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On an integral representation of special values

of the zeta function at odd integers

By Takashi Ito
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Abstract. An integral representation of the p-series of odd p is shown;

∞X

n=1

1

n2p+1
= (−1)p (2π)2p

(2p)!

Z 1

0
B2p(t) log(sin πt)dt (p = 1, 2, . . .),

where B2p(t) is a Bernoulli polynomial of degree 2p. As a consequence of this we
have

∞X

n=1

1

n2p+1
= (−1)p (2π)2p

(2p)!
2

» pX

k=0

„
2p

2k

«
B2p−2k

„
1

2

«
b2k

–
,

where b2k =
R 1

2
0 t2k log(cos πt)dt, k = 0, 1, . . . , p.

Introduction.

We will show a representation of
∑∞

n=1
1

n2p+1 (p = 1, 2, . . .) as follows.

Theorem.

∞∑
n=1

1
n2p+1

= (−1)p (2π)2p

(2p)!

∫ 1

0

B2p(t) log(sinπt)dt,

where B2p(t) is a Bernoulli polynominal of degree 2p. As a consequence of this,∑∞
n=1

1
n2p+1 can be expressed in terms of the even power moments of log(cos πt) over

the interval [0, 1/2]. Namely, let

bp =
∫ 1

2

0

tp log(cos πt)dt (p = 0, 1, 2, . . .),

then our representation is

∞∑
n=1

1
n2p+1

= (−1)p (2π)2p

(2p)!
2
[ p∑

k=0

(
2p

2k

)
B2p−2k

(
1
2

)
b2k

]
.

For example, we have for p = 1, 2, 3
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∞∑
n=1

1
n3

=
(2π)2

2!

[
− 1

12
log 2− 2b2

]
1)

∞∑
n=1

1
n5

=
(2π)4

4!

[
− 7

240
log 2− b2 + 2b4

]
2)

∞∑
n=1

1
n7

=
(2π)6

6!

[
− 31

1344
log 2− 7

8
b2 +

5
2
b4 − 2b6

]
. 3)

We will see that 1) above is equivalent to

∞∑
n=1

1
n3

=
2π2

7
[− log 2− 8b1] 1′)

and

∞∑
n=1

1
n3

=
2π2

7

[
log 2 + 8

∫ 1
2

0

t log(sin πt)dt

]
, 1′′)

where the last 1′′) is essentially the same as the one which can be found on page 150 of
Euler’s work [1]. See also page 233 of [2].

1. Bernoulli polynomials.

Let Bp (p = 1, 2, . . .) be Bernoulli numbers; B1 = 1
6 , B2 = 1

30 , B3 = 1
42 , . . . etc.

And let Bp(x) (p = 0, 1, . . .) be Bernoulli polynomials; B0(x) = 1, B1(x) = x − 1
2 ,

B2(x) = x2 − x + 1
6 , B3(x) = x3 − 3

2x2 + 1
2x, . . . etc. In general, Bp(x) is a polynomial

of degree p with rational coefficients involving Bernoulli numbers;

Bp(x) = xp − p

2
xp−1 +

[
p
2

]
∑

k=1

(−1)k−1

(
p

2k

)
Bkxp−2k, (1)

where
[

p
2

]
is the integer part of p

2 . The definitions and the fundamental properties of
Bernoulli numbers and Bernoulli polynomials should be referred to any suitable textbook,
see [3] for instance. Our customary use of notations Bp and Bp(x) is slightly confusing:
one is for numbers and the other one is for functions. However, we consistently use a
parenthesis ( ) with a variable inside for Bernoulli polynomials.

Fundamental properties of Bernoulli polynomials consist of the following (2), (3)
and (4), see [3].

Bp(1 + x) = Bp(x) + pxp−1 (p = 1, 2, . . .) (2)

Bp(1− x) = (−1)pBp(x) (p = 1, 2, . . .) (3)

B′
p(x) = pBp−1(x), B′

p(x) is the derivative of Bp(x). (4)
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We list all properties of Bernoulli polynomials which will be used for our later arguments.
Since these properties (5)∼(8) are easily derived from (1)∼(4) above, their proofs are
omitted.

Bp(0) = Bp(1) for all p ≥ 2. Especially B2p+1(0) = B2p+1(1) = 0 and

B2p(0) = B2p(1) = (−1)p−1Bp (p = 1, 2, . . .) (5)

B2p(x) is an even function and B2p−1(x) is odd with respect to x = 1
2 .

More precisely, the expansion of Bp(x) around x = 1
2 is given by

B2p(x) =
p∑

k=0

(
2p

2k

)
B2p−2k

(
1
2

)(
x− 1

2

)2k

B2p+1(x) =
p∑

k=0

(
2p + 1
2k + 1

)
B2p−2k

(
1
2

)(
x− 1

2

)2k+1

(p = 1, 2, . . .) (6)

∫ 1

0

Bp(x)dx = 0 (p = 1, 2, . . .) (7)

∫ 1

0

Bp(x)B1(x)dx =
1

p + 1
Bp+1(0) (p = 1, 2, . . .), hence

∫ 1

0

B2p(x)B1(x)dx = 0 and

∫ 1

0

B2p−1(x)B1(x)dx =
(−1)p−1

2p
Bp (p = 1, 2, . . .). (8)

2. Convolutions and Fourier series.

We restrict Bp(x) onto the interval [0, 1), then extend it over the whole real line
with period 1. Thus we have a periodic function on the real line with period 1, which is
equal to Bp(x) on the interval [0, 1). We denote this function by B̃p(x). It is noticed that
B̃p(x) for p ≥ 3 are smooth functions on the real line and B̃1(x) and B̃2(x) are smooth
except for integer points x = 0,±1,±2, . . ..

For any functions f(x) and g(x) of L2([0, 1]), the convolution f ∗ g(x) is defined as
usual

f ∗ g(x) =
∫ 1

0

f(x− t)g(t)dt =
∫ 1

0

f(t)g(x− t)dt, 0 ≤ x ≤ 1.

In this integral, f(x) and g(x) are always regarded as periodic functions with period 1
on the real line. About convolutions between Bernoulli polynomials, we have

1) B̃p ∗ B̃1(x) =
−1

p + 1
B̃p+1(x) (p = 1, 2, . . . , and 0 ≤ x ≤ 1)
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2) (B̃1 ∗ · · ·
p-times

∗B̃1)(x) =
(−1)p−1

p!
B̃p(x) (p = 1, 2, . . . , and 0 ≤ x ≤ 1). (9)

Proof. It is clear that 2) follows from 1) by inductive arguments for p. A proof
of 1) goes as follows. Here our notation (4) means that (4) implies the equality: =. For
any x, 0 ≤ x ≤ 1,

B̃p ∗ B̃1(x) =
∫ 1

0

B̃p(t)B̃1(x− t)dt =
∫ 1

0

Bp(t)B̃1(x− t)dt

=
∫ x

0

Bp(t)
(

x− t− 1
2

)
dt +

∫ 1

x

Bp(t)
(

x− t +
1
2

)
dt

(4)
1

p + 1
Bp+1(t)

(
x− t− 1

2

)∣∣∣∣
t=x

t=0

+
1

p + 1

∫ x

0

Bp+1(t)dt

+
1

p + 1
Bp+1(t)

(
x− t +

1
2

)∣∣∣∣
t=1

t=x

+
1

p + 1

∫ 1

x

Bp+1(t)dt

= − 1
p + 1

Bp+1(x) · 1
2
− 1

p + 1
Bp+1(0)

(
x− 1

2

)
+

1
p + 1

∫ x

0

Bp+1(t)dt

+
1

p + 1
Bp+1(1)

(
x− 1

2

)
− 1

p + 1
Bp+1(x) · 1

2
+

1
p + 1

∫ 1

x

Bp+1(t)dt

(5) − 1
p + 1

Bp+1(x) +
1

p + 1

∫ 1

0

Bp+1(t)dt

(7) − 1
p + 1

Bp+1(x).

This completes the proof. ¤

A simple calculation shows that the Fourier coefficients of B̃1(x) are i
2nπ (n =

±1,±2, . . .), hence the Fourier series expansion of B̃1(x) is given by

B̃1(x) =
i

2π

∑
−∞<n<+∞

n6=0

1
n

ei2nπx · · · · · ·L2-convergence on [0, 1].

Thus, by applying (9), 2), easily we have Fourier series expansion of B̃p(x) as follows.

B̃p(x) = (−1)p−1p!
(

i

2π

)p ∑
−∞<n<+∞

n6=0

1
np

ei2nπx (p = 1, 2, . . .). (10)

We note that except for p = 1, this Fourier series converges uniformly on the interval
[0, 1], because

∑∞
n−1

1
np < +∞ for p > 1.
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3. Analytic parts.

For any function f(x) of L2([0, 1]), we define the analytic part of f(x), denoted by
f+(x), as follows

f+(x) =
+∞∑
n=0

f̂(n)ei2nπx · · · · · ·L2-convergence on [0, 1],

where f̂(n) (n = 0, 1, 2, . . .) are the n-th Fourier coefficients of f(x). The analytic part
of B̃p(x) is easily obtained from (10),

B̃+
p (x) = (−1)p−1p!

(
i

2π

)p ∞∑
n=1

1
np

ei2nπx (p = 1, 2, . . .). (11)

Note again that this series converges uniformly on [0, 1] except for p = 1, and for p = 1
we have only L2-convergence on [0, 1].

In the rest of this section we discuss a more concrete expression of B̃+
1 (x). Let log(z)

be the principal value of the log-function for complex numbers z = reiθ of 0 < r and
−π < θ < π;

log(z) = log |z|+ iArg z = log r + iθ.

Then the function log(1− z) is analytic on the whole complex plane except for z = real
numbers ≥ 1, and its power series expansion around 0 is given by

log(1− z) = −
∞∑

n=1

1
n

zn for all |z| < 1.

This expansion holds actually for all |z| ≤ 1 except for z = 1, and one can say a little
more. Let Dε with 0 < ε < 1

2 be a closed sectorial domain given by {z = rei2πθ|0 ≤ r ≤
1 and ε ≤ θ ≤ 1− ε}, then we have

The power series
∑∞

n=1
1
nzn converges uniformly to − log(1− z) on Dε

for all 0 < ε < 1
2 . (12)

This fact is probably well known. Since log(1− z)+
∑N

n=1
1
nzn =

∫ z

0
wN

1−wdw, a proof can

be done simply by estimating
∣∣ ∫ z

0
wN

1−wdw
∣∣. We omit its detail.

Now we have a concrete representation of B̃+
1 (x) as follows:

B̃+
1 (x) =

1
2

(
x− 1

2

)
− i

2π
log(2 sin πx) for all 0 < x < 1. (13)

Proof. From (11), our series
∑∞

n=1
1
nei2nπx converges to 2π

i B̃+
1 (x) in a sense
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of L2-convergence on [0, 1]. On the other hand, from (12) the same series converges
uniformly to − log(1−ei2πx) on every closed subinterval of the open interval (0, 1). Since
the latter convergence is stronger than the former convergence, we have

B̃+
1 (x) =

−i

2π
log(1− ei2πx) for all 0 < x < 1.

By the definition of log z, we have

log(1− ei2πx) = log |1− ei2πx|+ iArg(1− ei2πx) = log(2 sinπx) + i

(
x− 1

2

)
π.

Thus we have B̃+
1 (x) = 1

2

(
x− 1

2

)− i
2π log(2 sin πx) for all 0 < x < 1. This completes the

proof. ¤

4. Integral representations.

Since the Fourier coefficients of convolution f ∗ g(x) are the product of Fourier
coefficients of f and g; f ∗̂g(n) = f̂(n) · ĝ(n) (n = 0,±1,±2, . . .), it can be seen easily

(f ∗ g)+(x) = f+ ∗ g(x) = f ∗ g+(x).

By applying this to (9), 1) we have

B̃+
p (x) = −pB̃p−1 ∗ B̃+

1 (x) for all p ≥ 2 and 0 ≤ x ≤ 1. (14)

This form can be changed slightly to an equivalent one as follows:

∞∑
n=1

1
np

ei2nπx = (−1)p−1 1
p!

(
2π

i

)p

B̃+
p (x) = ip

(2π)p

(p− 1)!
B̃p−1 ∗ B̃+

1 (x)

= ip
(2π)p

(p− 1)!

∫ 1

0

B̃p−1(x− t)
[
1
2

(
t− 1

2

)
− i

2π
log(2 sin πt)

]
dt.

Note
∫ 1

0
B̃p−1(x − t)dt =

∫ 1

0
Bp−1(t)dt = 0, see (7), hence log(2 sin πt) can be replaced

by log(sinπt) in the integration above.

= ip
(2π)p

(p− 1)!

∫ 1

0

B̃p−1(x− t)
[
1
2

(
t− 1

2

)
− i

2π
log(sin πt)

]
dt.

Thus we have the following (15), which is one of our main results.

∞∑
n=1

1
np

ei2nπx = ip
(2π)p

(p− 1)!

∫ 1

0

B̃p−1(x− t)
[
1
2

(
t− 1

2

)
− i

2π
log(sin πt)

]
dt (15)
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for all p ≥ 2 and 0 ≤ x ≤ 1. As a consequence of this we have the following which
includes the well known Euler’s results for even p.

1)
∞∑

n=1

1
n2p

=
(2π)2p

(2p)!
Bp

2
(p = 1, 2, . . .)

2)
∞∑

n=1

1
n2p+1

= (−1)p (2π)2p

(2p)!

∫ 1

0

B2p(t) log(sinπt)dt (p = 1, 2, . . .). (16)

Proof. For 1), by setting x = 0 in (15) we have

∞∑
n=1

1
n2p

= (−1)p (2π)2p

(2p− 1)!

∫ 1

0

B̃2p−1(−t)
[
1
2

(
t− 1

2

)]
dt.

Note

∫ 1

0

B̃2p−1(−t)
(

t− 1
2

)
dt =

∫ 1

0

B2p−1(1− t)
(

t− 1
2

)
dt =

∫ 1

0

B2p−1(x)
(

1
2
− x

)
dx

= −
∫ 1

0

B2p−1(x)B1(x)dx =
(−1)p

2p
Bp,

see (8). Thus

∞∑
n=1

1
n2p

= (−1)p (2π)2p

(2p− 1)!
1
2

(−1)p

2p
Bp =

(2π)2p

(2p)!
Bp

2
.

For 2), by setting x = 0 again in (15)

∞∑
n=1

1
n2p+1

= (i)2p+1 (2π)2p+1

(2p)!
−i

2π

∫ 1

0

B̃2p(−t) log(sinπt)dt

= (−1)p (2π)2p

(2p)!

∫ 1

0

B̃2p(−t) log(sinπt)dt.

Note

∫ 1

0

B̃2p(−t) log(sinπt)dt =
∫ 1

0

B2p(1− t) log(sinπt)dt =
∫ 1

0

B2p(t) log(sinπt)dt.

Thus we have

∞∑
n=1

1
n2p+1

= (−1)p (2π)2p

(2p)!

∫ 1

0

B2p(t) log(sinπt)dt.

This completes the proof. ¤
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The integral representation; (16), 2) above enables us to express
∑∞

n=1
1

n2p+1 in
terms of the even power moments of log(cos πt) over the interval

[
0, 1

2

]
.

B2p(t) =
p∑

k=0

(
2p

2k

)
B2p−2k

(
1
2

)(
t− 1

2

)2k

see (6) and
∫ 1

0

(
t− 1

2

)2k

log(sin πt)dt = 2
∫ 1

2

0

t2k log(cos πt)dt.

Thus we have

∞∑
n=1

1
n2p+1

= (−1)p (2π)2p

(2p)!
2

p∑

k=0

(
2p

2k

)
B2p−2k

(
1
2

) ∫ 1
2

0

t2k log(cos πt)dt.

By denoting bp =
∫ 1

2
0

tp log(cos πt)dt (p = 0, 1, 2, . . .), we have

∞∑
n=1

1
n2p+1

= (−1)p (2π)2p

(2p)!
2

p∑

k=0

(
2p

2k

)
B2p−2k

(
1
2

)
b2k. (17)

For examples of p = 1, 2, 3 we have

1)
∞∑

n=1

1
n3

=
(2π)2

2!

[
− 1

12
log 2− 2b2

]

2)
∞∑

n=1

1
n5

=
(2π)4

4!

[
− 7

240
log 2− b2 + 2b4

]

3)
∞∑

n=1

1
n7

=
(2π)6

6!

[
− 31

1344
log 2 +

7
8
b2 +

5
2
b4 − 2b6

]
,

here we used B2

(
1
2

)
= − 1

12 , B4

(
1
2

)
= 7

240 , B6

(
1
2

)
= − 31

1344 and b0 = − 1
2 log 2, the last

one will be shown later, see (19), 1).

5. Power moment sequences.

Denote ap =
∫ 1

2
0

tp log(sin πt)dt and bp =
∫ 1

2
0

tp log(cos πt)dt (p = 0, 1, 2, . . .).

1) ap =
1
2p

p∑

k=0

(
p

k

)
(−1)k2kbk (p = 1, 2, . . .)

2) ap + bp =
1

2p+1 − 1

[
− 1

p + 1
log 2 +

1
2p

p−1∑

k=0

(
p

k

)
2kbk

]
(p = 1, 2, . . .). (18)
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Proof. For 1),

ap =
∫ 1

2

0

tp log(sin πt)dt =
∫ 1

2

0

(
1
2
− t

)p

log(cos πt)dt

=
p∑

k=0

(
p

k

)(
1
2

)p−k ∫ 1
2

0

(−t)k log(cos πt)dt =
1
2p

p∑

k=0

(
p

k

)
(−1)k2kbk.

For 2),

ap + bp =
∫ 1

2

0

tp[log(sin πt) + log(cos πt)]dt =
∫ 1

2

0

tp log
(

sin 2πt

2

)
dt

=
∫ 1

2

0

tp log(sin 2πt)dt− log 2
∫ 1

2

0

tpdt

=
1

2p+1

∫ 1

0

tp log(sin πt)dt− 1
p + 1

(
1
2

)p+1

log 2

and

∫ 1

0

tp log(sin πt)dt =
∫ 1

2

0

tp log(sin πt)dt +
∫ 1

1
2

tp log(sin πt)dt

= ap +
∫ 1

2

0

(
t +

1
2

)p

log(cos πt)dt = ap +
1
2p

p∑

k=0

(
p

k

)
2kbk.

Thus

ap + bp =
(

1
2

)p+1[
ap + bp +

1
2p

p−1∑

k=0

(
p

k

)
2kbk

]
− 1

p + 1

(
1
2

)p+1

log 2,

and we have

(
1− 1

2p+1

)
(ap + bp) =

1
22p+1

p−1∑

k=0

(
p

k

)
2kbk − 1

p + 1

(
1
2

)p+1

log 2

Hence,

ap + bp =
1

2p+1 − 1

[
1
2p

p−1∑

k=0

(
p

k

)
2kbk − 1

p + 1
log 2

]
.

This completes the proof. ¤
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1) a0 = b0 = −1
2

log 2

2) a1 + b1 = −1
4

log 2

3) b2 =
5

168
log 2 +

4
7
b1. (19)

Proof. For 1),

a0 + b0 =
∫ 1

2

0

log
(

sin 2πt

2

)
dt =

1
2

∫ 1

0

log(sin πt)dt− 1
2

log 2

=
1
2
· 2

∫ 1
2

0

log(sin πt)dt− 1
2

log 2 = a0 − 1
2

log 2,

hence b0 = − 1
2 log 2, and

a0 =
∫ 1

2

0

log(sin πt)dt =
∫ 1

2

0

log(cos πt)dt = b0.

For 2), by setting p = 1 in (18), 2) we have

a1 + b1 =
1

4− 1

(
− 1

2
log 2 +

1
2
b0

)
=

1
3

(
− 1

2
log 2− 1

4
log 2

)
= −1

4
log 2.

For 3), by setting p = 2 in (18), 2) we have

a2 + b2 =
1
7

(
− 1

3
log 2 +

1
4
b0 + b1

)
=

1
7

(
− 11

24
log 2 + b1

)
.

On the other hand, we have from (18), 1)

a2 = b2 − 1
8

log 2− b1, thus a2 − b2 = −1
8

log 2− b1.

By canceling a2, we have b2 = 5
168 log 2 + 4

7b1. This completes the proof. ¤

∑∞
n=1

1
n3 can be expressed in three different ways,

1) 2π2

(
− 1

12
log 2− 2b2

)

2)
2π2

7
(− log 2− 8b1)

3)
2π2

7
(log 2 + 8a1). (20)
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Because 1) was proved in (17), 1), we have 2) by substituting b2 = 5
168 log 2 + 4

7b1 into
1). We have 3) by substituting b1 = −a1 − 1

4 log 2 into 2). The last one above, namely

∞∑
n=1

1
n3

=
2π2

7

[
log 2 + 8

∫ 1
2

0

t log(sin πt)
]
dt,

can be found in Euler’s work [1]. Euler’s expression given on page 150 of [1] is slightly
different but essentially the same as ours. The author owes this information to a com-
mentary given on page 233 of a book [2].

Finally we add a few remarks. We give here only statements without detailed proofs.

1) Every even power moment b2p can be expressed as a linear combination of log 2
and the odd power moments b1, b3, . . . up to b2p−1 with rational coefficients. This
generalization of (19), 3) is proved in a similar way by using (18), 1) and 2).

In (17), we have seen that
∑∞

n=1
1

n2p+1 can be expressed in terms of the even power
moments. One can have a similar expression with respect to the odd power moments as
follows.

2) There are rational numbers αp,k, k = 0, 1, . . . , p such that

∞∑
n=1

1
n2p+1

= π2p

[
αp,0 log 2 +

p∑

k=1

αp,kb2k−1

]
(p = 1, 2, . . .).

A question whether log 2 and the odd power moments, b1, b3, . . . are linearly independent
over the rational number field is left open. For the even power moments, one can ask the
same question which is also not answered.
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