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Abstract. Recently, Oka-Pho proved that the fundamental group of the complement of any
plane irreducible tame torus sextic is not abelian. We compute here the fundamental groups of the
complements of some plane irreducible sextics which are not of torus type. For all our examples,
we obtain that the fundamental group is abelian.

Introduction.

In [Z1], Zariski proved th at ifC is an irreducible sextic in the complex projective planeCCCPPP2

with 6 cusps situated on a conic, then the fundamental groupπ1(CCCPPP2−C) is isomorphic to the
free product(ZZZ/2ZZZ)∗ (ZZZ/3ZZZ). He also proved that if there exists an irreducible sexticC′ in CCCPPP2

with 6 cusps not situated on a conic, thenπ1(CCCPPP2−C′) is not isomorphic to(ZZZ/2ZZZ)∗(ZZZ/3ZZZ). In
[Z2], he justified the existence of this second family of curvesC′, and asserts thatπ1(CCCPPP2−C′)
is isomorphic toZZZ/6ZZZ. In [O3], Oka gave the first explicit example of such a curveC′. A curve
C as above (6 cusps on a conic) is an example of the so-called sextics of torus type1. On the
contrary, the curveC′ (6 cusps not situated on a conic) is not of torus type.

CONJECTURE0.1 (Oka). Let C be an irreducible sextic in CCCPPP2 which is not of torus type.
Then, we have the three following conjectures.

(i) The generic Alexander polynomial of C is trivial.
(ii) If moreover C has only simple singularities, then the fundamental groupsπ1(CCCPPP2−C)

andπ1(CCC2−C) are abelian, isomorphic to ZZZ/6ZZZ and ZZZ respectively.
(iii) The fundamental groupsπ1(CCCPPP2−C) andπ1(CCC2−C) are abelian, isomorphic to ZZZ/6ZZZ

and ZZZ respectively(without assuming that the singularities are simple).

Notice that (i) is true for curves having only simple singularities and satisfying the condition
ρ(5)≤ 6 (cf. [O7]). Observe also that (iii) implies (i), while the reverse is not true (cf. [O7]).

In the present paper, we give a first step toward (ii). More precisely, for each configuration
of singularitiesΞ in the following list2:

{2A8}, {A17}, {A11+E6}, {A14+A2}, {A11+A5},
{A8 +A5 +A2}, {A8 +E6 +A2},

(0.2)

2000Mathematics Subject Classification. 14H30.
Key Words and Phrases. fundamental groups, complements of plane singular curves, Zariski-van Kampen theorem,

pencils of lines, monodromies.
1A sextic{(X :Y : Z)∈CCCPPP2 ; F(X,Y,Z) = 0} is said oftorus typeif there is an expressionF(X,Y,Z) = F2(X,Y,Z)3+

F3(X,Y,Z)2, whereF2 andF3 are homogeneous polynomials of degree 2 and 3 respectively.
2We recall that a pointp of a curveC is called a singularity of typeAn, wheren is an integer≥ 1, if the germ(C, p)

is topologically equivalent to the germ({x2 + yn+1 = 0},O) as embedded germs (for the definition of “topologically
equivalent”, see e.g. [Di, Definition 1.4]). It is called a singularity of typeE6 if (C, p) is topologically equivalent to
({x3 +y4 = 0},O).
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we give an explicit example of an irreducible non-torus sexticC⊂CCCPPP2 with the configuration
Ξ such thatπ1(CCCPPP2−C) andπ1(CCC2−C) are abelian (isomorphic toZZZ/6ZZZ andZZZ respectively).
Then, denoting byM (Ξ) the moduli space of reduced sextics inCCCPPP2 with the configuration
Ξ , one deduces that, for any curveC belonging to the connected component ofM (Ξ) contain-
ing our exampleC, the fundamental groupsπ1(CCCPPP2−C) andπ1(CCC2−C) are abelian too. Our
mains results are stated in Theorem 2.1 and Corollary 2.2. For the proof, we use the Zariski-van
Kampen pencils method (cf. Section 1 below). Notice that, in practice, the computation of the
fundamental group is not so easy, since it is extremely difficult to read the monodromy relations
for curves which are defined overCCC. Nevertheless, when the curve has manyreal singular pencil
lines, the computation becomes usually easier. Moreover, as our purpose is to show the com-
mutativity of the fundamental group, it is not necessary to consider all the monodromy relations
provided we can find a “good” curve. Hereafter, we have chosen curves so that we shall only
need to consider the monodromy relations at thereal singular pencil lines. But in general if we
use an equation which is not “good enough” we have to use the other monodromy relations even
to show a commutativity.

Notice that, in [OP], Oka-Pho showed that the fundamental group of the complement of
any irreducible tame torus sextic3 in CCCPPP2 is isomorphic to(ZZZ/2ZZZ)∗(ZZZ/3ZZZ) except one class (the
exceptional class has the configuration of singularities{C3,9 +3A2} and the fundamental group
in this case is bigger than(ZZZ/2ZZZ) ∗ (ZZZ/3ZZZ)). Concerning the proof, in the case of irreducible
tame torus sextics the computation can be in fact reduced to the special case ofmaximalcurves,
and it thus becomes easier to check the property since there exist only 7 moduli of maximal
reduced tame torus sextics inCCCPPP2.

Notice also that, in [O7], the second author proved that the generic Alexander polynomial of
any irreducible torus sextic inCCCPPP2 (not necessarily tame) is not trivial; in particular, this implies
that the fundamental group of the complement of such a curve is not abelian.

The paper is organized as follows. In Section 1, we recall the Zariski-van Kampen pencils
method. In Section 2, we give the statements of our main results (Theorem 2.1 and Corollary
2.2). Sections 3 to 7 concern the proof of Theorem 2.1.

This paper has been written using the SCURVE program made by Pho Duc Tai for
MAPLE 7.

1. Zariski-van Kampen pencils method.

Let F(X,Y,Z) be a reduced homogeneous polynomial of degreed. We denote by

C :=
{
(X : Y : Z) ∈CCCPPP2 | F(X,Y,Z) = 0

}

the corresponding projective curve inCCCPPP2. The most effective way to compute the fundamental
group π1(CCCPPP2−C) is the Zariski-van Kampen pencils method. This method can be briefly
described as follows.

Let l(X,Y,Z), l ′(X,Y,Z) be two independent linear forms. For every pointτ := (S : T) ∈
CCCPPP1, denote byLτ the projective line ofCCCPPP2 defined by

Lτ :=
{
(X : Y : Z) ∈CCCPPP2 | T l(X,Y,Z)−Sl′(X,Y,Z) = 0

}
.

3A sextic of torus type{(X : Y : Z) ∈CCCPPP2;F2(X,Y,Z)3 +F3(X,Y,Z)2 = 0} is saidtameif its singularities are sitting
only at the intersection of the conic and the cubic defined byF2(X,Y,Z) = 0 andF3(X,Y,Z) = 0 respectively.
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The family of linesL := (Lτ)τ∈CCCPPP1 is called the pencil generated byl andl ′. The pointB0 :=
L(0:1)∩L(1:0) belongs to every line of the pencil; it is called the axis ofL . We assume thatB0 /∈C.
A memberLτ of L is called agenericline, with respect toC, if it avoids the singularities ofC
and if it is transverse to the non-singular part ofC; otherwise, it is called asingular line. If
Lτ is generic, then it intersectsC at exactlyd points. If Lτ is singular, then it intersectsC at a
singular point or it is tangent toC at some simple point. Notice that the set of singular lines is
finite. If necessary, one may consider some generic lines ofL as “singular” ones. LetΣ the set
of parametersτ ∈CCCPPP1 corresponding to the singular lines, and letLτ0 andLτ∞ be two generic
lines (which we have not decided to consider as “singular”). Without loss of generality, we can
assume thatτ∞ is the point at infinity ofCCCPPP1 (i.e.,τ∞ = (1 : 0)). Hereafter, we identifyCCCPPP2−Lτ∞

with the affine spaceCCC2, and we denote byLa
τ the affine lineLτ −Lτ∞ = Lτ −B0. Notice thatLa

τ
naturally identifies toCCC. The complementLτ0 −C (resp.La

τ0
−C) is topologically the2-sphere

SSS2 minusd (resp.d+1) points. We takeb0 = B0 as the base point in the case ofπ1(CCCPPP2−C). In
the affine caseπ1(CCC2−C), we take the base pointb0 onLτ0 sufficiently close toB0 butb0 6= B0.

It is well-known that there is a canonical action ofπ1(CCCPPP1−Σ ,τ0) on π1(Lτ0−C,b0) and
a canonical action ofπ1(CCCPPP1−Σa,τ0) on π1(La

τ0
−C,b0), whereΣa = Σ ∪ τ∞ (cf. e.g. [O4],

[O8]). These actions are called themonodromy actions. For anyσ ∈ π1(CCCPPP1− Σ ,τ0) and
any ξ in π1(Lτ0 −C,b0), we denote byξ σ the image of(σ ,ξ ) by the monodromy action (of
π1(CCCPPP1−Σ ,τ0) on π1(Lτ0−C,b0)). The relations

ξ = ξ σ for σ ∈ π1(CCCPPP1−Σ ,τ0) andξ ∈ π1(Lτ0−C,b0)

in the groupπ1(Lτ0 −C,b0) are called themonodromy relations. We use a similar notation and
terminology in the affine case. We denote byN (resp.Na) the normal subgroup ofπ1(Lτ0−C,b0)
(resp.π1(La

τ0
−C,b0)) generated by

{
ξ−1ξ σ | σ ∈ π1(CCCPPP1−Σ ,τ0), ξ ∈ π1(Lτ0−C,b0)

}
(
resp.

{
ξ−1ξ σ | σ ∈ π1(CCCPPP1−Σa,τ0), ξ ∈ π1(La

τ0
−C,b0)

})
.

THEOREM 1.1 (Zariski-van Kampen). (i) The inclusion map Lτ0−C ↪→CCCPPP2−C induces
an isomorphism

π1(Lτ0−C,b0)
/

N
∼−→ π1(CCCPPP2−C,b0).

(ii) Similarly, the inclusion map Laτ0
−C ↪→CCC2−C induces an isomorphism

π1(La
τ0
−C,b0)

/
Na ∼−→ π1(CCC2−C,b0).

Originally conjectured by Zariski [Z1], this theorem was proved by van Kampen [vK ]. For
a modern and complete proof, see Chéniot [C].

The relation betweenπ1(CCCPPP2−C,b0) and π1(CCC2−C,b0) is described by the following
result.

PROPOSITION1.2 (cf. [O1], [O2]). (i) Let ı : CCC2−C ↪→CCCPPP2−C be the inclusion map.
We have the following central extension:

1→ ZZZ→ π1(CCC2−C,b0)
ı]−→ π1(CCCPPP2−C,b0)→ 1,
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where, of course, ı] is induced by ı. The generator forkerı] is represented by a lasso for Lτ∞ .
(ii) The homomorphism ı] induces an isomorphism

D
(
π1(CCC2−C,b0)

) ∼−→D
(
π1(CCCPPP2−C,b0)

)

between the commutator subgroupsD
(
π1(CCC2−C,b0)

)
and D

(
π1(CCCPPP2−C,b0)

)
of π1(CCC2−

C,b0) andπ1(CCCPPP2−C,b0) respectively.

We recall that a lasso is defined as follows. LetC ⊂CCCPPP2 be a reduced curve and let(Ci)i

be the irreducible components ofC. An elementζ ∈ π1(CCCPPP2−C,∗) is called alassooriented
counter-clockwise forCi if it is represented by a loop written asρ ωρ−1, whereω is a loop
running once counter-clockwise around the boundary circle of a small closednormaldisk ∆ of
C at a simple point such that∆ does not intersect withC j for j 6= i, and whereρ is a simple
path connecting the base point∗ and the loopω such thatimρ ∩∆ is reduced to a single point
(cf. [O4]).

Of course, Proposition 1.2 implies thatπ1(CCC2−C,b0) is abelian if and only ifπ1(CCCPPP2−
C,b0) is abelian. Moreover, ifC is irreducible and if the fundamental groupsπ1(CCC2−C,b0) and
π1(CCCPPP2−C,b0) are abelian, then we have the following isomorphisms (cf. [O8, Section 2.3]):

π1(CCCPPP2−C,b0)' ZZZ/dZZZ and π1(CCC2−C,b0)' ZZZ.

NOTATION 1.3. (i) For our purpose, we shall use only the pencilsLX,Z andLY,Z gener-
ated bylX, lZ andlY, lZ respectively, where

lX(X,Y,Z) = X, lY(X,Y,Z) = Y, lZ(X,Y,Z) = Z.

In these two special cases,Lτ∞ is just the line at infinityL∞ := {(X : Y : Z) ∈CCCPPP2 | Z = 0} of
CCCPPP2. Let x := X/Z andy := Y/Z be the affine coordinates onCCC2 = CCCPPP2−L∞. Observe that, in
CCC2, the pencilsLX,Z andLY,Z are given by{x = η}η∈CCC and{y = η}η∈CCC respectively. For any
τ = (S : T) ∈CCCPPP1− τ∞ 'CCC, we shall also denote the lineLτ by Lη whereη = S/T. Observe
that, inCCC2, the lineLη is given byx = η for the pencilLX,Z and byy = η for the pencilLY,Z.

(ii) Hereafter, we shall consider the affine equation ofC, that is the equationf (x,y) = 0
where f (x,y) := F(x,y,1).

(iii) Everywhere, we shall always assume thatε is a sufficiently small strictly positive
number.

(iv) In the figures, for simplicity of drawing pictures, we shall denote a lasso oriented
counter-clockwise just by a path ending with a bullet——• as in [O5], [O6] and [OP] (but of
course this is a loop!).

2. Statements of the main results.

For each integeri, 1≤ i ≤ 7, we consider the irreducible sexticCi defined by the affine
equationfi(x,y) = 0, where

f1(x,y) :=(1/4)x6 +(3/2)x5y+(26685/512)y5x+(87/32)x4y2 +x3y3 +(589/1024)y6

− (1/2)x5− (1667/32)y5− (79/32)x3y2− (7743/1024)x2y4− (25/16)x2y3

−2x4y+(13/2)xy4 +(1/4)x4 +(17/16)y4− (7/16)xy3− (9/4)x2y2

− (1/2)x3y+x2y+xy2 +y3 +y2,
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f2(x,y) :=360x6 +(419/144)y6−120x5y+(295/216)y5x+25x4y2− (1535/144)y4x2

+(373/6)x3y3 +32x5 +(7/4)y5 +(373/3)x4y+(145/12)y4x− (59/36)x3y2

+(133/54)x2y3 +(1417/36)x4 +(1/4)y4− (29/54)x3y+7xy3 +(161/12)x2y2

+(16/9)x3 +7x2y+xy2 +x2,

f3(x,y) := (−(9/8)x−1) y5 +
(−(13/48)x2 +(27/8)x+3

)
y4

+
(−(83/32)x3− (35/24)x2− (27/8)x−3

)
y3

+
(
(271/576)x4 +(187/32)x3 +(179/48)x2 +(9/8)x+1

)
y2

+
(−(61/48)x5− (17/12)x4− (13/4)x3−2x2)y

+(15/16)x6 +(17/8)x5 +x4,

f4(x,y) :=
13149
141376

y4− 10177
6903125

x5 +
1

625
x4− 89779

22090
y4x− 136993

141376
y6 +

269603
141376

y5

+
13885
8836

y5x− 122147
3534400

y4x2− 287135
141376

y3 +
127723
1767200

y3x2 +
150841
44180

y3x

+
5207

110450
y3x3 +y2 +

296909
88360000

y2x4 +
153509
3534400

y2x2− 10177
11045

y2x− 78261
552250

y2x3

− 11117
88360000

x4y+
20354
276125

x3y+
5681

27612500
x5y+

144743
2209000000

x6− 2
25

x2y,

f5(x,y) :=y6−3y5 +3y4x2 +2y4x+4y4−2y3x3−13y3x2−6y3x−3y3 +9y2x4 +12y2x3

+13y2x2 +4y2x+y2−6yx5−17yx4−8yx3−2yx2 +7x6 +4x5 +x4,

f6(x,y) :=(5/16)y6− (23/8)y5x+(23/8)y5− (5/16)y4x2 +(31/8)y4x− (123/16)y4

+(15/8)y3x3 +(31/8)y3x2−y3x+(11/2)y3− (51/16)y2x4− (13/4)y2x3

− (13/4)y2x2−y2 +(13/4)yx5 +2yx3−x6,

f7(x,y) :=(3/2)y6− (7/3)y5x−3y5− (71/18)y4x2 +8y4x+(1/2)y4 +(76/9)y3x3

+(13/3)y3x2− (29/3)y3x+2y3−10y2x4− (14/3)y2x3− (1/6)y2x2

+4y2x−y2 +(46/9)yx5 +(16/3)yx4− (8/3)yx3− (16/9)x6.

For eachi, the curveCi is not of torus type. Let us prove this fact for example for the curve
C1. If C1 was of torus type, then there would exist a conicD1 meetingC1 only at(0,0) and(1,0)
(the two singular points ofC1) and such thatI(C1,D1;(0,0)) = I(C1,D1;(1,0)) = 6 (cf. [P]),
where I(C1,D1;(0,0)) and I(C1,D1;(1,0)) are the intersection multiplicity ofC1 with D1 at
(0,0) and(1,0) respectively; but we can easily check that there does not exist such a conicD1.
A similar argument can be used for the other curvesC2, . . . ,C7; the details are left to the reader.

For eachi, we denote byΞi the configuration of singularities of the curveCi . We have:
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Ξ1 = {2A8}; Ξ2 = {A17};
Ξ3 = {A11+E6}; Ξ4 = {A14+A2}; Ξ5 = {A11+A5};
Ξ6 = {A8 +A5 +A2}; Ξ7 = {A8 +E6 +A2}.

The examplesC6 andC7 are due to Tu Chanh Nguyen.
Our main result is as follows.

THEOREM 2.1. For each i,1≤ i ≤ 7, we have the following isomorphisms:

π1(CCCPPP2−Ci)' ZZZ/6ZZZ and π1(CCC2−Ci)' ZZZ.

For eachi, let M (Ξi) be the moduli space of reduced sextics inCCCPPP2 with the configura-
tion of singularitiesΞi , and letM0(Ξi) be the connected component ofM (Ξi) containing the
curveCi . Since the topology of the complementsCCCPPP2−Ci or CCC2−Ci is independent on the
choice of the curveCi in M0(Ξi) (cf. [Z3], [Z4] and [LR ]), Theorem 2.1 implies the following
result.

COROLLARY 2.2. For each i,1≤ i ≤ 7, and for any curveCi in M0(Ξi), we have the
following isomorphisms:

π1(CCCPPP2−Ci)' ZZZ/6ZZZ and π1(CCC2−Ci)' ZZZ.

REMARKS. (i) Let M00(Ξ1) be the set of non-torus irreducible curvesC1 in M (Ξ1) such
that, for at least one of the two singular points ofC1, the tangent cone toC1 at this point passes
through the second singularity. One can prove thatM00(Ξ1) is a connected subspace ofM (Ξ1)
(the proof is computational, very heavy, and cannot be presented here). On the other hand, it is
easy to see that our curveC1 belongs to this subspace. So, by Corollary 2.2, for any curveC1 in
M00(Ξ1), we haveπ1(CCCPPP2−C1)' ZZZ/6ZZZ andπ1(CCC2−C1)' ZZZ.

(ii) By [ INO ], the subset ofM (Ξ2) consisting of irreducible sextics which are not of torus
type is a connected component ofM (Ξ2). Of course, this component is nothing butM0(Ξ2).
So, Corollary 2.2 asserts, in particular, that for any irreducible non-torus sexticC2 ⊂CCCPPP2 with
the configuration of singularitiesΞ2, we haveπ1(CCCPPP2−C2)' ZZZ/6ZZZ andπ1(CCC2−C2)' ZZZ.

It seems that for the other values ofi (i.e., i = 1,3,4,5,6,7) the subset ofM (Ξi) consisting
of non-torus irreducible sextics is also a connected component ofM (Ξi) (the proof would be
computational and very heavy). If yes, then Corollary 2.2 would also provide a complete answer
to point (ii) of Conjecture 0.1 for the configurations of singularitiesΞi , i = 1,3,4,5,6,7.

(iii) Another step toward (ii) of Conjecture 0.1 is [O3, Theorem 5.8]. This theorem contains
an example of a non-torus irreducible sexticC ⊂ CCCPPP2 with the configuration of singularities
{6A2} such thatπ1(CCCPPP2−C) andπ1(CCC2−C) are also abelian.

(iv) By [OP], for eachi, 1≤ i ≤ 7, and any irreducibletorus sexticDi in M (Ξi), the
fundamental groupπ1(CCCPPP2−Di) is isomorphic to the free product(ZZZ/2ZZZ)∗ (ZZZ/3ZZZ). So, if Di

is such a curve and ifCi is an element ofM0(Ξi), then(Ci ,Di) is a Zariski pair4.
Notice that the Zariski pairs found here were in fact already known. Indeed, it is well-known

that the generic Alexander polynomial of any irreducible non-torus sexticCi ⊂ CCCPPP2 with the

4We recall that a pair of irreducible curves (C,D) in CCCPPP2 is called aZariski pair if C andD have the same degree
and if there exist regular neighbourhoodsT(C) andT(D) of C andD, respectively, such that the pairs(T(C),C) and
(T(D),D) are homeomorphic, while the pairs(CCCPPP2,C) and(CCCPPP2,D) are not homeomorphic (cf. [A]).
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configurationΞi is trivial (cf. [O7]), while the generic Alexander polynomial of any irreducible
torus sexticDi ⊂CCCPPP2 with the configurationΞi is given by∆(t) = t2−t +1 (cf. [OP] and [O7]).
This directly implies that(Ci ,Di) is a Zariski pair.

The remaining of the paper concerns the proof of Theorem 2.1. We prove successively that
π1(CCCPPP2−Ci) is abelian fori = 1,2,3,4,5. The proofs fori = 6,7 are essentially the same than
for 1≤ i ≤ 5 and will thus be omitted.

3. Proof of Theorem 2.1 fori = 1.

The curveC1 has exactly two singularities of typeA8: one at the origin and one at(1,0).
Figure 1 shows the real plane section ofC1 (in the figures, we do not respect the numerical scale).

We use the Zariski-van Kampen pencils method. Consider the pencilLY,Z (cf. Notation
1.3); observe that the pointB0 (i.e., the axis of the pencil) does not belong toC1 and that the line
at infinity L∞ is generic with respect toC1. As explained in Section 1, it suffices to prove that the
fundamental groupπ1(CCCPPP2−C1,b0) is abelian. The pencil has 5 real singular linesLη1, . . . ,Lη5,
with respect toC1, which correspond to the 5 real rootsη1, . . . ,η5 of the discriminant∆x( f1)
of f1 as a polynomial inx (∆x( f1) is thus a polynomial iny):

η1 =−0.022..., η2 = 0, η3 = 0.253..., η4 = 0.326..., η5 = 0.414...

We take generatorsξ1, . . . ,ξ6 of the fundamental groupπ1(Lη5−ε −C1,b0) (which are also
generators ofπ1(CCCPPP2−C1,b0)) as in Figure 2;ξ1, . . . ,ξ6 are lassos around the intersection points
of Lη5−ε with C1.

The lineLη5 is tangent to the curveC1 at the simple pointp0 (cf. Figure 1); the intersection
multiplicity I(Lη5,C1; p0) of Lη5 with C1 at p0 is 2. So, by the implicit functions theorem,
the germs(C1, p0) and({y = −x2},O) are topologically equivalent. The monodromy relations
aroundLη5 (obtained by movingy once counter-clockwise on the circle|y−η5| = ε) thus give
the relation

ξ2 = ξ3.

Figure 1. real plane section ofC1. Figure 2. generators aty = η5− ε.

Similarly, we can see easily that the monodromy relations aroundLη4 (obtained wheny
moves on the real axis fromy := η5− ε −→ η4 + ε, then runs once counter-clockwise on the
circle |y−η4| = ε, and then comes back on the real axis fromy := η4 + ε −→ η5− ε) give the
relation

ξ1 = ξ2.
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Figure 3. generators aty = η3− ε. Figure 4. generators aty = η2 + ε.

Similarly, the monodromy relations aroundLη3 (obtained by movingy as follows: on the
real axis fromy := η5− ε −→ η4 + ε; half-turn counter-clockwise on the circle|y−η4|= ε; on
the real axis fromy := η4− ε −→ η3 + ε; one turn counter-clockwise on the circle|y−η3|= ε;
on the real axis fromy := η3 + ε −→ η4− ε; half-turn clockwise on the circle|y−η4| = ε; on
the real axis fromy := η4 + ε −→ η5− ε) give the relation

ξ3 = ξ4.

To read the monodromy relations aroundLη2, we first show how the six rootsx1(y), . . . ,x6(y)
of the equationf1(x,y) = 0 in x move wheny moves on the real axis fromy := η3−ε −→ η2+ε.
Figure 3 shows the situation of the generators aty = η3− ε, and we have the following lemma.

LEMMA 3.1. When y moves on the real axis fromη3 − ε to η2 + ε, the six roots
x1(y), . . . ,x6(y) of the equation f1(x,y) = 0 in x are deformed as in Figure4.

PROOF. We consider the polynomial

h(u,v,y) := f1(u+ iv,y)

for u, v, y real. We denote byf1e(u,v,y) and f1o(u,v,y) the real and the imaginary part of
h(u,v,y) respectively. They have degree 6 and 5 respectively inv. Suppose that there exists an
y0 ∈ [η2+ε,η3−ε] such that four complex solutions of the equation (inx) f1(x,y0) = 0 are on a
same vertical lineu = u0 in the complex plane(CCC,x = u+ iv); in other words, assume that there
are integers1≤ i1 < i2 < i3 < i4 ≤ 6 such that

R(xi1(y0)) = R(xi2(y0)) = R(xi3(y0)) = R(xi4(y0)) = u0,

where of courseR(·) is a notation for the real part. This implies that the equations (inv)

f1e(u0,v,y0) = f1o(u0,v,y0) = 0

have four common real solutionsv1,v2,v3,v4. These solutions are not 0 since the equation (iny)
∆x( f1)(y) = 0 has no solution on[η2 + ε,η3− ε]. Thus, the equations (inv)

f1e(u0,v,y0) = f1oo(u0,v,y0) = 0,

where f1oo(u,v,y) := f1o(u,v,y)/v (notice thatv divides f1o(u,v,y), and thusf1oo(u,v,y) is a
polynomial), have alsov1,v2,v3,v4 as common solutions. Asf1oo has degree 4 inv, this implies
that f1oo(u0,v,y0) divides f1e(u0,v,y0). Thus, the remainderR(u,v,y) of f1e by f1oo, as a polyno-
mial ofv, must be identically 0 foru= u0 andy= y0 (of course,R is written asR= R′/R′′, where
R′ is a polynomial inu, v, y, while R′′ is a polynomial just depending onu andy). By an easy
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computation, we see thatR= (R′2/R′′2)v
2 +(R′0/R′′0), whereR′2, R′′2, R′0 andR′′0 are polynomials

in u andy. Thus,(u0,y0) is a common real solution of the equations

R′2(u,y) = R′0(u,y) = 0. (3.2)

This implies thaty0 is a root of the resultant Res(y) of the polynomialsu 7→ R′2(u,y) andu 7→
R′0(u,y). Note that the condition Res(y0) = 0 is necessary to have a real partneru0 such that
R′2(u0,y0) = R′0(u0,y0) = 0, but it is not sufficient since the possible partneru0 might be not real.
There are two real solutionsy1

0, y2
0 of the equation Res(y) = 0 on the interval[η2 + ε,η3− ε].

Each of them gives a real number, sayu1
0 for y1

0 andu2
0 for y2

0, such that(u1
0,y

1
0) and(u2

0,y
2
0) are

two solutions of (3.2). We now have to check if these two solutions give four real rootsv of the
polynomialv 7→ f1oo(u0,v,y0). Only the solution(u0,y0) := (−0.18914...,0.12557...) satisfies
this requirement. Thus, we can have one (and only one) overcrossing. To check if it is the case,
we look at the solutionsx of the equation (inx) f1(x,y) = 0 for some values ofy neary0. MAPLE
actually gives an overcrossing. This completes the proof of Lemma 3.1. ¤

Now, we look at the Puiseux parametrization of the curve at the origin (for details, see [OP,
Section 2.2]):





y= t4

x= i
√

2t2− 3
2

t4− 5
16

i
√

2t6− 1
8

√
210

√
i
√

2t7 +higher terms.

As explained in [OP, Section 4.1], wheny = ε exp(iθ) moves around the originη2 = 0 once
counter-clockwise, the topological behavior of the four pointsx3(y), x4(y), x5(y), x6(y) looks
like the movement of four satellites accompanying two planets, two satellites around each planet
corresponding tot = ε1/4exp(iν), ν = θ/4, θ/4+ π/2, θ/4+ π, θ/4+(3π)/2. The move-
ment of the planets is described by the termi

√
2t2; each of them do(1/2)-turn around the

sun (≈ the origin). The movement of each satellite around its planet is described by the term

−(1/8)
√

210
√

i
√

2t7; each of them does(7/4)-turns around its planet. So, the monodromy
relations aroundLη2 give the relation

ξ6 = (ωσ)ξ1(ωσ)−1, (3.3)

whereω := ξ6ξ5ξ 2
1 andσ := ξ5ξ1ξ5.

On the other hand, we can see easily that the monodromy relations aroundLη1 give the
relation

ξ1 = ξ5.

The latter impliesω = ξ6ξ 3
1 andσ = ξ 3

1 , and (3.3) then givesξ6 = ξ1. So, the fundamental
groupπ1(CCCPPP2−C1,b0) is generated by a single generator, and it is thus abelian.

4. Proof of Theorem 2.1 fori = 2.

The curveC2 has exactly one singularity of typeA17 at the origin. Figure 5 shows the real
plane section ofC2.

We consider the pencilLX,Z (cf. Notation 1.3); observe that the pointB0 does not belong to
C2 and thatL∞ is generic with respect toC2. Again, it suffices to prove that the fundamental group
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π1(CCCPPP2−C2,b0) is abelian. The pencil has 5 real singular linesLη1, . . . ,Lη5, with respect toC2,
which correspond to the 5 real rootsη1, . . . ,η5 of the discriminant∆y( f2) of f2 as a polynomial
in y (∆y( f2) is thus a polynomial inx):

η1 =−0.191..., η2 =−0.036..., η3 =−0.027..., η4 =−0.026..., η5 = 0.

We take generatorsξ1, . . . ,ξ6 of the fundamental groupπ1(Lη3−ε −C2,b0) as in Figure 6;
ξ1, . . . ,ξ6 are lassos around the intersection points ofLη3−ε with C2.

Figure 5. real plane section ofC2. Figure 6. generators atx = η3− ε.

The monodromy relations aroundLη3 and aroundLη2 give the relations

ξ3 = ξ4 and ξ5 = ξ−1
3 ξ4ξ3

respectively.

Figure 7. generators atx = η1 + ε. Figure 8. generators atx = η5− ε.

We show in Figure 7 how our generators atx = η2 + ε are deformed whenx does half-turn
counter-clockwise on the circle|x−η2|= ε, and then moves on the real axis fromx := η2−ε −→
η1 + ε. The monodromy relations aroundLη1 give the relation

ξ3 = ξ−1
4 ξ6ξ4.

Combined with the foregoing, this shows that

ξ3 = ξ4 = ξ5 = ξ6.

To read the monodromy relations aroundLη5, we first show in Figure 8 how the generators
at x = η3− ε are deformed whenx does half-turn counter-clockwise on the circle|x−η3| = ε,
then moves on the real axis fromx := η3 + ε −→ η4− ε, then does half-turn counter-clockwise
on the circle|x−η4|= ε, and finally moves on the real axis fromx := η4 + ε −→ η5− ε. Then
we observe that, at the origin, the curve has two branchesK1 andK2, given by
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K1 : x =−1
2

y2 +
3
4

y5− 1
8

y6 +
7
12

y7− 1135
288

y8 +
1

1728
(4051+162

√
22)y9 + higher terms,

K2 : x =−1
2

y2 +
3
4

y5− 1
8

y6 +
7
12

y7− 1135
288

y8 +
1

1728
(4051−162

√
22)y9 + higher terms.

An easy computation shows that the Puiseux parametrizations ofK1 andK2 at the origin are
given by

K1 : x = t2, y = a1t + . . .+a7 t7 +a8 t8 +higher terms,

K2 : x = t2, y = a′1t + . . .+a′7 t7 +a′8 t8 +higher terms,

for some complex numbersai anda′i such thatai = a′i for 1≤ i ≤ 7, the numbera1 = a′1 is non-
zero, anda8 6= a′8. These equations say us that the topological behavior of the four points which
are closed to the origin0∈ (CCC,y) looks like the movement of four satellites accompanying two
planets running around the sun (≈ the origin), two satellites around each planet. Each planet does
(1/2)-turn around the origin. Each satellite does4-turns around its planet. So, the monodromy
relations aroundLη5 give the relations

ξ1 = ξ2 = ξ3.

So, the fundamental groupπ1(CCCPPP2−C2,b0) is generated by a single generator, and thus it
is abelian.

5. Proof of Theorem 2.1 fori = 3.

The curveC3 has exactly two singularities: one singularity of typeA11 at the origin and one
singularity of typeE6 at (0,1). Figure 9 shows the real plane section ofC3.

We consider the pencilLY,Z; observe that the pointB0 does not belong toC3 and thatL∞
is generic with respect toC3. Again, it suffices to prove that the fundamental groupπ1(CCCPPP2−
C3,b0) is abelian. The pencil has 5 real singular linesLη1, . . . ,Lη5, with respect toC3, which
correspond to the 5 real rootsη1, . . . ,η5 of the discriminant∆x( f3) of f3 as a polynomial inx:

η1 = 0, η2 = 0.297..., η3 = 0.568..., η4 = 1, η5 = 1.001...

We take generatorsξ1, . . . ,ξ6 of the fundamental groupπ1(Lη1+ε −C3,b0) as in Figure 10;
ξ1, . . . ,ξ6 are lassos around the intersection points ofLη1+ε with C3.

To read the monodromy relations at the origin, we first observe that near(0,0) the curve has
two branchesK1 andK2 given by

K1 : y = x2 +
1
2

x3 +
11
12

x4 +
35
24

x5 +
1

144
(313+4i

√
6)x6 +higher terms,

K2 : y = x2 +
1
2

x3 +
11
12

x4 +
35
24

x5 +
1

144
(313−4i

√
6)x6 +higher terms.

An easy computation shows that the Puiseux parametrizations ofK1 andK2 at the origin are
given by

K1 : y = t2, x = a1t + . . .+a4 t4 +a5 t5 +higher terms,

K2 : y = t2, x = a′1t + . . .+a′4 t4 +a′5 t5 +higher terms,
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for some complex numbersai anda′i such thatai = a′i for 1≤ i ≤ 4, the numbera1 = a′1 is non-
zero, anda5 6= a′5. As above, one deduces from these equations that the monodromy relations
aroundLη1 give the relations

ξ1 = (σξ4)ξ3(σξ4)−1,

ξ2 = σ2ξ4σ−2,
(5.1)

whereσ := ξ4ξ3.

Figure 9. real plane section ofC3. Figure 10. generators aty = η1 + ε.

REMARK . After the analytic change of coordinates

(x,y) 7→
(

x,y+x2 +
1
2

x3 +
11
12

x4 +
35
24

x5
)

,

the equation ofC3 near the origin takes the form

y2− 313
72

yx6 +
98065
20736

x12+higher terms= 0.

As the leading termy2− (313/72)yx6 +(98065/20736)x12 has no real factorization, the origin
is an isolated point of thereal plane section ofC3.

Wheny moves on the real axis fromy := η1 + ε −→ η2− ε, the situation of our generators
at y = η2− ε is again as in Figure 10. We see easily that the monodromy relations aroundLη2

give the relation

ξ5 = ξ6.

To read the monodromy relations aroundLη3, we first show in Figure 11 how our generators
at y = η2− ε are deformed wheny does half-turn counter-clockwise on the circle|y−η2| =
ε, then moves on the real axis fromy := η2 + ε −→ η3− ε. Then, it is easy to see that the
monodromy relations aroundLη3 give the relation

ξ3 = ξ4.

The latter, combined with (5.1), gives

ξ1 = ξ3 and ξ2 = ξ3.

To read the monodromy relations aroundLη4, we show in Figure 12 how our generators at
y= η3−ε are deformed wheny does half-turn counter-clockwise on the circle|y−η3|= ε, then
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moves on the real axis fromy := η3 + ε −→ η4− ε. Then we observe that, after the change of
coordinates(x,y) 7→ (x,y+1), the Newton principal part off3 near(0,1) (cf. [K ]) is given by

−y3 +
31
576

x4.

We deduce that the monodromy relations aroundLη4 give the relation

ξ3 = ω−2ξ5ω2, (5.2)

whereω := ξ5ξ3ξ−1
5 .

Figure 11. generators aty = η3− ε. Figure 12. generators aty = η4− ε.

On the other hand, it is not difficult to see that the monodromy relations aroundLη5 give the
relation

ξ3 = ω.

The latter, combined with (5.2), implies

ξ5 = ξ3.

So, we have proved that the fundamental groupπ1(CCCPPP2−C3,b0) is generated by a single
generator. It is thus abelian.

6. Proof of Theorem 2.1 fori = 4.

The curveC4 has exactly two singularities: one singularity of typeA14 at the origin and one
singularity of typeA2 at (0,1). Figure 13 shows the real plane section ofC4.

We consider the pencilLX,Z; observe that the pointB0 does not belong toC4 and thatL∞
is generic with respect toC4. Again, it suffices to prove that the fundamental groupπ1(CCCPPP2−
C4,b0) is abelian. The pencil has 6 real singular linesLη1, . . . ,Lη6, with respect toC4, which
correspond to the 6 real rootsη1, . . . ,η6 of the discriminant∆y( f4) of f4 as a polynomial iny:

η1 =−2.016..., η2 =−1.973..., η3 =−0.137..., η4 = 0, η5 = 0.050..., η6 = 2.062...

We take generatorsξ1, . . . ,ξ6 of the fundamental groupπ1(Lη3−ε −C4,b0) as in Figure 14;
ξ1, . . . ,ξ6 are lassos around the intersection points ofLη3−ε with C4.

The monodromy relations aroundLη3 and aroundLη2 give the relations

ξ2 = ξ3 and ξ3 = ξ4 (6.1)

respectively.
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Figure 13. real plane section ofC4. Figure 14. generators atx = η3− ε.

In order to fix the ideas, we show in Figure 15 how our generators atx= η2+ε are deformed
whenx does half-turn counter-clockwise on the circle|x−η2| = ε, and then moves on the real
axis fromx := η2− ε −→ η1 + ε. The monodromy relations aroundLη1 give the relation

ξ2 = ξ−1
3 ξ5ξ3.

The latter, combined with (6.1), impliesξ5 = ξ3. So, we already have

ξ2 = ξ3 = ξ4 = ξ5.

We show in Figure 16 how our generators atx = η3−ε are deformed whenx does half-turn
counter-clockwise on the circle|x−η3| = ε, then moves on the real axis fromx := η3 + ε −→
η4− ε. On the other hand, after the change of coordinates(x,y) 7→ (x,y+ 1), we see that the
Newton principal part off4 near(0,1) (cf. [K ]) is given by

−278369
141376

y3 +
507

441800
x2.

One deduces that the monodromy relations aroundLη4 give the new relation

ξ3 = ξ1.

Figure 15. generators atx = η1 + ε. Figure 16. generators atx = η4− ε.

Now, knowing thatξ1 = ξ2 = ξ3 = ξ4 = ξ5, the big circle relation (i.e., the vanishing relation
at infinity) obviously gives the new relation

ξ6 = ξ−5
1 .

So, the fundamental groupπ1(CCCPPP2−C4,b0) is generated by a single generator, and thus it
is abelian.
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7. Proof of Theorem 2.1 fori = 5.

The curveC5 has exactly two singularities: one singularity of typeA11 at the origin and one
singularity of typeA5 at (0,1). Figure 17 shows the real plane section ofC5.

We consider the pencilLY,Z; observe that the pointB0 does not belong toC5 and thatL∞
is generic with respect toC5. Again, it suffices to prove that the fundamental groupπ1(CCCPPP2−
C5,b0) is abelian. The pencil has 6 real singular linesLη1, . . . ,Lη6, with respect toC5, which
correspond to the 6 real rootsη1, . . . ,η6 of the discriminant∆x( f5) of f5 as a polynomial inx:

η1 = 0, η2 = 0.847..., η3 = 1, η4 = 1.203..., η5 = 1.286..., η6 = 1.844...

We take generatorsξ1, . . . ,ξ6 of the fundamental groupπ1(Lη3+ε −C5,b0) as in Figure 18;
ξ1, . . . ,ξ6 are lassos around the intersection points ofLη3+ε with C5.

It is not difficult to see that the monodromy relations aroundLη4, Lη5 and Lη6 give the
relations

ξ3 = ξ2, ξ1 = ξ−1
2 ξ4ξ2 and ξ6 = ξ5 (7.1)

respectively.

Figure 17. real plane section ofC5. Figure 18. generators aty = η3 + ε.

To read the monodromy relations aroundLη3, we first observe that near the point(0,1) the
curve has two branchesK1 andK2 given by

K1 : y = 1+x−x2 +(−1+
√

3)x3 +higher terms,

K2 : y = 1+x−x2 +(−1−
√

3)x3 +higher terms.

An easy computation shows that the Puiseux parametrizations ofK1 andK2 near(0,1) are given
by

K1 : y = 1+ t, x = a1t +a2 t2 +a3 t3 +higher terms,

K2 : y = 1+ t, x = a′1t +a′2 t2 +a′3 t3 +higher terms,

for some complex numbersai and a′i such thatai = a′i for 1≤ i ≤ 2, the numbera1 = a′1 is
non-zero, anda3 6= a′3. These equations show that the monodromy relations aroundLη3 give the
relation

ξ3 = (ξ4ξ3)2ξ4ξ3ξ−1
4 (ξ4ξ3)−2.

To read the monodromy relations aroundLη2, we first show in Figure 19 how our generators



52 C. EYRAL and M. OKA

at y = η3 + ε are deformed wheny does half-turn counter-clockwise on the circle|y−η3| = ε.
Then we introduce, in the fibreLη3−ε , the lassosµ andν defined by

µ := (ξ4ξ3)−1ξ3(ξ4ξ3),

ν := (ξ4ξ3µ)−1ξ4(ξ4ξ3µ).

Lassosµ andν are drawn in Figure 20. Owing to these new lassos, it is easy to see that the
monodromy relations aroundLη2 give the relation

µ = ξ5.

The latter, combined with (7.1), implies

ν = ξ−1
5 ξ1ξ5. (7.2)

Figure 19. generators aty = η3− ε. Figure 20. new generators aty = η3− ε.

To read the monodromy relations aroundLη1, we first show in Figure 21 how the generators
at y = η2 + ε are deformed wheny does half-turn counter-clockwise on the circle|y−η2| = ε,
then moves on the real axis fromy := η2− ε −→ η1 + ε. Then, we observe that at the origin the
curve has two branchesK′

1 andK′
2 given by

K′
1 : y = x2 +

(
5
2

+
1
2

√
21

)
x6 +higher terms,

K′
2 : y = x2 +

(
5
2
− 1

2

√
21

)
x6 +higher terms.

An easy computation shows that the Puiseux parametrizations ofK′
1 andK′

2 at the origin are
given by

K′
1 : y = t2, x = a1t + . . .+a4 t4 +a5 t5 +higher terms,

K′
2 : y = t2, x = a′1t + . . .+a′4 t4 +a′5 t5 +higher terms,

for some complex numbersai and a′i such thatai = a′i for 1≤ i ≤ 4, the numbera1 = a′1 is
non-zero, anda5 6= a′5. These equations show that the monodromy relations aroundLη1 give the
relation

ξ1 = (ξ5ν)2ξ5(ξ5ν)−2

= (ξ1ξ5)2ξ5(ξ1ξ5)−2 (by (7.2)). (7.3)
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Figure 21. generators aty = η1 + ε.

Now, we are ready to prove thatπ1(CCCPPP2−C5,b0) is abelian. The big circle relation
ξ6ξ5ξ4ξ3ξ2ξ1 = 1, combined with (7.1), gives

(ξ2ξ1)2 = ξ−2
5 . (7.4)

But, aty = η1 + ε, the big circle relation is also written asξ 3
5 νξ2ξ1 = 1. Combined with (7.2),

this givesξ1ξ5 = ξ−2
5 (ξ2ξ1)−1, which in turn implies (using (7.4)) thatξ1ξ5 = ξ2ξ1. So, again

using (7.4), one deduces that(ξ1ξ5)2 = ξ−2
5 . The relation (7.3) then givesξ1 = ξ5. The equality

ξ1ξ5 = ξ2ξ1 thus impliesξ2 = ξ1, and using the second equality in (7.1) one deduces thatξ4 = ξ1.
So, we have proved that the fundamental groupπ1(CCCPPP2−C5,b0) is generated by a single

generator. It is thus abelian.
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