Lou's fixed point theorem in a space of continuous mappings

By Tomonari Suzuki

(Received Apr. 22, 2005)
(Revised Aug. 15, 2005)

Abstract

We present a very simple proof of Lou's fixed point theorem in a space of continuous mappings [Proc. Amer. Math. Soc., 127 (1999), 2259-2264]. We also discuss another similar fixed point theorem.

1. Introduction.

The following famous theorem is referred to as the Banach contraction principle.
Theorem 1 (Banach [1]). Let F be a nonempty closed subset of a Banach space $(X,\|\cdot\|)$. Let A be a contractive mapping from F into itself, i.e., there exists $r \in[0,1)$ such that

$$
\|A x-A y\| \leq r\|x-y\|
$$

for all $x, y \in F$. Then A has a unique fixed point.
Put $I=[0, T]$ for some $T>0$ and let $\left(E,\|\cdot\|_{E}\right)$ be a Banach space. Let $C(I, E)$ be the Banach space consisting of all continuous mappings from I into E with norm

$$
\|u\|_{C}=\max \left\{\|u(t)\|_{E}: t \in I\right\}
$$

for $u \in C(I, E)$. In 1999, Lou [4] proved the following fixed point theorem.
Theorem 2 (Lou [4]). Let F be a nonempty closed subset of $C(I, E)$ and let A be a mapping from F into itself. Assume that there exist $\alpha, \beta \in(0,1)$ and $K \geq 0$ such that

$$
\|A u(t)-A v(t)\|_{E} \leq \beta\|u(t)-v(t)\|_{E}+\frac{K}{t^{\alpha}} \int_{0}^{t}\|u(s)-v(s)\|_{E} d s
$$

for all $u, v \in F$ and $t \in I \backslash\{0\}$. Then A has a unique fixed point.
Lou applied this theorem to integro-differential equations. Using the notion of K normed spaces, de Pascale and de Pascale in [2] proved a fixed point theorem (Theorem 3) similar to Theorem 2. Very recently, de Pascale and Zabreiko generalized them in [3].

[^0]We remark that the mapping A in Theorem 2 is not necessarily contractive relative to the original norm $\|\cdot\|_{C}$ (so that Theorem 1 cannot be directly applied). Nevertheless, it was shown in [4] that iterations $A^{n} u$ form a Cauchy sequence (so that the limit point gives rise to a fixed point as in the standard proof of Theorem 1). In this paper, we shall present a very simple proof of Theorem 2. Namely, we show that a modified norm equivalent to $\|\cdot\|_{C}$ can be introduced on $C(I, E)$ in such a way that A is contractive relative to this new norm. This obviously implies that Theorem 2 follows from Theorem 1. We will also present an alternative proof to [2] by a similar method, and our method has the advantage that the notion of K-normed spaces is not needed.

2. Proof of Theorem 2.

In this section, we present a very simple proof of Theorem 2. Compare it with the proof in [4].

Proof of Theorem 2. We choose $\tau \in(0, T)$ satisfying

$$
\beta+K \tau^{1-\alpha}<1
$$

and define a nonincreasing function f from I into $(0, \infty)$ by

$$
f(t)= \begin{cases}1, & \text { if } 0 \leq t \leq \tau \\ \exp (1-t / \tau), & \text { if } \tau \leq t \leq T\end{cases}
$$

for $t \in I$. Define another norm $\|\cdot\|$ on $C(I, E)$ by

$$
\|u\|=\max \left\{f(t)\|u(t)\|_{E}: t \in I\right\}
$$

for $u \in C(I, E)$. Since

$$
f(T)\|u\|_{C} \leq\|u\| \leq\|u\|_{C}
$$

for all $u \in C(I, E)$, the two norms $\|\cdot\|_{C}$ and $\|\cdot\|$ are equivalent. Thus, $(C(I, E),\|\cdot\|)$ is complete and F is also closed with respect to $\|\cdot\|$. We shall show

$$
\begin{equation*}
\|A u-A v\| \leq\left(\beta+K \tau^{1-\alpha}\right)\|u-v\| \tag{1}
\end{equation*}
$$

for all $u, v \in F$. Fix $u, v \in F$. In the case of $0<t \leq \tau$, we note $\|u(t)-v(t)\|_{E} \leq\|u-v\|$. We have

$$
\begin{aligned}
f(t)\|A u(t)-A v(t)\|_{E} & =\|A u(t)-A v(t)\|_{E} \\
& \leq \beta\|u(t)-v(t)\|_{E}+\frac{K}{t^{\alpha}} \int_{0}^{t}\|u(s)-v(s)\|_{E} d s
\end{aligned}
$$

$$
\begin{aligned}
& \leq \beta\|u-v\|+\frac{K}{t^{\alpha}} \int_{0}^{t}\|u-v\| d s \\
& =\left(\beta+K t^{1-\alpha}\right)\|u-v\| \\
& \leq\left(\beta+K \tau^{1-\alpha}\right)\|u-v\|
\end{aligned}
$$

From the continuity of $A u$ and $A v$, we obtain

$$
f(0)\|A u(0)-A v(0)\|_{E} \leq\left(\beta+K \tau^{1-\alpha}\right)\|u-v\| .
$$

In the case of $\tau<t \leq T$, we note

$$
\|u(t)-v(t)\|_{E} \leq \exp (-1+t / \tau)\|u-v\|
$$

We have

$$
\begin{aligned}
\int_{0}^{t}\|u(s)-v(s)\|_{E} d s & =\int_{0}^{\tau}\|u(s)-v(s)\|_{E} d s+\int_{\tau}^{t}\|u(s)-v(s)\|_{E} d s \\
& \leq \int_{0}^{\tau}\|u-v\| d s+\int_{\tau}^{t} \exp (-1+s / \tau)\|u-v\| d s \\
& =\tau \exp (-1+t / \tau)\|u-v\|
\end{aligned}
$$

and hence

$$
\begin{aligned}
& f(t)\|A u(t)-A v(t)\|_{E} \\
& \quad=\exp (1-t / \tau)\|A u(t)-A v(t)\|_{E} \\
& \quad \leq \exp (1-t / \tau)\left(\beta\|u(t)-v(t)\|_{E}+\frac{K}{t^{\alpha}} \int_{0}^{t}\|u(s)-v(s)\|_{E} d s\right) \\
& \quad \leq \exp (1-t / \tau)\left(\beta \exp (-1+t / \tau)\|u-v\|+\frac{K}{\tau^{\alpha}} \tau \exp (-1+t / \tau)\|u-v\|\right) \\
& \quad=\left(\beta+K \tau^{1-\alpha}\right)\|u-v\| .
\end{aligned}
$$

Therefore

$$
f(t)\|A u(t)-A v(t)\|_{E} \leq\left(\beta+K \tau^{1-\alpha}\right)\|u-v\|
$$

for all $t \in I$. This implies (1). By Theorem $1, A$ has a unique fixed point.

3. De Pascale and De Pascale's Theorem.

In this section, we present an alternative proof of de Pascale and de Pascale's theorem in [2] without using the notion of K-normed spaces. We put $I=[1, \infty)$ and let $B C(I, E)$
be the Banach space consisting of all bounded continuous mappings from I into E with norm

$$
\|u\|_{B}=\sup \left\{\|u(t)\|_{E}: t \in I\right\}
$$

for $u \in B C(I, E)$. De Pascale and de Pascale in [2] proved the following.
Theorem 3 (de Pascale and de Pascale [2]). Let F be a nonempty closed subset of $B C(I, E)$ and let A be a mapping from F into itself. Assume that there exist $\alpha \in(1, \infty)$, $\beta \in(0,1)$ and $K \geq 0$ such that

$$
\|A u(t)-A v(t)\|_{E} \leq \beta\|u(t)-v(t)\|_{E}+\frac{K}{t^{\alpha}} \int_{1}^{t}\|u(s)-v(s)\|_{E} d s
$$

for all $u, v \in F$ and $t \in I$. Then A has a unique fixed point.
Proof. We choose $c>0$ and $\tau \in(1, \infty)$ satisfying

$$
\beta+\frac{K}{c}+\frac{K}{\tau^{\alpha-1}}<1
$$

Define a nonincreasing function f from I into $(0, \infty)$ by

$$
f(t)= \begin{cases}\exp (-c t), & \text { if } 1 \leq t \leq \tau \\ \exp (-c \tau), & \text { if } \tau \leq t\end{cases}
$$

for $t \in I$. Define another norm $\|\cdot\|$ on $B C(I, E)$ by

$$
\|u\|=\sup \left\{f(t)\|u(t)\|_{E}: t \in I\right\}
$$

for $u \in B C(I, E)$. Then we have

$$
f(\tau)\|u\|_{B} \leq\|u\| \leq f(1)\|u\|_{B}
$$

for all $u \in B C(I, E)$. So the two norms $\|\cdot\|_{B}$ and $\|\cdot\|$ are equivalent. Hence, $(B C(I, E)$, $\|\cdot\|)$ is complete and F is also closed with respect to $\|\cdot\|$. We shall show

$$
\begin{equation*}
\|A u-A v\| \leq\left(\beta+\frac{K}{c}+\frac{K}{\tau^{\alpha-1}}\right)\|u-v\| \tag{2}
\end{equation*}
$$

for all $u, v \in F$. Fix $u, v \in F$. In the case of $1 \leq t \leq \tau$, we note

$$
\|u(t)-v(t)\|_{E} \leq \exp (c t)\|u-v\| .
$$

We have

$$
\begin{aligned}
\int_{1}^{t}\|u(s)-v(s)\|_{E} d s & \leq \int_{1}^{t} \exp (c s)\|u-v\| d s \\
& \leq \frac{\exp (c t)}{c}\|u-v\|
\end{aligned}
$$

and hence

$$
\begin{aligned}
f(t)\|A u(t)-A v(t)\|_{E} & =\exp (-c t)\|A u(t)-A v(t)\|_{E} \\
& \leq \exp (-c t)\left(\beta\|u(t)-v(t)\|_{E}+\frac{K}{t^{\alpha}} \int_{1}^{t}\|u(s)-v(s)\|_{E} d s\right) \\
& \leq \exp (-c t)\left(\beta \exp (c t)\|u-v\|+\frac{K}{t^{\alpha}} \frac{\exp (c t)}{c}\|u-v\|\right) \\
& =\left(\beta+\frac{K}{t^{\alpha}} \frac{1}{c}\right)\|u-v\| \\
& \leq\left(\beta+\frac{K}{c}\right)\|u-v\| \\
& \leq\left(\beta+\frac{K}{c}+\frac{K}{\tau^{\alpha-1}}\right)\|u-v\| .
\end{aligned}
$$

In the case of $\tau<t$, we note

$$
\|u(t)-v(t)\|_{E} \leq \exp (c \tau)\|u-v\|
$$

We have

$$
\begin{aligned}
\int_{1}^{t}\|u(s)-v(s)\|_{E} d s & =\int_{1}^{\tau}\|u(s)-v(s)\|_{E} d s+\int_{\tau}^{t}\|u(s)-v(s)\|_{E} d s \\
& \leq \frac{\exp (c \tau)}{c}\|u-v\|+\int_{\tau}^{t} \exp (c \tau)\|u-v\| d s \\
& =\left(\frac{1}{c}+t-\tau\right) \exp (c \tau)\|u-v\| \\
& \leq\left(\frac{1}{c}+t\right) \exp (c \tau)\|u-v\|
\end{aligned}
$$

and hence

$$
\begin{aligned}
f(t)\|A u(t)-A v(t)\|_{E} & =\exp (-c \tau)\|A u(t)-A v(t)\|_{E} \\
& \leq \exp (-c \tau)\left(\beta\|u(t)-v(t)\|_{E}+\frac{K}{t^{\alpha}} \int_{1}^{t}\|u(s)-v(s)\|_{E} d s\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \exp (-c \tau)\left(\beta \exp (c \tau)\|u-v\|+\frac{K}{t^{\alpha}}\left(\frac{1}{c}+t\right) \exp (c \tau)\|u-v\|\right) \\
& =\left(\beta+\frac{K}{t^{\alpha}}\left(\frac{1}{c}+t\right)\right)\|u-v\| \\
& \leq\left(\beta+\frac{K}{c}+\frac{K}{\tau^{\alpha-1}}\right)\|u-v\|
\end{aligned}
$$

Therefore

$$
f(t)\|A u(t)-A v(t)\|_{E} \leq\left(\beta+\frac{K}{c}+\frac{K}{\tau^{\alpha-1}}\right)\|u-v\|
$$

for all $t \in I$. This implies (2). By Theorem 1, A has a unique fixed point.
Acknowledgment. The author wishes to express his hearty thanks to the referee for his/her helpful advice on Section 1.

References

[1] S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fund. Math., 3 (1922), 133-181.
[2] E. de Pascale and L. de Pascale, Fixed points for some non-obviously contractive operators, Proc. Amer. Math. Soc., 130 (2002), 3249-3254.
[3] E. de Pascale and P. P. Zabreiko, Fixed point theorems for operators in spaces of continuous functions, Fixed Point Theory, 5 (2004), 117-129.
[4] B. Lou, Fixed points for operators in a space of continuous functions and applications, Proc. Amer. Math. Soc., 127 (1999), 2259-2264.

Tomonari Suzuki

Department of Mathematics Kyushu Institute of Technology Sensuicho, Tobata, Kitakyushu 804-8550, Japan
E-mail: suzuki-t@mns.kyutech.ac.jp

[^0]: 2000 Mathematics Subject Classification. 47H10.
 Key Words and Phrases. Lou's fixed point theorem, the Banach contraction principle.
 The author is supported in part by Grants-in-Aid for Scientific Research from the Japanese Ministry of Education, Culture, Sports, Science and Technology.

