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Abstract. We introduce a graphical method, called the chart description, to describe the
monodromy representation of a genus one Lefschetz fibration. Using this method, we give a new
and purely combinatorial proof of the classification theorem of genus one Lefschetz fibrations.

1. Introduction.

Let M andB be compact, connected, and oriented (not necessarily cl6Senjanifolds of
dimensiongt and2, respectively.

DEFINITION 1. A C®-mapf : M — Bis agenus one Lefschetz fibratidrthe following
conditions are satisfied:

(@) oM = f~1(9B);

(b) there is a finite set of pointg, ...,y (n > 1), called thecritical values of f in IntB(=
B—dB) such thatf|f~3(B—{y1,....yn}) : f 1(B—{y1,...,¥n}) = B—{y1,...,V¥n}isa
C>-fiber bundle with fiber th@-torusT?;

(c) for each (1 <i < n), there exists a single poim € f~%(y;) such that
(1) (df)p: Tp(M) — Tt (B) is onto for anyp € f2(y;) — {pi},

(2) aboutp; (resp.y;), there exist local complex coordinatasz with z;(pi) = z2(pi) =
0 (resp. local complex coordinatewith &(yi) = 0), so thatf is locally written as
§=1(z,2) =22 0r712);
(d) foreachi (1<i<n), Ha(f"1(y);Z2)=Z.

Throughout this paper, by a Lefschetz fibration, we always mean a genus one Lefschetz
fibration.

We call a fiberf ~1(y) asingular fiberif y € {y1,...,yn}, otherwise aeneral fiber We call
M thetotal spaceB thebase spaceandf theprojection

A singular fiber is either a smoothly immers2dphere inM with a single transverse self-
intersection of signt-1 or —1. Such a fiber is said to bef typelf or Iy, respectively (cf. 9],
[10).

DEFINITION 2. A chiral Lefschetz fibratiotis a Lefschetz fibration whose singular fibers
are all of typel; .
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REMARK 3. A Lefschetz fibration (cf. 3]) is called an achiral Lefschetz fibration ih€]
and in ] or a differentiable Lefschetz fibration i19]. A chiral Lefschetz fibration is called a
Lefschetz fibration in17] (cf. [15]) or a symplectic Lefschetz fibration ii§).

DEFINITION 4. Lefschetz fibrationd : M — B and f’ : M’ — B’ areisomorphicif there
exist orientation preserving diffeomorphisids M — M’ andh: B— B’ such thatf’oH = ho f.

Let

|t and =
S1 = 11 S =

1 -1
0 1
be elements 0BL(2,Z). ThenSL(2,Z) has a group presentation

(s1,%| 19251 (9291%2) L, (5192)%).

(This presentation is obtained from the presentation given in Problem 1.4.24 in p. 11 b¥/|
the substitutiors; = yx 1,s, = xy 2.)

The following is the deformation theorem due to Moisheztid [(which is also called
“normalizing theorem of local monodromiesl’H)).

THEOREMS ([17]). Letgy,g5,...,9, be elements of 32, Z) which are conjugates ofis
with g1g9,---g, = 1. Then by successive application of elementary transformations, the n-tuple
(91,99, - - - ,gn) can be transformed to an n-tuplhy, hy, ..., h,) withhy =5, foroddiand h=s,
for even i, and n must be a multiple b2,

Hereelementary transformationsean the transformations

(Xla cee an*17Xj7Xj+1an+27 s 7Xn)

—1
= (X X1 X1 X X X 1, X2, %), and

(le s 7Xjflvxjaxj+l7xj+27 s 7Xn)

-1
= (X17"'7Xj*l7xjxj+lxj 7Xjaxj+27"'7xn>

forj=1,...,n—1(cf. [15], [17]).
This theorem implies the classification theorem of chiral Lefschetz fibrations ovér the
sphere.

THEOREM®G ([7],[17]). Let f:M — B and f : M’ — B’ be chiral Lefschetz fibrations
such that B and Bare diffeomorphic to th@-sphere 8. They are isomorphic if and only if they
have the same number of critical values.

This result was generalized by the second named author to the case where the baBe space
is a surface of any genus.

THEOREM7 ([15]). Let f:M — B and f : M’ — B’ be chiral Lefschetz fibrations over
closed base spaces. They are isomorphic if and onjyBj = ¢g(B') and they have the same
number of critical values.
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For a Lefschetz fibratiorf : M — B, we denote byn, (f) the number of singular fibers
of type ;] and byn_(f) the number of singular fibers of tydg¢. (Note thatf : M — Biis a
chiral Lefschetz fibration if and only ifi_ (f) = 0.) The sum_.(f)+n_(f) is the number of the
critical values off.

THEOREMS8 (cf. [14], [15]). Let f:M — B and f : M’ — B’ be Lefschetz fibrations over
closed base spaces. Suppose thdtf) —n_(f) # 0. They are isomorphic if and only4fB) =
g(B)), n.(f)=n,(f)andn (f) =n_(f').

This theorem was proved in4] for the case wher8 is a2-sphere, and inl5] (p. 563) for
the general case (see below).

It is known (cf. [3], [13]) that the Euler numbeg(M) and the signature(M) of M are
related to the numbers_(f) andn_(f) by

eM)=n (f)+n_(f) and o(M)= —%(m(f) —n_(f)).

Thus the above theorem implies that whdnand M’ are total spaces of Lefschetz fibrations
over closed surfaceB andB' respectivelyM andM’ are diffeomorphic provided(B) = g(B'),
e(M) =¢e(M’) anda(M) = g(M’) # 0. This is the statement given in p. 563 af].

These results were proved by considering the natural projestiGh Z) — PSL(2,Z) and
establishing a theorem similar to the deformation theorem (Theorem 5) in tefR&L(#, Z).

We introduce a graphical method, called the chart description method, to describe a mon-
odromy representation of a Lefschetz fibration over a surBac@he idea can be applied to
Lefschetz fibrations of any fiber genus. We concentrate on the fiber genus one case in this paper,
and the higher genus case will be discussed elsewhere. Using the chart description method, we
have a new and purely combinatorial proof of the above classification theorems.

This paper is organized as follows. §r2, we recall the notion of monodromy representa-
tions of Lefschetz fibrations. 1 3, chart description of a Lefschetz fibration is defined and it
is proved that any Lefschetz fibration can be described by a chart (Theorem 154, fome
results on chart descriptions are given which are used later. The main theorem (Theorem 21) is
stated and proved i§ 5. It gives a certain kind of ‘normal form’ of a chart description.§l8,
we prove the classification theorem by use of Theorem 21.

2. Monodromy representation.

Let f : M — Bbe a Lefschetz fibration and I8t = {y1,...,yn} be the set of critical values.
Take a point) € Int(B) — S¢ and fix a diffeomorphism from the general fibef ~%(yp) to the2-
torusT? = S' x St. We identify the (orientation preserving) mapping class gii@ f ~2(yo))
of the general fiberf ~1(yp) with the mapping class groullC(T?) of T2 = St x S' by the
diffeomorphismi, and the latter group is identified wiBl(2, Z) by sending the positive Dehn
twists alongS' x {*} and{*} x S' to s; ands,, respectively.

Sincef|f~1(B—Sf): f~1(B—Sf) — B— S is aC®-fiber bundle with fiber th@-torusT?,
we have a monodromy representation

pr : T (B—St,y0) — MC(f*(yo)) 2 MC(T?)
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as a fiber bundle. Combining the isomorphi$n€(T?) = SL(2,Z), we have a monodromy
representation

Pt nl(B*SfayO) - SL(ZaZ)

Such a representation depends on the choigg ahd the diffeomorphism, but it is uniquely
determined up to inner automorphismsME(T2) or of SL(2,Z).

Two monodromy representatiops : 76 (B — Sy, Yo) — MC(T2) andpy: : (B’ — Sy, yo') —
MC(T?) are said to bequivalentf there exist an elementc MC(T?) and an orientation pre-
serving homeomorphisim: (B, S¢,yo) — (B, Sy, yo') such that

coni(g) o pr = pyr o,

whereconj(g) is the inner automorphism &C(T?) by g andhy : (B — St,yo) — m(B —
S, ¥o') is the isomorphism induced by

THEOREMO ([17], [16]). Let f:M — Band f : M’ — B’ be Lefschetz fibrations such that
ny(f)—n_(f) # 0or B has non-empty boundary. Then they are isomorphic if and only if their
monodromy representations are equivalent.

Theorem 9 is assumed when we prove Theorem 8 @ (Our idea is to use chart de-
scriptions in order to normalize monodromy representations, and we prove that under the hy-
pothesis of Theorem & and f’ have equivalent monodromy representationg(B) = g(B'),

n; (f) =ny(f") andn_(f) = n_(f’).) The proof of Theorem 91[7] was based on the surjec-
tivity of pf, and our argument in this paper also gives an alternative proof of the surjectivity (cf.
Theorem 26).

For a while, we assume that the base spea closed surface.

Let D be a2-disk in B such thaty € dD andS; C Int(D).

Let as,...,a, be mutually disjoint simple paths D except at the common starting point
Yo € dD such that they appear in this order aroyg@nd that their terminal points are the points
of S;. We call such a system of pathsy, ..., a,, a Hurwitz path systenor a system of good
ordered pathgcf. [17]). We denote by (1 <i < n) the element ofa (D — S, Yo) represented
by a loop starting ayo, going alonga; toward the endpoint (say) of aj, turning aroundy; in
the positive direction and going backygalonga;. Thenrs (D — S, Vo) is freely generated by
the elementsy,...,a,. The systemay,...,a, is called theHurwitz generator systerar the
system of good ordered generatoifsi (D — St, Yp) associated withwy, . .., an. Note that

ap---ap=[0D]

in 76(D — Sf,Yo) and inta (B— St, yo), wheredD is a loop along the boundadiD of the oriented
2-disk D.

WhenB is a closed surface of positive gerwslet 1, B2, ..., B2, be simple closed paths
in B which are mutually disjoint except at the common base pgjrduch that (1) we obtain a
2-disk D’ by cuttingB along these paths, (2) tfedisk D is contained in thi®-disk D', and (3)
we have
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[0D] = [by,by] - - - [boy—1,b2]

in (B — St,Yy0), whereb; (1 <i < 2g) is the homotopy class g8 and [a,b] stands for the
commutatormba 1b~! of a andb. For example, see Figure 1, where- 3 andg = 2.

Figure 1. Hurwitz system.

A monodromy representatiqox : 15 (B — St,Yo) — SL(2,Z) is completely determined by
the valueps (a1), ..., pr(an) andps (b), ..., pr(b2y).

If the terminal point ofa; is a critical value of typd] (or I, resp.), therps(a) is a
conjugate ofs; (or of 511, resp.). Thus a monodromy representatmn: 7@ (B — St,yo) —
SL(2,Z) satisfies the following conditions:

(1) Foreach (1<i<n), ps(a&) is a conjugate of; or ofs;l.
(2) pi(aa) - pi(an) = [Pt (br), s (02)] - - [P (b2g—1), pr (25)].

Conversely, any homomorphism (B — St,yp) — SL(2,Z) satisfying these conditions is a
monodromy representation of a Lefschetz fibration.

When we consider a Lefschetz fibration ove?-aphere (i.e.g = 0), then the right-hand
side of the equation in the second condition above is the identity elem&hf2fZ).

3. Chart description.

DEFINITION 10. A chartin B is a finite graph™ in B (possibly being empty or having
hoopsthat are closed edges without vertices) whose edges are labeledl avithand oriented
so that the following conditions are satisfied:

(1) The degree of each vertex is equali® or 12

(2) For a degreé&-vertexv, the six incident edges are labeled alternately Wi#nd2; and
three consecutive edges are oriented inward and the other three are oriented outward (see
Figure 2 wherd(i, j} = {1,2}).

(3) For a degred-2 vertexu, the twelve incident edges are labeled alternately wigmd2;
and all edges are oriented inward or all edges are oriented outward (see Figure 2 where
{i,j} ={12}.

4 rnoB=g.

For a chart™, we denote byert(") the set of all the vertices @f, and byS- the subset of
Vert(l") consisting of the vertices of degrée

An edge of a chart which is incident to a vertels anincoming edge of (or anoutgoing
edgeof v, resp.) if it is oriented toward (or away fromo, resp.).
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Figure 2. vertices of a chart.

A vertex of a chart (of degret or 12) is negative(or positive resp.) if all edges incident
to the vertex are incoming edges (or outgoing edges, resp.). Since a @egraex has three
incoming edges and three outgoing edges, we have the obvious equation:

#{positive degred-verticeg — #{negative degreé-verticeg

= 12(#{negative degreéz2 verticeg — #{positive degred-2 vertices) .

Among the six edges incident to a degfeertexv of a chart, three consecutive edges are
incoming edges and the other three are outgoing edgetddle edge of means the middle one
of the three incoming edges or the middle one of the three outgoing edgesn-Aiddle edge
of v means an edge incidentidhat is not a middle edge.

Letl be achartirB. A pathn : [0,1] — Bis said to bén general position with respect to
I if n([0,1]) NI is empty or consists of some pointsfof- Vert(I" ) where the pathy intersects
edges of transversely. To each intersectionrpnd/™, assign a lettet wherei is the label of
the intersecting edge 6f ande = +1 (or € = —1, resp.) ifn) intersects the edge from right to left
(or from left to right, resp.) with respect to the orientation of the edge. (Our convention for the
sign ¢ follows that of B], which is opposite to that in Chapter 18 @] The intersection word
of n with respect td” means a word obtained by reading the letters assigned to the intersections
alongn. This word will be denoted bwr (1) (cf. [6]). Regardings; ands, as the matrices
given in the introduction, we assume that(n) represents an element8£(2,Z).

DEFINITION 11. Letl be a chart irB missing a pointyy of B, and letS- be the set of
degreel vertices of . Themonodromy representation associated wWitis a homomorphism

pPr: T[]_(B— SI'aYO) - SL(Za Z)
defined as follows: For an element (B — S, Vo), take a representative path

so thatn is in general position with respect fo. We definepr (x) to be the element #L(2,Z)
represented by the intersection wavd(n).

LEMMA 12. The homomorphismr : m(B— S-,Yo) — SL(2,Z) is well-defined.

PrROOF. Letn andn’ be representatives of the same elemettita homotopy connecting
n andn’ misses all of the vertices df, thenwr(n) andwr (n’) represent the same element
in the free group(s;,sp). If the homotopy passes through vertices of degree 12, then the
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words differ by an element in the normal subgroup generatesisiys; ‘s 's; * and(ss;)® for
{i, i} ={1,2}. Thuswr(n) andwr (') represent the same elementSif{ 2, Z). O

DerFINITION 13. A Lefschetz fibration described by a chdrtis a Lefschetz fibration
f: M — Bwith St = S whose monodromy representation is equapio: (B — S-,Yo) —
SL(2,Z), up to inner automorphisms &iL(2, Z).

Since we assume that a Lefschetz fibration has at least one critical value, we also assume
that a charf” has at least one degréerertex.

REMARK 14. Letl be a chart inB, and letyg andyy’ be points of8 —I". Take a path

n connecting these two points which is in general position with respeft td’hen the two
monodromy representatiops : @ (B—S-,Yo) — SL(2,Z) andpr’: m(B— S, ¥o') — SL(2,Z)
associated with the chafft with base pointgg andyy’ respectively are related by the following
commutative diagram (whenj(g)(h) = g~*hg):

m(B—S,yo) —— SL(2,2)

al | coniwr(m)
m(B—S o) —— SL(2,2).

THEOREM15. Any Lefschetz fibration:fM — B over a closed surface B can be described
by a chartl".

ProOF. Take a regular valugy € B— S; and consider a monodromy representation
pt : (B — St,y0) — SL(2,Z) of the Lefschetz fibration by identifying the mapping class
groupMC(f~1(yp)) with MC(T?) = SL(2,Z). Leta,...,an andpy,..., Bz, be simple paths
and simple closed paths, respectively,Bras in§ 2, wheren is the number of critical val-
ues of f andg is the genus of the base spdBeand letay,...,an,by,..., by, be the elements
of (B — St,Yo) associated with them (cf§ 2). We decompose a regular neighborhood of
(UL o) U (ujzilﬁj) in B into n+ 1 disks andn+ 2g bands as follows: Recall that, for each
i (1<i<n), the terminal point ofy; is a critical value, say;. Let N(y;) be a small regu-
lar neighborhood of; in B for i (0<i <n). LetN'(aj) (1 <i <n) be a regular neighbor-
hood ofa; N (B—UR_gIntN(yk)) in B—UE_gIntN(yk), and letN’(B;) (1 < j < 2g) be a regular
neighborhood of3j N (B — U_gIntN(yk)) in B—UR_oIntN(yk). Then the union ofi+ 1 disks
N(Yo),...,N(yn) @andn+2g bandsN’(a1),...,N'(an), N'(B1),...,N'(Bz,) is a regular neighbor-
hood of (U a) U (U, B;) in B

We construct a desired chdrtpiece by piece. DefinE NN(yp) to be empty. For each
(1<i <n), the monodromys (&) is a conjugate of; or s; *. Take a word expression pf (a),
saywsiw; 1, wherew, is a word in{s1,s; %, ,5,%} andg € {—1,1}. Definel NN(y;) to be
a radial arc inN(y;) connecting the centsf and a point ofN(y;) missingN’(a;) whose label
is 1 and it is oriented inward (or outward, resp.)sifis —1 (or 1, resp.). Defind” "N'(a;) to
be a union of some proper arcsh(a;) missingN(yo) andN(y;) such that they are labeled and
oriented so that the intersection word af (restricted toN’(a;)) is equal to the wordy;. See
Figure 3, wherav, = 5115252 andg = 1.

For eachj (1< j < 2g), we defind” NN'(3j) to be the union of some proper arcaNf( ;)
missingN(yo) which are labeled and oriented such that the intersection wagBgl @éstricted to
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N0p) N'Cai) el
l
> (
o V.
%0 I 2 2 i
Figure 3.

N’(B;)) is a word representing the monodromy(b;).

We have constructed on the neighborhoodN((U,ai) U (U]?ilﬁj)) of (U ,ai) U
(ujzg:lﬁj). The edges of” (which have been constructed &\((Ul;a;) U (sz‘il[}j))) inter-
sectdN((U ;ai) U (U]?ilﬁj)) transversely. So we can consider the intersection word of the
closed patodN((U,ai) U (uf‘ilﬁj)) with respect ta”. By the construction, this word repre-

sentspr (a1) -+~ Pt (an) ([t (ba), pr (b2)] - - [Pr (b2g-1), Pt (b2,)]) ~*in SL(2,Z), which is the iden-
tity element ofSL(2,Z). SinceSL(2,Z) has a group presentation

(51,9 | 1951 (291%) L (5192)%),

there exists a finite sequence of Wordiﬁ@,sjl,SQ,sgl} starting from the intersection word of
the closed pat@N((U!_;ai)U (szilﬁj )) with respect td- and terminating with the empty word
such that each word is related to the previous one by one of the following transformations;

e insertion ofss * ors1s fori € {1,2},

o deletion ofss* ors!s fori € {1,2},

e insertion ofs;;51(51%) ~* or s15(s15251) 2,
e insertion of(s;5,)° or (s;5,) .

(Note that deletion 0§55 (52515) " is obtained from insertion ahs;s(s1551)* and dele-
tion of 55! ands's. Deletion ofs;s1%(s1951) 7%, (S152)® or (s152) ~© is also obtained from
the transformations above.) Therefore, by the same argument as in p. 19J7oofifi Chap-
ter 18 of [], we can extend the chaft constructed omN((U ;a;) U (U]?ilﬁj)) to a chart in

a slightly bigger neighborhool’((Ul, o) U (UJ?ilBj)) of (U ,ai)U (U?‘ilﬁj) in B such that
rnoN' (U 0i) U (szg:lﬁj)) = . This is a desired chaft in B, since by construction, we
havepr (&) = pr (&) andpr (bj) = pr(bj) fori (1 <i<n)andj (1< j<2g). O

4. Moves on charts.

In the previous section, we have seen that any Lefschetz fibration is described by a chart.
Such a chart description is not unique. Here we introduce some moves on charts which do not
change the isomorphism class of the Lefschetz fibration. These moves play an important role in
our proof of the classification theorem.

LEMMA 16. Letl andl"’ be charts in B. Suppose that there exis&disk E in B such
that/™ andr’ are identical outside of E and th&t and/"’ have no degred-vertices in E. Then
Lefschetz fibrations described byand ™’ have the same monodromy representation.
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PROOF. Take a point/y in B—E missingl” andl"’ and consider the monodromy represen-
tationspr : T (B—Syo) — SWL?2,Z) andprs : m(B—SYyo) — SL(2,Z), whereS={y1,...,yn}
is the set of degreg-vertices ofl", which is equal to that of ’. Thenpr = pr/. This is seen
as follows: Letay,...,an andpy,. .., By, be paths and closed paths, respectivelyg as before.
We may assume these paths to be disjoint flEanThenpr (a;) = pr/ (&) andpr (bj) = ps(b;)
fori (1<i<n)andj (1< j<2g). Thuspr = pr. O

DEFINITION 17. When two chart§” andl"’ are in the situation of Lemma 16, we say that
I is obtained from™’" by aCl-movein E. A Cl-move illustrated in Figure 4 is calledchannel
change

Typical ClI-moves are illustrated in Figure 5.

) (e S

Figure 4. channel change.

Figure 5. some Cl-moves.

LEMMA 18. Letl andl"’ be charts in B. Suppose that there exis&disk E in B such
thatl™ and "’ are identical outside of E and that and I’ differ by one of Figures in E. Then
Lefschetz fibrations described byand '’ have the same monodromy representation up to an
equivalence.

PROOF. By an isotopic deformation ik, we may assume that the degreeertex ofl" in
E and that of"" are located in the same position®fso that the set of degrelevertices off” is
equal to that of /, sayS. Take a pointjp in B— E missing” andl"’ and consider the monodromy
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Figure 6. Cll-moves.

representationgr : 1 (B— S yo) — SL2,Z) andpr : Ta(B— S yo) — SL(2,Z). Then we see
thatpr = pr/ by a similar argument as in the proof of the previous lemma. O

DEFINITION 19. When two chart§ andl™’ are in the situation of Lemma 18, we say that
I is obtained fronT’ by aCll-movein E.

Note that, for a Cll-move, the edge connecting the dedreertex and the degre@vertex
in E is a non-middle edge of the degréerertex.

By a C-move we mean a Cl-move, a Cll-move or an isotopic deformatiom.in Two
charts are said to b€-move equivalenif they are related by a finite sequence of C-moves.
By Lemmas 16 and 18, such charts describe Lefschetz fibrations with the same monodromy
representation up to an equivalence. (By Theorem 21 (and the proof of Theorem 8), we see
that the converse is also true under a certain condition; namely, two ¢harig/"’ describing
Lefschetz fibrations with equivalent monodromy representations are C-move equivalent provided
thatn, (M) =n.(r"),n_(F)=n_(r")andn, (") —n_(I") # 0, wheren, andn_ stand for the
numbers of positive and negative, respectively, dedreertices of the chart.)

Note that ClI-moves in this paper are called CllI-movesajgnd [6].

Figure 7 is an example of a sequenc&€afoves: The first move is a Cl-move and the last
two are Cll-moves.

212 12
1 o] @@ =

Figure 7. label change of a free edge.

5. The main theorem.

DEFINITION 20. A (di,d)-type edggor a(d;,dp)-edgg of a chartl” is an edge of”
whose endpoints are vertices of degrdeandd,, whered;,d, € {1,6,12} with d; < d.

A free edgeof I" is the union of g1, 1)-type edge and its endpoints.

An oval nesof I" is the union of a free edge and some (or no) concentric hoops surrounding
the free edge such that it is contained iB-disk, sayE, in B and the remainder df is outside
E (cf. [6]).

A nucleonof I is the union of a degre#2 vertex, twelve degreé-vertices and twelve
(1,12)-type edges connecting these vertices.



Chart description of genus one Lefschetz fibrations 547

A nucleon ispositive (or negative resp.) if the twelve degrekvertices are positive (or
negative, resp.).

THEOREM21. Any chartl” in B can be transformed, by C-moves, to a chiatt/I; in B
satisfying the following conditions

(1) There is a2-disk, say E, in B such tha& is inside E and is outside E.
(2) o consists of oval nests and nucleons.

(3) The nucleons afy are all positive or all negative.

(4) 1 does not have degrekvertices or degred-=2 vertices.

Furthermore, iflp has at least one nucleon, then applying C-moves, we can arrange so that
all oval nests iny are free edges with labdland that/ is empty.

We devote this section to proving this theorem.

LEMMA 22. Any chart can be transformed by C-moves to a chart withdub)-type
edges.

The basic idea of this lemma and its proof is the same as that of Proposition 21 and
Lemma 24 in §]. The proof gives an algorithm to reduce the number of (thé&)-type edges
from an arbitrary chart witti1, 6)-type edges. This process will be referred to asréuiction
process of 1, 6)-type edges

PROOF. (Step 1) Suppose that there existdlg)-type edge which is a non-middle edge
of the degrees vertex. Apply a Cll-move and eliminate the deg®gertex. Then one of the
following occurs.

e The number of 1,6)-type edges decreases. So does the number of déyextices.
e The number of(1,6)-type edges is unchanged, but the number of de§reertices de-
creases.

Thus the total number dfL, 6)-type edges and degréevertices decreases.

(Step 2 (1)) Suppose that there exist§la6)-type edge which is a middle edge of the
degreeé vertex. We denote thel, 6)-type edge by, the degreetvertex byug and the degreé-
vertex byvi. We only consider the case whezés an outgoing edge af;, since the other case
whereeis an incoming edge af; is treated in the same way.

Let K be the region oB — I whose closure€CI(K) in B containsvg, v; ande. LetK be a
‘completion’ of K; namely,K is a compact oriented surface with a mapK — B such that the
restriction: |Int(K) : Int(K) — K is an orientation preserving homeomorphism. Byoaindary
loop of Kwe mean a loop ifB that is the image underof a boundary loop of the completion
of K. Here we assume that the orientation of a boundary loop is equal to the orientation induced
fromK.

Let fq, fo,..., fm be a sequence of edgeslofwith signs (in the exponential notation) such
that the edges appear in this order when we walk along the unique boundary IKogtarting
from vy and that the sign of an edge is positive if the orientation of the edge is the same as the
orientation of the boundary loop; otherwise the sign is negative. For example, see Figure 8,
whereK is an open disk oriented counterclockwise in the picture. ForKhithe lengthmis
equal tolland the sequenck, ..., fmis
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For such a sequende, . . ., fm, we consider a sequene&fy), ..., w( fy) of elements oSL(2,2Z)
defined byw(fy) = for k 1 <k<m)wherei € {1,2} is the Iabel of the edgé ande is the
sign of fy. For the above examplw( f1),...,wW(fm) is

1

S

1

731»1’55175—2F1’Sll7sl+1’821731+17521’Sirl'

Figure 8. boundary loop df.

Leti be the label ok and letj be the complementary label with, j} = {1,2}. Since we
are assuming thatis an outgoing edge af, we havew(f;) = 5t andw(fy) = s

(Case 1) Suppose that there is a consecutivefpaind fy, 1 in the sequencéy, ..., f, for
somek such thatw( fi) = s/ andw( fi; 1) =™ Inthis case, the vertex between the edfyesnd
fka1 must be a degre@vertex, andf, and fx; are non-middle edges of this vertex (see Figure
9). Move the vertexp and the edge toward the edgdy.; in K by an isotopic deformation,
and apply a channel change between the edgesl fy. 1 as in Figure 9. In the result, the vertex
vp is incident to &1, 6)-type edge which is a non-middle edge of a degeertex. Go back to
Step 1.

Figure 9. reduction of1,6)-type edge, 1.

(Case 2) Suppose that there is a consecutive fpa@nd fi, 1 in the sequencdy, ..., fy
for somek such thaw( fy) = 3‘1 andw( fgi1) = j‘l. In this case, the vertex between the edges
fx and fy, 1 must be a degreévertex, andfy and fy, 1 are non-middle edges of this vertex (see
Figure 10). Move the vertex and the edgetoward the edgéy in K by an isotopic deformation,
and apply a channel change between the edgesl fy as in Figure 10. In the result, the vertex
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vo is incident to a1, 6)-type edge which is a non-middle edge of a degeertex. Go back to

Step 1.

i~ Ko

Figure 10. reduction ofl, 6)-type edge, 2.

(Step 2 (2)) By Step 2 (1), we may assume that

(*) there is no consecutive paify and fc.; in the sequencefy,..., fn such that
(W( i), W( 1)) = (574,87 or (574, 571).

Suppose that there is no edgefin..., f, exceptf; and f, incident to a degreé-vertex;

i.e., suppose that all vertices (excep)incident to the edges$, ..., fy, are vertices of degreg@

or 12. In this case, for each consecutive phirand fy, 1, the labels offy and fy 1 are distinct.

Sincew(f;) = 5 and since we assume the condition (*), the sequev(de), .. ., w( fm) must
be of the form

~1

S

sl st sl

i 3S) Ty

This contradicts that/( fm) = §™.

Therefore there must be an edgdin... ., f,, exceptf; andf, incident to a degreé-vertex.
Let fx be the first one among such edges. Note thaind fy, 1 are the same edge with opposite
signs. Note also thaty( ) = 5 for any odd integek’ with 1 < k' <k, andw(fy) = sjfr1 for
any even integek’ with 2 < k' < k. Therefore, according dsis even or odd, there are two cases
as follows:

@) (W(fier), w( i), W(fie1)) = (571515, ), or
@) (W(fie1), W(fi),W(fien)) = (/1575 5™).

Letv be the vertex incident té_; and fy, which is of degre® or 12.

(Case 1) For the case (1) wikh> 3, moveuvy and the edge toward the edgdy_1 in K
by an isotopic deformation and apply a channel change between theeeadge$, 1. Let f;_;
denote the new edge incident d¢@mbtained by this move. If is a degreet2 vertex, then this
move reduces the number of ti 6)-type edges. I is a degreés vertex, thenf;_, or fi is a
non-middle edge of, and these edges af& 6)-type edges. Thus we can go back to Step 1.

For the case (1) witk = 2, note thatf, and f3 are the same edge (with the opposite signs)
that is a(1,6)-type edge and is a non-middle edge of a degreertex. Go back to Step 1.

(Case 2) For the case (2), mowgand the edge toward the edgdy in K by an isotopic
deformation and apply a channel change between the edgebf,. Then we obtain a free edge
and reduce the number of tfi& 6)-type edges.

By repetition of this procedure, we can eliminate {tgb)-type edges from a chart. O

LEMMA 23. Letl =TpUT; be a chart in B such thaf is contained in &-disk E in B
and thatl; is outside E. Up to C-moves, we can mdyeénto an arbitrary region of B- I, by
addinglp some hoops surrounding it.



550 S. KAMADA, Y. MATSUMOTO, T. MATUMOTO and K. WAKI

PROOF. By an isotopic deformation and a single channel change as in Figure 11, we can
movely to the next region oB — . This yields a single hoop surroundifg By this process,
we see the result. O

® >'®- @

Figure 11. passing process.

LEMMA 24. (1) We can move an oval nest of a chart into any region by adding additional
hoops.
(2) We can move a nucleon of a chart into any region.

PROOF. The assertion (1) is a direct consequence of Lemma 23 (cf. Lemma 3P.dFr
(2), by Lemma 23, we can move a nucleon by adding some hoops. Applying a channel change
between the innermost hoop surrounding the nucleon and an edge of the nucleon with the same
label, we can remove the innermost hoop. Repeat this, until all hoops are removed. [

LEMMA 25. The local replacement illustrated in Figuiis a Cl-move, where the vertex
is a degreet2vertex and the shaded box means a subchart with four deégyveetices illustrated
in Figure 13,

PrROOF. Itis obvious by the definition of a Cl-move. d

deg=12

Figure 12.

PROOF OFTHEOREM21. By moves in Lemma 25 (Figure 12) and a Cl-move illustrated
in (3) of Figure 5, we can remove any pair of a positive dedr2eertex and a negative one.
Thus, the chart is transformed to a chart such that there exist no dejueetices or such that
the degreet2 vertices are all positive or all negative.

First we consider the case where there exist no detPegertices inl". By the reduction
process of1,6)-edges in Lemma 22, remove &ll, 6)-type edges from the chart. This process
does not yield degreg2 vertices. Thus every degrderertex is connected with another degree-
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Figure 13.

vertex by a free edge. L& be a2-disk in B which is disjoint from the chart. By Lemma 24(1),
we move all free edges int® and they become oval nestshnthat form a desired chafy. The
remainder has neither degréerertices nor degre&2 vertices, which is a desired chdiit

We consider the case where all degle®vertices are negative and there exists at least one
degreel? vertex. (The case where all degré2vertices are positive is treated similarly.) By
the reduction process §1,6)-edges in Lemma 22, remove &l 6)-type edges from the chart.
Since there exist no positive degré2vertices, all negative degrdevertices are connected with
positive degred-vertices by(1, 1)-type edges to form free edges. lEebe a2-disk in B which is
disjoint from the chart. Move the free edges int®-disk E as oval nests. There exist no negative
degreel vertices outsid&. By the equation

#{positive degred-verticeg — #{negative degreé-verticeg

= 12(#{negative degreéz2 verticeg — #{positive degred-2 verticeg ),

we see that the number of (positive) degfieeertices outside oE is 12 times the number of
(negative) degreéz2 vertices. Therefore all (positive) degréerertices outsid& and all (neg-
ative) degreet2 vertices are connected k¥, 12)-type edges and form nucleons. Move these
nucleons intce by Lemma 24(2). The remainder has neither dedreertices nor degre#?
vertices. This completes the proof of the first assertion of the theorem.

Now we prove the second assertion. ConsiderfhatloU 7 is as in the first assertion and
suppose thdf has at least one nucleon. By C-moves illustrated in Figure 7, we may assume that
all free edges in the oval nests have labeFor an oval nest with some hoops, apply a channel
change between the outermost hoop of the oval nest and an edge of a nucleon with the same
label. Then the outermost hoop is removed. Repeat this, and we can remove all hoops from the
oval nests. Nowy consists of free edges with lakkhnd nucleons.

We prove that the chaft lying outsideE can be transformed to the empty set by induction
on the number of degre@vertices off7.

If the number of degreé-vertices off; is O, thenl; has no vertices and hence it consists
of hoops. Move a nucleon @t from E toward a hoop of;. By a channel change between the
hoop and an edge of the nucleon with the same label, we can remove the hodp.f@omtinue
this, until all hoops are removed and thigns empty. Move the nucleon back inko

Now we suppose that there exists at least one degjremtex of;. Letv be a degre®&
vertex of; and lete be a non-middle incoming edge ofor a non-middle outgoing edge of
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resp.) when the nucleons are positive (or negative, resp.). By Lemma 24(2), we move a nucleon
of Iy from E toward the edge and apply a channel change between the exlged an edge

of the nucleon with the same label. Then the edgad the edge of the nucleon change into

a (1,6)-edge and ¢6,12)-type edge. By a Cll-move, we remove the degBeeertexv. Then

apply the reduction process (I, 6)-type edges in Lemma 22 to this chartBn- E. Since this
process does not increase the number of de@restices and since there exist a single dedre-
vertex andl2 degreel vertices in this chart, after the reduction procestlo6)-type edges, we
obtain a nucleon again B — E, and the remainder iB — E is a chart which has fewer degrée-
vertices tharT;. Move the nucleon back intB. By induction hypothesis, we see thatcan be
transformed to the empty set. O

6. The classification theorem.

Using Theorem 21, we show the results on classification of Lefschetz fibrations stated in
§ 1.

Theorems 6 and 7 are special cases of Theorem 8. We prove Theorem 8 by use of chart
description.

PROOF OFTHEOREMS8. The only if part is trivial. We prove the if part. Suppose that
g(B) =g(B), ni.(f) =ny(f), n_(f) =n_(f') and thatn, (f) —n_(f) # 0. Consider charts
[ in Bandl’ in B’ describing the Lefschetz fibratiorfsand f’. By Theorem 21/ andl’
are transformed tégU I and Mo U™ ’1 as in the first assertion of Theorem 21, respectively.
Sincen, (f) —n_(f) # 0, there must be some nucleons/ig Thus, by the second assertion
of Theorem 21, we may assume tligtconsists of free edges with labkbnd nucleons anf;
is empty. The number of free edgesnsn{n, (f),n_(f)}. The number of degreg-vertices
appearing in the nucleonsiis.(f) +n_(f) —2min{n.(f),n_(f)} (= |ny-(f) —n_(f)|). The
number of nucleons is this number divided 8 The nucleons iy are all positive ifn, (f) —
n_(f) > 0, or all negative ifn. (f) —n_(f) < 0. We assume thdt is a chart of this form. This
situation is the same fdr’. Then there exits an orientation preserving diffeomorphism fieom
to B which mapd™ to "/, and by Theorem 9, we see tHfatind f’ are isomorphic. O

The following theorem was treated ih4], which is a generalization of Theorem 5. Using
the chart description method, we have a remarkably quick proof to this.

THEOREM26. Letgy,g,,...,9, be elements of $2,Z) which are conjugates ofor s, *
with g1g5---g, = 1. Let ny (or n_, resp) be the number of, (1 <k < n) such thatg, is a
conjugate of g (or sil, resp). Son.+n_=n.

(1) Suppose thatn#n_. Thenn —n_ is a multiple ofl2, say n. —n_ = 12em fore €
{+1, -1} and for a positive integer m. By successive application of elementary transformations,
the n-tuple(gq, 95, .. .,9,) €an be transformed to an n-tuplly, hy, ..., hy) with

sf  forodd k withl <k < 12m,
5 foreven k withl <k < 12m,
s forodd kwith12Zm< k<n,
st foreven k withlam< k < n.
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(2) Suppose that n=n_. By successive application of elementary transformations, the
n-tuple(gy,95,---,9,) can be transformed to an n-tuple

—1 —1 —1
(WlaW]_ aW27W2 g aWn+7Wn+)

for some elementsjw .., w,, which are conjugates ofs

PROOF. LetBbe a2-disk and letS= {y1,...,yn} be a set of interior points ofB. Take
a pointyp of 0B and consider a Hurwitz path system, ..., a,, connecting/o and the points of
{y1,...,¥n}, and consider the associated generator sysigm,.,an, of 1w (B— S yo).

By the argument of the proof of Theorem 15, there exists a dhart B such that the
monodromy representatigy : 1w (B— S yo) — SL(2,Z) satisfiesor (ax) = g fork (1 < k<n).
Note thatl” hasn, positive degred-vertices and_ negative degreé-vertices.

We note that when™ is transformed to a chaff’ by C-moves and isotopic defor-
mations inB, the monodromy representatioms and pr: are equivalent in the sense of
[6] (p-127) and then-tuple (g1,95,---,9n) = (pr(a1),pr (82),...,pr (an)) is transformed to
(pri(a1),pri(a2),...,pr:(an)) by successive application of elementary transformations 1, [
p. 127 of B]).

Now, transform the chaif to a chart™’ = U7 as in the first assertion of Theorem 21.
Applying a Cl-move, we may assume thiat= &. Then|n, —n_| is the number of the degrele-
vertices appearing in the nucleonsligf Thusn, —n_ = 12em, wheree = +1 (or —1, resp.) if
the nucleons ofy are positive (or negative, resp.) amds the number of the nucleons.

(1) Suppose that, # n_. Thenm# 0, and there exists at least one nucleorfgn By
the second assertion of Theorem 21, we may assume that all oval négareffree edges with
label 1. By an isotopic deformation iB, we can move the chaft’ so that the monodromy
representatiopr : @ (B— S yo) — SL(2,Z) satisfies

s foroddkwith 1 <k <12m,
5 forevenkwith 1 <k < 12m,
st for oddkwith 12m< k <n,
st forevenkwith 12m< k< n.

pr(a) =

Therefore we have the first assertion.

(2) Suppose that, = n_. Then there exist no nucleons iy, andly consists of oval
nests. The number of oval nests is equahto By C-moves illustrated in Figure 7, we may
assume that all free edges in the oval nests have labBly an isotopic deformation iB, we
can move’ so that the monodromy representatjgn : (B — S yo) — SL(2,Z) satisfies that

(Pri(a1),pri(az),...,pr/(a8n-1),Pr(an)) is
(we,wy twe, wyt o wn, wy )

for some elementa, ..., wn, which are conjugates . O

REMARK 27. Our main theorem (Theorem 21), or Theorem 26, can be used in order to
describe and simplify the monodromy representations of Lefschetz fibratiovith n, (f) —
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n_(f) = 0. In this case, we have the same number of singular fibers ofifyjped of typel; .
We can make them in pairs with trivial surrounding monodromy consisting pfsingular fiber
and al; type singular fiber. Such a pair corresponds to a free edge in the chart description. It
can be deformed to make a “twin” type singular fibdr4]). Then the classification is reduced to
that of torus fibrations with twin singular fibers. The classification problem of diffeomorphism
types of the total spaces of such fibrations is treated]invhen the base space is a sphere, or in
[20] when thelst Betti number of the total space is odd.

Some interesting topics are also found1h [8], [12] and [18].
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