On an integral representation of special values of the zeta function at odd integers

By Takashi Ito

(Received Jun. 20, 2005)

Abstract. An integral representation of the p-series of odd p is shown;

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} \int_{0}^{1} B_{2 p}(t) \log (\sin \pi t) \mathrm{d} t \quad(p=1,2, \ldots)
$$

where $B_{2 p}(t)$ is a Bernoulli polynomial of degree $2 p$. As a consequence of this we have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} 2\left[\sum_{k=0}^{p}\binom{2 p}{2 k} B_{2 p-2 k}\left(\frac{1}{2}\right) b_{2 k}\right]
$$

where $b_{2 k}=\int_{0}^{\frac{1}{2}} t^{2 k} \log (\cos \pi t) \mathrm{d} t, k=0,1, \ldots, p$.

Introduction.

We will show a representation of $\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}(p=1,2, \ldots)$ as follows.

Theorem.

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} \int_{0}^{1} B_{2 p}(t) \log (\sin \pi t) \mathrm{d} t
$$

where $B_{2 p}(t)$ is a Bernoulli polynominal of degree $2 p$. As a consequence of this, $\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}$ can be expressed in terms of the even power moments of $\log (\cos \pi t)$ over the interval [0,1/2]. Namely, let

$$
b_{p}=\int_{0}^{\frac{1}{2}} t^{p} \log (\cos \pi t) \mathrm{d} t \quad(p=0,1,2, \ldots)
$$

then our representation is

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} 2\left[\sum_{k=0}^{p}\binom{2 p}{2 k} B_{2 p-2 k}\left(\frac{1}{2}\right) b_{2 k}\right] .
$$

For example, we have for $p=1,2,3$

[^0]\[

$$
\begin{align*}
& \sum_{n=1}^{\infty} \frac{1}{n^{3}}=\frac{(2 \pi)^{2}}{2!}\left[-\frac{1}{12} \log 2-2 b_{2}\right] \\
& \sum_{n=1}^{\infty} \frac{1}{n^{5}}=\frac{(2 \pi)^{4}}{4!}\left[-\frac{7}{240} \log 2-b_{2}+2 b_{4}\right] \\
& \sum_{n=1}^{\infty} \frac{1}{n^{7}}=\frac{(2 \pi)^{6}}{6!}\left[-\frac{31}{1344} \log 2-\frac{7}{8} b_{2}+\frac{5}{2} b_{4}-2 b_{6}\right]
\end{align*}
$$
\]

We will see that 1) above is equivalent to

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\frac{2 \pi^{2}}{7}\left[-\log 2-8 b_{1}\right]
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\frac{2 \pi^{2}}{7}\left[\log 2+8 \int_{0}^{\frac{1}{2}} t \log (\sin \pi t) \mathrm{d} t\right]
$$

where the last $1^{\prime \prime}$) is essentially the same as the one which can be found on page 150 of Euler's work [1]. See also page 233 of [2].

1. Bernoulli polynomials.

Let $B_{p}(p=1,2, \ldots)$ be Bernoulli numbers; $B_{1}=\frac{1}{6}, B_{2}=\frac{1}{30}, B_{3}=\frac{1}{42}, \ldots$ etc. And let $B_{p}(x)(p=0,1, \ldots)$ be Bernoulli polynomials; $B_{0}(x)=1, B_{1}(x)=x-\frac{1}{2}$, $B_{2}(x)=x^{2}-x+\frac{1}{6}, B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x, \ldots$ etc. In general, $B_{p}(x)$ is a polynomial of degree p with rational coefficients involving Bernoulli numbers;

$$
\begin{equation*}
B_{p}(x)=x^{p}-\frac{p}{2} x^{p-1}+\sum_{k=1}^{\left[\frac{p}{2}\right]}(-1)^{k-1}\binom{p}{2 k} B_{k} x^{p-2 k} \tag{1}
\end{equation*}
$$

where $\left[\frac{p}{2}\right]$ is the integer part of $\frac{p}{2}$. The definitions and the fundamental properties of Bernoulli numbers and Bernoulli polynomials should be referred to any suitable textbook, see $[\mathbf{3}]$ for instance. Our customary use of notations B_{p} and $B_{p}(x)$ is slightly confusing: one is for numbers and the other one is for functions. However, we consistently use a parenthesis () with a variable inside for Bernoulli polynomials.

Fundamental properties of Bernoulli polynomials consist of the following (2), (3) and (4), see $[\mathbf{3}]$.

$$
\begin{align*}
& B_{p}(1+x)=B_{p}(x)+p x^{p-1} \quad(p=1,2, \ldots) \tag{2}\\
& B_{p}(1-x)=(-1)^{p} B_{p}(x) \quad(p=1,2, \ldots) \tag{3}\\
& B_{p}^{\prime}(x)=p B_{p-1}(x), \quad B_{p}^{\prime}(x) \text { is the derivative of } B_{p}(x) \tag{4}
\end{align*}
$$

We list all properties of Bernoulli polynomials which will be used for our later arguments. Since these properties $(5) \sim(8)$ are easily derived from (1) $\sim(4)$ above, their proofs are omitted.

$$
\begin{align*}
& B_{p}(0)=B_{p}(1) \text { for all } p \geq 2 . \text { Especially } B_{2 p+1}(0)=B_{2 p+1}(1)=0 \text { and } \\
& B_{2 p}(0)=B_{2 p}(1)=(-1)^{p-1} B_{p}(p=1,2, \ldots) \tag{5}
\end{align*}
$$

$B_{2 p}(x)$ is an even function and $B_{2 p-1}(x)$ is odd with respect to $x=\frac{1}{2}$.
More precisely, the expansion of $B_{p}(x)$ around $x=\frac{1}{2}$ is given by

$$
\begin{align*}
& B_{2 p}(x)=\sum_{k=0}^{p}\binom{2 p}{2 k} B_{2 p-2 k}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)^{2 k} \\
& B_{2 p+1}(x)=\sum_{k=0}^{p}\binom{2 p+1}{2 k+1} B_{2 p-2 k}\left(\frac{1}{2}\right)\left(x-\frac{1}{2}\right)^{2 k+1} \quad(p=1,2, \ldots) \tag{6}\\
& \int_{0}^{1} B_{p}(x) \mathrm{d} x=0 \quad(p=1,2, \ldots) \tag{7}\\
& \int_{0}^{1} B_{p}(x) B_{1}(x) \mathrm{d} x=\frac{1}{p+1} B_{p+1}(0) \quad(p=1,2, \ldots), \text { hence } \\
& \int_{0}^{1} B_{2 p}(x) B_{1}(x) \mathrm{d} x=0 \text { and } \\
& \int_{0}^{1} B_{2 p-1}(x) B_{1}(x) \mathrm{d} x=\frac{(-1)^{p-1}}{2 p} B_{p} \quad(p=1,2, \ldots) . \tag{8}
\end{align*}
$$

2. Convolutions and Fourier series.

We restrict $B_{p}(x)$ onto the interval $[0,1)$, then extend it over the whole real line with period 1. Thus we have a periodic function on the real line with period 1 , which is equal to $B_{p}(x)$ on the interval $[0,1)$. We denote this function by $\tilde{B}_{p}(x)$. It is noticed that $\tilde{B}_{p}(x)$ for $p \geq 3$ are smooth functions on the real line and $\tilde{B}_{1}(x)$ and $\tilde{B}_{2}(x)$ are smooth except for integer points $x=0, \pm 1, \pm 2, \ldots$.

For any functions $f(x)$ and $g(x)$ of $L^{2}([0,1])$, the convolution $f * g(x)$ is defined as usual

$$
f * g(x)=\int_{0}^{1} f(x-t) g(t) \mathrm{d} t=\int_{0}^{1} f(t) g(x-t) \mathrm{d} t, \quad 0 \leq x \leq 1
$$

In this integral, $f(x)$ and $g(x)$ are always regarded as periodic functions with period 1 on the real line. About convolutions between Bernoulli polynomials, we have

$$
\text { 1) } \quad \tilde{B}_{p} * \tilde{B}_{1}(x)=\frac{-1}{p+1} \tilde{B}_{p+1}(x) \quad(p=1,2, \ldots, \text { and } 0 \leq x \leq 1)
$$

2) $\left(\tilde{B}_{1} * \underset{p-\text { times }}{\ldots} * \tilde{B}_{1}\right)(x)=\frac{(-1)^{p-1}}{p!} \tilde{B}_{p}(x) \quad(p=1,2, \ldots$, and $0 \leq x \leq 1)$.

Proof. It is clear that 2) follows from 1) by inductive arguments for p. A proof of 1) goes as follows. Here our notation (4) means that (4) implies the equality: =. For any $x, 0 \leq x \leq 1$,

$$
\begin{aligned}
& \tilde{B}_{p} * \tilde{B}_{1}(x)=\int_{0}^{1} \tilde{B}_{p}(t) \tilde{B}_{1}(x-t) d t=\int_{0}^{1} B_{p}(t) \tilde{B}_{1}(x-t) \mathrm{d} t \\
& =\int_{0}^{x} B_{p}(t)\left(x-t-\frac{1}{2}\right) \mathrm{d} t+\int_{x}^{1} B_{p}(t)\left(x-t+\frac{1}{2}\right) \mathrm{d} t \\
& \left.{ } \frac{1}{p+1} B_{p+1}(t)\left(x-t-\frac{1}{2}\right)\right|_{t=0} ^{t=x}+\frac{1}{p+1} \int_{0}^{x} B_{p+1}(t) \mathrm{d} t } \\
& \quad+\left.\frac{1}{p+1} B_{p+1}(t)\left(x-t+\frac{1}{2}\right)\right|_{t=x} ^{t=1}+\frac{1}{p+1} \int_{x}^{1} B_{p+1}(t) \mathrm{d} t \\
& \quad=-\frac{1}{p+1} B_{p+1}(x) \cdot \frac{1}{2}-\frac{1}{p+1} B_{p+1}(0)\left(x-\frac{1}{2}\right)+\frac{1}{p+1} \int_{0}^{x} B_{p+1}(t) \mathrm{d} t \\
& \quad+\frac{1}{p+1} B_{p+1}(1)\left(x-\frac{1}{2}\right)-\frac{1}{p+1} B_{p+1}(x) \cdot \frac{1}{2}+\frac{1}{p+1} \int_{x}^{1} B_{p+1}(t) \mathrm{d} t \\
& \underline{\underline{(5)}}-\frac{1}{p+1} B_{p+1}(x)+\frac{1}{p+1} \int_{0}^{1} B_{p+1}(t) \mathrm{d} t \\
& \underline{\underline{(7)}}-\frac{1}{p+1} B_{p+1}(x) .
\end{aligned}
$$

This completes the proof.
A simple calculation shows that the Fourier coefficients of $\tilde{B}_{1}(x)$ are $\frac{i}{2 n \pi}(n=$ $\pm 1, \pm 2, \ldots)$, hence the Fourier series expansion of $\tilde{B}_{1}(x)$ is given by

$$
\tilde{B}_{1}(x)=\frac{i}{2 \pi} \sum_{\substack{-<n<+\infty \\ n \neq 0}} \frac{1}{n} e^{i 2 n \pi x} \cdots \cdots L^{2} \text {-convergence on }[0,1] \text {. }
$$

Thus, by applying (9), 2), easily we have Fourier series expansion of $\tilde{B}_{p}(x)$ as follows.

$$
\begin{equation*}
\tilde{B}_{p}(x)=(-1)^{p-1} p!\left(\frac{i}{2 \pi}\right)^{p} \sum_{\substack{-\infty<n<+\infty \\ n \neq 0}} \frac{1}{n^{p}} e^{i 2 n \pi x} \quad(p=1,2, \ldots) . \tag{10}
\end{equation*}
$$

We note that except for $p=1$, this Fourier series converges uniformly on the interval $[0,1]$, because $\sum_{n-1}^{\infty} \frac{1}{n^{p}}<+\infty$ for $p>1$.

3. Analytic parts.

For any function $f(x)$ of $L^{2}([0,1])$, we define the analytic part of $f(x)$, denoted by $f^{+}(x)$, as follows

$$
f^{+}(x)=\sum_{n=0}^{+\infty} \hat{f}(n) e^{i 2 n \pi x} \cdots \cdots \cdot L^{2} \text {-convergence on }[0,1],
$$

where $\hat{f}(n)(n=0,1,2, \ldots)$ are the n-th Fourier coefficients of $f(x)$. The analytic part of $\tilde{B}_{p}(x)$ is easily obtained from (10),

$$
\begin{equation*}
\tilde{B}_{p}^{+}(x)=(-1)^{p-1} p!\left(\frac{i}{2 \pi}\right)^{p} \sum_{n=1}^{\infty} \frac{1}{n^{p}} e^{i 2 n \pi x} \quad(p=1,2, \ldots) . \tag{11}
\end{equation*}
$$

Note again that this series converges uniformly on $[0,1]$ except for $p=1$, and for $p=1$ we have only L^{2}-convergence on $[0,1]$.

In the rest of this section we discuss a more concrete expression of $\tilde{B}_{1}^{+}(x)$. Let $\log (z)$ be the principal value of the log-function for complex numbers $z=r e^{i \theta}$ of $0<r$ and $-\pi<\theta<\pi$;

$$
\log (z)=\log |z|+i \operatorname{Arg} z=\log r+i \theta .
$$

Then the function $\log (1-z)$ is analytic on the whole complex plane except for $z=$ real numbers ≥ 1, and its power series expansion around 0 is given by

$$
\log (1-z)=-\sum_{n=1}^{\infty} \frac{1}{n} z^{n} \text { for all }|z|<1
$$

This expansion holds actually for all $|z| \leq 1$ except for $z=1$, and one can say a little more. Let D_{ε} with $0<\varepsilon<\frac{1}{2}$ be a closed sectorial domain given by $\left\{z=r e^{i 2 \pi \theta} \mid 0 \leq r \leq\right.$ 1 and $\varepsilon \leq \theta \leq 1-\varepsilon\}$, then we have

$$
\begin{align*}
& \text { The power series } \sum_{n=1}^{\infty} \frac{1}{n} z^{n} \text { converges uniformly to }-\log (1-z) \text { on } D_{\epsilon} \\
& \text { for all } 0<\varepsilon<\frac{1}{2} \text {. } \tag{12}
\end{align*}
$$

This fact is probably well known. Since $\log (1-z)+\sum_{n=1}^{N} \frac{1}{n} z^{n}=\int_{0}^{z} \frac{w^{N}}{1-w} d w$, a proof can be done simply by estimating $\left|\int_{0}^{z} \frac{w^{N}}{1-w} d w\right|$. We omit its detail.

Now we have a concrete representation of $\tilde{B}_{1}^{+}(x)$ as follows:

$$
\begin{equation*}
\tilde{B}_{1}^{+}(x)=\frac{1}{2}\left(x-\frac{1}{2}\right)-\frac{i}{2 \pi} \log (2 \sin \pi x) \text { for all } 0<x<1 \tag{13}
\end{equation*}
$$

Proof. From (11), our series $\sum_{n=1}^{\infty} \frac{1}{n} e^{i 2 n \pi x}$ converges to $\frac{2 \pi}{i} \tilde{B}_{1}^{+}(x)$ in a sense
of L^{2}-convergence on $[0,1]$. On the other hand, from (12) the same series converges uniformly to $-\log \left(1-e^{i 2 \pi x}\right)$ on every closed subinterval of the open interval $(0,1)$. Since the latter convergence is stronger than the former convergence, we have

$$
\tilde{B}_{1}^{+}(x)=\frac{-i}{2 \pi} \log \left(1-e^{i 2 \pi x}\right) \text { for all } 0<x<1 .
$$

By the definition of $\log z$, we have

$$
\log \left(1-e^{i 2 \pi x}\right)=\log \left|1-e^{i 2 \pi x}\right|+i \operatorname{Arg}\left(1-e^{i 2 \pi x}\right)=\log (2 \sin \pi x)+i\left(x-\frac{1}{2}\right) \pi
$$

Thus we have $\tilde{B}_{1}^{+}(x)=\frac{1}{2}\left(x-\frac{1}{2}\right)-\frac{i}{2 \pi} \log (2 \sin \pi x)$ for all $0<x<1$. This completes the proof.

4. Integral representations.

Since the Fourier coefficients of convolution $f * g(x)$ are the product of Fourier coefficients of f and $g ; f \hat{\star} g(n)=\hat{f}(n) \cdot \hat{g}(n)(n=0, \pm 1, \pm 2, \ldots)$, it can be seen easily

$$
(f * g)^{+}(x)=f^{+} * g(x)=f * g^{+}(x)
$$

By applying this to (9), 1) we have

$$
\begin{equation*}
\tilde{B}_{p}^{+}(x)=-p \tilde{B}_{p-1} * \tilde{B}_{1}^{+}(x) \text { for all } p \geq 2 \text { and } 0 \leq x \leq 1 . \tag{14}
\end{equation*}
$$

This form can be changed slightly to an equivalent one as follows:

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{p}} e^{i 2 n \pi x} & =(-1)^{p-1} \frac{1}{p!}\left(\frac{2 \pi}{i}\right)^{p} \tilde{B}_{p}^{+}(x)=i^{p} \frac{(2 \pi)^{p}}{(p-1)!} \tilde{B}_{p-1} * \tilde{B}_{1}^{+}(x) \\
& =i^{p} \frac{(2 \pi)^{p}}{(p-1)!} \int_{0}^{1} \tilde{B}_{p-1}(x-t)\left[\frac{1}{2}\left(t-\frac{1}{2}\right)-\frac{i}{2 \pi} \log (2 \sin \pi t)\right] \mathrm{d} t .
\end{aligned}
$$

Note $\int_{0}^{1} \tilde{B}_{p-1}(x-t) \mathrm{d} t=\int_{0}^{1} B_{p-1}(t) \mathrm{d} t=0$, see (7), hence $\log (2 \sin \pi t)$ can be replaced by $\log (\sin \pi t)$ in the integration above.

$$
=i^{p} \frac{(2 \pi)^{p}}{(p-1)!} \int_{0}^{1} \tilde{B}_{p-1}(x-t)\left[\frac{1}{2}\left(t-\frac{1}{2}\right)-\frac{i}{2 \pi} \log (\sin \pi t)\right] \mathrm{d} t .
$$

Thus we have the following (15), which is one of our main results.

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{p}} e^{i 2 n \pi x}=i^{p} \frac{(2 \pi)^{p}}{(p-1)!} \int_{0}^{1} \tilde{B}_{p-1}(x-t)\left[\frac{1}{2}\left(t-\frac{1}{2}\right)-\frac{i}{2 \pi} \log (\sin \pi t)\right] \mathrm{d} t \tag{15}
\end{equation*}
$$

for all $p \geq 2$ and $0 \leq x \leq 1$. As a consequence of this we have the following which includes the well known Euler's results for even p.

$$
\begin{align*}
& \text { 1) } \sum_{n=1}^{\infty} \frac{1}{n^{2 p}}=\frac{(2 \pi)^{2 p}}{(2 p)!} \frac{B_{p}}{2} \quad(p=1,2, \ldots) \\
& \text { 2) } \sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} \int_{0}^{1} B_{2 p}(t) \log (\sin \pi t) \mathrm{d} t \quad(p=1,2, \ldots) \tag{16}
\end{align*}
$$

Proof. For 1), by setting $x=0$ in (15) we have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p-1)!} \int_{0}^{1} \tilde{B}_{2 p-1}(-t)\left[\frac{1}{2}\left(t-\frac{1}{2}\right)\right] \mathrm{d} t
$$

Note

$$
\begin{aligned}
\int_{0}^{1} \tilde{B}_{2 p-1}(-t)\left(t-\frac{1}{2}\right) \mathrm{d} t & =\int_{0}^{1} B_{2 p-1}(1-t)\left(t-\frac{1}{2}\right) \mathrm{d} t=\int_{0}^{1} B_{2 p-1}(x)\left(\frac{1}{2}-x\right) \mathrm{d} x \\
& =-\int_{0}^{1} B_{2 p-1}(x) B_{1}(x) \mathrm{d} x=\frac{(-1)^{p}}{2 p} B_{p}
\end{aligned}
$$

see (8). Thus

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p-1)!} \frac{1}{2} \frac{(-1)^{p}}{2 p} B_{p}=\frac{(2 \pi)^{2 p}}{(2 p)!} \frac{B_{p}}{2}
$$

For 2), by setting $x=0$ again in (15)

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}} & =(i)^{2 p+1} \frac{(2 \pi)^{2 p+1}}{(2 p)!} \frac{-i}{2 \pi} \int_{0}^{1} \tilde{B}_{2 p}(-t) \log (\sin \pi t) \mathrm{d} t \\
& =(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} \int_{0}^{1} \tilde{B}_{2 p}(-t) \log (\sin \pi t) \mathrm{d} t
\end{aligned}
$$

Note

$$
\int_{0}^{1} \tilde{B}_{2 p}(-t) \log (\sin \pi t) \mathrm{d} t=\int_{0}^{1} B_{2 p}(1-t) \log (\sin \pi t) \mathrm{d} t=\int_{0}^{1} B_{2 p}(t) \log (\sin \pi t) \mathrm{d} t .
$$

Thus we have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} \int_{0}^{1} B_{2 p}(t) \log (\sin \pi t) \mathrm{d} t
$$

This completes the proof.

The integral representation; (16), 2) above enables us to express $\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}$ in terms of the even power moments of $\log (\cos \pi t)$ over the interval $\left[0, \frac{1}{2}\right]$.

$$
B_{2 p}(t)=\sum_{k=0}^{p}\binom{2 p}{2 k} B_{2 p-2 k}\left(\frac{1}{2}\right)\left(t-\frac{1}{2}\right)^{2 k}
$$

see (6) and

$$
\int_{0}^{1}\left(t-\frac{1}{2}\right)^{2 k} \log (\sin \pi t) \mathrm{d} t=2 \int_{0}^{\frac{1}{2}} t^{2 k} \log (\cos \pi t) \mathrm{d} t
$$

Thus we have

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} 2 \sum_{k=0}^{p}\binom{2 p}{2 k} B_{2 p-2 k}\left(\frac{1}{2}\right) \int_{0}^{\frac{1}{2}} t^{2 k} \log (\cos \pi t) \mathrm{d} t
$$

By denoting $b_{p}=\int_{0}^{\frac{1}{2}} t^{p} \log (\cos \pi t) \mathrm{d} t(p=0,1,2, \ldots)$, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=(-1)^{p} \frac{(2 \pi)^{2 p}}{(2 p)!} 2 \sum_{k=0}^{p}\binom{2 p}{2 k} B_{2 p-2 k}\left(\frac{1}{2}\right) b_{2 k} \tag{17}
\end{equation*}
$$

For examples of $p=1,2,3$ we have

1) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\frac{(2 \pi)^{2}}{2!}\left[-\frac{1}{12} \log 2-2 b_{2}\right]$
2) $\sum_{n=1}^{\infty} \frac{1}{n^{5}}=\frac{(2 \pi)^{4}}{4!}\left[-\frac{7}{240} \log 2-b_{2}+2 b_{4}\right]$
3) $\sum_{n=1}^{\infty} \frac{1}{n^{7}}=\frac{(2 \pi)^{6}}{6!}\left[-\frac{31}{1344} \log 2+\frac{7}{8} b_{2}+\frac{5}{2} b_{4}-2 b_{6}\right]$,
here we used $B_{2}\left(\frac{1}{2}\right)=-\frac{1}{12}, B_{4}\left(\frac{1}{2}\right)=\frac{7}{240}, B_{6}\left(\frac{1}{2}\right)=-\frac{31}{1344}$ and $b_{0}=-\frac{1}{2} \log 2$, the last one will be shown later, see (19), 1).

5. Power moment sequences.

Denote $a_{p}=\int_{0}^{\frac{1}{2}} t^{p} \log (\sin \pi t) \mathrm{d} t$ and $b_{p}=\int_{0}^{\frac{1}{2}} t^{p} \log (\cos \pi t) \mathrm{d} t(p=0,1,2, \ldots)$.

1) $a_{p}=\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{k}(-1)^{k} 2^{k} b_{k} \quad(p=1,2, \ldots)$
2) $a_{p}+b_{p}=\frac{1}{2^{p+1}-1}\left[-\frac{1}{p+1} \log 2+\frac{1}{2^{p}} \sum_{k=0}^{p-1}\binom{p}{k} 2^{k} b_{k}\right] \quad(p=1,2, \ldots)$.

Proof. For 1),

$$
\begin{aligned}
a_{p} & =\int_{0}^{\frac{1}{2}} t^{p} \log (\sin \pi t) \mathrm{d} t=\int_{0}^{\frac{1}{2}}\left(\frac{1}{2}-t\right)^{p} \log (\cos \pi t) \mathrm{d} t \\
& =\sum_{k=0}^{p}\binom{p}{k}\left(\frac{1}{2}\right)^{p-k} \int_{0}^{\frac{1}{2}}(-t)^{k} \log (\cos \pi t) \mathrm{d} t=\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{k}(-1)^{k} 2^{k} b_{k} .
\end{aligned}
$$

For 2),

$$
\begin{aligned}
a_{p}+b_{p} & =\int_{0}^{\frac{1}{2}} t^{p}[\log (\sin \pi t)+\log (\cos \pi t)] \mathrm{d} t=\int_{0}^{\frac{1}{2}} t^{p} \log \left(\frac{\sin 2 \pi t}{2}\right) \mathrm{d} t \\
& =\int_{0}^{\frac{1}{2}} t^{p} \log (\sin 2 \pi t) \mathrm{d} t-\log 2 \int_{0}^{\frac{1}{2}} t^{p} \mathrm{~d} t \\
& =\frac{1}{2^{p+1}} \int_{0}^{1} t^{p} \log (\sin \pi t) \mathrm{d} t-\frac{1}{p+1}\left(\frac{1}{2}\right)^{p+1} \log 2
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{0}^{1} t^{p} \log (\sin \pi t) \mathrm{d} t & =\int_{0}^{\frac{1}{2}} t^{p} \log (\sin \pi t) \mathrm{d} t+\int_{\frac{1}{2}}^{1} t^{p} \log (\sin \pi t) \mathrm{d} t \\
& =a_{p}+\int_{0}^{\frac{1}{2}}\left(t+\frac{1}{2}\right)^{p} \log (\cos \pi t) \mathrm{d} t=a_{p}+\frac{1}{2^{p}} \sum_{k=0}^{p}\binom{p}{k} 2^{k} b_{k}
\end{aligned}
$$

Thus

$$
a_{p}+b_{p}=\left(\frac{1}{2}\right)^{p+1}\left[a_{p}+b_{p}+\frac{1}{2^{p}} \sum_{k=0}^{p-1}\binom{p}{k} 2^{k} b_{k}\right]-\frac{1}{p+1}\left(\frac{1}{2}\right)^{p+1} \log 2,
$$

and we have

$$
\left(1-\frac{1}{2^{p+1}}\right)\left(a_{p}+b_{p}\right)=\frac{1}{2^{2 p+1}} \sum_{k=0}^{p-1}\binom{p}{k} 2^{k} b_{k}-\frac{1}{p+1}\left(\frac{1}{2}\right)^{p+1} \log 2
$$

Hence,

$$
a_{p}+b_{p}=\frac{1}{2^{p+1}-1}\left[\frac{1}{2^{p}} \sum_{k=0}^{p-1}\binom{p}{k} 2^{k} b_{k}-\frac{1}{p+1} \log 2\right] .
$$

This completes the proof.

$$
\begin{align*}
& \text { 1) } a_{0}=b_{0}=-\frac{1}{2} \log 2 \\
& \text { 2) } a_{1}+b_{1}=-\frac{1}{4} \log 2 \\
& \text { 3) } b_{2}=\frac{5}{168} \log 2+\frac{4}{7} b_{1} \tag{19}
\end{align*}
$$

Proof. For 1),

$$
\begin{aligned}
a_{0}+b_{0} & =\int_{0}^{\frac{1}{2}} \log \left(\frac{\sin 2 \pi t}{2}\right) \mathrm{d} t=\frac{1}{2} \int_{0}^{1} \log (\sin \pi t) \mathrm{d} t-\frac{1}{2} \log 2 \\
& =\frac{1}{2} \cdot 2 \int_{0}^{\frac{1}{2}} \log (\sin \pi t) \mathrm{d} t-\frac{1}{2} \log 2=a_{0}-\frac{1}{2} \log 2
\end{aligned}
$$

hence $b_{0}=-\frac{1}{2} \log 2$, and

$$
a_{0}=\int_{0}^{\frac{1}{2}} \log (\sin \pi t) \mathrm{d} t=\int_{0}^{\frac{1}{2}} \log (\cos \pi t) \mathrm{d} t=b_{0}
$$

For 2), by setting $p=1$ in (18), 2) we have

$$
a_{1}+b_{1}=\frac{1}{4-1}\left(-\frac{1}{2} \log 2+\frac{1}{2} b_{0}\right)=\frac{1}{3}\left(-\frac{1}{2} \log 2-\frac{1}{4} \log 2\right)=-\frac{1}{4} \log 2
$$

For 3), by setting $p=2$ in (18), 2) we have

$$
a_{2}+b_{2}=\frac{1}{7}\left(-\frac{1}{3} \log 2+\frac{1}{4} b_{0}+b_{1}\right)=\frac{1}{7}\left(-\frac{11}{24} \log 2+b_{1}\right)
$$

On the other hand, we have from $(18), 1)$

$$
a_{2}=b_{2}-\frac{1}{8} \log 2-b_{1}, \text { thus } a_{2}-b_{2}=-\frac{1}{8} \log 2-b_{1}
$$

By canceling a_{2}, we have $b_{2}=\frac{5}{168} \log 2+\frac{4}{7} b_{1}$. This completes the proof.
$\sum_{n=1}^{\infty} \frac{1}{n^{3}}$ can be expressed in three different ways,

1) $2 \pi^{2}\left(-\frac{1}{12} \log 2-2 b_{2}\right)$
2) $\frac{2 \pi^{2}}{7}\left(-\log 2-8 b_{1}\right)$
3) $\frac{2 \pi^{2}}{7}\left(\log 2+8 a_{1}\right)$.

Because 1) was proved in (17), 1), we have 2) by substituting $b_{2}=\frac{5}{168} \log 2+\frac{4}{7} b_{1}$ into $1)$. We have 3) by substituting $b_{1}=-a_{1}-\frac{1}{4} \log 2$ into 2). The last one above, namely

$$
\sum_{n=1}^{\infty} \frac{1}{n^{3}}=\frac{2 \pi^{2}}{7}\left[\log 2+8 \int_{0}^{\frac{1}{2}} t \log (\sin \pi t)\right] \mathrm{d} t
$$

can be found in Euler's work [1]. Euler's expression given on page 150 of [1] is slightly different but essentially the same as ours. The author owes this information to a commentary given on page 233 of a book [2].

Finally we add a few remarks. We give here only statements without detailed proofs.

1) Every even power moment $b_{2 p}$ can be expressed as a linear combination of $\log 2$ and the odd power moments b_{1}, b_{3}, \ldots up to $b_{2 p-1}$ with rational coefficients. This generalization of $(19), 3)$ is proved in a similar way by using $(18), 1)$ and 2).
In (17), we have seen that $\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}$ can be expressed in terms of the even power moments. One can have a similar expression with respect to the odd power moments as follows.
2) There are rational numbers $\alpha_{p, k}, k=0,1, \ldots, p$ such that

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 p+1}}=\pi^{2 p}\left[\alpha_{p, 0} \log 2+\sum_{k=1}^{p} \alpha_{p, k} b_{2 k-1}\right] \quad(p=1,2, \ldots) .
$$

A question whether $\log 2$ and the odd power moments, b_{1}, b_{3}, \ldots are linearly independent over the rational number field is left open. For the even power moments, one can ask the same question which is also not answered.

References

[1] L. Euler, Exercitationes Analyticae, Novi Commentarii Academiae Scientiarum Petropolitanae, 17 (1772), 173-204. Collected Works, I-15, pp. 131-167.
[2] S. Kurokawa, M. Wakayama and T. Momotani, Translators' Commentaries, In: W. Dunham, Euler, The Master of Us All, Springer-Verlag, Tokyo, 2004, pp. 231-250.
[3] T. Takagi, An Introduction to Analaysis, 3rd Ed., Iwanami Shoten, Tokyo 1961.

Takashi Ito

Professor Emeritus Department of Mathematics Musashi Institute of Technology Tokyo, Japan

Sunstage 4-1301
Ryokuen 4-2-1
Izumi-ku Yokohama 245-0002
Japan

[^0]: 2000 Mathematics Subject Classification. Primary 11B68; Secondary 42A85.
 Key Words and Phrases. Bernoulli polynomials, convolutions, Fourier series.

