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Abstract. The 3-transposition groups that act on vertex operator algebras in
the way described by Miyamoto in [Mi] are classified under the assumption that the
group is centerfree and the VOA carries a positive-definite invariant Hermitian form.

1. Introduction.

Let V =
⊕

n∈Z V n be a vertex operator algebra (VOA) over the field C of complex
numbers with V n = 0 for n < 0, V 0 = C1 where 1 is the vacuum vector and V 1 = 0
having a positive-definite Hermitian form. In this paper we will denote the operation of
VOA by Y (a, z) =

∑
n∈Z a(n)z

−n−1.
Suppose that V 2 is spanned by a set E such that each e ∈ E generates an action of the

Virasoro algebra of central charge 1/2 by which the space V decomposes to Ve(0)⊕Ve(1/2)
where V (h) is the sum of irreducible components of lowest conformal weight h.

In [Mi], Miyamoto showed that the set D of the automorphisms of V of the form

σe =

{
id, on Ve(0),

−id, on Ve(1/2),
(1)

generates a 3-transposition group G with D being the class of 3-transpositions if the set
E is stable under the action of D.

Let us say in this paper that a 3-transposition group (G,D) is realizable by a VOA
(or realized by V ) if it is obtained in this way. 3-transposition groups possibly realizable
by code VOAs were considered by Kitazume and Miyamoto in [KM].

The purpose of this paper is to give a complete classification of the realizable 3-
transposition groups without assuming that the VOA is a code VOA. Namely, we will
show the following result:

Theorem 1. A centerfree 3-transposition group is realizable by a VOA having a
positive-definite Hermitian form if and only if it is the direct product of a finite number
of groups of the following type:

Sn, (n ≥ 3); F : Sn, (n ≥ 4); F 2 : Sn, (n ≥ 4);
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O−6 (2), 26 : O−6 (2), O−
8 (2); Sp6(2), 26 : Sp6(2), Sp8(2); O+

8 (2), 28 : O+
8 (2), O+

10(2);

where F = 22m if n = 2m + 1 or 2m + 2.

The groups F 2 : Sn and O+
10(2) are in fact realized by the VOA V +√

2Dn
and by V +√

2E8

respectively, as already observed in [DLMN] and [Gr], their 3-transposition subgroups
are realized by taking subVOAs, and the direct product is realized by taking the tensor
product of VOAs.

In deriving our result, the key is the following arguments, both of which use the
existence of a positive-definite invariant Hermitian form on our VOA. One is to consider
the decomposition with respect not only to the Virasoro action of central charge 1/2
but also to that of central charge 7/10. Then, using the classification of unitary highest
weight representations of Virasoro minimal models ([FQS]), we will see that a subgroup
of shape 32 : 2 does not occur if the group is realizable by a VOA with a positive-definite
invariant Hermitian form, so that our (G,D) is a 3-transposition group of symplectic
type (Section 4, Proposition 1). We can now use the classification of such groups by
J. I. Hall [Ha1], [Ha2] (cf. [Fi]).

The other is to consider the adjacency matrix of a certain graph associated to (G,D).
We will see that if (G,D) is realizable by a VOA with a positive-definite invariant Her-
mitian form then the least eigenvalue of the matrix must be greater than or equal to −8
(Section 5, Proposition 2). We will compute the least eigenvalues for the 3-transposition
groups of symplectic type (Table 2); we can eliminate most groups from our list.

We then check, using some general results on subVOAs (Section 6, Proposition 4),
that the groups that passed these tests (Table 3) are all realized by taking subVOAs of
V +√

2R
associated with a simply-laced root system R (Sections 7 and 8).

We refer the reader to [Bor], [FHL] and [MN] for generalities on VOAs, to [Gi]
and [DMZ] for Virasoro actions, and to [Fi], [CH] and [As] for 3-transposition groups.

Acknowledgement. The author is grateful to A. A. Ivanov for discussion, espe-
cially for his instruction on 3-transposition groups as well as on graph theory which was
crucial in completing this work. The author is also grateful to M. Kitazume, J. Duncan
and C.-H. Lam for discussion. The author thanks S.-J. Cheng, R.-B. Zhang, C.-H. Lam,
N. Lam, M. Primc and D. Adamovic for hospitality and conversation.

2. 3-transposition automorphism groups of VOAs.

Let V =
⊕

n∈Z V n be a vertex operator algebra (VOA) with the vacuum vector
1 ∈ V 0 and the conformal vector ω ∈ V 2 (called the Virasoro element in [FLM]).

Throughout the paper, we assume the following.
(I) V =

⊕∞
n=0 V n, V 0 = C1 and V 1 = 0.

We set B = V 2. Then the space B has a structure of a nonassociative algebra equipped
with an invariant symmetric bilinear form by setting

a · b = a(1)b, (a|b)1 = a(3)b. (2)

Then the conformal vector ω ∈ V 2 is twice the unit of B. The subspace B with this
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structure is called the Griess algebra of the VOA V .
We next assume the following condition, which is the most crucial in our argument:
(II) The VOA V has a positive-definite invariant Hermitian form.

In particular, the form ( | ) on B restricted onto the real part agrees with the restriction
of the Hermitian form on V normalized so that the norm of the vacuum vector is 1.

Now consider a real vector e satisfying e ·e = 2e and (e|e) = 1/4. Then the operators
Ln = e(n+1) give rise to an action of Virasoro algebra of central charge 1/2. By the
assumption (II), the space V decomposes as V = Ve(0) ⊕ Ve(1/2) ⊕ Ve(1/16), where
Ve(h) is the sum of the components isomorphic to the irreducible Virasoro module of
lowest conformal weight h.

Let E be a set of such vectors e as above which further satisfies that the component
Ve(1/16) is zero. For each e ∈ E, consider the involution σe on V given by (1) and
suppose that the set E is invariant under the involutions. Then, by Miyamoto [Mi], the
set DV = {σe | e ∈ E} generates a 3-transposition subgroup GV of the full automorphism
group Aut(V ). Namely, for any e, f ∈ E, the order of σeσf is either 1, 2 or 3. More
precisely, we have one of the following (cf. [Co]).

(i) (e|f) = 1/4 and e = f .
(ii) (e|f) = 0 and e · f = 0.
(iii) (e|f) = 1/32 and e · f = (1/4)(e + f − g) where g = σe(f) = σf (e).

We will write e = f , e ⊥ f and e ∼ f when the pair e, f falls into (i), (ii) and (iii)
respectively. In the case (iii), we will denote the element g by e ◦ f , which belongs to the
set E.

We now assume the following:
(III) The VOA V is generated by B and the space B is spanned by the set E.

Let GE be the image of the group GV in the symmetric group on the set E. Under the
assumption (III), the natural map GV → GE is an isomorphism.

We say that a 3-transposition group (G,D) is realizable by a VOA if it is isomorphic
to (GV , DV ) as 3-transposition groups for a VOA V satisfying (I)–(III) with a set E.
We often say that G is realized by V as far as the choice of D and E is clear from the
context or it is not relevant in the context.

3. Indecomposability and centerfreeness.

Let V be a VOA satisfying (I)–(III) and suppose given a decomposition E = E′tE′′

such that E′ ⊥ E′′. Let D′ and D′′ be the corresponding sets of involutions and let G′

and G′′ be the subgroups of G = GV generated by D′ and D′′. Let V ′ and V ′′ be
the subVOA generated by E′ and E′′ respectively. Then 3-transposition groups (G′, D′)
and (G′′, D′′) are realized by V ′ and V ′′ respectively. (See Proposition 4 for a related
statement.)

Conversely, if 3-transposition groups (G′, D′) and (G′′, D′′) are realized by VOAs V ′

and V ′′ respectively, then the direct product (G′ × G′′, (D′ × 1) t (1 ×D′′)) is realized
by the tensor product V ′ ⊗ V ′′ of VOAs.

Hence the classification of realizable 3-transposition groups reduces to that of inde-
composable ones.



642 A. Matsuo

Now let E be indecomposable: E does not have nontrivial orthogonal decomposi-
tions. If E consists of one element e then the involution σe generate a group of order 2
which is abelian. In order to avoid exceptions caused by this trivial case, we will assume
the following.

(IV) The set E is indecomposable and |E| ≥ 3.
Under the assumptions (I)–(IV), the map σ : E → D is bijective and the group G

is centerfree. We will sometimes identify the sets D and E via the map σ.

4. 3-transposition groups of symplectic type.

Let (G,D) be an indecomposable centerfree 3-transposition group. Consider sub-
groups of G isomorphic to S3 generated by some elements of D. Two of such subgroups
generate either S3 × S3, S4 or a group of shape 32 : 2. If the latter group does not occur
then (G,D) is called a 3-transposition group of symplectic type ([Ha1], [Ha2]).

The following is the key observation of this paper, where the assumption (II) is
crucial.

Proposition 1. A 3-transposition group realizable by a VOA is of symplectic type.

Proof. Suppose that a 3-transposition group is realized by a VOA V and consider
the set E. Suppose that E contains a subset X with which the associated involutions
generate 32 : 2. Then the configuration of X is the affine plane of order 3: we may
index the set as X = {xi,j | i, j ∈ Z/3Z} so that if (i, j) 6= (k, `) then xi,j ∼ xk,` and
xi,j ◦ xk,` = xi+k,j+`. Now consider the following vectors:

η =
4
5
(x00 + x01 + x02)− x00, w = x10 + x11 + x12 − x20 − x21 − x22. (3)

Then since (w|w) = 3/2 the vector w is nonzero, and the vector η generates an action
of Virasoro algebra of central charge c = 7/10, for which the vector w is of conformal
weight h = 7/10. However, this is impossible because the lowest conformal weight of
unitary irreducible highest weight representations of central charge c = 7/10 are only 0,
1/10, 3/5, 3/2, 3/80 and 7/16 ([FQS]). ¤

Centerfree 3-transposition groups of symplectic type are classified by J. I. Hall in
[Ha1] and [Ha2].

Theorem (J. I. Hall). An indecomposable centerfree 3-transposition group of sym-
plectic type is isomorphic to the extension of one of the groups S3;Sn, (n ≥ 5);Sp2n(2),
(n ≥ 3);O+

2n(2), (n ≥ 4); and O−2n(2), (n ≥ 3), by the direct sum of copies of the natural
module.

Here the natural module, which we will denote by F in the sequel, is isomorphic
to 22n for O±2n(2), or Sp2n(2). Since S2n+1 and S2n+2 are embedded in the symplectic
transformation on the space 22n, we understand that the natural module for these groups
is 22n. Note that S4 ' 22 : S3.

Consider the reduced case of being without an extension by the natural modules.
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G |D| G(1) G(2)

S3 3 — —

S4 6 S2 —

Sn n ≥ 5 n(n−1)
2 Sn−2 Sn−3

O+
2n(2) n ≥ 4 22n−1 − 2n−1 Sp2n−2(2) O−2n−2(2)

O−2n(2) n ≥ 3 22n−1 + 2n−1 Sp2n−2(2) O+
2n−2(2)

Sp2n(2) n ≥ 3 22n − 1 22n−2 : Sp2n−2(2) Sp2n−2(2)

Table 1. Inductive structure of 3-transposition groups of symplectic type.

Then the group G is a rank 3 permutation group on the set D. Let D(1) be the ele-
ments of D which commutes with a fixed element of D and D(2) be that with two fixed
noncommuting elements of D. (They are usually denoted by Dd and Dd,e respectively.)
The elements of D(2) actually commute with 3 elements that correspond to a subgroup
isomorphic to S3. We set G(1) = 〈D(1)〉 and G(2) = 〈D(2)〉.

Table 1 summarizes the inductive structure of those 3-transposition groups of sym-
plectic type (cf. [We]).

5. Least eigenvalue of the graph.

Let (G,D) be an indecomposable centerfree 3-transposition group of symplectic type.
For distinct elements x, y ∈ D, we write x ⊥ y if x and y commute and x ∼ y otherwise.
In the latter case, we denote by x ◦ y the other involution in the S3 generated by x and
y.

Assign the symbol x̃ to each x ∈ D and regard the set {x̃ |x ∈ D} as a basis of the
vector space

B̃ =
⊕

x∈D

Cx̃. (4)

We make this space into an algebra equipped with a symmetric bilinear form by the same
rule as in the algebra B. Namely,

(i)′ (x̃|ỹ) = 1/4 and x̃ · ỹ = 2ỹ when x = y,
(ii)′ (x̃|ỹ) = 0 and x̃ · ỹ = 0 when x ⊥ y,
(iii)′ (x̃|ỹ) = 1/32 and x̃ · ỹ = (1/4)(x̃ + ỹ − x̃ ◦ y) when x ∼ y.

Now suppose that (G,D) is realized by a VOA V . Then we have a canonical surjec-
tive homomorphism of algebras B̃ → B which preserves the symmetric bilineary forms.

Let A be the adjacency matrix of the graph on the vertex set D given by the relation
x ∼ y.

Proposition 2. The least eigenvalue of the adjacency matrix A of a 3-
transposition group realizable by a VOA is greater than or equal to −8.
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G ν k λ s g

S3 3 2 1 −1 2

Sn n ≥ 4 n(n−1)
2 2n− 4 n− 2 −2 n(n−3)

2

O+
2n(2) n ≥ 4 22n−1 − 2n−1 22n−2 − 2n−1 22n−3 − 2n−2 −2n−2 22n−4

3

O−2n(2) n ≥ 3 22n−1 + 2n−1 22n−2 + 2n−1 22n−3 + 2n−1 −2n−1 22n+3·2n+2
6

Sp2n(2) n ≥ 3 22n − 1 22n−1 22n−2 −2n−1 22n−1 + 2n−1 − 1

Table 2. Parameters of the graph.

Proof. The Gram matrix of the form on B̃ is given by

1
4

(
I +

1
8
A

)
. (5)

Then since the form ( | ) on B is positive-definite by the assumption (II), the form on B̃

is positive-semidefinite. In other words, the least eigenvalue of the matrix A is greater
than or equal to −8. ¤

Let us compute the least eigenvalue of the graph for each indecomposable centerfree
3-transposition group of symplectic type. We first consider the reduced case. From
Table 1, we can compute the standard parameters (ν, k, λ, µ) of the graph by standard
techniques (cf. [Bos], [Hi]) using the inductive structure summarized in Table 1. For
our later convenience, we include the multiplicity g of the least eigenvalue s. The results
are summarized in Table 2.

Let us next consider the case with an extension. By the theorem of Hall mentioned
above, an indecomposable centerfree 3-transposition group is of the form Fm : G for some
m where F is the natural module over a reduced group G. Then the graph associated
with Fm : G is given by the set 2m × X, where X is the graph for G, with (p, x) and
(q, y) being adjacent if and only if x ∼ y. Hence the Gram matrix for Fm : G is given by

(
1 1
1 1

)
⊗ · · · ⊗

(
1 1
1 1

)

︸ ︷︷ ︸
m

⊗A. (6)

Therefore the eigenvalues are simply 0 and 2m times the eigenvalues of A. In particular,
the least eigenvalue is 2ms as the least eigenvalue s for the reduced G is negative.

Among the groups in Table 2, the ones with s ≥ −8 are only:

S3; Sn, (n ≥ 5); O+
8 (2); O+

10(2); O−6 (2); O−8 (2); Sp6(2); Sp8(2)
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G ν k s g c d

S3 3 2 −1 2 6
5 3

Sn n ≥ 4 n(n−1)
2 2n− 4 −2 n(n−3)

2
n(n−1)

n+2
n(n−1)

2

F : Sn n ≥ 4 n(n− 1) 4n− 8 −4 n(n−3)
2 n− 1 n(n− 1)

F 2 : Sn n ≥ 4 2n(n− 1) 8n− 16 −8 n(n−3)
2 n (3n−1)n

2

O−6 (2) 36 20 −4 15 36
7 36

Sp6(2) 63 32 −4 35 63
10 63

O+
8 (2) 120 56 −4 84 15

2 120

26 : O−6 (2) 72 40 −8 15 6 57

26 : Sp6(2) 126 64 −8 35 7 91

28 : O+
8 (2) 240 112 −8 84 8 156

O−8 (2) 136 72 −8 51 34
5 85

Sp8(2) 255 128 −8 135 15
2 120

O+
10(2) 496 240 −8 340 8 156

Table 3. List of realizable groups.

and the allowed extensions are only:

S4 = 22 : S3; F : Sn; F 2 : Sn, (n ≥ 4); 28 : O+
8 (2); 26 : O−6 (2); 26 : Sp6(2).

The parameters are listed in Table 3, where c denotes the possible central charge and d

denotes the possible dimension of B: they are determined by the formulas

c =
4ν

k + 8
and d =

{
ν, if s > −8,

ν − g, if s = −8.
(7)

6. Vertex operator subalgebras.

In order to show that the groups in Table 3 are realizable by VOAs, we need some
general results on vertex operator subalgebras.

We mean by a vertex operator subalgebra of a VOA V , or rather by a subVOA, a
graded subspace U which has a structure of a VOA such that the operations and the
grading of U agrees with the restriction of those of V and that U and V share the same
vacuum vector. However, we do not assume that they share the same conformal vector.
When they do, we will call U a full subVOA.
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Let S be any subset of V . Consider the subspace 〈S〉VOA generated by S, i.e.,
the span of the elements of V of the form a1

(n1)
a2
(n2)

· · · ak
(nk)1 where k is a nonnegative

integer, a1, . . . , ak ∈ S and n1, . . . , nk ∈ Z. Then the subspace 〈S〉VOA is in fact closed
under the operations of the VOA V . If it owns a conformal vector with appropriate
properties then it is a subVOA in our sense.

Lemma 3. Let V be a VOA and let U be a graded subspace of V containing the
vacuum vector 1 of V such that U ∩ V 2 is nonzero. Suppose that U is closed under the
operations of the VOA V and that there exists a subspace W such that V = U ⊕ W

and U(n)W ⊆ W . Then U has a unique conformal vector that gives U a structure of a
subVOA of V .

Proof. Let ω = ξ + η be the decomposition of the conformal vector ω of V with
respect to V = U ⊕W . We will show that the vector ξ has the desired properties. First
note that ξ, η ∈ V 2, so 2ξ = ω · ξ = (ξ + η) · ξ = ξ · ξ + ξ · η. Since ξ ∈ U , ξ · ξ ∈ U

and ξ · η ∈ W , we have ξ · ξ = 2ξ and ξ · η = 0. Hence the vector ξ gives rise to
an action of the Virasoro algebra on U . Furthermore, for any u ∈ U ∩ V n, we have
nu = L0u = ω(1)u = (ξ + η)(1)u = ξ(1)u + η(1)u. Since nu and ξ(1)u belong to U and
η(1)u belongs to W , we see that Lξ

0u = ξ(1)u = nu. Hence the grading of U with respect
to Lξ

0 agrees with the restriction of the grading of V . Finally, for any u ∈ U we have
u(−2)1 = ω(0)u = ξ(0)u + η(0)u. However, since u(−2)1 ∈ U , ξ(0)u ∈ U and η(0)u ∈ W ,
we see that u(−2)1 = ξ(0)u. The uniqueness is obvious. ¤

The following proposition will be used in Section 8 to show that certain subgroups
of realizable 3-transposition groups are again realizable.

Proposition 4. Let V be a VOA satisfying the conditions (I) and (II). Let A be
a nontrivial subalgebra of B such that A = {a ∈ B | a · T = 0} for some real subset T

of B. Then the VOA 〈A〉VOA generated by A has a unique structure of a subVOA of V

such that 〈A〉VOA ∩ V 2 = A.

Proof. Set U = 〈A〉VOA and let W be the orthogonal complement of U in V . Then
U is a graded subspace of V which is closed under the operations of VOA. So we have
(U |u(n)w) ⊆ (U |w) = 0 for any real u ∈ U and w ∈ W . Hence by the lemma above, U has
a unique structure of a subVOA of V . Now let a ∈ A be a real vector and t ∈ T . Note that
(a|t) = (a ·u|t) = (u|a · t) = 0 where u = ω/2 is the unity of B. Hence a(3)t = (a|t)1 = 0.
Since (a(1)a)(1)t+(a(2)a)(0)t = a(2)(a(0)t)− a(1)(a(1)t)+ a(1)(a(1)t)− a(0)(a(2)t), we have
a(2)(a(0)t) = 0. Hence (a(0)t|a(0)t) = (t|a(2)a(0)t) = 0 and we have a(0)t = 0 by the
condition (II). Thus A(n)T = 0 for all n ≥ 0, which yields U(n)T for all n ≥ 0. In
particular, we have (U ∩ V 2) · T = 0, which shows that U ∩ V 2 = A. ¤

7. Groups related to root systems.

Let us recall the structures of certain VOAs associated with
√

2 times root lattices
which realizes 3-transposition groups.

Let R be a root system of simply-laced type of rank greater than 1. We denote
the root lattice by the same symbol R. Let

√
2R be the root lattice with the norm
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R G G′ cη eigenvalues of η on B

An−1 F : Sn Sn
2(n−1)

n+2 0, 6
n+2 , n+4

n+2 , 2

Dn F 2 : Sn F : Sn 1 0, 4
n , 1, 2

E6 26 : O−6 (2) O−6 (2) 6
7 0, 7

5 , 2

E7 26 : Sp6(2) Sp6(2) 7
10 0, 3

5 , 2

E8 28 : O+
8 (2) O+

8 (2) 1
2 0, 1

2 , 2

Table 4. Groups related to root systems.

being multiplied by 2, which is denoted by R(2) in other areas of mathematics. Let
V√2R denote the VOA associated with this lattice and let V = V +√

2R
be the fixed-point

subspace with respect to the involution θ which is a lift of the −1 isometry of the lattice
([FLM]).

It is well known that V +√
2R

is a full subVOA of V√2R satisfying the properties (I)–
(IV). The structure of the algebra B for the VOA V = V +√

2R
is described by Dong et al.

[DLMN].
Let R+ be the set of positive roots and consider the set X = 2×R+. We call a 3-set

{(p, α), (q, β), (r, γ)} a line if and only if {α, β, γ} is the set of the three positive roots
in a subsystem of type A2 and p + q + r ≡ 0 modulo 2. For distinct elements x, y ∈ X,
we write x ⊥ y if x and y are not on a line and x ∼ y otherwise. In the latter case, we
denote by x ◦ y the other element on the line.

Consider the space B̃ spanned by X as a basis, and give it a structure of an algebra
equipped with a symmetric bilinear form by the same rule as in Section 5. Then we have
a surjective homomorphism of algebras B̃ → B which preserves the bilinear forms, which
is an isomorphism if and only if the least eigenvalue of the associated graph is equal to
−8. The associated group is listed as G in Table 4.

Note 5. The full automorphism group of V +√
2R

is described in [Sh]. See [Gr] for
type E8 and [MM] for type D4.

8. Realizability of certain subgroups.

Let us now show that the rest of the groups in Table 3 are all realizable by VOAs.
As we already know that each of the groups G in Table 4 are realized by the VOA

V +√
2R

, we will show that the subgroup G′ is also realizable by a VOA by taking a suitable
subVOA of V +√

2R
.

Let B̃ be as in the preceding section and let B̃′ be the subalgebra spanned by the
subset X ′ = {0} × R+. Let B be the degree 2 subspace of V +√

2R
and let B′ be the

image of B̃′. Let (G′, D′) be the corresponding subgroup of (G,D) listed in Table 4 and
consider the subVOA V ′ generated by the subalgebra B′. Let us show that the degree 2
subspace of V ′ agrees with B′ to ensure the property (III).
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Let ω̃ be twice the unit of the larger algebra B̃ and let ω̃′ be that of B̃′. Set
η̃ = ω̃ − ω̃′. Let η denote the image of η̃ in B. Then the vector η generates an action of
Virasoro algebra, whose central charge is listed as cη in Table 4.

Lemma 6. The subspace B′ agrees with the eigenspace of eigenvalue 0 with respect
to the adjoint action by η on B.

Proof. Consider the eigenspace decomposition of the large algebra B̃ with respect
to the adjoint action by η̃. Obviously, the small algebra B̃′ is contained in the eigenspace
with the eigenvalue 0. Then the induced action of η̃ on the quotient space B̃/B̃′ is given
by the following matrix:

2
8 + k

(8I + A′) . (8)

Here I is the identity matrix of size |X ′| and A′ is the adjacency matrix of the graph
associated with X ′. Now this matrix is positive since the least eigenvalue of the matrix
A′ is greater than or equal to −4. ¤

The realizability of the groups (G′, D′) in Table 4 now follows from Proposition 4.
There are some more groups in Table 3. The group O+

10(2) is also realized by
V +√

2E8
as shown in [Gr] and the VOA realizing Sp8(2) is constructed in [KM]. Since

O−8 (2) = O+
10(2)(2), we can show by the same argument as above that this group is also

realized by an appropriate subVOA of V +√
2E8

. Thus the groups in Table 3 are all shown
to be realizable by appropriate VOAs, and the proof of Theorem 1 is completed.

Note 7. For E8 type root system, the central charge of the Virasoro action gen-
erated by the vector η is equal to 1/2. As is well known, this is the origin of the presence
of the bigger 3-transposition group AutV +√

2E8
' O+

10(2) as described in [Gr].
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