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Abstract. In this paper we characterize symmetric cones among homogeneous convex
cones by the condition that the corresponding tube domains are mapped onto the dual tube do-
mains under pseudoinverse maps with parameter. The condition also restricts the parameter to
specific ones.

1. Introduction.

We begin this paper with a simple fact. LetZ be a complexr× r symmetric matrix. Then
ReZ is positive definite if and only ifZ−1 exists andReZ−1 is positive definite. Denoting by
Sym(r,RRR)++ the cone of realr× r positive definite symmetric matrices, we rephrase the above
fact as

ReZ ∈ Sym(r,RRR)++ ⇐⇒ Z−1 exists andReZ−1 ∈ Sym(r,RRR)++.

In this way, it is easy to generalize the fact to the case of symmetric cones. LetΩ be a symmetric
cone in a real Euclidean vector spaceV. We recall thatV has a Euclidean Jordan algebra structure
[5], and thus the complexificationW := VCCC is a complex Jordan algebra. Letz∈W. Then

z∈Ω + iV ⇐⇒ Jordan algebra inversez−1 exists andz−1 ∈Ω + iV . (1.1)

The purpose of the present paper is to show that this equivalence characterizes symmetric cones
in a certain sense among homogeneous convex cones.

Symmetric cones form a specific class. Analysis on them and on symmetric tube domains
is developed in a fairly explicit manner as described in [5]. Thus it is significant to characterize
symmetric cones among homogeneous convex cones. Vinberg’s characterization [16] concerning
equal dimensionality of certain eigenspaces is of particular importance. Differential geometric
characterizations are given in [12] and [13]. Another characterization making use of the con-
nection algebra of a homogeneous convex cone is given by [3] and [14]. Ours is more analytic
and motivated by Corollary 2.9 of Rothaus’ paper [11], where it is investigated if the analytically
continued Vinberg’s∗-map preserves the tube domain (see also [8, Remark 2.12]).

Let Ω be a homogeneous regular open convex cone in a real vector spaceV. Associated
with Ω and a pointE ∈Ω , the ambient vector spaceV has a structure of non-associative algebra
with unit elementE. This algebra is called aclan after Vinberg [15]. The multiplication in this
algebraV will be denoted asx4y, and the left multiplication operator byx asLx. Then, one
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knows by [15] that 〈x|y〉 := Tr Lx4y defines a positive definite inner product onV, called the
trace inner product. Letϕ be the characteristic function of the coneΩ :

ϕ(x) :=
∫

Ω∗
e−〈x|y〉dy (x∈Ω),

whereΩ ∗ is the dual cone ofΩ taken inV relative to the trace inner product:

Ω ∗ := {y∈V;〈x|y〉> 0 for all x∈Ω \{0}}.

Vinberg’s∗-mapΩ →Ω ∗ is by definitionx∗ :=−grad logϕ(x). One knows that the mapx 7→ x∗

extends to a birational mapI : W →W, whereW := VCCC, and that it is holomorphic on the tube
domainΩ + iV . A weaker version of our theorem is the following.

THEOREM 1.1. Suppose thatΩ is irreducible. ThenΩ = Ω ∗ if and only if one has
I(Ω + iV ) = Ω ∗+ iV .

For irreducible symmetric cones, Proposition III.4.3 in [5] tells us thatx∗ is a positive num-
ber multiple of the Jordan algebra inversex−1 (see Lemma 5.2 of the present paper for a more
precise relation between the∗-map and the Jordan algebra inverse). Therefore Theorem 1.1
shows that the equivalence in (1.1) can be a characterization of symmetric cones.

Our actual theorem still generalizes Theorem 1.1 by using pseudoinverse maps. We note
that Vinberg’s∗-map is a pseudoinverse map with a specific parameter (see subsection 5.2 of this
paper withp = 1).

Let f be a linear form on the clanV. Then f is said to beadmissibleif the bilinear form
〈x|y〉 f := 〈x4y, f 〉 defines a positive definite inner product onV. In Proposition 2.1 of this paper
we prove that to every admissible linear formf there corresponds a parametersss= (s1, . . . ,sr)
with s1 > 0, . . . ,sr > 0 so that f = E∗sss , wherer is the rank ofV (see (2.6) forE∗sss). In this case
we say that the parametersss is positive, and we write〈·|·〉sss instead of〈·|·〉E∗sss for simplicity. By
Vinberg [15] there exists a split solvable subgroupH in the linear automorphism groupG(Ω) of
Ω such thatH acts onΩ simply transitively. Leth be the Lie algebra ofH. Define functions∆sss

on Ω by

∆sss((expT)E) := e〈TE,E∗sss〉 (T ∈ h).

Let the parametersss be positive. The pseudoinverseIsss(x) of x∈Ω is defined to be

〈Isss(x)|y〉sss =− d
dt

log∆−sss(x+ ty)
∣∣∣
t=0

(y∈V).

Let W := VCCC. We extend〈·|·〉sss to W by complex bilinearity, and denote it by the same symbol.
The pseudoinverse mapIsss : x 7→ Isss(x) extends to a birational mapW→W and has the following
properties:

(1) Isss(E) = E,
(2) Isss(hE) = sssh−1Isss(E) for all h∈ HCCC, whereHCCC is the complexification ofH andsssh stands

for the adjoint operator ofh relative to〈·|·〉sss.
If Ω is a symmetric cone andsss is a positive number multiple ofddd (see (2.5) of this paper for the
definition ofddd), thenIsss coincides with a positive number multiple of the Jordan algebra inverse
map associated withΩ .
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Let Ω sss be the dual cone ofΩ realized inV by means of〈·|·〉sss. Our result is as follows:

THEOREM 1.2. Suppose thatΩ is irreducible, and let sss∈ RRRr be positive. Then, the
following are equivalent:

(A) Isss(Ω + iV ) = Ω sss+ iV .
(B) sss is a positive number multiple of ddd, andΩ is a symmetric cone.
(C) sss is a positive number multiple of ddd, andΩ = Ω sss.

We now describe the organization of this paper. In Section 2, we summarize basic facts
about the clan associated with a homogeneous convex cone. Section 3 is the introduction of the
pseudoinverse maps. In Section 4, we present some formulas and norm computations needed in
Section 7. The results of this section are valid without any restrictions on clans. In Subsection
5.1, we recall some basic facts about symmetric cones, and they are used in Subsection 5.2 and
Section 6. Proof of (C)⇒ (A) in the main theorem is given in Subsection 5.2. In Section 6, we
prove the equivalence of (B) and (C), which is valid for homogeneous convex cones which are
not necessarily irreducible. Proof of (A)⇒ (B) is accomplished in Section 7 through quite a bit
of computations divided into several steps. Our way of the computations is inspired by the one
taken in Section 5 of [10].

The second author is grateful to Richard Penney, Ewa Damek and Jacques Faraut for con-
versations about the contents of this paper.

2. Preliminaries.

2.1. Clan associated with a homogeneous convex cone.
We begin with the introduction of clan and its normal decomposition. LetV be a finite

dimensional vector space overRRR. A regular open convex coneΩ ⊂V is said to behomogeneous
if the linear Lie group

G(Ω) := {1 ∈GL(V);1(Ω) = Ω}

of the automorphism group ofΩ acts transitively on it. Here by regularity, we mean thatΩ does
not contain any straight line (not necessarily passing through the origin). In this paper, we assume
thatΩ is irreducible. By [15, Theorem 1] there exists a connected split solvable subgroupH of
G(Ω) acting simply transitively onΩ . Let h be the Lie algebra ofH. Take any pointE ∈ Ω .
Since the orbit mapH 3 h 7→ hE is a diffeomorphism, differentiation at the unit element ofH
gives a linear isomorphismh 3 T 7→ TE ∈ V. Let us denote byL : x 7→ Lx its inverse map, so
that LxE = x for all x ∈ V. We define a multiplication4 by x4y := Lxy (x,y ∈ V). Setting
[x4y] := x4y−y4x, we get by the definition ofL

[Lx,Ly]E = Lx(LyE)−Ly(LxE) = Lxy−Lyx = x4y−y4x,

so that,

[Lx,Ly] = L[x4y]. (2.1)

By [15, Chapter II,§1] it holds that

Tr Lx4x > 0 for any non-zerox. (2.2)
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Moreover sinceh is split solvable, every linear operatorLx (x∈V) has only real eigenvalues. The
spaceV with 4 defined in this way is calledthe clan associated withΩ . SinceH is maximal
among the connected split solvable subgroups ofG(Ω), the Lie algebrah contains the identity
operator. This together withLEE = E ensures us thatLE is the identity operator, so thatE is
a unit element ofV. We refer toE as the base point used in the construction of the clan V
associated withΩ . Conversely, we can construct a homogeneous convex cone from a clan with
unit element, and there is a one-to-one correspondence between the set of isomorphic classes of
homogeneous convex cones and the set of isomorphic classes of clans with unit element.

Let V be a clan with unit elementE. Then,V has a direct sum decomposition called a
normal decomposition: there exists a positive integerr and idempotentsEi (i = 1, . . . , r) such
that

V =
r

∑
i=1

RRREi ⊕ ∑
1≤ j<k≤r

Vk j, E = E1 + · · ·+Er , (2.3)

where we put

Vk j :=
{

x∈V;c4x =
1
2
(λk +λ j)x,x4c = λ jx for c = ∑λiEi (∀λi ∈ RRR)

}
.

The integerr is calledthe rank of V. SettingVkk := RRREk for k = 1, . . . , r, we have the following
multiplication table:

Vlk4Vk j ⊂Vl j ,

if k 6= i, j, thenVlk4Vi j = 0, (2.4)

Vlk4Vmk⊂Vlm or Vml according tol ≥mor m≥ l .

2.2. Inner products defined by positive parameters.
Let V be a clan with unit elementE. We keep to the notation of the previous subsection.

Let us define linear formsE∗i (i = 1, . . . , r) onV by

〈 r

∑
j=1

x jE j + ∑
j<k

Xk j,E
∗
i

〉
= xi (x j ∈ RRR, Xk j ∈Vk j).

We put

nk j := dimVk j ( j < k), di := 1+
1
2 ∑

k>i

nki +
1
2 ∑

j<i
ni j . (2.5)

Forsss= (s1, . . . ,sr) ∈ RRRr , we set

E∗sss := ∑siE
∗
i , (2.6)

and define a bilinear form〈·|·〉sss by

〈x|y〉sss := 〈x4y,E∗sss〉 (x,y∈V). (2.7)
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Let ddd := (d1, . . . ,dr). Then, taking a basis ofV compatible with the normal decomposition (2.3),
we know by (2.4) that

Tr Lx = 〈x,E∗ddd〉. (2.8)

By (2.2), the bilinear form

〈x|y〉ddd = 〈x4y,E∗ddd〉= Tr Lx4y

is a positive definite inner product onV, which we shall callthe trace inner product associated
with the clan V. Then by (2.4) and (2.7), we see easily that ifx,y∈Vk j, thenx4y= d−1

k 〈x|y〉dddEk.
Let us assume thatsss= (s1, . . . ,sr) ∈ RRRr is positive, that is,si > 0 for all i = 1, . . . , r. We obtain
by (2.4)

〈x|x〉sss =
r

∑
i=1

〈
x2

i Ei + ∑
α<i

xiα4xiα ,siE
∗
i

〉

=
r

∑
i=1

〈
(pixi)2Ei + ∑

α<i
(pixiα)4(pixiα),diE

∗
i

〉
= 〈x′|x′〉ddd,

where we putpi := s1/2
i d−1/2

i , x′ := ∑r
i=1 pixiEi + ∑i>1 pi ∑α<i xiα . Therefore〈·|·〉sss also defines

a positive definite inner product onV. This inner product is generic in the following sense:

PROPOSITION2.1. Let f be a linear form on V. If the bilinear form〈x|y〉 f := 〈x4y, f 〉
defines a positive definite inner product on V, then there exists a positive parameter sss =
(s1, . . . ,sr) ∈ RRRr such that f= E∗sss .

PROOF. Take anyxk j ∈Vk j ( j < k). Since〈·|·〉 f is a symmetric bilinear form by hypothesis,
it holds that〈[E j4xk j], f 〉= 0. By the definition ofVk j, we have

[E j4xk j] =
1
2

xk j−xk j =−1
2

xk j,

so that〈xk j, f 〉 = 0. Hence there exists a parametersss∈ RRRr such that f = E∗sss . The positive
definiteness of〈·|·〉 f givessi > 0 for all i = 1, . . . , r. ¤

We note that owing to (2.4), the subspaces appearing in the normal decomposition (2.3) are
orthogonal with each other relative to〈·|·〉sss for any positivesss.

3. Pseudoinverse maps.

We shall introduce pseudoinverse maps and present their properties briefly. We assume that
sss= (s1, . . . ,sr) ∈ RRRr is positive from now on.

We putHi := LEi anda := ∑r
i=1RRRHi . Thena is a commutative Lie subalgebra ofh. For

u = (u1, . . . ,ur) ∈ RRRr , we define a one-dimensional representationχuuu of A := expa by

χuuu

(
exp

(
∑ tiHi

))
:= exp

(
∑uiti

)
.

Let hk j :=
{

Lx;x∈Vk j
}

andn := ∑ j<khk j. Thenn is a nilpotent Lie subalgebra ofh, anda

acts onn semisimply. PutN := expn. Thenh = an n, andH = AnN. We extendχuuu to a
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one-dimensional representation ofH by definingχuuu = 1 on N. Recall thatH acts onΩ simply
transitively and define functions∆uuu (uuu∈ RRRr) on Ω by

∆uuu(hE) = χuuu(h) (h∈ H).

If T = ∑i tiHi +T ′ with ti ∈ RRRandT ′ ∈ n, then it holds from (2.4) that

∆uuu((expT)E) = exp
(
∑uiti

)
= exp〈TE,E∗uuu〉.

In Introduction we used this relation for the definition of∆uuu for the sake of brevity. Evidently it
holds that

∆uuu(hx) = χuuu(h)∆uuu(x) (h∈ H, x∈Ω). (3.1)

Let Dv be the directional derivative in the directionv∈V: for smooth functionsf onV,

Dv f (x) =
d
dt

f (x+ tv)
∣∣∣
t=0

.

Forx∈Ω we defineIsss(x) ∈V by

〈Isss(x)|y〉sss =−Dy log∆−sss(x) (y∈V).

Isss : Ω →V is called thepseudoinverse map. Vinberg’s∗-map corresponds tosss= ddd. It should be
noted that, unlike [9], we make the image of the pseudoinverse map within the spaceV through
the inner product (2.7). This slight modification fits to our purpose. Various properties of the
original Isss proved in [9] are easily translated to our modifiedIsss. Here we refer the reader to [2,
p. 536] for the translation of normalj-algebra language to our language of clan. We denote by
Ω sss the dual cone ofΩ realized inV by means of the inner product (2.7):

Ω sss =
{

x∈V;〈x|y〉sss > 0 for ∀y∈Ω \{0}} .

Then, by [9, Proposition 3.12],Isss gives a diffeomorphism ofΩ ontoΩ sss. The groupH acts also
onV by the coadjoint action:x 7→ sssh−1x (h∈H,x∈V), wheresssT stands for the adjoint operator
of an operatorT with respect to〈·|·〉sss. It is easy to show by using (3.1) thatIsss is H-equivariant:

Isss(hx) = sssh−1Isss(x) (h∈ H, x∈Ω). (3.2)

In particular,Isss(λx) = λ−1Isss(x) for all λ > 0. We haveIsss(E) = E by [9, Lemma 3.10, (ii)], and
H acts also onΩ sss simply transitively.

PutW := VCCC. We extend the multiplication4 of the clanV to W by complex bilinearity.
We also extend〈·|·〉sss to W by complex bilinearity. We denote the extended multiplication and
the bilinear form by the same symbols. Forw∈W we denote byRw the right multiplication by
w: Rwx = x4w. Then,RE = I . Therefore,w 7→ detRw is a non-zero polynomial function onW.
Hence the subsetO := {w∈W;detRw 6= 0} is a non-empty Zariski-open set. The symbolsssT for
a complex linear operatorT onW has an obvious meaning.

LEMMA 3.1 ([9, Lemma 3.17]). The pseudoinverse map Isss can be continued analytically
to a rational map W→W, and one has Isss(w) = sssR−1

w E for w∈O.
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Recall thatH acts onΩ sss simply transitively by the coadjoint action and set foruuu∈ RRRr

∆ ∗
uuu(sssh−1E) := χuuu(h) (h∈ H).

∆ ∗
uuu is a function onΩ sss such that∆ ∗

uuu(sssh−1ξ ) = χuuu(h)∆ ∗
uuu(ξ ) for h∈ H andξ ∈ Ω sss. For x∈ Ω sss

we defineI∗sss(x) by

〈I∗sss(x)|y〉sss =−Dy log∆ ∗
sss(x) (y∈V).

Then, by [9, Proposition 3.15],I∗sss gives a diffeomorphism ofΩ sss onto Ω . Moreover,I∗sss is H-
equivariant, that is,I∗sss(sssh−1x) = hI∗sss(x) for everyh ∈ H andx ∈ Ω sss. We haveI∗sss(E) = E by
[9, Lemma 3.13].I∗sss is also continued analytically to a rational mapW →W. We know by [9,
Proposition 3.16] thatIsss andI∗sss are inverse to each other. Thus,Isss is a birational mapW→W with
I−1
sss = I∗sss . By [9, Theorem 3.19],Isss is holomorphic onΩ + iV , andI∗sss on Ω sss+ iV . Moreover,

Isss(Ω + iV ) is contained in the holomorphic domain ofI∗sss , andI∗sss(Ω sss+ iV ) in the holomorphic
domain ofIsss.

Before closing this section, we would like to mention possible singularities ofIsss. We see
from the proof of [8, Lemma 2.7] that

detRhE = detAdW(h)detAdhCCC
(h−1) (h∈ HCCC),

so thatw 7→ detRw is a holomorphic polynomial function onW relatively invariant under the
action ofH. Let ∆1, . . . ,∆r be the basic relative invariants associated withΩ introduced in [6,
p. 161]. We consider them as holomorphic polynomial functions onW in a natural way. By [6,
Theorem 2.2], there exist non-negative integersa1, . . . ,ar andα ∈ RRRsuch that

detRw = α∆1(w)a1 · · ·∆r(w)ar .

This together with Lemma 3.1 gives

PROPOSITION3.2. LetNi := {w∈W;∆i(w) = 0} (i = 1, . . . , r). Then Isss is holomorphic
on W\∪r

i=1Ni .

4. Formulas and norm computations.

PutWk j := (Vk j)CCC ( j ≤ k). Then the properties similar to (2.4) hold:

Wlk4Wk j ⊂Wl j ,

if k 6= i, j, thenWlk4Wi j = 0, (4.1)

Wlk4Wmk⊂Wlm or Wml according tol ≥mor m≥ l .

Note that ifvk j,wk j ∈Wk j, then we have

vk j4wk j = s−1
k 〈vk j|wk j〉sssEk. (4.2)

H-equivariance ofIsss andI∗sss gives

Isss(hE) = sssh−1E, I∗sss(
sssh−1E) = hE (h∈ H).
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Moreover these equalities hold for everyh∈ HCCC by analytic continuation. Throughout this sec-
tion we always assume that the integersj,k, l satisfy1≤ j < k < l ≤ r and write〈·|·〉 instead of
〈·|·〉sss for simplicity. We setν [w] := 〈w|w〉 (w∈W) to simplify the description.

Let wlk ∈Wlk, wl j ∈Wl j andwk j ∈Wk j in this section.

4.1. Formulas.
LEMMA 4.1. For every x= ∑xiEi +∑α>β xαβ (xi ∈CCC, xαβ ∈Wαβ ), one has

exp
(
Lwl j +Lwk j

)
x = x+x jwl j + ∑

α> j
wl j4xα j + ∑

β< j

wl j4x jβ

+x jwk j + ∑
α> j

wk j4xα j + ∑
β< j

wk j4x jβ

+2−1x j
(
s−1
k ν [wk j]Ek +s−1

l ν [wl j ]El +(wl j4wk j +wk j4wl j )
)
.

PROOF. We get by (4.1)

(
Lwl j +Lwk j

)
x = x jwl j + ∑

α> j
wl j4xα j + ∑

β< j

wl j4x jβ

+x jwk j + ∑
α> j

wk j4xα j + ∑
β< j

wk j4x jβ . (4.3)

Sincewl j4xα j ∈Wlα or Wα l , and sincewl j4x jβ ∈Wlβ , we obtain

(
Lwl j +Lwk j

)(
∑

α> j
wl j4xα j + ∑

β< j

wl j4x jβ

)
= 0.

Similarly

(
Lwl j +Lwk j

)(
∑

α> j
wk j4xα j + ∑

β< j

wk j4x jβ

)
= 0.

This together with (4.2) and (4.3) yields

(
Lwl j +Lwk j

)2
x = x j(wl j +wk j)4(wl j +wk j)

= x j
(
s−1
k ν [wk j]Ek +s−1

l ν [wl j ]El +wl j4wk j +wk j4wl j
)
.

The last term belongs toCCCEk⊕CCCEl ⊕Wlk by virtue of (4.1), so that we have by (4.1) again

(
Lwl j +Lwk j

)3
x = 0.

From these observations we arrive at the lemma easily. ¤

In what follows, givenwl j ∈Wl j andwk j ∈Wk j, we set

Slk :=
1
2
(wl j4wk j +wk j4wl j ). (4.4)

We haveSlk ∈Wlk by (4.1).

PROPOSITION4.2. Let tj , tk, tl ∈ RRR. Then one has
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exp
(
Lwl j +Lwk j

)
exp

(
Lwlk

)
exp(t jH j + tkHk + tl Hl )E

= ∑
m6= j,k,l

Em+et j E j +
(
etk +(2sk)−1et j ν [wk j]

)
Ek

+
(
etl +(2sl )−1etkν [wlk]+ (2sl )−1et j ν [wl j ]

)
El +et j wl j +et j wk j +(et j Slk +etkwlk).

PROOF. We see easily that

exp(t jH j + tkHk + tl Hl )E = ∑
m6= j,k,l

Em+et j E j +etkEk +etl El .

Form= 1, . . . , r, we have by Lemma 4.1

exp
(
Lwlk

)
Em = Em+δmk

(
(2sl )−1ν [wlk]El +wlk

)
.

Hence it holds that

exp
(
Lwlk

)
exp(t jH j + tkHk + tl Hl )E

= ∑
m6= j,k,l

Em+et j E j +etkEk +
(
etl +(2sl )−1etkν [wlk]

)
El +etkwlk.

Now by Lemma 4.1 we have form= 1, . . . , r

exp
(
Lwl j +Lwk j

)
Em

= Em+δm j(wl j +wk j)+2−1δm j
(
s−1
k ν [wk j]Ek +s−1

l ν [wl j ]El +(wl j4wk j +wk j4wl j )
)
.

Moreover it holds that

exp
(
Lwl j +Lwk j

)
wlk = wlk.

The proposition follows from these formulas. ¤

LEMMA 4.3. One has

sss(exp
(
Lwl j +Lwk j

))−1
Em

= Em+δmk
(
(2sj)−1ν [wk j]E j −wk j

)
+δml

(
(2sj)−1ν [wl j ]E j −wl j

)
.

PROOF. Take x = ∑xiEi + ∑α>β xαβ (xi ∈ CCC,xαβ ∈Wαβ ). Since the spacesWαβ are
orthogonal to each other relative to〈·|·〉, Lemma 4.1 yields

〈
x
∣∣ sss(exp(Lwl j +Lwk j)

)−1
Em

〉
=

〈
exp

(−Lwl j −Lwk j

)
x
∣∣Em

〉

=
〈
x−wl j4xl j −wk j4xk j +2−1x j(s−1

k ν [wk j]Ek +s−1
l ν [wl j ]El )

∣∣Em
〉

= 〈x|Em〉+δmk
〈
(2sk)−1x jν [wk j]Ek−wk j4xk j

∣∣Ek
〉
+δml

〈
(2sl )−1x jν [wl j ]El −wl j4xl j

∣∣El
〉
.

Herewk j4xk j = s−1
k 〈wk j|xk j〉Ek by (4.2), so that‖Ek‖2 = sk implies
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〈
(2sk)−1x jν [wk j]Ek−wk j4xk j

∣∣Ek
〉

= 2−1x jν [wk j]−〈wk j|xk j〉=
〈
x
∣∣(2sj)−1ν [wk j]E j −wk j

〉
.

A similar computation gives
〈
(2sl )−1x jν [wl j ]El −wl j4xl j

∣∣El
〉

=
〈
x
∣∣(2sj)−1ν [wl j ]E j −wl j

〉
,

which completes the proof. ¤

LEMMA 4.4. One hassssLwl j wlk ∈Wk j andsssLwk j wlk ∈Wl j .

PROOF. We putW′ := ∑CCCEi ⊕∑(α,β )6=(k, j)Wαβ , so thatW′ is complement toWk j in W.
For anyx = ∑xiEi +∑(α,β )6=(k, j) xαβ ∈W′, it follows from (4.1) that

〈sssLwl j wlk|x
〉

=
〈
wlk|Lwl j x

〉

=
〈

wlk

∣∣∣wl j4
(

x jE j + ∑
α> j,α 6=k

xα j + ∑
β< j

x jβ

)〉
= 0.

Hence we havesssLwl j wlk ∈Wk j. The proof forsssLwk j wlk ∈Wl j is similar and omitted. ¤

LEMMA 4.5. One has

sss(exp
(
Lwl j +Lwk j

))−1
wlk

= wlk +(2sj)−1〈wl j4wk j +wk j4wl j |wlk〉E j − sssLwl j wlk− sssLwk j wlk.

PROOF. Takex = ∑xiEi + ∑α>β xαβ (xi ∈CCC,xαβ ∈Wαβ ). Discussing as in the proof of
Lemma 4.3, we get

〈
x|sss(exp

(
Lwl j +Lwk j

))−1
wlk

〉

= 〈x|wlk〉+(2sj)−1〈x|E j〉〈wl j4wk j +wk j4wl j |wlk〉−
〈
xk j|sssLwl j wlk

〉−〈
xl j |sssLwk j wlk

〉
.

Lemma 4.4 shows that the last two terms are equal to−〈
x|sssLwl j wlk +sssLwk j wlk

〉
. Hence we obtain

the lemma. ¤

PROPOSITION4.6. Let Slk be as in (4.4). Then we have

sss(exp
(
Lwl j +Lwk j

)
exp

(
Lwlk

)
exp(t jH j + tkHk + tl Hl )

)−1
E

= ∑
m6= j,k,l

Em+
(
e−t j +(2sj)−1(e−tk +(2sk)−1e−tl ν [wlk]

)
ν [wk j]

+(2sj)−1e−tl ν [wl j ]−s−1
j e−tl 〈Slk|wlk〉

)
E j

+
(
e−tk +(2sk)−1e−tl ν [wlk]

)
Ek +e−tl El

+
(
e−tl sssLwl j wlk− (e−tk +(2sk)−1e−tl ν [wlk])wk j

)

+e−tl
(sssLwk j wlk−wl j

)−e−tl wlk.
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PROOF. First we see easily that

sss(exp(t jH j + tkHk + tl Hl )
)−1

E = ∑
m6= j,k,l

Em+e−t j E j +e−tkEk +e−tl El .

On the other hand, Lemma 4.3 says that

sss(exp
(
Lwlk

))−1
Em = Em+δml

(
(2sk)−1ν [wlk]Ek−wlk

)
.

Hence we have

sss(exp
(
Lwlk

)
exp(t jH j + tkHk + tl Hl )

)−1
E

= ∑
m6= j,k,l

Em+e−t j E j +
(
e−tk +(2sk)−1e−tl ν [wlk]

)
Ek +e−tl El −e−tl wlk.

Therefore Lemmas 4.3 and 4.5 give

sss(exp
(
Lwl j +Lwk j

)
exp

(
Lwlk

)
exp(t jH j + tkHk + tl Hl )

)−1
E

= ∑
m6= j,k,l

Em+e−t j E j +e−tl
(
El +(2sj)−1ν [wl j ]E j −wl j

)

+
(
e−tk +(2sk)−1e−tl ν [wlk]

)(
Ek +(2sj)−1ν [wk j]E j −wk j

)

−e−tl
(
wlk +s−1

j 〈Slk|wlk〉E j − sssLwl j wlk− sssLwk j wlk
)
.

The proposition follows from this easily. ¤

4.2. Norm computations.
LEMMA 4.7. ‖vlk4vk j‖2 = (2sk)−1‖vlk‖2‖vk j‖2 for everyvlk ∈Vlk andvk j ∈Vk j.

PROOF. Putz := vlk4vk j ∈Vl j . Then (2.1) and (2.4) give[Lz,Lvlk ] = L[z4vlk] = 0, so that

z4z= LzLvlkvk j = LvlkLzvk j = Lvlk

(
Lvk j4vlk

+
[
Lvlk ,Lvk j

])
vk j

= L2
vlk

(vk j4vk j)−LvlkLvk j z,

becausevk j4vlk = 0. Moreover, by (2.1) and (4.2) the last term is equal to

s−1
k ‖vk j‖2L2

vlk
Ek−

(
Lvk j Lvlk +Lvlk4vk j

)
z= s−1

k ‖vk j‖2Lvlkvlk−z4z

= s−1
k s−1

l ‖vk j‖2‖vlk‖2El −z4z.

Hence we getz4z= (2sksl )−1‖vk j‖2‖vlk‖2El . Sincez4z= s−1
l ‖z‖2El by (4.2), we obtain the

lemma. ¤

LEMMA 4.8. (1) If nk j 6= 0, then one has nl j ≥ nlk.
(2) If nlk 6= 0, then one has nl j ≥ nk j.
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PROOF. Let us assumenk j 6= 0. Take any non-zerovk j ∈Vk j, and consider the linear map
Vlk 3 vlk 7→ vlk4vk j ∈Vl j . We see that this map is injective by virtue of Lemma 4.7. Hence we
getnl j ≥ nlk. The proof for (2) is similar. ¤

Givenvl j ∈Vl j , vk j ∈Vk j, we set

Ulk :=
1
2
(vl j4vk j +vk j4vl j ). (4.5)

By (2.4) we know thatUlk ∈Vlk.

LEMMA 4.9. ‖Ulk‖2 ≤ (2sk)−1‖vl j ‖2‖vk j‖2.

PROOF. Sincevl j4vk j ∈Vlk by (2.4), we get by (2.1) and (2.4)

[L(vl j4vk j),Lvl j ] = L[(vl j4vk j)4vl j ] = 0.

Hence it follows from (2.7) that

‖vl j4vk j‖2 =
〈
L(vl j4vk j)(vl j4vk j),E∗sss

〉
=

〈
L(vl j4vk j)Lvl j vk j,E

∗
sss

〉
=

〈
Lvl j L(vl j4vk j)vk j,E

∗
sss

〉
.

SinceLvl j L(vl j4vk j)vk j = vl j4((vl j4vk j)4vk j), we have by (2.7)

〈
Lvl j Lvl j4vk j

vk j,E
∗
sss

〉
= 〈vl j |(vl j4vk j)4vk j〉 ≤ ‖vl j ‖‖(vl j4vk j)4vk j‖

= (2sk)−1/2‖vl j ‖‖vl j4vk j‖‖vk j‖,

where the last equality follows from Lemma 4.7. Thus we get

‖vl j4vk j‖ ≤ (2sk)−1/2‖vl j ‖‖vk j‖. (4.6)

On the other hand, sincevk j4vl j ∈Vlk, it follows from (2.4) that

[Lvk j ,Lvl j ](vk j4vl j ) = 0,

so that we have by (2.7) and (2.1)

‖vk j4vl j ‖2 =
〈
L(vk j4vl j )(vk j4vl j ),E∗sss

〉
=

〈
L(vl j4vk j)(vk j4vl j ),E∗sss

〉
. (4.7)

By (2.7), the last term is equal to

〈vl j4vk j|vk j4vl j 〉=
〈
L(vk j4vl j )(vl j4vk j),E∗sss

〉
.

Discussing as in (4.7), we see that this is equal to‖vl j4vk j‖2, so that we obtain‖vk j4vl j ‖ =
‖vl j4vk j‖. Then we see that‖Ulk‖ ≤ ‖vl j4vk j‖. Now (4.6) completes the proof. ¤

5. Proof of (C)⇒⇒⇒ (A) in the main theorem.

We are now able to begin the proof of our main theorem (Theorem 1.2). We first need to
quote two lemmas for the proof of (C)⇒ (A).
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5.1. Some facts about symmetric cones.
Let V1 be a real Euclidean vector space with an inner product〈·|·〉 andΩ1 ⊂V1 a self-dual

cone with respect to this inner product. The characteristic functionϕ1 of Ω1 is defined by

ϕ1(x) :=
∫

Ω1

e−〈x|y〉dy (x∈Ω1). (5.1)

Let us define Vinberg’s∗-mapΩ1 →V1 by

〈x∗|y〉=−Dy logϕ1(x) (x∈Ω1,y∈V1).

It is known that the∗-map has a unique fixed pointe1 ([5, Proposition I.3.5]). SinceΩ1 is a
symmetric cone,V1 has a Jordan algebra structure with unit elemente1. In this case, we have the
following lemma ([5, Chapter 3, Exercise 5]):

LEMMA 5.1. Let L′(v) be the multiplication byv in the Jordan algebra V1. Then

Tr L′(uv) = DuDv logϕ1(e1) = 〈u|v〉.

Therefore,〈·|·〉 coincides with〈·|·〉Tr : (u,v) 7→ Tr L′(uv). We note here that even if we re-
place the inner product〈·|·〉 by its positive number multiple in Definition (5.1) ofϕ1, Dy logϕ1(x)
is the same.

Suppose now thatΩ1 is irreducible. ThenV1 is simple. We know by Proposition III.4.2 of
[5] that Tr L′(x) = (n1/r1)tr(x), wheretr(x) is the trace ofx in the Jordan algebraV1, andr1 and
n1 are the rank and the dimension ofV1 respectively.

LEMMA 5.2. x∗ = x−1 for every invertible x∈V1.

PROOF. Denoting byxtr the ∗-map used in [5, Proposition III.4.3], we havextr =
(n1/r1)x−1. On the other hand, the discussion done just before the present lemma gives
(n1/r1)x∗ = xtr. Now the lemma follows. ¤

5.2. Proof of (C)⇒⇒⇒ (A).
Now we assume that (C) in Theorem 1.2 holds. Proceeding as in Subsection 5.1 withV, Ω

and〈·|·〉sss, we see thatV has a Jordan algebra structure and we have a∗-mapΩ →V. We shall
show thatIsss is a positive number multiple of the∗-map in this situation. By assumption, we have
sss= pddd (p> 0), so that∆−sss(x) = ∆−ddd(x)p for everyx∈Ω . On the other hand it is easy to see that
Deth= χddd(h) (h∈H). Let ϕ be the characteristic function ofΩ . Sinceϕ(hE) = (Deth)−1ϕ(E)
([5, Proposition I.3.1]), it holds thatϕ(x) = ∆−ddd(x)ϕ(E) (x ∈ Ω). Thus, for everyx ∈ Ω and
y∈V one has

〈Isss(x)|y〉sss =−Dy log∆−sss(x) =−pDy logϕ(x) = 〈px∗|y〉sss.

Hence we getIsss(x) = px∗. From Lemma 5.2 it follows thatIsss(x) = px−1. Since the inverse map
w 7→w−1 in the complexified Jordan algebraW =VCCC is an involutive holomorphic automorphism
of Ω + iV by [5, Theorem X.1.1], we obtainIsss(z) = pz−1 for all z∈Ω + iV , and (A) of Theorem
1.2 follows.
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6. Equivalence of (B) and (C).

The implication (C)⇒ (B) is trivial. In [15, Chapter III,§6] the dual cone of an irreducible
symmetric coneΩ is realized inV by means of the trace inner product of the corresponding clan
and we see easily from [16, Chapter II,§2] that it coincides withΩ .

In this section, we give a proof of equivalence of (B) and (C) that is valid for homogeneous
convex cones which are not necessarily irreducible. Let us assume thatΩ is self-dual with respect
to an inner product〈·|·〉0 of V.

Let ϕ0 be the characteristic function ofΩ , andE0 the unique fixed point of the∗-map.
Discussing as in Subsection 5.1,V has a Jordan algebra structure with unit elementE0. One has
by Lemma 5.1

DxDy logϕ0(E0) = 〈x|y〉0. (6.1)

In §2 we tookE as the base point in the construction of the clanV. We shall denote this clan
by (V,E). Now, takingE0 as the base point, we obtain a new clan(V,E0). It follows from
[15, Chapter II,§1] that there exists an algebra isomorphismΦ : (V,E) → (V,E0) such that
Φ(Ω) = Ω . Let 〈·|·〉tr be the trace inner product of the clan(V,E0). We have by [15, Chapter II,
§1]

DxDy logϕ0(E0) = 〈x|y〉tr. (6.2)

Hence we get from (6.1) and (6.2) that〈·|·〉0 coincides with〈·|·〉tr. ThereforeΩ is self-dual with
respect to〈·|·〉tr, too.

LEMMA 6.1. An algebra isomorphism between two clans is a unitary map when both
clans are equipped with their respective trace inner products.

PROOF. Let V, V ′ be two clans, andΨ : V → V ′ an algebra isomorphism. We denote
the multiplications ofV, V ′ by 4, 4′, the left-multiplication operators byL, L′, and the trace
inner products by〈·|·〉1, 〈·|·〉2 respectively. SinceΨ is an algebra isomorphism, we see easily
thatL′Ψ(x) = ΨLxΨ−1. Therefore,Tr Lx = Tr L′Ψ(x), so that we get

〈Ψ(x)|Ψ(y)〉2 = Tr L′(Ψ(x)4′Ψ(y)) = Tr L′Ψ(x4y) = Tr Lx4y = 〈x|y〉1.

Hence the proof is complete. ¤

Let Ω ddd, Ω tr be the dual cones ofΩ realized inV by means of the trace inner products of
(V,E), (V,E0) respectively. SinceΩ is self-dual with respect to〈·|·〉tr, we get

Ω = Φ−1(Ω) =
{

Φ−1(x);〈x|y〉tr > 0 for ∀y∈Ω \{0}}

=
{

Φ−1(x);〈Φ−1(x)|Φ−1(y)〉ddd > 0 for ∀Φ−1(y) ∈Ω \{0}}

= Ω ddd.

ThereforeΩ is also self-dual with respect to the trace inner product of(V,E). This completes
the proof of (B)⇒ (C).
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7. Proof of (A)⇒⇒⇒ (B).

We assume that (A) of Theorem 1.2 holds. In particular, we have

ReIsss(E + iV )⊂Ω sss, ReI∗sss(E + iV )⊂Ω . (7.1)

Since∑et j E j ∈Ω and∑et j E j ∈Ω sss for all t j ∈ RRR, it follows that

Em∈Ω ∩Ω sss (m= 1, . . . , r). (7.2)

We assume that the integersj,k, l satisfy1≤ j < k < l ≤ r throughout this section.

7.1. First step.
LEMMA 7.1. If nk j 6= 0, then one has sj ≥ sk.

PROOF. Take anyvk j ∈Vk j. In Proposition 4.2, we put

t j = tl = 0, tk = log
(
1+(2sk)−1‖vk j‖2) ,

wl j = wlk = 0, wk j = ivk j,

andη := expLivk j exp(tkHk). Then the formula becomesηE = E + ivk j. By Proposition 4.6 we
obtain

sssη−1E = ∑
m6= j,k,l

Em+
(
1− (2sj)−1e−tk‖vk j‖2)E j +e−tkEk +El − ie−tkvk j.

SinceIsss(E + ivk j) = Isss(ηE) = sssη−1Isss(E) = sssη−1E, we get

ReIsss(E + ivk j) = ∑
m6= j,k,l

Em+
(
1− (2sj)−1e−tk‖vk j‖2)E j +e−tkEk +El .

Since we have (7.1), the coefficients ofEm are all positive by (7.2). Hence we obtain
1− (2sj)−1e−tk‖vk j‖2 > 0, that is,

2sj >
(
1+(2sk)−1‖vk j‖2)−1‖vk j‖2.

Limiting procedure‖vk j‖→ ∞ yieldssj ≥ sk. ¤

LEMMA 7.2. If nk j 6= 0, then one has sk ≥ sj .

PROOF. Take anyvk j ∈Vk j. In Proposition 4.6 we put

t j =− log
(
1+(2sj)−1‖vk j‖2) , tk = tl = 0,

wl j = wlk = 0, wk j =−ivk j,

andη∗ := expL(−ivk j) exp(t jH j). Then the formula becomessss(η∗)−1E = E + ivk j. By Proposi-
tion 4.2 we have

η∗E = ∑
m6= j,k,l

Em+et j E j +
(
1− (2sk)−1et j‖vk j‖2)Ek +El − iet j vk j.
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SinceI∗sss(E + ivk j) = I∗sss(sss(η∗)−1E) = η∗I∗sss(E) = η∗E, it holds that

ReI∗sss(E + ivk j) = ∑
m6= j,k,l

Em+et j E j +
(
1− (2sk)−1et j‖vk j‖2)Ek +El . (7.3)

The assumption (7.1) together with (7.2) shows that the coefficients ofEm in (7.3) are positive
for all m. Hence we get1− (2sk)−1et j‖vk j‖2 > 0, that is,

2sk >
(
1+(2sj)−1‖vk j‖2)−1‖vk j‖2.

Taking the limit as‖vk j‖→ ∞, we arrive atsk ≥ sj . ¤

Lemmas 7.1 and 7.2 give

PROPOSITION7.3. If nk j 6= 0, then one has sk = sj .

Now, Asano’s theorem [1, Theorem 4] tells us thatΩ is irreducible if and only if for each
pair ( j,k) with 1≤ j < k≤ r, there exists a seriesj0, . . . , jm of distinct positive integers such
that j0 = k, jm = j andn jλ−1 jλ 6= 0 for any λ = 1, . . . ,m, where if jλ−1 < jλ , then one puts
n jλ−1 jλ := n jλ jλ−1

. Therefore we arrive at

PROPOSITION7.4. The numbers sm for m= 1, . . . , r are independent of m.

7.2. Second step.
We next show that ifnlk 6= 0, thennl j = nk j. Before starting, we present three lemmas which

hold in general.

LEMMA 7.5. Letvk j ∈Vk j. Then the following two statements are equivalent:

(i) ∑amEm+vk j ∈Ω ,
(ii) am > 0 (m= 1, . . . , r) and ajak− (2sk)−1‖vk j‖2 > 0.

PROOF. We assume that (i) holds. It follows from (7.2) thatam > 0 for m= 1, . . . , r. Put
wk j :=−a−1

j vk j ∈V andz :=
(
expLwk j

)
(∑mamEm+vk j). Lemma 4.1 and (4.2) give

z= ∑
m

amEm+vk j +a jwk j +wk j4vk j +
1
2
(a jsk)−1‖vk j‖2Ek

= ∑
m6= j,k

amEm+a jE j +
(
ak− (2a jsk)−1‖vk j‖2)Ek. (7.4)

Now the assumption impliesz∈Ω , so that (7.2) givesa jak− (2sk)−1‖vk j‖2 > 0.
Conversely we assume that (ii) holds. Then (7.4) tells us thatz∈Ω , so that

∑amEm+vk j =
(
expL(−wk j)

)
z∈Ω ,

whence the proof is complete. ¤

Discussing as in the proof of Lemma 7.5, we get

LEMMA 7.6. Letvk j ∈Vk j. Then the following two statements are equivalent:
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(i) ∑mamEm+vk j ∈Ω sss,
(ii) am > 0 (m= 1, . . . , r) and ajak− (2sj)−1‖vk j‖2 > 0.

LEMMA 7.7. Letvlk ∈Vlk andvl j ∈Vl j . Then one hassssLvlkvl j = sssLvl j vlk.

PROOF. Note that sincevlk,vl j remain inV, bothsssLvlkvl j andsssLvl j vlk are inVk j by Lemma
4.4. Take anyx∈Vk j. We obtain by (2.7) and (2.1)

〈sssLvlkvl j |x
〉

= 〈vl j |vlk4x〉=
〈
Lvl j Lvlkx,E∗sss

〉

=
〈
(LvlkLvl j +L[vl j4vlk])x,E

∗
sss

〉
.

Sincevl j4vlk = vlk4vl j = 0 by (2.4), the last term is equal to

〈
LvlkLvl j x,E

∗
sss

〉
= 〈vlk|vl j4x〉=

〈sssLvl j vlk|x
〉
.

Therefore we obtainsssLvlkvl j = sssLvl j vlk. ¤

Let us return to the proof of our main theorem. In view of Proposition 7.4 we puts= sm,
independent ofm, from now on.

LEMMA 7.8. If nlk 6= 0, then one has nk j ≥ nl j .

PROOF. If nl j = 0, then the conclusion of the lemma is trivially true. Thus we assume
nl j 6= 0 as well asnlk 6= 0. Take anyvlk ∈Vlk andvl j ∈Vl j . In Proposition 4.6 we put

wlk :=−ivlk, wl j :=−ivl j , wk j :=−sssLvl j vlk,

t j :=− log
(
1+(2s)−1‖wk j‖2 +(2s)−1‖vl j ‖2) , (7.5)

tk :=− log
(
1+(2s)−1‖vlk‖2) , tl = 0.

It should be noted here thatwk j ∈ Vk j just as in the proof of Lemma 7.7. Let us see what the
right-hand side of the formula in Proposition 4.6 looks like. By definition we get

〈wl j4wk j|wlk〉=−〈vl j4wk j|vlk〉= ‖wk j‖2. (7.6)

SinceLvlkvl j = 0 andL(wk j∆vlk) = 0 by (2.4), we havevlk4(wk j4vl j ) = (vlk4wk j)4vl j by (2.1).
This gives

〈wk j4wl j |wlk〉=−〈wk j4vl j |vlk〉=−〈
vlk4(wk j4vl j ), E∗sss

〉

=−〈
(vlk4wk j)4vl j , E∗sss

〉
=−〈vlk4wk j|vl j 〉

=−〈
wk j|sssLvlkvl j

〉
.

Lemma 7.7 shows that the last term equals−〈
wk j|sssLvl j vlk

〉
, so that we obtain

〈wk j4wl j |wlk〉= ‖wk j‖2. (7.7)

Let Slk be as in (4.4). Then it follows from (7.6) and (7.7) that
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〈Slk|wlk〉= ‖wk j‖2.

Let us put

η∗ := exp
(
Lwl j +Lwk j

)
exp

(
Lwlk

)
exp(t jH j + tkHk).

Then we see without difficulty that the formula in Proposition 4.6 becomes

sss(η∗)−1E = E + i
(
vlk− sssLwk j vlk +vl j

)
.

Now we have

I∗sss
(
E + i

(
vlk− sssLwk j vlk +vl j

))
= I∗sss

(sss(η∗)−1E
)

= η∗I∗sss(E) = η∗E,

and Proposition 4.2 gives

η∗E = ∑
m6= j,k,l

Em+et j E j +
(
(2s)−1et j‖wk j‖2 +etk

)
Ek

+
(
1− (2s)−1et j‖vl j ‖2− (2s)−1etk‖vlk‖2)El +et j wk j

−i
(
et j vl j +etkvlk +2−1et j (vl j4wk j +wk j4vl j )

)
.

By (7.1), the real part of this belongs toΩ . Hence by Lemma 7.5

1− (2s)−1et j‖vl j ‖2− (2s)−1etk‖vlk‖2 > 0.

Rewriting this by using (7.5), we arrive at

(2s)−1‖vlk‖2‖vl j ‖2−2s< ‖wk j‖2. (7.8)

We observe here that (7.8) forcesnk j 6= 0, because we are assumingnl j 6= 0 andnlk 6= 0 and note
that vlk andvl j are arbitrary. Let{em}nk j

m=1 be an orthonormal basis ofVk j. Since Lemma 7.7
yields

‖wk j‖2 =
nk j

∑
m=1

〈wk j|em〉2 =
nk j

∑
m=1

〈sssLvl j vlk|em
〉2

=
nk j

∑
m=1

〈sssLvlkvl j |em
〉2 =

nk j

∑
m=1

〈vl j |vlk4em〉2,

(7.8) is equivalent to the inequality

(2s)−1‖vlk‖2‖vl j ‖2−2s<

nk j

∑
m=1

〈vl j |vlk4em〉2. (7.9)

We makevl j run over an orthonormal basis ofVl j in (7.9) and sum up the resulting formulas. We
get

nl j
(
(2s)−1‖vlk‖2−2s

)
<

nk j

∑
m=1

‖vlk4em‖2.
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Here we have‖vlk4em‖2 = (2s)−1‖vlk‖2 by Lemma 4.7, so that we obtain

‖vlk‖−2(‖vlk‖2− (2s)2)nl j < nk j.

Taking the limit as‖vlk‖→ ∞, we obtainnl j ≤ nk j. ¤

Lemma 7.8 together with the statement (2) of Lemma 4.8 yields

PROPOSITION7.9. If nlk 6= 0, then one has nl j = nk j.

7.3. Third step.
We show that ifnk j 6= 0, thennlk = nl j . LetUlk be as in (4.5). Under (7.1) the norm ofUlk

can be calculated.

LEMMA 7.10. ‖Ulk‖2 = (2s)−1‖vl j ‖2‖vk j‖2.

PROOF. In view of Lemma 4.9, it suffices to show

‖Ulk‖2 ≥ (2s)−1‖vl j ‖2‖vk j‖2.

This inequality is trivial ifnl j = 0 or nk j = 0. Therefore we assume thatnl j 6= 0 andnk j 6= 0. In
Proposition 4.2 we put

t j := 0, tk := log
(
1+(2s)−1‖vk j‖2) ,

tl := log
(
1+(2s)−1‖vl j ‖2− (2s+‖vk j‖2)−1‖Ulk‖2) ,

wl j := ivl j , wk j := ivk j, wlk := e−tkUlk,

where we note that Lemma 4.9 guarantees thattl is actually a real number as is easily seen. Put

η := exp
(
Lwl j +Lwk j

)
exp

(
Lwlk

)
exp(tkHk + tl Hl ).

Then we see that the formula in Proposition 4.2 is the following:

ηE = E + i(vl j +vk j).

We haveIsss
(
E + i(vl j +vk j)

)
= Isss(ηE) = sssη−1Isss(E) = sssη−1E as before, and Proposition 4.6

gives

sssη−1E = ∑
m6= j,k,l

Em+
(
1− (2s)−1(e−tk +(2s)−1e−tl ‖wlk‖2)‖vk j‖2

−(2s)−1e−tl ‖vl j ‖2 +s−1e−tl 〈Ulk|wlk〉
)
E j

+(e−tk +(2s)−1e−tl ‖wlk‖2)Ek +e−tl El −e−tl wlk

+i
(−e−tkvk j +e−tl

(sssLvl j wlk− (2s)−1‖wlk‖2vk j + sssLvk j wlk−vl j
))

.

Since the real part of this belongs toΩ sss, it follows from Lemma 7.6 that the coefficient ofE j is
positive. We putα := ‖Ulk‖2, β := ‖vl j ‖2 andγ := ‖vk j‖2 for simplicity. Then we have after
some simplification
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(the coefficient ofE j)×etl e2tk = (2s)−2((2s+β )(2s+ γ)−2sα
)− (2s)−3β (2s+ γ)2

+(2s2)−1(2s+ γ)α− (2s)−2αγ . (7.10)

Let x > 0 be arbitrary, and replacevl j andvk j with xvl j andxvk j respectively in (7.10), so that
α,β andγ are replaced byαx4, βx2 andγx2 respectively. Let us denote byF(x) the right-hand
side of (7.10). We see thatF(x) is a polynomial of degree 6 and

(the coefficient ofx6 in F(x)) = (2s)−3γ(−βγ +2sα). (7.11)

SinceF(x) > 0 for everyx≥ 0, it is necessary for the right-hand side of (7.11) to be non-negative.
Hence it follows that2sα ≥ βγ . This completes the proof. ¤

PROPOSITION7.11. If nk j 6= 0, then one has nlk = nl j .

PROOF. If nk j 6= 0, then we choosevk j 6= 0, so that the linear mapvl j 7→Ulk from Vl j to
Vlk is injective by virtue of Lemma 7.10. Thusnlk ≥ nl j . The reverse inequality follows from (1)
of Lemma 4.8. ¤

7.4. Last step.
The concluding step is parallel to that of [10, Subsection 5.5].

LEMMA 7.12. If at least two of nlk, nl j , nk j are non-zero, they are all equal.

PROOF. In view of Propositions 7.9 and 7.11, the proof is completely similar to that of
[10, Lemma 5.15]. ¤

PROPOSITION7.13. The numbers nk j are independent of j, k.

PROOF. We first show thatnk1 6= 0 for anyk with 2≤ k≤ r. By Asano’s theorem, there
exists a series of distinct positive integers such thatj0 = k, jm = 1, n jλ−1 jλ 6= 0. Sincen j0 j1 6= 0
andn j1 j2 6= 0, we get by Lemma 7.12 thatn j0 j1 = n j1 j2 = n j0 j2 6= 0. Then, sincen j0 j2 6= 0 and
n j2 j3 6= 0, we obtainn j0 j3 = n j0 j2 = n j2 j3 6= 0. Continuing this argument, we haven j0 jm 6= 0, that
is, nk1 6= 0.

Now, we see thatnk1 are independent ofk by Lemma 7.12. Take two integersj,k with
1 < j < k≤ r. Sincen j1,nk1 6= 0, Lemma 7.12 givesn j1 = nk1 = nk j, whence the conclusion.¤

Now the following proposition due to Vinberg completes the proof of (A)⇒ (B).

PROPOSITION7.14 ([16, Proposition 3]). The irreducible homogeneous convex coneΩ is
self-dual if and only if the numbers nk j are independent of j,k.
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