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On continuity of minimizers
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Abstract. In this paper we treat the regularity problem for minimizers u(x) :
Ω ⊂ Rm → Rn of quadratic growth functionals

R
Ω A(x, u, Du)dx. About the de-

pendence on the variable x we assume only that A(·, u, p) is in the class V MO as a
function of x. Namely, we do not assume the continuity of A(x, u, p) with respect to
x. We will prove a partial regularity result for the case m ≤ 4.

1. Introduction.

Let Ω be a domain of Rm. For a map u : Ω → Rn, we consider the following type
of functional

A (u) =
∫

Ω

A(x, u, Du)dx. (1.1)

Here, A(x, u, p) is a nonnegative function defined on Ω × Rn × Rmn which is of class
V MO as a function of x, continuous in u and of class C2 with respect to p. We also
assume that for some positive constants µ0 ≤ µ1,

µ0|p|2 ≤ A(x, u, p) ≤ µ1|p|2 for all (x, u, p) ∈ Ω×Rn ×Rmn.

A local minimizer of the functional A is a function u ∈ H1,2
loc (Ω,Rn) which satisfies

A (u; suppϕ) ≤ A (u + ϕ; suppϕ)

for every ϕ ∈ H1,2(Ω,Rn) with suppϕ ⊂⊂ Ω.
Except in the two-dimensional case, the regularity theory for vector valued min-

imizers or solutions of elliptic systems is far different from the one for scalar valued
case. We wish to recall the fundamental paper [5] by De Giorgi where it is proved that
the famous result so-called De Giorgi-Nash’s theorem for second order elliptic equations
with L∞-coefficients cannot be extended to linear elliptic systems. He considered the
functional
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∫

Ω

{(
(m− 2)

m∑

h=1

∂uh

∂xh
+ m

m∑

h,k=1

xhxk

|x|2
∂uh

∂xk

)2

+
n∑

h,k=1

(
∂uh

∂xk

)2}
dx (1.2)

for u ∈ H1,2(Ω,Rm) with Ω being the unit ball around the origin in Rm,m ≥ 3. It is
easy to see that the integrand is coercive and their coefficients are bounded. The vector
valued function

u(x) = x · |x|−θ, θ =
m

2
[
1− (1 + 4(n− 1)2)−

1
2
]
,

which belongs to H1,2(Ω,Rn), is not bounded and it is a minimizer of (1.2). Then,
De Giorgi’s result shows that it is not possible to have regularity of the extremals of
variational integrals in the same way as in the scalar case.

A modification of De Giorgi’s example due to Giusti and Miranda in [12] gives an
example of a functional of the type

∫

Ω

Aαβ
ij (u)DαuiDβuj (1.3)

which has a minimizer with singularity.
Also we point out that independently by Giusti and Miranda, analogous examples

of non-continuous minimizers of functionals with analytic coefficients were proved by
Maz’ya in [18].

The works by Giusti and Miranda [13] and Morrey [19] start the study of partial
regularity in the vector value case, which means regularity except on a “small” set.

For a general quadratic growth functional A (u) as (1.1), Giaquinta and Giusti [10]
proved that a minimizer u of A (u) is of class C1,α(Ω0) for an open set Ω0 ⊂ Ω with
L m(Ω \ Ω0) = 0. Namely, the singular set of a local minimizer is at most null set.

For functionals with specific structure, so-called quadratic functionals, we can see
that the singular sets of minimizers are smaller than null sets. In [11], Giaquinta and
Giusti treated quadratic functionals of the type

∫

Ω

gαβ(x)hij(u)DαuiDβujdx (1.4)

with (gαβ) and (hij) symmetric positive definite matrices with smooth coefficients. For a
local minimizer u of (1.4), they showed that the singular set of u has Hausdorff dimension
d ≤ m− 3.

We stress that in general we can not have everywhere regularity for local minimizers
of quadratic growth functionals even if the coefficients are regular, we can obtain global
regularity only in some particular cases (see e.g. [7], [23]).

We also mention that in the above results the integrands of the considered functionals
are always assumed to be continuous with respect to the variable x. In the present paper
we are interested in the study of partial regularity of local minimizers of functionals (1.1)
whose integrands A(x, u, p) are discontinuous in x.
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If we consider the linear elliptic system

div(A(x)Du(x)) = F (x) (1.5)

where A(x) are Hölder continuous in Ω (Ω bounded open set), regularity results have been
obtained by Campanato in [2]. As for the case where the coefficients belong to a class
which neither contains nor is contained in C0(Ω) (a class of small multipliers of the BMO

class defined by John and Nirenberg in [14]), Acquistapace in [1] proves BMO regularity
results for the gradient of the solutions of (1.5) dropping the assumption A ∈ C0(Ω).
Later Huang in [17] investigates regularity results for elliptic systems assuming that
A(x) belong to the subclass of BMO of vanishing mean oscillation functions, then he
generalizes both Acquistapace and Campanato results.

In the nonlinear case, L2,λ regularity results of derivatives of functions minimizing
variational integrals have been considered by Daněček and Viszus, in [4]. (Here, L2,λ

are the Morrey spaces. For precise definition see Definition 2.1.) They consider the
functional

∫

Ω

{
Aαβ

ij (x)DαuiDβuj + g(x, u, Du)
}
dx,

where Aαβ
ij are in the V MO class and satisfy strong ellipticity condition while the lower

order term g is a Charathéodory function and satisfy the following inequality

|g(x, u, z)| ≤ f(x) + H|z|κ (1.6)

where f ≥ 0, a.e. in Ω, f ∈ Lp(Ω), 2 < p ≤ ∞, H ≥ 0, 0 ≤ κ < 2. Later in [6], Di
Gironimo, Esposito and Sgambati considered the quadratic functionals

∫

Ω

Aαβ
ij (x, u)DαuiDβujdx,

where (Aαβ
ij (x, u)) is elliptic, of the class V MO in the variable x and satisfies

∣∣Aαβ
ij (x, u)−Aαβ

ij (x, v)
∣∣ ≤ ω(|u− v|2), ∀x ∈ Ω, ∀u, v ∈ Rn

for some concave function ω with

ω : R+ → R+, ω(0) = 0, 0 ≤ ω ≤ 1.

They proved L2,λ regularity for minimizers of such functionals.
Let us point out that continuity assumption with respect to u cannot be removed

because V MO property is not preserved under composition with minimizer u.
In the paper [21] the authors extend the results contained in [6] obtaining L2,λ

regularity in the case that g(x, u, z) is not equal to zero but it is a Charathéodory function
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and also that g(x, u, z) verify condition (1.6), for a.a. x ∈ Ω .
In the present paper we generalize our previous paper [21] in the case where m ≤ 4.

We prove Morrey regularity of minimizers for quadratic functionals whose integrand
function has a more generalized form depending on x, u and also on Du.

2. Definitions and main theorem.

We set, throughout the paper, by | · | the norm in Rm as well as in Rn and in Rmn,
and by

B(x, r) = {y ∈ Rm : |y − x| < r}

a generic ball in Rm centered at x with radius r.
Let us now give the definition of the Morrey space Lp,λ. In the sequel we are

interested in the Morrey regularity of the gradient of u for p = 2.

Definition 2.1 (see [16], [20]). Let 1 < p < ∞, 0 ≤ λ < m. A measurable
function f ∈ L1

loc(Ω,Rn) is in the Morrey class Lp,λ(Ω,Rn) if the following norm is
finite

‖f‖Lp,λ(Ω) = sup
0<ρ<diam Ω

x∈Ω

1
ρλ

∫

Ω∩B(x,ρ)

|f(y)|pdy,

where B(x, ρ) ranges in the class of the balls.

Definition 2.2. Let f ∈ L1(Ω,Rn) we set the integral mean fx,R by

fx,R =
∫
−

Ω∩B(x,R)

f(y)dy =
1

|Ω ∩B(x,R)|
∫

Ω∩B(x,R)

f(y)dy

where |Ω ∩B(x,R)| is the Lebesgue measure of Ω ∩B(x,R).
If we are not interested in specifying which the center is, we only set fR.

Let us define the John Nirenberg class of Bounded Mean Oscillation functions (see
[14]).

Definition 2.3. Let f ∈ L1
loc(R

m). We say that f belongs to BMO(Rm) if the
seminorm

‖f‖∗ ≡ sup
B(x,R)

1
|B(x,R)|

∫

B(x,R)

|f(y)− fx,R|dy < ∞.

Let us now introduce the space of vanishing mean oscillation functions ([22]).

Definition 2.4. Let f ∈ BMO(Rm) and
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η(f,R) = sup
ρ≤R

1
|B(x, ρ)|

∫

B(x,ρ)

|f(y)− fρ|dy

where B(x, ρ) ranges over the class of the balls of Rm of radius ρ. We say that f ∈
V MO(Ω) if

lim
R→0

η(f,R) = 0.

Let us observe that substituting Rm for Ω we obtain the definitions of BMO(Ω)
and V MO(Ω) preserving its character.

Let Ω ⊂ Rm be a domain. Let A(x, u, p) be a nonnegative function defined on
Ω×Rn ×Rmn which satisfies the following conditions.

(A-1) For every (u, p) ∈ Rn × Rmn, A(·, u, p) ∈ V MO(Ω) and the mean oscillation of
A(·, u, p)/|p|2 vanishes uniformly with respect to u, p in the following sense: For
some nonnegative function σ(y, ρ) with

lim
R→0

sup
ρ<R

∫
−

B(x,ρ)

σ(y, ρ)dy = 0, (2.7)

A(·, u, p) satisfies

|A(y, u, p)−Ax,ρ(u, p)| ≤ σ(y, ρ)|p|2 ∀(u, p) ∈ Rn ×Rmn, (2.8)

where

Ax,ρ(u, p) =
∫
−

B(x,ρ)

A(y, u, p)dy.

(A-2) For every x ∈ Ω, p ∈ Rmn and u, v ∈ Rn,

|A(x, u, p)−A(x, v, p)| ≤ ω(|u− v|2)|p|2

for some monotone increasing concave function ω with ω(0) = 0.
(A-3) For almost all x ∈ Ω and all u ∈ Rn, A(x, u, ·) ∈ C2(Rmn).
(A-4) There exist positive constants µ0 ≤ µ1 such that

µ0|p|2 ≤ A(x, u, p) ≤ µ1|p|2 for all (x, u, p) ∈ Ω×Rn ×Rmn.

In this paper we show the following theorem.

Theorem 2.5. Let u ∈ W 1,2(Ω,Rn) be a local minimizer of the functional A (u, Ω)
defined by (1.1). Suppose that assumptions (A-1), (A-2), (A-3) and (A-4) are satisfied.
Then for every 0 < λ < min{2 + ε,m} for some ε > 0 we have
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D u ∈ L2,λ
loc (Ω0,R

mn) (2.9)

where

Ω0 =
{

x ∈ Ω: lim inf
R→0

1
Rm−2

∫

B(x,R)

|Du(y)|2dy = 0
}

.

Moreover, we have

H m−2−δ(Ω \ Ω0) = 0

for some δ > 0, where H r denotes the r-dimensional Hausdorff measure.

As a corollary of the above theorem we have the following partial Hölder regularity
result.

Corollary 2.6. Let u and Ω0 be as in Theorem 2.5, and assume that m ≤ 4.
Then, for some α ∈ (0, 1), we have

u ∈ C0,α(Ω0,R
N ). (2.10)

3. Proof of main theorem.

For some fixed point x0 ∈ Ω and R > 0 with B(2R) := B(x0, 2R) ⊂⊂ Ω, let us
define A0(p) and A 0(u) by

A0(p) = AR(uR, p) :=
∫
−

B(x0,R)

A(y, uR, p)dy, (3.11)

A 0(v) :=
∫

B(x0,R)

A0(Dv)dx, (3.12)

where

uR = ux0,R =
∫
−

B(x0,R)

u(y)dy.

Let v ∈ H1,2(BR) be a minimizer of A 0 in the class

{v ∈ H1,2(B(R)) ; u− v ∈ H1,2
0 (B(R))}.

Then, by [3, Theorem 3.1], we have the following.

Lemma 3.1. Let v be as above, then v satisfies
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∫

B(r)

|Dv|2dx ≤ c
( r

R

)λ
∫

B(R)

|Dv|2dx, (3.13)

where

λ = min{2 + ε,m} (3.14)

for some positive constant ε. Here, ε and c do not depend on r, R, x0.

Moreover, we have the following Lp-estimate for v as a direct consequence of [15,
Lemma 1].

Lemma 3.2. Let v be as above. Suppose that Du ∈ L2+δ for some δ ∈ (0, 1). Then
for some δ0 ∈ (0, δ) and c > 0, we have

∫

B(R)

|Dv|pdx ≤ c

∫

B(R)

|Du|pdx (3.15)

for every p ∈ (2, 2 + δ0).

We show the partial regularity of u by comparing u with v. For this purpose, we
need the following lemma.

Lemma 3.3 ([10, Lemma 2.1]). Let v as above. Then we have

∫

B(R)

|Du−Dv|2dx ≤ c
{
A 0(u)−A 0(v)

}
. (3.16)

We have the following reverse Hölder type inequality for u.

Lemma 3.4 ([9, Theorem 4.1]). Let u ∈ H1,2(Ω,Rn) be a minimizer of the func-
tional A (u, Ω). Then

Du ∈ Ls0
loc(Ω,Rn) for some s0 > 2.

Moreover, there exist positive constants C = C(ν0, ‖Aαβ
ij ‖∞) and R such that for every

ball B(x,R) ⊂ B(x,R) with B(x, 2R) ⊂ Ω and every p ∈ (2, s0) the following estimate
holds.

(∫
−

B(x,R)

|Du|pdx

)1
p

≤ C

(∫
−

B(x,2R)

|Du|2dx

)1
2

.

Now, we can prove our main theorem.

Proof of Theorem 2.5. Let w = u − v. First we will estimate
∫

B(R)
|Dw|2dx.

By Lemma 3.3 we can see that
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∫

B(R)

|Dw|2dx ≤ c
{
A 0(u)−A 0(v)

}

≤ c

∫

B(R)

∣∣AR(uR, Du)−A(x, uR, Du)
∣∣dx

+ c

∫

B(R)

∣∣A(x, uR, Du)−A(x, u, Du)
∣∣dx

+ c

∫

B(R)

∣∣A(x, v, Dv)−A(x, uR, Dv)
∣∣dx

+ c

∫

B(R)

∣∣A(x, uR, Dv)−AR(uR, Dv)
∣∣dx. (3.17)

Here we used the minimality of u. So, using the assumptions on A, we get

∫

B(R)

|Dw|2dx ≤
∫

B(R)

{
σ(x,R) + ω(|u− uR|2)

}|Du(x)|2dx

+
∫

B(R)

{
σ(x,R) + ω(|v − uR|2)

}|Dv(x)|2dx. (3.18)

Using Lemma 3.4 and the boundedness of ω and σ, we have

∫

B(R)

{
σ(x,R) + ω(|u− uR|2)

}|Du(x)|2dx

≤
{(∫

σ(x,R)
p

p−2 dx

)p−2
p

+
(∫

ω(|u− uR|2)
p

p−2 dx

)p−2
p

}(∫
|Du|pdx

)2
p

≤ C

{(∫
−

B(R)

σ(x,R)dx

)p−2
p

+
(∫
−

B(R)

ω(|u− uR|2)dx

)p−2
p

}
·
∫

B(2R)

|Du|2dx.

(3.19)

Using Lemma 3.2, we get similarly

∫

B(R)

{
σ(x,R) + ω(|v − uR|2)

}|Dv(x)|2dx

≤ C

{(∫
−

B(R)

σ(x,R)dx

)p−2
p

+
(∫
−

B(R)

ω(|v − uR|2)dx

)p−2
p

}
·
∫

B(2R)

|Du|2dx.

(3.20)

By virtue of concavity of ω, using Jensen’s inequality and Poincaré inequality, we have
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∫
−

B(R)

ω(|u− uR|2)dx,

∫
−

B(R)

ω(|v − uR|2)dx

≤ Cω

(
R2−m

∫

B(R)

|Du|2dx

)
. (3.21)

Combining (3.18)–(3.21), we obtain

∫

B(R)

|Dw|2dx

≤ C

{(∫
−

B(R)

σ(x,R)dx

)p−2
p

+ ω

(
R2−m

∫

B(R)

|Du|2dx

)p−2
p

}
·
∫

B(2R)

|Du|2dx.

(3.22)

Now, from Lemma 3.1 and (3.22), we get

∫

B(r)

|Du|2dx ≤
∫

B(r)

(|Dv|2 + |Dw|2)dx

≤ C

{( r

R

)λ

+
(∫
−

B(R)

σ(x,R)dx

)p−2
p

+ ω

(
R2−m

∫

B(R)

|Du|2dx

)p−2
p

}

·
∫

B(2R)

|Du|2dx. (3.23)

By the assumption (A-1), we have

∫
−

B(R)

σ(x,R)dx → 0 as R → 0.

So, using “A useful lemma” on p. 44 of [8] and [8, Theorem 6.1], we get the assertion. ¤

Now, Corollary 2.6 is a direct consequence of Theorem 2.5 and Morrey’s theorem on
the growth of the Dirichlet integral (see, for example, p. 43 of [8]).
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