, n) → Q

→ An−m(m,n) → An−m(m− 1, n) → 0, and

0 → A2n−m(m,n) → A2n−m(m− 1, n) → Q

→ A2n−m−1(m,n) → A2n−m−1(m− 1, n) → 0

are exact, and there is an isomorphism Ak(m,n) ∼= Ak(m−1, n) for any k 6∈ {n−m+1,

n−m, 2n−m, 2n−m− 1}.

Proof. The assertion follows from the induced exact sequence from (4) and

πk(Ωm
1 Sn)⊗Q ∼=

{
Q if k ∈ {n−m, 2n−m− 1},
0 otherwise.

¤

Lemma 4.3. If n ≡ 0 (mod 2) and n ≥ 4, Ak(2, n) ∼= Q if k = n− 1 or k = n− 2,
and Ak(2, n) = 0 otherwise.

Proof. If we use Lemma 4.2, we can prove the assertion in a similar way as the
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proof of Lemma 3.4. ¤

Proposition 4.4. Let 1 ≤ m < n be integers such that n ≡ 0 (mod 2).

(i) If m ≡ 0 (mod 2), Ak(m,n) ∼=
{

Q if k ∈ {n− 1, n−m},
0 otherwise.

(ii) If m ≡ 1 (mod 2), Ak(m,n) ∼=
{

Q if k ∈ {n− 1, 2n−m− 1},
0 otherwise.

Proof. If n = 2, the assertion follows from Lemma 4.1. So we assume n ≥ 4.
The proof is based on the induction over m. If m = 1, the assertion follows from Lemma
3.1. When m = 2, the assertion is already proved in Lemma 4.2. So we suppose that
the assertions (i), (ii) hold for some number m − 1 with m ≥ 3. In this situation, we
can prove that the assertion hold for the case m by using the complete analogous way as
in the proof of Proposition 3.5. The only different point is to use Lemma 4.2 instead of
Lemma 3.3. ¤

Finally in this section, we give the proofs of Theorem 1.2, Proposition 1.3, Corollary
1.5 and Corollary 1.6.

Proof of Theorem 1.2. (i) The assertion (i) follows from Proposition 2.1.
(ii) First, we show that αm,n is a rational homotopy equivalence through the max-

imal dimension D(m,n). Because the proof is similar, we only give the proof when
n ≡ 0 (mod 2). If m = 1, α1,n is identified with the suspension E : Sn−1 → ΩSn

(up to homotopy equivalence) and the assertion clearly holds. So we assume m ≥ 2.
Then if we take N = D(m,n) + 1, it follows from Corollary 2.8 and Proposition 4.4
that πN (Vn,m) ⊗Q ∼= Q and πN (Map∗1(RPm,RPn)) ⊗Q = 0. So αm,n∗ ⊗Q is not an
isomorphism when k = D(m,n) + 1, and the assertion follows from Theorem 2.5.

Next, we show that βm,n is a rational homotopy equivalence through the maxi-
mal dimension D(m,n). Consider the commutative diagram (6) given in the proof of
Proposition 2.1. Because αm,n is a rational homotopy equivalence through the maximal
dimension D(m,n), it follows from the Five Lemma that the map βm,n is so. ¤

Proofs of Proposition 1.3, Corollary 1.5 and Corollary 1.6.

Proposition 1.3 follow from Proposition 3.2, Proposition 3.5 and Proposition 4.4.
Similarly, Corollary 1.5 easily follows from (i) of Proposition 1.3, and Corollary 1.6 from
the evaluation fibration (3) and Theorem 1.2. ¤

5. Fundamental groups.

In this section, we compute the fundamental groups π1(Map1(RPn,RPn)) and
π1(Map∗1(RPn,RPn)), and we give the proof of Theorem 1.4.

We note that PVn+1,n+1 = PO(n+1) and Vn,n = SO(n). For a map f ∈ Map(X, Y ),
let f# : Map(Z, X) → Map(Z, Y ) and f# : Map(Y, Z) → Map(X, Z) denote the maps
defined by f#(g) = f ◦ g and f#(h) = h ◦ f .

Let γn : Sn → RPn denotes the Hopf fibering, and consider the cofiber sequence
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RPn−1 in−→ RPn qn−→ Sn. Then we have the commutative diagram

Ωn
1Sn ⊂−−−−→ Map1(Sn, Sn) ev−−−−→ Sn

q#
n

y q#
n

y ‖
Map∗1(RPn, Sn) ⊂−−−−→ Map1(RPn, Sn) ev−−−−→ Sn

γn#

y γn#

y γn

y
Map∗1(RPn,RPn) ⊂−−−−→ Map1(RPn,RPn) ev−−−−→ RPn

(7)

where three horizontal sequences are fibration sequences. We note that these maps induce
the short exact sequence

0 → π1

(
Map1(RPn, Sn)

) γn#∗−→ π1

(
Map1(RPn,RPn)

) → Z/2 → 0 (8)

and isomorphisms





γn#∗ : πk

(
Map1(RPn, Sn)

) ∼=−→ πk

(
Map1(RPn,RPn)

)
for k ≥ 2,

γn#∗ : πk

(
Map∗1(RPn, Sn)

) ∼=−→ πk

(
Map∗1(RPn,RPn)

)
for k ≥ 1.

(9)

Theorem 5.1. The induced homomorphisms





α2,2∗ : π1(SO(2))
∼=−→ π1

(
Map∗1(RP2,RP2)

)

β2,2∗ : π1(PO(3))
∼=−→ π1

(
Map1(RP2,RP2)

)

are isomorphisms, and there are isomorphisms

π1(Map∗1(RP2,RP2)) ∼= Z, and π1(Map1(RP2,RP2)) ∼= Z/4.

Proof. Because π1(Map1(RP2, S2)) = Z/2 [2, Theorem 2], by using the ex-
act sequence (8), π1(Map1(RP2,RP2)) is isomorphic to Z/4 or Z/2 ⊕ Z/2. However,
because βn,n∗ : Z/4 = π1(PO(3)) → π1(Map1(RP2,RP2)) is a split monomorphism
(by Corollary 2.3), in fact, βn,n∗ is an isomorphism and we also have the isomorphism
π1(Map1(RP2,RP2)) ∼= Z/4.

Next, for computing π1(Map1(RP2,RP2)), consider the exact sequence

π2

(
Map1(RP2,RP2)

) ev∗→ π2(RP2) ∂→ π1

(
Map∗1(RP2,RP2)

) → π1

(
Map1(RP2,RP2)

)

= Z/4 ev∗→ π1(RP2) = Z/2 → 0.

Because π2(Map1(RP2,RP2)) ⊗ Q = 0 (by Theorem 1.1), π2(Map1(RP2,RP2)) is a
torsion group. Hence, ev∗ : π2(Map1(RP2,RP2)) → π2(RP2) = Z · γ2 is trivial and the
above exact sequence reduces to the short exact sequence
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0 → π2(RP2) ∂−→ π1

(
Map∗1(RP2,RP2)

) → Z/2 → 0. (10)

Since Map∗1(RP2,RP2) is a H-space, π1(Map∗1(RP2,RP2)) is an abelian group. So
π1(Map∗1(RP2,RP2)) is isomorphic to Z or to Z ⊕Z/2.

On the other hand, it follows from (7), (8) and (9) that there is a commutative
diagram

π2(S2) ∂1−−−−→ π1(Ω2
1S

2) −−−−→ π1

(
Map1(S2, S2)

)

‖ q#
2 ∗

y q#
2 ∗

y
π2(S2) ∂2−−−−→ π1

(
Map∗1(RP2, S2)

) −−−−→ π1

(
Map1(RP2, S2)

)

γ2∗

y∼= γ#
2 ∗

y∼= γ#
2 ∗

y
π2(RP2) ∂−−−−→ π1

(
Map∗1(RP2,RP2)

) −−−−→ π1

(
Map1(RP2,RP2)

)

where three horizontal sequences are exact. If we identify ∂1 with the homomorphism
π2(S2) → π1(Ω2

1S
2) ∼= π3(S2) = Z ·η2, by using [11], it is given by ∂1(ι2) = [ι2, ι2] = 2η2.

Hence, by using the above commutative diagram, we have

∂
(
π2(RP2)

) ⊂ 2π1

(
Map1(RP2,RP2)

)
. (11)

However, if π1(Map1(RP2,RP2)) ∼= Z ⊕ Z/2, ∂ must be a split monomorphisms and
this contradicts to (11). Hence, π1(Map∗1(RP2,RP2)) ∼= Z.

It remains to show that α2,2∗ is an isomorphism. However, we know that α2,2∗ is a
monomorphism (by Corollary 2.3) and it suffices to show that α2,2∗ is an epimorphism.
Consider the commutative diagram

π2(RP2) ∂′−−−−→ π1(SO(2)) −−−−→ π1(PO(3)) −−−−→ π1(RP2)

‖ α2,2∗

y β2,2∗

y∼= ‖
π2(RP2) ∂−−−−→ π1

(
Map∗1(RP2,RP2)

) −−−−→ π1(Map1(2)) ev∗−−−−→ π1(RP2)

where we take Map1(2) = Map1(RP2,RP2) and two horizontal sequences are exact.
Then by using the diagram chasing, it is easy to see that α2,2∗ is an epimorphism. ¤

From now on, we assume n ≥ 3, and consider the restriction fibration sequences

(†)1 Ωn−1Sn j1−→ Map∗1(RPn−1,RPn)
rn−1−→ Map∗1(RPn−2,RPn),

(†)2 Ωn
1Sn j−→ Map∗1(RPn,RPn) rn−→ Map∗1(RPn−1,RPn).

Let Fn denote the homotopy fiber of the restriction map

r = rn−1 ◦ rn : Map∗1(RPn,RPn) → Map∗1(RPn−2,RPn).
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Then it follows from [1, Lemma 2.1] that we obtain the following homotopy commutative
diagram

Ωn
1Sn j′−−−−→ Fn

r′−−−−→ Ωn−1Sn

‖
y j1

y
Ωn

1Sn j−−−−→ Map∗1(RPn,RPn) rn−−−−→ Map∗1(RPn−1,RPn)y r

y rn−1

y
∗ −−−−→ Map∗1(RPn−2,RPn) =−−−−→ Map∗1(RPn−2,RPn)

(12)

where all horizontal and vertical sequences are fibration sequences. So we also obtain the
fibration sequence

Ωn
1Sn j′−→ Fn −→ Ωn−1Sn (13)

Lemma 5.2. Let n ≥ 3 be an integer.

(i) j′∗ : π1(Ωn
1Sn) → π1(Fn) is a monomorphims.

(ii) j1∗ : π2(Ωn−1Sn) ∼= πn+1(Sn)
∼=−→ π2(Map∗1(RPn−1,RPn)) ∼= Z/2 is an isomor-

phism.

Proof. (i) Consider the Serre spectral sequence

E2
s,t = Hs

(
Ωn−1Sn,Ht(Ωn

1Sn,Z)
) ⇒ Hs+t(Fn,Z)

associated to the fibration sequence (13). We note that we can identify E2
s,0 =

Hs(Ωn−1Sn,Z) and E2
0,t = Ht(Ωn−1Sn,Z)/Qt for any (s, t), where we take Qt =

{Ht(γ)(u) − u : γ ∈ π1(Ωn−1Sn), u ∈ Ht(Ωn
1Sn,Z)}. By the dimensional reason,

E∞
1,0 = E2

1,0 = H1(Ωn−1Sn,Z) = Z. Moreover, because Aut(Z/2) = {1}, H1(γ)(u) = u

for any (γ, u) ∈ π1(Ωn−1Sn) × H1(Ωn
1Sn,Z). Hence, Q1 = 0 and E2

0,1 = Z/2. Since
E2

2,0 = H2(Ωn−1Sn,Z) = 0, E∞
0,1 = E2

0,1 = Z/2. Hence, there is an isomorphism
H1(Fn,Z) ∼= Z ⊕Z/2.

Now we assume that j′∗ : π1(Ωn
1Sn) → π1(Fn) is not a monomorphism. Then, clearly

j′∗ = 0, and if we recall the exact sequence

Z/2 ∼= π1(Ωn
1Sn)

j′∗−→ π1(Fn) → π1(Ωn−1Sn) ∼= Z → 0,

we have π1(Fn) ∼= Z. However, by using the Hurewicz Theorem, there is an isomorphism
H1(Fn,Z) ∼= π1(Fn) ∼= Z, which is a contradiction. Hence, j′∗ is a monomorphism.

(ii) By Proposition 2.1, π1(Map∗1(RPn−2,RPn)) ∼= π1(PVn,n−2) ∼= 0. So it follows
from the proof of Proposition 2.2 and the diagram (∗)n−1 that there is a commutative
diagram of the exact sequences
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π2(Vn,n−2)
∂′′′−−−−→ π1(S1) −−−−→ π1(SO(n)) −→ 0

αn−2,n∗

y∼= En−1

y∼= αn−1,n∗

y∼=

π2

(
Map∗1(RPn−2,RPn)

) ∂′′−−−−→ πn(Sn) −−−−→ π1

(
Map∗1(RPn−1,RPn)

) → 0

‖ ‖ ‖
Z Z Z/2

Since ∂′′ is a monomorphism, it follows from the fibration sequence (†)1 that rn−1∗ :
π2(Map∗1(RPn−1,RPn)) → π2(Map∗1(RPn−2,RPn)) is trivial. Hence, by using (†)1,
j1∗ : π2(Ωn−1Sn) → π2(Map∗1(RPn−1,RPn)) is an epimorphism. It remains to show
that j1∗ is a monomorphism. If we recall that

αn−2,n∗ : π3(Vn,n−2) → π3

(
Map∗1(RPn−2, RPn)

)

is an epimorphism (by Proposition 2.1) and consider the commutative diagram

π3(Vn,n−2)
∂′−−−−→ π2(S1) = 0

αn−2,n∗

y En−1

y
π3

(
Map∗1(RPn−2,RPn)

) ∂1−−−−→ π2(Ωn−1RPn) ∼= πn+1(Sn),

∂1 is trivial. Hence, by using the fibration sequence (†)1, j1∗ : π2(Ωn−1Sn) →
π2(Map∗1(RPn−1,RPn)) is also a monomorphism. ¤

Theorem 5.3. If n ≥ 3, there are isomorphisms

{
π1

(
Map∗1(RPn,RPn)

) ∼= Z/2⊕Z/2,

π1

(
Map1(RPn,RPn)

) ∼= Z/4⊕Z/2.

Proof. Consider the commutative diagram induced from the diagram (12)

π2(Ωn−1Sn) ∂′−−−−→ π1(Ωn
1Sn)

j′∗−−−−→ π1(Fn)

j1∗

y∼= ‖
y

π2

(
Map∗1(RPn−1,RPn)

) ∂−−−−→ π1(Ωn
1Sn)

j∗−−−−→ π1

(
Map∗1(RPn,RPn)

)

where two horizontal sequences are exact. Because j′∗ is a monomorphism and j1∗ is an
isomorphism (by Lemma 5.2), it follows from the above commutative diagram that ∂ = 0
and j∗ is a monomorphism. Hence, we have the short exact sequence

0 → π1(Ωn
1Sn)

j∗−→ π1

(
Map∗1(RPn,RPn)

) rn∗−→ π1

(
Map∗1(RPn−1,RPn)

) → 0.
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Because π1(Map∗1(RPn−1,RPn)) ∼= Z/2 ∼= π1(Ωn
1Sn), π1(Map∗1(RPn,RPn)) is isomor-

phic to Z/4 or to Z/2⊕Z/2.
However, because αn,n∗ : Z/2 = π1(SO(n)) → π1(Map∗1(RPn,RPn)) is a split-

ting monomorphism (by Corollary 2.3), π1(Map∗1(RPn,RPn)) contains Z/2 as a direct
summand and we obtain the isomorphism

π1

(
Map∗1(RPn,RPn)

) ∼= Z/2⊕Z/2. (14)

Next, if we recall π2(RPn) = 0 and consider the homotopy exact sequence induced from
(3), we have the short exact sequence

0 → π1

(
Map∗1(RPn,RPn)

) → π1

(
Map1(RPn,RPn)

) ev∗−→ π1(RPn) → 0.

Then, it follows from Corollary 2.3 and (14) that π1(Map1(RPn,RPn)) is an abelian
group of order 8 and it contains Z/4 = π1(PO(n + 1)) as a direct summand. Hence,
π1(Map1(RPn,RPn)) ∼= Z/4⊕Z/2. ¤

Proof of Theorem 1.4. The assertion (i) follows from Proposition 2.2, Corol-
lary 2.3 and Theorem 5.1. The assertion (ii) follows from Proposition 2.2, Theorem 5.1
and Theorem 5.3. ¤
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