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Abstract. Recently, Oka-Pho proved that the fundamental group of the complement of any
plane irreducible tame torus sextic is not abelian. We compute here the fundamental groups of the
complements of some plane irreducible sextics which are not of torus type. For all our examples,
we obtain that the fundamental group is abelian.

Introduction.

In [Z1], Zariski proved th at i is an irreducible sextic in the complex projective pl&R?
with 6 cusps situated on a conic, then the fundamental gr@((bP2 —C) is isomorphic to the
free produc(Z/2Z) « (Z/3Z). He also proved that if there exists an irreducible seRtim CP?
with 6 cusps not situated on a conic, thafCP? —C') is not isomorphic t4Z/2Z) « (Z/3Z). In
[22], he justified the existence of this second family of cur@ssand asserts that, (CP?> —C')
is isomorphic taZz/6Z. In [O3], Oka gave the first explicit example of such a cuB/eA curve
C as above (6 cusps on a conic) is an example of the so-called sextics of tortis Gpé¢he
contrary, the curv€’ (6 cusps not situated on a conic) is not of torus type.

CONJECTUREQ.1(Oka). LetC be an irreducible sextic i8R which is not of torus type.
Then, we have the three following conjectures.
(i) The generic Alexander polynomial of C is trivial.
(i) If moreover C has only simple singularities, then the fundamental grm.(@&P? — C)
and rm,(C? — C) are abelian, isomorphic t& 76Z andZ respectively.
(iiiy The fundamental groups (CP? —C) andm(C? —C) are abelian, isomorphic t& 76Z
and Z respectivelffwithout assuming that the singularities are simple

Notice that (i) is true for curves having only simple singularities and satisfying the condition
p(5) < 6 (cf. [O7]). Observe also that (iii) implies (i), while the reverse is not true ©f7]).

In the present paper, we give a first step toward (ii). More precisely, for each configuration
of singularities= in the following list:

{2A¢}, {A17}, {A11+Es}, {A1a+ A2}, {A11+As},

(0.2)
{As+As+Az}, {Ag+Es+Az},
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LA sextic{(X:Y:Z) e CP?; F(X,Y,Z) =0} is said oftorus typdf there is an expressidR(X, Y, Z) = (X, Y, Z)3 +
F3(X,Y,Z)?, whereF, andFs are homogeneous polynomials of degree 2 and 3 respectively.
2We recall that a poinp of a curve€ is called a singularity of typé,,, wheren is an integer> 1, if the germ(¢, p)
is topologically equivalent to the gerfi{x? + y"*1 = 0},0) as embedded germs (for the definition of “topologically
equivalent”, see e.g.0ji, Definition 1.4]). It is called a singularity of typEg if (¢, p) is topologically equivalent to

({@+y*=0},0).
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we give an explicit example of an irreducible non-torus se®tic CP? with the configuration

= such thatm (CP? — C) and 1, (C? — C) are abelian (isomorphic /62 andZ respectively).

Then, denoting by# (=) the moduli space of reduced sexticsG®? with the configuration

=, one deduces that, for any cur@ebelonging to the connected component#f(=) contain-

ing our exampleC, the fundamental groups; (CP? — ¢) and 1 (C? — ¢) are abelian too. Our
mains results are stated in Theorem 2.1 and Corollary 2.2. For the proof, we use the Zariski-van
Kampen pencils method (cf. Section 1 below). Notice that, in practice, the computation of the
fundamental group is not so easy, since it is extremely difficult to read the monodromy relations
for curves which are defined ov€r Nevertheless, when the curve has mesaf singular pencil

lines, the computation becomes usually easier. Moreover, as our purpose is to show the com-
mutativity of the fundamental group, it is not necessary to consider all the monodromy relations
provided we can find a “good” curve. Hereafter, we have chosen curves so that we shall only
need to consider the monodromy relations atrdad singular pencil lines. But in general if we

use an equation which is not “good enough” we have to use the other monodromy relations even
to show a commutativity.

Notice that, in PP], Oka-Pho showed that the fundamental group of the complement of
any irreducible tame torus sextim CP? is isomorphic tqZ/2Z)  (Z/3Z) except one class (the
exceptional class has the configuration of singularifi@ége + 3A2} and the fundamental group
in this case is bigger thafZ/2Z) « (Z/3Z)). Concerning the proof, in the case of irreducible
tame torus sextics the computation can be in fact reduced to the special caaeimialcurves,
and it thus becomes easier to check the property since there exist only 7 moduli of maximal
reduced tame torus sextics@P?.

Notice also that, inQ7], the second author proved that the generic Alexander polynomial of
any irreducible torus sextic BP? (not necessarily tame) is not trivial; in particular, this implies
that the fundamental group of the complement of such a curve is not abelian.

The paper is organized as follows. In Section 1, we recall the Zariski-van Kampen pencils
method. In Section 2, we give the statements of our main results (Theorem 2.1 and Corollary
2.2). Sections 3 to 7 concern the proof of Theorem 2.1.

This paper has been written using the SCURVE program made by Pho Duc Tai for
MAPLE 7.

1. Zariski-van Kampen pencils method.

Let F(X,Y,Z) be a reduced homogeneous polynomial of dedré&e denote by
C:={(X:Y:Z)eCP?|F(X,Y,Z) =0}

the corresponding projective curve@P?. The most effective way to compute the fundamental
group 11 (CP? — C) is the Zariski-van Kampen pencils method. This method can be briefly
described as follows.

Letl(X,Y,Z), I'(X,Y,Z) be two independent linear forms. For every painte (S: T) €
CP?, denote byt ; the projective line o€P? defined by

Ly = {(X:Y:Z) €CP?|TI(X,Y,2)—SI(X,Y,Z) = 0}.

3A sextic of torus type(X : Y : Z) € CP%; R (X,Y,Z)% + Fs(X,Y, Z)? = 0} is saidtameif its singularities are sitting
only at the intersection of the conic and the cubic define@§),Y,Z) = 0 andFs(X,Y,Z) = 0 respectively.
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The family of lines.Z := (L;),.cp: is called the pencil generated byndl’. The pointBg :=
L(0:1) ML (1.0 belongs to every line of the pencil; it is called the axis#6f We assume tha& ¢ C.
A memberL; of .Z is called agenericline, with respect t&, if it avoids the singularities o
and if it is transverse to the non-singular part@fotherwise, it is called aingularline. If
L; is generic, then it intersec@ at exactlyd points. IfL; is singular, then it intersects at a
singular point or it is tangent t8 at some simple point. Notice that the set of singular lines is
finite. If necessary, one may consider some generic line® afs “singular” ones. Lek the set
of parameters € CP* corresponding to the singular lines, andllej andL;, be two generic
lines (which we have not decided to consider as “singular”). Without loss of generality, we can
assume that,, is the point at infinity oCP? (i.e., To = (1 : 0)). Hereafter, we identifCP? — L,
with the affine spac@z, and we denote b2 the affine lineL; — L;, = L; — Bp. Notice thatL?
naturally identifies taC. The complement, —C (resp.L$ — C) is topologically the2-sphere
S’ minusd (resp.d+ 1) points. We takdy = By as the base point in the casera{CP?—C). In
the affine casezrl(C2 —C), we take the base poibp on L, sufficiently close tdg butbg # Bo.

It is well-known that there is a canonical actionmif(CPl —2,10) on (L, —C,bo) and
a canonical action ofg (CP* — 32 19) on ITl(L‘;‘0 —C,bp), wherex? = U 1., (cf. e.g. O4],
[08]). These actions are called tmeonodromy actions For anyo € m(CP! — 5, 19) and
any & in (L, —C,bg), we denote by the image of(o, ) by the monodromy action (of
m(CP! — 5, 19) on /(L — C,by)). The relations

E=E9 for o€ m(CP—3, 1) andé € m(Ly, —C,bo)

in the groupra (L, —C,bp) are called thenonodromy relationsWe use a similar notation and
terminology in the affine case. We denoteNbfresp.N#) the normal subgroup ofi (L, —C, bo)
(resp.ma(LE, —C,bo)) generated by

{769 |0 e m(CP' - 5,10), & € T(Ls, —C,bo) }
(resp {E71&% | 0 € m(CP' - 5% 10), & € m(LE —C,bo)}).

THEOREM 1.1 (Zariski-van Kampen) (i) The inclusion map{, —C — CP?—C induces
an isomorphism

M (L, —C,bo) /N — 18(CP? —C, by).
(ii) Similarly, the inclusion mapg —C — C? —C induces an isomorphism
(L3 —C,bo) /N® > m(C? —C,by).

Originally conjectured by ZariskiZ1], this theorem was proved by van Kampe]. For
a modern and complete proof, seeé@iot [C].

The relation betweenr, (CP? — C, by) and m(C? — C,by) is described by the following
result.

PROPOSITION1.2(cf. [01], [02]). (i) Leti: C>—C < CP?—C be the inclusion map.
We have the following central extension

1—2Z— 15(C?—C,by) — m(CP?—C,bg) — 1,



40 C. EYRAL and M. XA

where, of coursey iis induced by 1. The generator fleri, is represented by a lasso fog, L.
(i) The homomorphism induces an isomorphism

2 (m(C?—C,bo)) — 7(mm(CP?—C, b))

between the commutator subgrou@g s (C? — C,bo)) and 2 (s (CP* - C,by)) of m(C* —
C,bp) and 1 (CP? — C, by) respectively.

We recall that a lasso is defined as follows. tet CP? be a reduced curve and I@t;);
be the irreducible components éf An element{ € 7T1(CP2 — ¢, %) is called alassooriented
counter-clockwise fox; if it is represented by a loop written gswp 1, wherew is a loop
running once counter-clockwise around the boundary circle of a small ciaseathl disk A of
¢ at a simple point such that does not intersect witk; for j # i, and wherep is a simple
path connecting the base pointind the loopw such thaimp N A is reduced to a single point
(cf. [O4]).

Of course, Proposition 1.2 implies that(C? — C,by) is abelian if and only ifr (CP? —
C,hy) is abelian. Moreover, i€ is irreducible and if the fundamental groupgC? — C, bo) and
m (CP? —C, bo) are abelian, then we have the following isomorphisms @8, [Section 2.3]):

m(CP?—C,bg) ~2Z/dZ and m(C?—C,by) ~Z.

NoOTATION 1.3. (i) For our purpose, we shall use only the pendfs z and.% z gener-
ated bylyx, Iz andly, |7 respectively, where

Ix(X,Y,Z) =X, N(X.Y,Z)=Y, 12(X.Y,Z)=2

In these two special casesy, is just the line at infinityLe, := {(X : Y : Z) € CP? | Z = 0} of
CP?. Letx:= X/Z andy := Y/Z be the affine coordinates @ = CP? — L,,. Observe that, in
C?, the pencils% z and.% 7z are given by{x = N}nec and{y = n},cc respectively. For any
T=(S:T)€CP! 1, ~C, we shall also denote the ling by L, wheren = S/T. Observe
that, inC?, the lineL, is given byx = ) for the penciL% z and byy = n for the pencil%& 7.

(ii) Hereafter, we shall consider the affine equatiorCothat is the equatiori(x,y) =0
wheref(x,y) :=F(x,y,1).

(i) Everywhere, we shall always assume tlgats a sufficiently small strictly positive
number.

(iv) In the figures, for simplicity of drawing pictures, we shall denote a lasso oriented
counter-clockwise just by a path ending with a bullet—e as in [O5], [O6] and [OP] (but of
course this is a loop!).

2. Statements of the main results.

For each integer, 1 <i <7, we consider the irreducible sexi; defined by the affine
equationfi(x,y) = 0, where

f1(x,y) == (1/4)x8 + (3/2) xqy + (26685512) y°x + (87/32) X*y? + X3y + (589/1024) y°
—(1/2)x° — (1667/32)y° — (79/32) x°y? — (7743/1024) x?y* — (25/16) x?y®
— 23+ (13/2) xy* + (1/4)x* + (17/16) y* — (7/16) xy* — (9/4) x2y?
—(1/2)%y+ Xy + 37 + Y3 + ¥,
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fa(x,y) :=360x° + (419/144) y® — 120x°y + (295/216) y°x + 25x*y? — (1535/144) y*x?
+(373/6)x3y3 4+ 32X° 4 (7/4) y° + (373/3) X'y + (145/12) y*x — (59/36) x°y?
+ (133/54) X%y® + (1417/36) x* + (1/4) y* — (29/54) Cy + Txy® + (161/12) x2y?
+(16/9) X3 + 7x%y + xy? + *2,

(9/8)x—1) y°+ (—(13/48) X2+ (27/8)x+3) y*
(—(83/32)x* — (35/24)x* — (27/8)x—3) y*
((271/576)X* + (187/32) x> + (179/48) X* + (9/8) X+ 1) ¥*
(-

(

fa(x,y) :=

(—
i
i
+ (—(61/48)x° — (17/12)x* — (13/4) x> — 2x?) y
+(15/16)x° + (17/8)x° + x*,

fa(xy) = 13149 10177 5., 1 89779 136993 269603
a%Y) = 14137 690312& 625 22090 14137 14137
13885y5 122147 2 287135 127723 2 150841y3X

8836° * 353440 141376 176720 24180

5207 296909 153500 5, 10177, 78261 ;g
+ 110450 < Y T 88360000’ * * 3534300 X ~ 11045 X~ 553250
11117 20354 5681 144743 5 2 ,

~ 88360000 ¥ " 276125° Y T 27612508 ¥ " 2200000008  25° ¥

f5(X,y) :=y°? — 3y° + 3y + 2y*x + 4y* — 2y*x® — 13y*x% — 6y°x — 3y° + 9y2x* 4 12y2°

+13y2C 4+ 4y?x+ Y2 — 6y — 17yx — 8yxC — 2y + Tx8 + 4x3 + x4,

fo(x,y) 1= (5/16)y° — (23/8) y>x+ (23/8)y> — (5/16) y*x* + (31/8) y'x — (123/16)y*
+(15/8)y*x + (31/8) y3x® — y3x + (11/2)y® — (51/16) y*x* — (13/4) y>x®
— (13/4) Y5 —y? + (13/4) yx* + 2yx° —x°,

f2(x,y) 1= (3/2)y° - (7/3)y°x— 3y’ — (71/18) yX* + 8Y'x+ (1/2) y* + (76/9) y°x°
+(13/3)y*x* — (29/3) y*x+ 2y° — 10y°x* — (14/3) y"x® — (1/6) y*
+4y?x— Y2 4 (46/9)yx° + (16/3) yx* — (8/3) yxC — (16/9)x8

For each, the curveC; is not of torus type. Let us prove this fact for example for the curve
Ci. If C1 was of torus type, then there would exist a cdbicmeetingC; only at(0,0) and(1,0)
(the two singular points o€;) and such that(Cy,D4;(0,0)) = 1(Cy,D1;(1,0)) = 6 (cf. [P]),
wherel(Cy,D1;(0,0)) and1(Cyq,D4;(1,0)) are the intersection multiplicity of; with D; at
(0,0) and(1,0) respectively; but we can easily check that there does not exist such alxonic
A similar argument can be used for the other cu®gs. .,Cy; the details are left to the reader.
For each, we denote byz; the configuration of singularities of the cur@e We have:
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Z1={2Ag}; Z={Mu7};
Z3={A11+Es}; Za={Aua+A}; S5 ={A11+As};
Ze={Ast+As+Az}; Z7={Ag+Es+Ar}.

The example€s andCy are due to Tu Chanh Nguyen.
Our main result is as follows.

THEOREM2.1. Foreachi,1<i <7, we have the following isomorphisms
m(CP>-C)~2/6Z and m(C>*-C)~Z.

For eachi, let.#(=;) be the moduli space of reduced sextic€OR? with the configura-
tion of singularities=;, and let.#(=;) be the connected component.af (=;) containing the
curveG;. Since the topology of the compleme@®> — ¢; or C2 — ¢; is independent on the
choice of the curve; in (=) (cf. [Z3], [Z4] and [LR]), Theorem 2.1 implies the following
result.

COROLLARY 2.2. For each i,1<i <7, and for any curveZ in .#y(=;), we have the
following isomorphisms

m(CP>—¢))~2/6Z and m(C*—¢)~Z.

REMARKS. (i) Let.#po(=1) be the set of non-torus irreducible cunasin .# (=) such
that, for at least one of the two singular points®af the tangent cone té; at this point passes
through the second singularity. One can prove tab(=1) is a connected subspace.af (=)

(the proof is computational, very heavy, and cannot be presented here). On the other hand, it is
easy to see that our cur@ belongs to this subspace. So, by Corollary 2.2, for any céivie
Moo(=1), we havern (CP? — ¢1) ~ Z/6Z and s (C? — €1) ~ Z.

(i) By [INO], the subset of# (=) consisting of irreducible sextics which are not of torus
type is a connected component.af (=,). Of course, this component is nothing bufy(=,).
So, Corollary 2.2 asserts, in particular, that for any irreducible non-torus s&xticCP? with
the configuration of singularities,, we havenl(CP2 — ) ~Z/6Z and n1(02 — ) ~Z.

It seems that for the other valuesidf.e.,i = 1,3,4,5,6,7) the subset of# (=;) consisting
of non-torus irreducible sextics is also a connected componen# (F;) (the proof would be
computational and very heavy). If yes, then Corollary 2.2 would also provide a complete answer
to point (ii) of Conjecture 0.1 for the configurations of singularitigsi = 1,3,4,5,6,7.

(iii) Another step toward (ii) of Conjecture 0.1 i®B, Theorem 5.8]. This theorem contains
an example of a non-torus irreducible sextic— CP? with the configuration of singularities
{6A2} such thatr, (CP? — ¢) andm (C? — ¢) are also abelian.

(iv) By [OP], for eachi, 1 <i <7, and any irreducibléorus sextic®; in .# (=), the
fundamental groupr (CP? — ;) is isomorphic to the free produ¢Z/2Z) « (Z/3Z). So, if D;
is such a curve and &; is an element of#,(=;), then(¢;, ®;) is a Zariski paif.

Notice that the Zariski pairs found here were in fact already known. Indeed, it is well-known
that the generic Alexander polynomial of any irreducible non-torus sextic CP? with the

“We recall that a pair of irreducible curveg,D) in CP? is called aZariski pairif ¢ and® have the same degree
and if there exist regular neighbourhooBig®) and T (D) of € and®, respectively, such that the paif§(¢),¢) and
(T(®),D) are homeomorphic, while the paif€P?,¢) and(CP?,®) are not homeomorphic (cfA]).
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configuration=; is trivial (cf. [O7]), while the generic Alexander polynomial of any irreducible
torus sextic®; c CP? with the configuratiorE; is given byA (t) =t2—t+1(cf. [OP] and [O07]).
This directly implies thate;, ®;) is a Zariski pair.

The remaining of the paper concerns the proof of Theorem 2.1. We prove successively that
m (CP? —G) is abelian fori = 1,2,3,4,5. The proofs foli = 6,7 are essentially the same than
for 1 <i < 5and will thus be omitted.

3. Proof of Theorem 2.1 fori = 1.

The curveC; has exactly two singularities of typ&s: one at the origin and one ét,0).
Figure 1 shows the real plane sectiorCef(in the figures, we do not respect the numerical scale).
We use the Zariski-van Kampen pencils method. Consider the péfcil (cf. Notation

1.3); observe that the poiBp (i.e., the axis of the pencil) does not belong}oand that the line

at infinity L, is generic with respect 16;. As explained in Section 1, it suffices to prove that the
fundamental groupjrl(CP2 —Cy,bp) is abelian. The pencil has 5 real singular lings, ..., Ly,
with respect taCy, which correspond to the 5 real roats, ..., ns of the discriminanty( f1)

of f1 as a polynomial ix (Ax(f1) is thus a polynomial iry):

M =-0022..., N, =0, N3 = 0.253.., Na = 0.326.., Ns = 0.414..

We take generator&, ..., & of the fundamental groups (L,,—e — Cy,bo) (which are also
generators off (CP? —Cy, by)) as in Figure 2£1, ..., & are lassos around the intersection points
of Lpg—¢ With Cy.

The lineL, is tangent to the curv@; at the simple poinpg (cf. Figure 1); the intersection
multiplicity 1(Lns,Cy; po) of Ly with C; at pg is 2. So, by the implicit functions theorem,
the germg(Cy, po) and ({y = —x?},0) are topologically equivalent. The monodromy relations
aroundLp, (obtained by movingy once counter-clockwise on the cirge— ns| = €) thus give
the relation

{2=4&s.
P // y=ns 3 & &y &y &\ &
y=n4
y=ns
y=m2
y=n
Figure 1. real plane section Gj. Figure 2. generators gt= s — €.

Similarly, we can see easily that the monodromy relations araypdobtained whery
moves on the real axis from:= ns — € — n4+ €, then runs once counter-clockwise on the
circle |y — na| = €, and then comes back on the real axis from= s+ € — ns — €) give the
relation

é1=¢&.



44 C. EYRAL and M. XA

& { &, &y &\ &
Xs@'); /

ixa o) x2(»)

\in 0] 508

13 i] &l

X6 ()

Figure 3. generators gt= 3 — €. Figure 4. generators gt= 1, + €.

Similarly, the monodromy relations arouihg, (obtained by moving as follows: on the
real axis fromy := ns — € — na+ €; half-turn counter-clockwise on the circlg— ns| = ¢€; on
the real axis frony := n4s — € — ns + €; one turn counter-clockwise on the cirdle- nz| = ¢;
on the real axis frony := nz + &€ — n4 — &; half-turn clockwise on the circly/ — na| = €; on
the real axis frony := n4 + € — ns — €) give the relation

é3 = é&4.

To read the monodromy relations arounyg, we first show how the six rooig (y), . .., Xs(y)
of the equatiorf;(x,y) = 0in x move whery moves on the real axis frojm=ns—& — N2 +¢.
Figure 3 shows the situation of the generatong-atns — €, and we have the following lemma.

LEMMA 3.1. When y moves on the real axis from — € to n; + €, the six roots
x1(Y), ..., %s(y) of the equation 1f(x,y) = 0 in x are deformed as in Figuré.

PROOF. We consider the polynomial
h(u,v,y) == fa(u+iv,y)

for u, v, y real. We denote byf1e(u,v,y) and fio(u,v,y) the real and the imaginary part of
h(u,v,y) respectively. They have degree 6 and 5 respectively Buppose that there exists an
Yo € [N2+ €, N3 — €] such that four complex solutions of the equationdirf;(X,yo) = 0 are on a
same vertical lin@l = ug in the complex planéC, x = u+iv); in other words, assume that there
are integerd <ij < iz <iz <ig <6such that

R(xi, (Yo)) = R (%, (Yo)) = R(Xi5(Yo)) = R(Xi,(Yo)) = Uo,
where of courséi(-) is a notation for the real part. This implies that the equationg)(in
fle(UO»Vvyo) = flo(UO»Vv)/O) =0

have four common real solutioms, v»,v3,v4. These solutions are not 0 since the equatiory)in
Ax(f1)(y) = 0 has no solution ofr}2 + &, n3 — &]. Thus, the equations (i)

f1e(Uo,V,Yo) = f100(Uo,V,Yo) = O,

where f100(U,v,Y) := f10(U,v,y)/v (notice thatv divides fi5(u,v,y), and thusfiee(u,v,y) is a
polynomial), have alse,v»,v3,v4 @as common solutions. Afqq has degree 4 in, this implies
that f100(Uo, v, Yo) divides f1e(Up,V, Yo). Thus, the remaindd®(u,v,y) of fie by f100, as a polyno-
mial ofv, must be identically 0 fou = ug andy = y; (of courseRis written asR=R /R’, where
R is a polynomial inu, v, y, while R” is a polynomial just depending anandy). By an easy
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computation, we see th&= (R,/R;)V? + (Ry/R}}), whereR,, R}, Ry andR{j are polynomials
in uandy. Thus,(ug,Yo) is @ common real solution of the equations

RIZ(u’y) = %(U,y) =0. (3.2)

This implies thatyg is a root of the resultant R@g of the polynomialsu — R,(u,y) andu —
Ro(u,y). Note that the condition Rég) = 0 is necessary to have a real partogrsuch that
R,(uo, Yo) = Ry(Uo,Yo) = O, but it is not sufficient since the possible partngmight be not real.

There are two real solutiong, y3 of the equation Rég) = 0 on the intervaln, + €,nz — €.

Each of them gives a real number, sgyfor y3 andu for y3, such tha(uj, y3) and(u3,y3) are

two solutions of (3.2). We now have to check if these two solutions give four real vadthe
polynomialv — f10(Up,V,Yo). Only the solution(up,Yo) := (—0.18914..,0.12557..) satisfies

this requirement. Thus, we can have one (and only one) overcrossing. To check if it is the case,
we look at the solutions of the equation (ix) f1(x,y) = 0 for some values of nearyy. MAPLE
actually gives an overcrossing. This completes the proof of Lemma 3.1. O

Now, we look at the Puiseux parametrization of the curve at the origin (for detail€Dgee [
Section 2.2]):

y=t*
. . 1 - .
X=iv2t2 — gt“ — %lx@t‘j - gv210v iv/2t” + higher terms

As explained in PP, Section 4.1], whery = eexp(if) moves around the origin, = 0 once
counter-clockwise, the topological behavior of the four poig), xa(y), xs(y), Xs(y) looks

like the movement of four satellites accompanying two planets, two satellites around each planet
corresponding to = eV/*exp(iv), v = 8/4, 8/4+ /2, 8/4+ 1, 8/4+ (3m)/2. The move-

ment of the planets is described by the taémf2t?; each of them ddq1/2)-turn around the

sun & the origin). The movement of each satellite around its planet is described by the term
—(1/8)v/210V/iv/2t’; each of them doeé7/4)-turns around its planet. So, the monodromy
relations aroundl ,, give the relation

&= (wo)&1(wo) 1, (3:3)

wherew ;= 5655&;12 ando = 555155.
On the other hand, we can see easily that the monodromy relations drguigile the

relation
&1 =&s.
The latter impliesv = &2 ando = &3, and (3.3) then give& = &;. So, the fundamental
groupr (CP? — Cy, by) is generated by a single generator, and it is thus abelian.
4. Proof of Theorem 2.1 fori = 2.

The curveC; has exactly one singularity of typ¥; at the origin. Figure 5 shows the real
plane section of».

We consider the penc# 7 (cf. Notation 1.3); observe that the poBg does not belong to
C, and thal, is generic with respect ;. Again, it suffices to prove that the fundamental group
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m (CP? — C,,by) is abelian. The pencil has 5 real singular lings, ..., Ly, with respect t;,
which correspond to the 5 real roays, . . ., ns of the discriminanidy( f,) of f, as a polynomial
iny (Ay(f2) is thus a polynomial irx):

M =-0.191.., N, = —0.036.., N3 = —0.027..., s = —0.026.., Ng = 0.

We take generatory, ..., &g of the fundamental group (L, —Cp,bo) as in Figure 6;
¢1,...,¢ép are lassos around the intersection points,Qf ¢ with Cy.

xX="2 >
x=13 —* & &

=y
- x=n +— x="5

Figure 5. real plane section G5. Figure 6. generators at=ns — €.

7

The monodromy relations arouthg, and around.,,, give the relations

&3=2¢&, and & =&;1&,&;

respectively.
& & &
/ & & |G
.\_/ ___________ LT
Figure 7. generators &t=n1 +¢. Figure 8. generators &t= s — €.

We show in Figure 7 how our generators<at n; + € are deformed wherdoes half-turn
counter-clockwise on the circ|g— nz| = €, and then moves on the real axis fram-=n, — & —
N1+ €. The monodromy relations arouhg, give the relation

& =&, &8s,
Combined with the foregoing, this shows that
é3=381=¢=¢e.

To read the monodromy relations aroung, we first show in Figure 8 how the generators
atx = ns — € are deformed wher does half-turn counter-clockwise on the cirbe- ns| = ¢,
then moves on the real axis fran= n3 + & — n4 — &, then does half-turn counter-clockwise
on the circle|x— na| = €, and finally moves on the real axis fran= ns+& — ns — €. Then
we observe that, at the origin, the curve has two branshesdKy, given by
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1 X= _7y2 += y5 y6 y’ 1135y8+ 1 (4051+162//22)y° + higher terms

288 1728
'x——fyz y5 y6 y’ 1135y8 L a0s1- 162v/22)y° + higher t
Kz: +- 2sg) T 1728( + higher terms

An easy computation shows that the Puiseux parametrizatidisaridK, at the origin are
given by

Ki: x=t%, y=ait+...+art’ +agt®+higher terms
Ko: x=t% y=ajt+...+at’+ayt®+higher terms

for some complex numbees anda] such that = & for 1 <i < 7, the number; = & is non-

zero, andhg # ag. These equations say us that the topological behavior of the four points which
are closed to the origifl € (C,y) looks like the movement of four satellites accompanying two
planets running around the sun the origin), two satellites around each planet. Each planet does
(1/2)-turn around the origin. Each satellite dakturns around its planet. So, the monodromy
relations aroundl,. give the relations

&Lr=8=¢s.

So, the fundamental group (CP? — Cy, by) is generated by a single generator, and thus it
is abelian.

5. Proof of Theorem 2.1 fori = 3.

The curveCs has exactly two singularities: one singularity of tysg at the origin and one
singularity of typeEg at(0,1). Figure 9 shows the real plane sectiorCaf

We consider the penci¥% z; observe that the poirRy does not belong t€z and thatl.,
is generic with respect t63. Again, it suffices to prove that the fundamental groq(CPz —
Cs,bp) is abelian. The pencil has 5 real singular lingg, . ..,Lss, with respect taCs, which
correspond to the 5 real roats, ... ., ns of the discriminaniiy( f3) of f3 as a polynomial irx:

n=0,n2=0297.., n3=0568.., n4=1, ns=1.001..

We take generatoi&,, . . ., & of the fundamental groum (Ly,+¢ — Cs, bo) as in Figure 10;
é1,...,&p are lassos around the intersection pointkQf, . with Cs.

To read the monodromy relations at the origin, we first observe tha{@gjrthe curve has
two branche; andKj; given by

Ky : y=xz+%x3+%x4 4x5+—(313+4|\f)x + higher terms

2 144
1 11 1
Ko: y=x +2x +3 x4 +742(313- 4i\/6) X8 + higher terms

An easy computation shows that the Puiseux parametrizatioks ahd K, at the origin are
given by

Ki: y=t% x=at+...+ast*+ast”+higher terms

Ko: y=t% x=ajt+...+at*+at>+higher terms
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for some complex numbegs anda; such that; = & for 1 <i < 4, the number; = &, is non-
zero, andas # ag. As above, one deduces from these equations that the monodromy relations
aroundL,, give the relations

&1=(08&4)&3(0&) 7L,

51
& = 028,072, e

whereo = &4&s.

&) & &y & | &\ &
y=T
J’=T]|/ / \ ./

Figure 9. real plane section G§. Figure 10. generators gt= 1+ €.

REMARK. After the analytic change of coordinates

1 11 35
2, =3, - OS5
(X,y) — (x,y+x +2x +12x4+24x>,

the equation o€3 near the origin takes the form

313 , 98065 ;,
~ Y+ 5073

As the leading terny? — (313/72)y»¢ + (9806520736x*? has no real factorization, the origin
is an isolated point of theeal plane section ofs.

+ higher terms= 0.

Wheny moves on the real axis from:= n; + € — nz — &, the situation of our generators
aty =, — € is again as in Figure 10. We see easily that the monodromy relations argund
give the relation

és = &.

To read the monodromy relations aroury, we first show in Figure 11 how our generators
aty = ny — € are deformed whewg does half-turn counter-clockwise on the cirtye- ;| =
€, then moves on the real axis froyn= n,+ € — n3—¢&. Then, it is easy to see that the
monodromy relations arourld;, give the relation

&3 = &a.
The latter, combined with (5.1), gives
é&1=4¢ and & =¢Es.

To read the monodromy relations arounyg), we show in Figure 12 how our generators at
y = nz — ¢ are deformed whendoes half-turn counter-clockwise on the cirpfe- ns| = ¢, then
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moves on the real axis from:= n3+ & — N4 — €. Then we observe that, after the change of
coordinategx,y) — (x,y+ 1), the Newton principal part of; near(0,1) (cf. [K]) is given by

31
_y3+ﬁs .

We deduce that the monodromy relations aroupgdgive the relation
&= w 207, (5.2)

wherew := &5&38 .

&s &, |G & &s, &s, & \&
/ & \& / ( &
[(—] &
S
Figure 11. generators git=nsz — €. Figure 12. generators gt= g, — €.

On the other hand, it is not difficult to see that the monodromy relations algyrgive the
relation

é3=w.
The latter, combined with (5.2), implies
és = &s.

So, we have proved that the fundamental grag(CP? — Cs, by) is generated by a single
generator. It is thus abelian.

6. Proof of Theorem 2.1 fori = 4.

The curveC, has exactly two singularities: one singularity of tylg at the origin and one
singularity of typeA, at(0,1). Figure 13 shows the real plane sectiorCof

We consider the penci¥k z; observe that the poirBy does not belong t€4 and thatl.,
is generic with respect t64. Again, it suffices to prove that the fundamental graupCP? —
C4,bp) is abelian. The pencil has 6 real singular lings,...,L,,, with respect taC4, which
correspond to the 6 real roats, . . ., e of the discriminantly(f4) of f4 as a polynomial iry:

n1=-2016.., np=-1973.., n3=-0.137..., N4 =0, n5 =0.050.., ng = 2.062..

We take generatord,, . . ., & of the fundamental groupr (L, —Cs,bo) as in Figure 14;
é1,...,&p are lassos around the intersection points,Qf_¢ with Cs.
The monodromy relations aroutg, and around.,,, give the relations

=& and &=¢& (6.1)

respectively.
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T
R

— x=")s

- x=1)

x=1m; —»

x=m, —>
X=n3 ——
x=

Figure 13. real plane section Gf. Figure 14. generators at=nz —&.

In order to fix the ideas, we show in Figure 15 how our generators-aj, + € are deformed
whenx does half-turn counter-clockwise on the cirgte- n,| = €, and then moves on the real
axis fromx := nz — & — n1+¢&. The monodromy relations arouig, give the relation

& = &5 1EsEs.
The latter, combined with (6.1), impliég = é3. So, we already have

ér=E8=¢8=2¢s.

We show in Figure 16 how our generatorxat nz — € are deformed wherdoes half-turn
counter-clockwise on the circle — ns| = &, then moves on the real axis from=nz+¢ —

na— €. On the other hand, after the change of coordinéateg) — (x,y+ 1), we see that the
Newton principal part off4 near(0, 1) (cf. [K]) is given by
278369 n 507 2
14137 441800 °

One deduces that the monodromy relations ardypdjive the new relation

&3 =¢&1.

& & \&

Figure 15. generators &t n + €. Figure 16. generators A=, — €.

Now, knowing that;, = & = &3 = &4 = &5, the big circle relation (i.e., the vanishing relation
at infinity) obviously gives the new relation

& =¢&°.

So, the fundamental group (CP? — Cy4,by) is generated by a single generator, and thus it
is abelian.
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7. Proof of Theorem 2.1 fori = 5.

The curveCs has exactly two singularities: one singularity of tyfsg at the origin and one
singularity of typeAs at (0, 1). Figure 17 shows the real plane sectiorCef

We consider the penci¥i z; observe that the poiry does not belong t€s and thatl.
is generic with respect t6s. Again, it suffices to prove that the fundamental grauCP? —
Cs,bp) is abelian. The pencil has 6 real singular lings,...,L,,, with respect tdaCs, which
correspond to the 6 real roats, .. ., N of the discriminaniiy( fs) of f5 as a polynomial irx:

N =0, n,=0847.., N3=1 nNa=1203.., Ns=1.286.., g = 1.844..

We take generatoi&,, . . ., & of the fundamental groums (Ln,+¢ — Cs, bo) as in Figure 18;
é1,...,&p are lassos around the intersection pointkgf, ¢ with Cs.

It is not difficult to see that the monodromy relations arouing, L,, andL,, give the
relations

§&3=&, &=&"&& and &=¢& (7.1)
respectively.
y=To
y=1s (\ &, &s & \& &G
y=ns \ \ )
ry=ns
y="2
=1 M
Figure 17. real plane section ©§. Figure 18. generators gt= s+ €.

To read the monodromy relations aroung, we first observe that near the poit 1) the
curve has two branchég andK; given by

Ki: y=14x—x2+(—1+3)x3+higher terms
Ky: y=14+x—x2+(—1—+/3)x3+higher terms

An easy computation shows that the Puiseux parametrizatidis afidK, near(0, 1) are given
by

Ki: y=1+t, x=at+apt?+agt®+higher terms
Ko: y=1+t, x=ajt+ayt®+a5t3+higher terms

for some complex numbeig anda] such thata; = & for 1 <i < 2, the numbery = @] is

non-zero, andg # a;. These equations show that the monodromy relations arbggive the
relation

&3 = (E483)%E083E, 1 (E483) 2.

To read the monodromy relations aroury, we first show in Figure 19 how our generators
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aty = n3+ € are deformed whew does half-turn counter-clockwise on the cirfye- nsz| = ¢.
Then we introduce, in the fibig,, ., the lassogt andv defined by

U= (843) 1 E3(8as),
V= (&4&3) 1 Ea(Eaa).

Lassosy andv are drawn in Figure 20. Owing to these new lassos, it is easy to see that the
monodromy relations arourld;, give the relation

u=és.
The latter, combined with (7.1), implies

V=166 (7.2)

&, & & & W,y &y &

Figure 19. generators gt=nz — €. Figure 20. new generatorsyat ns — €.

To read the monodromy relations aroung, we first show in Figure 21 how the generators
aty = n, + € are deformed whew does half-turn counter-clockwise on the cirfye- n,| = ¢,
then moves on the real axis from= n, — &€ — n1+ €. Then, we observe that at the origin the
curve has two branchég andKj given by

1 .
Ki: y=x+ (2 + 2\/ﬁ> 8 + higher terms

1 .
Kj: y=x+ (g - 2\/ﬁ> x® -+ higher terms

An easy computation shows that the Puiseux parametrizatio§ ahd K} at the origin are
given by

Ki: y=t2 x=ait+...+ast*+ast®+ higher terms

Ky: y=t% x=adajt+...+at*+at®+higher terms

for some complex numbei® and &/ such thata; = & for 1 <i < 4, the number; = & is
non-zero, ands # ag. These equations show that the monodromy relations arbgindive the
relation

&1 = (&5V)?&s(&sv) 2
= (£185)%85(6185) % (by (7.2)) (7.3)
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Figure 21. generators git= 11+ €.

Now, we are ready to prove tha'tl(CP2 —Cs,bo) is abelian. The big circle relation
£6€5848382&1 = 1, combined with (7.1), gives

(8261)2 = &2 (7.4)

But, aty = n1 + €, the big circle relation is also written afgvfzfl = 1. Combined with (7.2),
this givesé; &5 = & %(&261) 72, which in turn implies (using (7.4)) thadé&s = &:¢&. So, again
using (7.4), one deduces th#t &s)? = 55‘2. The relation (7.3) then give§ = &s. The equality
&1é&5 = &€, thus impliest, = &1, and using the second equality in (7.1) one deducesthaté;.

So, we have proved that the fundamental grag(CP? — Cs,by) is generated by a single
generator. It is thus abelian.
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