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Abstract. For a given finite dimensional k-algebra A which admits a presen-
tation in the form R/G, where G is an infinite group of k-linear automorphisms
of a locally bounded k-category R, a class of modules lying out of the image of
the “push-down” functor associated with the Galois covering R — R/G, is studied.
Namely, the problem of existence and construction of the so called non-regularly
orbicular indecomposable R/G-modules is discussed. For a G-atom B (with a sta-
bilizer Gp), whose endomorphism algebra has a suitable structure, a representation
embedding ¢85/ S)| : In-spr(4) (kG ) — mod (R/G), which yields large families of
non-regularly orbicular indecomposable R/G-modules, is constructed (Theorem 2.2).
An important role in consideration is played by a result interpreting some class of
R/G-modules in terms of Cohen-Macaulay modules over certain skew grup algebra
(Theorem 3.3). Also, Theorems 4.5 and 5.4, adapting the generalized tensor product
construction and Galois covering scheme, respectively, for Cohen-Macaulay modules
context, are proved and intensively used.

Introduction.

The last thirty years have been a period of a great and permanent progress of
representation theory of finite-dimensional algebras. Many deep problems and classical
conjectures have been solved in that time. In the meantime also new, challenging and
stimulating questions, phrased already in a language of modern notions and concepts,
have been appeared.

The essential reason of that progress was an appearance of several fresh, original
ideas. After short time they brought an inventing and development of completely new,
efficient research tools, transformed afterwards to powerful methods of contemporary
representation theory. Galois covering techniques ([27], [19], [3], [21], [12], [11], [13],
[4], [7]) have remained one of them. It is usually used to reduce a problem for modules
over an algebra to an analogous one, often much simpler, for its cover category. This kind
of treatment allows to answer many interesting theoretical questions and obtain classifi-
cations for various classes of algebras (respectively, matrix problems) in representation-
finite or tame case ([34], [35], [36], [37], [20], [38], [39], [40], [16], [17], [18], [22], [28],
29], [30], [15], [10]).

In the last decade the main interest in the coverings topics was concentrated, for
obvious reasons, on “Galois covering tame-conjecture”. Roughly speaking it asserts that
the base algebra R/G is of tame representation type provided so is its cover category R
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(see [12], [11], [13], [4], [7] for partial solutions, also unpublished preprint [14]). But
also other more detailed questions concerning the tame case were studied. For example
closely related to the previous one, the so-called “stabilizer conjecture” is affirmatively
solved in [8] for a representation-tame locally bounded category R over an algebraically
closed field (the stabilizers Gp of infinite G-atoms B with respect to a free action of a
torsion-free group G on R are infinite cyclic groups).

Recently, a behaviour of the category mod (R/G) of R/G-modules that is quite
different from that one in the tame case was studied. The investigations concern the
notion of non-orbicular module introduced in [9]. Recall that an indecomposable module
X in mod (R/G) is called orbicular (respectively, non-orbicular) if the “pull-up” F¢X
of X, with respect to the Galois covering F' : R — R/G, decomposes into a direct
sum of indecomposable locally finite-dimensional modules which belong (respectively,
do not belong) to one G-orbit (see 1.3). According to the conjecture formulated long
time ago, all indecomposable R/G-modules in the tame case (studied in terms of Galois
covering F') are supposed to be always orbicular (with respect to G). Moreover, they are
expected to be formed by use of the standard functorial construction % = —®y.¢, FAB :
mod kGp — mod (R/G), defined by periodic G-atoms B (see 1.3). In [9] the problem of
existence of non-orbicular indecomposable modules was discussed. It is presented there
a construction of a representation embedding into the category mod (R/G) whose image
contains a large, usually wild subcategory consisting of non-orbicular indecomposable
R/G-modules. The construction is based on the notion of generalized tensor product
with respect to a suitable sequence of periodic G-atoms.

In this paper we consider an analogous question for the so-called non-regularly or-
bicular R/G-modules. An indecomposable orbicular R/G-module X in mod (R/G) is
called non-regularly orbicular provided there exists no R-action of the stabilizer Gpg
on a periodic G-atom B such that X ~ &(B»)(V), for some (indecomposable) V in
mod (kGp)° (see 2.1). In a discussion of our problem we use the generalized tensor
product for the sequences B(f,s) consisting of several copies of the same periodic G-
atom B, dependent on some endomorphism f € Endg(B) and certain finite sequence
s = (82,...8,) of positive integers. Applying this construction, we define the functors
PB9) - I -spr (kG ) — mod (R/G), where I,,-spr (kGp) denotes the category of finite-
dimensional n-filtered kG g-modules. We study a behavior of these functors with respect
to possibility of creating indecomposable non-regularly orbicular R/G-modules. The
main result of the paper, Theorem 2.2, asserts that under specific assumptions expressed
in terms of certain conditions on the structure of the endomorphism algebra Endg(B),
the restrictions of #B(f%) to some subcategories of I,,-spr (kG p) are representation em-
beddings (in the sense of [32], see also 1.3). Moreover, they furnish large, usually wild,
families of searched modules. The idea used in the proof relies on the replacement of
R/H-modules with a fixed direct summand support (see 1.3, they seem to form to a
narrow class for making internally some covering construction), by more friendly world
of the so-called maximal Cohen-Macaulay modules over skew group algebras (see Theo-
rem 3.3). We study this class of modules by considering its analogue for weakly locally
bounded categories with a trivial action of a fixed group (we introduce the correspond-
ing notions in 4.1 and 4.4). We adopt into that context the generalized tensor product
construction (see Theorem 4.5) and formulate a variant of the classical Galois covering
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scheme (see Theorem 5.4). Finding a common platform which allowed for simultaneous
applying and efficient combining of these two concepts, is a crucial point of the proof.

The paper is organized as follows. In Section 1 we recall basic definitions and fix
notation used in the paper. Section 2 is devoted to a discussion of properties of the
functors #B(/%) for various sequences s. There a precise definition of non-regularly
orbicular module is given and the main result of the paper, Theorem 2.2, is formulated.
In Section 3, Theorem 3.3 about interpretation of the category mod g (R/H) in term
of the category of maximal Cohen-Macaulay modules over the skew group algebra EH
is proved, where F is the endomorphism algebra of direct sum of all G-atoms from
PB,. In Section 4 the notion of a weakly locally bounded k-category is introduced. It
is shown there that indecomposable maximal Cohen-Macaulay modules over &H (H is
a group operating trivially on objects of a weakly locally bounded category &) have
local endomorphisms rings (see Theorem 4.2). Moreover, the construction of generalized
tensor product is adopted into a context of the category CM (€ H) (see Theorem 4.5).
Section 5 is devoted to Galois coverings for weakly locally bounded categories equipped
with an action of a fixed group H that acts trivially on objects. Theorem 5.4 shows that
the “push-down” functor associated to a Galois covering behaves nicely in restriction to
categories of maximal Cohen-Macaulay modules. Also the concept of the Galois coverings
associated to suitable gradings is discussed there. Section 6 is devoted to the proof of
Theorem 2.2. The properties of the induction functor and the left Kan extension functor
in a context of maximal Cohen-Macaulay modules are studied there (see Lemma 6.1 and
Proposition 6.2).

1. Preliminaries.

Throughout the paper we use the notation and definitions established in [5], [7],
[9]. Nevertheless, for a benefit of the reader, we briefly recall the general situation and
notions we deal with in the paper.

For basic information concerning representation theory of algebras (respectively,
rings and modules, notions of theory of categories) we refer to [31] (respectively, [1],
[23)).

1.1.

Let k be a field (not necessarily algebraically closed) and R be a k-category, that is,
each set R(x,y) of morphisms from z to y in R, z,y € ob R, is the k-linear spaces and
composition in R is k-bilinear. By an R-module we mean a contravariant k-linear functor
from R to the category of all k-vector spaces. We denote by MOD R the category of all
R-modules. We denote by _Zr the Jacobson radical of the category MOD R.

Let R be a locally bounded k-category, that is, all objects of R have local endomor-
phism rings, the different objects are nonisomorphic, and the sums 3, dimy R(z,y)
and 3 pdimy R(y,z) are finite for each x € R. An R-module M is locally finite-
dimensional (respectively, finite-dimensional) if dimy M (x) is finite for each © € R
(respectively, the dimension dimy M = ) _.dimy M(x) of M is finite). We denote
by Mod R (respectively, mod R) the full subcategory of all locally finite-dimensional
(respectively, finite-dimensional) R-modules and by Ind R (respectively, ind R) the full
subcategory of all indecomposable R-modules in Mod R (respectively, mod R). By the
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support of an object M in MOD R we mean the full subcategory supp M of R formed by
the set {x € R : M(zx) # 0}.

For any k-algebra A we denote analogously by MOD A (respectively, mod A) the
category of all (respectively, all finite-dimensional) right A-modules and by J(A) the
Jacobson radical of A. Clearly, MOD A can be always interpreted as MOD R(A), where
R(A) is a k-category consisting of one object with the endomorphism k-algebra equal to
A.

To any finite full subcategory C' of R we can attach the finite-dimensional algebra
A(C) = B, yeon ¢ R(z,y) endowed with the multiplication given by the composition in
R. Tt is well known that the mapping M — @, .., ~ M(z) yields an equivalence

mod C' ~ mod A(C).

1.2.

Let G be a group acting by k-linear automorphisms on a k-category R. Then G
acts on the category MOD R by translations 9(—), which assign to each M in MOD R
the R-module 9M = M o g~ ! and to each f : M — N in MOD R the R-homomorphism
9f : IM — 9N given by the family (f(¢~1(z)))zer of k-linear maps.

Given M in MOD R, the subgroup

Gu={9€G:'M ~ M}

of G is called the stabilizer of M.

Let R be a locally bounded k-category. Assume that G acts freely on the objects
of R (that is the stabilizer G, is trivial for every = € ob R) so it can be regarded as a
subgroup of Auty_c.t(R). Then the orbit category R/G of the action of G on R is again
a locally bounded k-category (see [19]). One can study the module category mod (R/G)
in terms of the category Mod R using the pair of functors

Fy
MOD R == MOD (R/G)

where Fo : MOD (R/G) — MOD R is the “pull-up” functor associated with the canonical
Galois covering functor F': R — R/G, assigning to each X in MOD (R/G) the R-module
X o F, and the “push-down” functor F) : MOD R — MOD (R/G) is the left adjoint to
F,.

The classical results from [19] asserts that if G acts freely on (ind R)/ ~ (that is
Gy = {idg} for every M in ind R) then F) induces an embedding of the set ((ind R)/
~)/G of the G-orbits of isoclasses of objects in ind R into (ind (R/G))/~.

Let H be a subgroup of the stabilizer G of a given M in MOD R. By an R-action
of H on M we mean a family

1
M:(ﬂg:M_’g M)gGH
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of R-homomorphisms such that p. = idys, where e = idg is the unit of H, and gflqu .
Hg, = Hgyg, Tor all g1,92 € H (see [19]). We note that if H is a free group then M admits
an R-action of H (see [4, Lemma 4.1]).

For any subgroup H of G we denote by MODYR (respectively, Mod? R) the
category consisting of pairs (M, u), where M is an R-module (respectively, a locally
finite-dimensional R-module) and g an R-action of H on M. For any M = (M, )
and N = (N,v) in MOD® R (respectively, ModHR) the space of morphisms from
M to N in MOD¥R (respectively, ModHR) consists of all f € Hompg(M,N) such
that 9_1f “pg = vg - f, for every ¢ € H, and is denoted by Homg(M7 N). Note
that Hom% (M, N) is the set of H-invariant elements in Homp (M, N) with respect to
the action Hompg(u,v) : H x Homg(M,N) — Hompg(M,N), given by the mapping
(9,f) = Wy9f pg-1, g € H, f € Homg(M,N). By Mod 'R we denote the full sub-
category of the category Mod” R formed by all (M, i) such that supp M is contained
in the union of a finite number of H-orbits in R (see [19], [13], [4]). Then the functor
F,, associating with any X in mod (R/G) the R-module F¢ X endowed with the natural
R-action of G, yields an equivalence

mod (R/G) ~ Mod €R.

The main notions of this paper refer to the structure of objects from Mod fG R (conse-
quently, mod (R/G)) based on the concept of G-atoms. Following [4], an indecomposable
R-module B in Mod R (with local endomorphism ring) is called a G-atom (over R) pro-
vided supp B is contained in the union of a finite number of G g-orbits in R. The G-atom
B is said to be finite (respectively, infinite) if Gp (equivalently supp B) is finite (respec-
tively, infinite).

Denote by o7 a fixed set of representatives of isoclasses of all G-atoms in Mod R,
by <7, a fixed set of representatives of G-orbits of the induced action of G on &/ and for
any B € o/, by Sp a fixed set of representatives of left cosets of Gp in G, containing
the unit idg of the group G. One can show that the category mod (R/G) is equivalent
via F, to the full subcategory of ModfG R formed by all possible pairs (M, 1), where
n = (nB)Becw, IS a sequence of natural numbers, such that almost all ng are zeros, M,
an R-module given by the formula

= @ (@)

Bed, “geSB

and p an arbitrary R-action of G on M,,. Therefore to any module X in mod (R/G) one
can attach the direct summand support dss(X) of X which is the finite set consisting of
all B € 4/, such that np # 0.

For any % C 4, one can study the full subcategory mody (R/G) of mod (R/G)
consisting of all X in mod (R/G) such that dss(X) C %.

1.3.
Following [9], an indecomposable module X in mod (R/G) is called orbicular (cf.
[19]) provided dss(X) = {B}, for some B € 4. This condition simply means that in



1082 P. DOWBOR

a decomposition of the R-module F, X into a direct sum of indecomposables occur only
G-atoms contained, up to isomorphism, in one orbit of G in «7. The module X is called
non-orbicular if X is not orbicular. The additive closure of all indecomposable orbicular
R/G-modules can be presented as a splitting union

\/ modg(R/G),

Bed,

in the sense of [9], whereas, indecomposable non-orbicular modules are those objects of
ind (R/G), which lay out of \/ 5, modp(R/G), where modp(R/G) = modpy (R/G).

The category of orbicular modules forms an essential part of the category
mod (R/@). Recall that if R/G is representation-finite then all R/G-modules are or-
bicular (see [19], [24]). According to a general conjecture, all R/G-modules would be or-
bicular in the tame case (especially those which belong to 1-parameter families). Roughly
speaking all R/G-modules which occurred up to now in the Galois covering context (in
representation-finite and tame case) were orbicular. Moreover, they were described by
use of the following construction.

Suppose that a G-atom B admits an R-action vg of G on itself (this is always the
case if the group Gp is free). Then F)B carries the structure of a kG g-R/G-bimodule,
which is finitely generated free as a left kG g-module, where kGp is the group algebra of
Gp over k (see [13, 3.6]). This bimodule induces a functor

dB:ve) — _ ®rap FaB : mod kGp — modp(R/G)

which is a representation embedding, provided the field Endg(B)/J(Endgr(B)) is equal
to k (see [5, Proposition 2.3]). (Following [32], a k-linear functor T : mod A; — MOD A,
between module categories of finitely generated k-algebras A; and As, is a representation
embedding, provided it is exact and induces an injection between the sets of isomorphism
classes of indecomposable modules.) Note that if Gp is trivial then kG ~ k and if Gg
is an infinite cyclic group then kGp is isomorphic to the algebra k[t,t~!] of Laurent
polynomials. We refer to [13], [4], [7], [9] for more details about the functors

{@(B,VB)}BG% : H mod kG g — mod (R/G)
Bew

where % consists of cyclic G-atoms.

1.4.

Let H be a group. Then left modules over the group k-algebra kH are just k-
representations, so each module V' in MOD (kH)°P is uniquely represented by a pair
(V, 1), where V' is a k-vector space and p : H — Autg (V) is a group homomorphism.

For any n € N, we denote by I,-spr (kH) the chain category whose objects are
sequences of the form

Ve Vlg%ggvn—lgvn
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where V;, 1 =1,...,n—1, are kH-submodules of a left finite-dimensional kH-module V,,,
and the set of morphisms from V to V' consists of all kH-homomorphisms f :V,, — V!
such that f(V;) CV/ for every i =1,...,n —1 (see [9], [33]).

Suppose we are given a sequence

B: B2B—..—B, 8B, (%)

in Mod” R, that is all objects B; = (B;,v;) are in Mod” R (B; is an R-module and
v; is an R-action of H on B;) and all R-homomorphisms ; are morphisms in Mod’ R
(B; are compatible with the actions). We denote by § = 3(B) the family (8;;(h) =
(Wi)nBi,j : Bj — hilBi)lgiJén, ne, of R-homomorphisms, where the R-homomorphisms
(ﬂi,j : Bj — Bi)lfi,jfn are defined as follows:

Bit1---- B if i<,
Bij = 1§ idp, if i=j,
0 if i>7.
Then for any object

in I,-spr (kH), V, = (Vy, ), one constructs an object V@, B = (V& B, ®4 3) in
Mod?” R [9], where V = (V) i=1,..n is a fixed sequence of complementary direct sum-
mands for V' (V is a sequence of subspaces V; of V such that V1 =V, and V; = V,_1 @V,
fori=2,...,n). We set

VerB :®Yi ®r B; ,
i=1

and p®i8 = (LB : VOrB — h_l(Y®kB))h€H, where R-homomorphisms (y®g03)n,
h € H, are defined as the matrix R-homomorphisms

[(R)ig @ Big ()] 1<i.5n 69 V; @ B; H@ (V; 0. By)

(u(h) = [m(h)ijli<ij<n is the matrix presentation of the k-automorphism u(h) :
D)V, — DLV, for h € H). It is not hard to check that the data (V®j, B, u @y )

defines correctly an object V ® B in Mod? R. Moreover, V ®; B belongs to Modf{R
provided so do all objects B; = (B;,v;), i =1,...,n
The above construction can be extended to a functor

— @B : I,-spr (kH) — Mod” R



1084 P. DOWBOR

(we set V @ B =V ®y B), called the generalized tensor product functor. So in the case
all objects B; belong to Modfl R, we can define the composite functor

&8 . I,-spr (kH) — mod (R/G)

which is given by the composition

~@xB Hp 0 GpF

I,-spr (kH) — Mod; R — Mody"R —— mod (R/G),

where F; ! is a fixed quasi-inverse for F, : mod (R/G) — Mod{' R, and
0 = 6% : Mod R — Modf R

is the induction functor assigning to any M = (M, x) in Mod f' R, the object §(M) =
(Bgresy M, u) in Mod{' R. (Here Sy is a fixed set of representatives of G/ H containing
e = idg, u¢ a standard R-action of G induced by p, consisting of the R-isomorphisms
1S @y 5, M — @9265H97192M, g € G, given by the families 911, : M — 9 92)/,
g1 € Sy, where go € Sy and h € H are determined by the equality gg1 = ga2h; see [9,
3.1] for the precise definitions).

The functors ¥ introduced in [9] were used for studying non-orbicular modules,
where the sequences B were formed by pairwise different periodic G-atoms with a com-
mon stabilizer H. This construction was, in a natural way, an extension of that described
in 1.3. More precisely, ®% = &(B1:¥1) for n =1 (see [4, Proposition 2.3]).

2. The main result.

2.1.
In the paper we study a certain class of indecomposable orbicular R/G-modules
distinguished in internal terms of coverings, for a given Galois covering F': R — R/G.

DEFINITION. Let B be a G-atom in Mod R. An indecomposable (orbicular) R/G-
module X in modp(R/G) is called regularly orbicular provided there exists an R-action
of G on B such that

X ~oBM)(V)

for some (indecomposable) V' in mod (kG p)°".
An indecomposable (orbicular) R/G-module X in modg(R/G) is called non-
reqularly orbicular if it is not regularly orbicular.

Note that preselection of a G-atom B in the definition does not restrict generality
and does not cause any problems, since each indecomposable orbicular R/G-module
belongs to precisely one subcategory modg(R/G), B € 4.

We present a construction which shows (under some circumstances) an existence of
indecomposable non-regularly orbicular R/G-modules appearing in large, usually wild
families.
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2.2.

Let B = (B,v) be a periodic G-atom together with a selected R-action of G on
itself. For simplicity we denote by H the stabilizer G of B. For any H-invariant
endomorphism f € Endgr(B) and sequence s = (ss, ... s,) of positive integers, n > 2, we
denote by B(f,s) a sequence

B: B 2B —...—B, 2B,

of objects and morphisms in the category in Mod* R such that all objects B; = (B;, ;)
are equal to B and §; = f%, for : = 2,...,n. We obtain the functor

d8 = ¢B%) - [ -spr (kH) — modp(R/G) .

We assume that f52+s» - (. Note that if f € Endg(B) is nilpotent and r = r(f) € N
is a nilpotency degree of f then the longest possible sequence 5 = 3(f), with that property,
has the form 5§ = (8g,...,5,), where 5o = --- =35, = 1.

Before we formulate the main result of this paper we recall some definitions and fix
a notation.

Toany V= (V3 CVo C---CV,) in I,-spr (kH) we attach the coordinate vector

cdn(V) = (du, ..., dy)

in N™, given by d; = dimy, V;/V;—1 (Vp = 0), and the coordinate support csupp(V') which
by definition is the increasing sequence consisting of all ¢ € {1,...,n} such that d; # 0.
We say that the object V is sincere if all coordinates d;, ¢ = 1,...,n, are nonzero.
By I,-spr’(kH) (respectively, I,-spri(kH)) we denote the additive closure of the full
subcategory formed by all indecomposables V' in I,,-spr (kH) such that cdn(V') has at
least two nonzero coordinates (respectively, the first coordinate of cdn(V') is nonzero).
By I,-spr’(kH) we denote the additive closure of the full subcategory formed by all
indecomposable V' in I,-spr (kH) lying simultaneously in I,,-spr’(kH) and I,,-spr,(kH).
For a fixed sequence s as above, by Ip-spr . (kH) (respectively, In-spr;(s) (kH)) we
denote the additive closure of the full subcategory formed by all indecomposables V' in
I,-spr (kH) whose coordinate support csupp(V) = (u1, ..., un), m < n, has the property
that there exists no v/ = (uf,...,u,,) € N™, 1 <} < -+ < ul, < n, satisfying the
condition

Syl41t - TSy, = Syt Sy,
' : ()

su/1+1—|— cor TSy = Syy41t . Sy,

m
or equivalently,
su/1+1—|—... —i—sué = Suj4+1t+ oo Sy,

Su;n_lJrl—i— R —i—su;n = Supy_1411F -+ +Su,,



1086 P. DOWBOR

such that u] < u; (respectively, all indecomposables lying simultaneously in I,,-spr’(kH)
and I,-spr(5)(kH)). Clearly, always I,,-spr1(kH) is contained in I,-spr ) (kH). Note

that if s = --- = s, = 1 then I-spr)(kH) = I,-spri(kH) since for any V in
I,-spr (kH) with uy > 1, csupp(V) = u = (uy, ..., un), one can take for v’ any of the
sequences ufi] = (ug —14,..., Uy — 1), where u,, —n < i < uy —1 (we discuss the meaning

of this effect in 2.4).

THEOREM. Let B = (B,v) be a periodic G-atom with a fivzed R-action of the
stabilizer H = Gp, such that Endgr(B)/J(Endg(B)) ~ k. Assume that the algebra
Endg(B) admits a grading Endgr(B) = @. ., Ey by an infinite cyclic group I' = Z,
satisfying the following conditions:

(a) each E,, v € I, is an H-invariant subspace and E, = 0, for almost all v € I,

(b) there exists a homogeneous element f € End% (B) N J(Endg(B)) which admits
a surjective H-invariant algebra homomorphism m : Endr(B) — A, where A = k[f] =
@::_é kft, r=r(f), is the subalgebra of Endg(B) generated by f, such that m 4 = ida
and

yel’

kfr if v =0,
m(Ey) = .
0 if v<0.

Then for any f as above and a sequence s = (Sa, ..., 8n,) of positive integers, n > 2, such
that so + - - + s, < 1, the restriction of the functor

@B(f,s) : In_spr (kH) — mod (R/G)

to the category I,-spr s (kH) is a representation embedding. Moreover, the all in-
decomposables from modp(R/G) lying in the image of the restriction of ®PUF*) to
In—spr;(s)(kH) are non-reqularly orbicular indecomposable R/G-modules. In particular,
the full subcategory formed by all indecomposable non-regularly orbicular modules from
modg(R/G) is wild, provided n > 2 and H has a factor which is an infinite cyclic group
(respectively, a cyclic p-group of order greater than 7, if chark = p > 0).

Note that all maps f%, i =1,...,n, are morphisms in Mod 7 R (see 1.2 and 3.2) and
that f is nilpotent since Endg(B) is semiprimary (see [7, Theorem 2.9]).

A complete proof of the theorem (together with closer explanation of the real mean-
ing of the assumptions) is given in Section 6. It needs several preparatory results.

2.3.

We start by analyzing quite general problem when an R/G-module of the form
PB(f9) (V) can be indecomposable regularly orbicular. We keep the notation introduced
in 2.2 (without assumptions of Theorem 2.2 on the structure of Endg(B)).

Let B’ = (B’,v') be another (cf. 2.2) periodic G-atom together with a selected
R-action of G on itself. Assume that Endz(B’)/J(Endg(B’)) ~ k. Then by

(B mod (R/G) — mod (kG p:)°P
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we denote the composite functor

mod (R/G) % Mod® 2% mod (kG /)P
where /7 = Homp(B',—)/_# (B’,—). Recall that the structure of kG p,-module on the
k-linear space Homg(B', M)/ _# (B', M), for M = (M, p) in Mod¥, is induced by the

k-linear action Homp(v/, 1) of the stabilizer G/ on the space Hompg(B’, M). We have at
our disposal the formula

— @y k) it B=B

gBY) o p(B.v) = (%)
0 if BB

where k(s ) = w(B:v)(B, V) is the representation of Gp in the space Endg(B)/
J(Endg(B)) (~ k) with the action of Gp induced by Hompg(v',v). In particular, we
have (see [5])

v 0 05 idmod ey,
and the functor
&F¥)  mod kG — modp (R/G)

is a representation embedding in the sense of [32].
Let

Gr : I,-spr (kH) — mod (kH)P

be the classical functor attaching to a filtered module V.= (V; C V5, C --- C V,,) in
I,,-spr (kH), the associated graded one, given by the formula

(V) = @ VifVis

Note that Gr(V) is a decomposable R/G-module whenever V' belongs to I,,-spr’(kH).
We can formulate the following important, for the proof of Theorem 2.2, result.

LEMMA. Assume that B’ = B in Mod R and that f belongs to J(Endg(B)). Then
the endofunctors

(— @ k@, 1)) o Gr, (B o eBUS) [ spr (kH) — I,-spr (kH)

are tsomorphic.
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PROOF. Fix an object V.= (V3 C Vo C--- CV,) in I,-spr (kH). Then we have
the sequence of kH-isomorphisms

(B o eBUS) (V) ~ %(B, P (EBV Ok B))

Note that, by the definition of Sg, the decomposition

&P 9(6”5% ®kB> = (EEV ®kB) @( T 9(@1/ ®k~B>)

geESH i=1 e#gESH i=1

of R/G-modules (see also definition of the induced R-action of G), and the equality

%”(B, b g<éVi®kB>>:o

e#9g€Sn i=1

hold. Moreover, the standard k-isomorphism

%(B,évi ®k3) ~ é%(B,yi ® B)

i=1 i=1

yields in fact a decomposition into a direct sum of kH-modules (the action of H on
V; is given by the family p . = (uii(h))hen) since all but the diagonal components
of the matrices (1 @ B(f, 5))(h), h € H, defining the R-action of H on the R-module
V& B(f,s), belong to the Jacobson radical #. Finally, for B’ = (B’,v') with B’ = B
(as R-modules), the k-linear maps V; ® Hompg(B’, B) — Hompg(B’,V, ® B), given by
the mapping v®@t — v@t(—), v € V,;, t € Hompg(B’, B), are H-invariant with respect to
the standard actions induced by . - and Homp(v/,v). They yield the kH-isomorphisms

Yi ®kk(l/’,u) = ‘}?(B/ayz ®kB)

i1 =1,...,n; in consequence, the kH-isomorphism

Gr(V ®kky’y) @V@kk‘yyﬁ@j@(B”Yi@kB).

i=1
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It is easy to check that the composite kH-isomorphism
B o B (V) ~ Gr(V) @i k()

is natural with respect to V in I,,-spr (kH). d

COROLLARY.  For any V in I,-spr’(kH), ®B3)(V) is not an indecomposable
regularly orbicular R/G-module.

PROOF. Suppose that B/ (V) is a regularly orbicular R/G-module, where V' is
as above. Since #P(#)(V) belongs to modp(R/G), we have #BU3) (V) ~ &B"¥) (W)
for some indecomposable! kH-module W, where B’ = B and v/ is an R-action of H on
B. Then by the lemma and the formula (xx) it follows that

W ~ GT(V) Rk k(z/,u) .

On the other hand the kH-module Gr(V) has the decomposition Gr(V) = @;_, Vi/Vi_1,
therefore Gr(V) @ kqr, vy ~ @i (Vi/Vic1 @k k(1)) , and the kH-module Gr(V) @,
k@ ) is mot indecomposable since V belongs to I,-spr’(kH), a contradiction.
Consequently, ®#5(/*)(V) can not be an indecomposable regularly orbicular R/G-

module. O
2.4.
Next we discuss the problem how can the fibers of the functor #5(+%) look like.
For any m < n and a sequence u = (u1,...,un) € N™ such that 1 < uy < ugy <

- < Uy < n, we denote by IV-spr(kH) the full subcategory of I,-spr(kH) formed
by all V = (V4 C --- C V,) such that csupp(V) is contained in u (regarded as a set).
Moreover, we denote by

en: I-spr (kH) — I,-spr (kH)
the full embedding given by (V4 C --- C V) — (V{ C --- C V), where Vj’ = 0 for
J<wu, V] =Viforu <j<uy,i=1..,n-1 and V] =V, for j > uy (in
particular cdn(e¥(V)); = cdn(V); if j = u; for some ¢ and cdn(e¥(V)); = 0 otherwise).
It is clear that € yields the equivalence

I,-spr (kH) ~ I'-spr (kH)

of categories. Consequently, for any increasing sequences u,u’ € N™ of positive integers
., .
as above, the functors € and €} induce the equivalence

ey v I;f/—spr (kH) — I'-spr (kH)

of categories; in particular, I[*-spr (kH) ~ I;f[i]—spr (kH) for any i, upy, —n <i<wup — 1.
Assume we are given a sequence s = (S2,...,8,) of positive integers such that
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sot-+s, <r=7(f). Foranyu € N™ 1 <uy <ug < -+ < Uy, <n, wedenote by s(u)
the sequence s(u) = (s(u)z, ..., s(u)m), where s(u); = Suy,_, 41+ -+ + Su;, . = 2,...,m,
and by @° the minimal with respect to u} increasing sequence v’ € N™ of positive
integers, satisfying together with u the condition (%) (generally 1 < u} < uy, but it can
happen 1 < uj or even u} = u1). Then the equalities (') mean exactly s(u) = s(u’). It
is also clear that indecomposable V' in I,,-spr (kH ) belongs to I,-spry,)(kH) if and only
if u = @®, where u = csupp(V).

LEMMA. (a) Let u € N™ be a sequence as above. Then the functors
PBUS) o gu @B . [ _spr (kH) — mod (R/G)

are isomorphic.

(b) Let u = (u1,...,Um) and v’ = (u},...,ul,) be a pair of sequences in N™ such
that 1 <up <ug <+ < Uy <nandl <u) <up <---<u,, <n. Assume that u and
u’ satisfy the equalities (%) for s. Then the functors

dBUs) ot @BUS) o . I, spr(kH) — mod (R/G)
are isomorphic; equivalently, the functors
PP et iy 0 € D2 ) < Ii-spr (kH) — mod (R/G)

are isomorphic.

(¢c) Let V and V' be a pair of objects in IL,-spr(kH) with csupp(V) = u and
csupp(V') = o/, where u = (uy,...,um) and v’ = (uy,...,ul,). Assume that u and
u' satisfy (x) for s (in particular, this is the case if v’ = @®). If there exists a sincere
object V" in I,-spr (kH) such that V = e%(V") and V' = ¥ (V") then the R/G-modules
DB (V) and $BU) (V') are isomorphic.

(d) The full subcategories of mod (R/G) formed by all modules in the images of the
functors ®BF3) and QB(f’S)\In—sprl(s)(kH) are equivalent. Moreover, for any V and V'

1

in I,-spr (kH) with coordinate supports u and u', respectively, we have DB (V)
DL (VY if and only if PEE) (V) ~ SBUS) (V) where V = (V) and V'
gt (7).

Proor. (a) Let V. = (V4 C Vo C --- C Vi), Vi = (Vin, 1), be an object in
I-spr(kH). We set V! = (V). V' is the object of I,,-spr (kH) given by V/ C Vj C
.-+ C V! defined as above, and V) = (V,!, ') = (Vin, p). Fix a sequence of complementary
direct summands V = (V;);=1,...m for V. Then the sequence V' = (Y’j)j=17...7n, given by
V.=V fori=1,...m, andl/j =0forje{l,....,n}\ {u1,...,un}, is a sequence of
complementary direct summands for V’. Therefore, we can assume that V' ®; B(f, s) is
equal to

V'@ B(f,s) = <®V§ @k B, 1 ®kﬂ)
j=1
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where 8 = B(B(f,s)) and the R-homomorphisms (1’ @ ) : @?:1 V@B — @?,:1
h‘l(yj, ®r B), h € H, defining the R-action p’ ®; 3 of H, have the upper-triangular
matrix form, with the components p'(h);, j ®p (vp, f5/ #1755 for 1 < j/ < j < n (see
1.4). Since V; = 0 for j # uy, ..., Uy, we have the canonical R-isomorphism

@Y;@;CB:@YZ-@;CB (k)
j=1 i=1

and under this identification (u ®y §)n corresponds to the upper-triangular matrix R-
homomorphism with the components pu(h)y ; ®p (vp f5 T %) for 1 <4/ <i<m
(compare components of p(h) and p'(h)). On the other hand V @, B(f, s(u)) is given by

VerB(f, s(u) = <@ V; @k B, p®y ﬂ“)
i=1

where % = B(B(f, s(u))) and the R-homomorphisms (u®5"), : @i, V;@rB — @),
h‘l(yi, ®iB), h € H, defining the R-action p ®; 8* of H, are given by the upper-
triangular matrix with the components p(h)y ; @y (vp W+t ts@iy for 1 < ¢/ <
i < m. By the definition of s(u) we have s(u)yj1+ -+ s(u); = Sy, 41+ + 5u,.
Consequently, (x#x) yields the isomorphism V' ®x B(f, s) ~ V®; B(f, s(u)) in ModﬁIBR
and induces the R/G-isomorphism 7(V) : @BU8)et (V) — $BU: ) (V). Tt is easy to
check that (7(V))veob 1,,-spr (k) s an isomorphism of the appropriate functors.

The assertion (b) follows from (a), since by (x), we have s(u) = s(u’), (¢) is a
consequence of (b), (d) follows from (b) and (c). O

We apply the lemma to the longest (for a given f) sequence § = 5(f), with all r — 1
components equal to 1. We denote for simplicity by B(f) the sequence

B(f,5(f)): BiLBye—--—B,,LB,

(B; = B for every ¢ = 1,...,r); consequently, @B(f) = pB(f5) Then we obtain immedi-
ately.

COROLLARY. (a) Let V be an object in I.-spr(kH) with csupp(V) = u, u =
(U1,...,um), V' the corresponding to V sincere object in I-spr (kH) such that V =
e“(V"), and s the sequence s = (ug — U1, ..., Uy — Um—1) (= §(u)). Then the R/G-
modules DEE*) (V") and B (V) are isomorphic. Moreover, the functors

dBFs) B o v . [ -spr(kH) — mod (R/G)
are isomorphic, in fact for any arbitrary sequence u = (ug, ..., Um), 1 <ug <ug < -+ <

U < 1, where s is given as above.
(b) Let uw = (u1,...,um) € N™ be a sequence such that 1 < uj < -+ < Uy < 7.
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Then for any i, 7 — Uy, <@ < uy — 1, the functors

dB ) ogu B ol . I _spr (kH) — mod (R/G)
are isomorphic; equivalently, the functors

P i © €8 DD 1oy < I-spr (RH) — mod (R/G)

are isomorphic.

(¢) Let V' be an object in I.-spr (kH) with csupp(V) = (u1,...,um) and V' be a
sincere object in In,-spr (kH) such that V- = e(V'). Then for any v’ = uli], where i is
as above (in particular, for v' = (1, ug — w1 + 1,...,um —uy + 1)), the R/G-modules
BBO (V) and B e (V') are isomorphic.

(d) The full subcategories formed by all modules in the images of the functors ®5)
and QSB(f)\IT—sprl(kH) are equivalent. Moreover, for any V and V' in I.-spr (kH) with

coordinate supports u and u', respectively, we have ®B) (V) ~ &B)(V') if and only if
DBt (V) ~ @B(f)af/’“/(V'), where @ = ufu; — 1] and @’ = u'[uf —1].

REMARK. The above results do not answer the basic questions concerning the
functor 59)] L-spry(s)(kH): when OB (V) =~ @BU3) (V') for indecomposables V, V'
in I,,-spr (s (kH), and if dB(+9) (V) is indecomposable provided V is so.

2.5.
Now we study more precisely “intersections of the images by different functors
PB(5)” We formulate the answer comparing the functors 5/ to the functor ¢5),

LEMMA. (a) Let s = (s2,...,8,) be a sequence of positive integers such that so +
<48, <1, p € N apositive number such that p < r—(so+--+8,), andu = (uy,...,uy,)
the sequence given by u; = p+s1+---+s;, i =1,...,n (we set sy = 0). Then the functors

dBUS) $BU) o v [ _spr (kH) — mod (R/G)

are isomorphic. In particular, for any object V in I,-spr(kH) there exists V' in
It-spr (kH) (V' = 4(V)) such that the R/G-modules ®PF*) (V) and &BEH (V') are
isomorphic.

(b) Let s be as in (a), V an object in I,-spr(kH) with csupp(V) = u, u =
(U1, ..., um), and V' the corresponding to V sincere object in I,-spr (kH) such that

V = el (V'). Then for any pair of sequences, the sequence u' = (uf,...,u.,) of pos-
itive integers, 1 < uj < -+ < ul, < n, satisfying (x) together with u, and the se-

quence v = (P, P + Sy 41 + -+ + Sugs-- 3D+ Suy41 + -+ + Su,,) determined by p € N,
1<p<r—(suyy+1+--+ Su, ), we have the R/G-isomorphisms

P (V) = @BUI (V1) = 2P (V1)

i particular,
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BN (V) 2 GPUD (V) 2 6Pt (o) (V)

where v = (1,14 Sy, 41+ + Sugs-- -y L+ Suy41 + -+ Su,, )-

PrROOF. Note that s = 5(u) and (a) follows by applying Lemma 2.4(c) and Corol-
lary 2.4(c). To prove (b) we use similar arguments. d

Combining the lemma and the facts from 2.4 we obtain the following result.

PROPOSITION.  (a) The full subcategories of mod R/G formed by all modules in
the images of the functors ®B(fs) (respectively, @B(f’s)‘In_sp,.l(s)(kH)), for all sequences
s, and all modules in the image of the functor @B(f)| I,-spry (kH) aT€ equivalent.

(b) Let s = (s2,...,8,) and s’ = (s),...,s,) be a pair of sequences of positive
integers such that so+- - -+8p, sh+---+s,, <7, andw = (w1,...,wy,), w = (Wh,...,w,)
be a pair of increasing sequences of positive integers such that wy,w!,, < r, satisfying the
equalities w; — wi—1 = S;, for i = 2,...,n, and w), —wy_1 = sy, fori =2,....0,
respectively. Then for any V in I,-spr(kH) and V' in L,-spr (kH) with coordinate
supports w = (U1,...,Uy) and v = (ui,...,ul,.), respectively, the following conditions
are equivalent:

() $PUN (V) = @0 (1)

(i) @PDer(v) =aPDer'(v7),

(iii) PBUet"u(y) = GBUS) Y (1),

(iv) Pl (er)~1(V) = #BUeY (e4)~1(V'), where v = (1,1 + 8y, 41 + -+ +
Sugy vy 1Sy, 414+ +8y, ) and v = (1,1—|—s;/1+1+~~~—|—s;/2,...,1+s;,1+1—|—-~-+s;,m/),

As a consequence of the above, the proof of the main assertion of Theorem 2.2,
stating that the functor QSB(f’s)IIn-sprl(s)(
the case of the sequence s = § and the functor @B(f)| I,-spr, (ki) (cf. also Remark 2.4).

In the next sections we develop the tools we need for the proof of that case (see 6.4).

ki) is a representation embedding, reduces to

3. Another description of the category modgpR/H.

Let B be a periodic G-atom together with a fixed R-action of v of G on itself.
The main aim of this section is to describe the category modp(R/Gp) in terms of the
module category of the skew group algebra of the stabilizer Gz over the endomorphism
algebra Endg(B), with respect to some natural action induced by v. We also express in
this language the functors used for creating R/G-modules, in particular the generalized
tensor functor.

3.1.

Let H be a group, E a k-algebra and ¢ an action of H on E which can be regarded
as a group homomorphism ¢ : H — Auty_aig(E), where Auty_,i4(F) denotes the group
of all k-algebra automorphisms of £. Then we denote by EH = E,H the skew group
algebra of H over E under the action o. By definition, F,H is the k-vector space

EH:@Eh

heH
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(gEh ~ gE, for every h € H) equipped with the multiplication given by the formula
erhi - esha = (e1(o(h1)(e2))) (hih2)

for hi,ho € H and ej,e; € E. It is a straightforward observation that E is in natural
way a subalgebra of EH, H is a subgroup of the unit group of EH and we have the
“relations”

h-e=o(h)(e)h

e € E, h € H, connecting this two embeddings. Therefore any left EH-module M
can be regarded as a k vector space equipped with structures of a left E-module and a
k-representation of H (that is a left kH-module), related by the equalities

in Endg (M), for all e € E, h € H. They can be rephrased in terms of elements in the
following form

h(em) = (a(h)(e)(hm))

forallme M,ec Fand h € H.
By analogy a right EH-module M is just a k-vector space equipped with the struc-
tures of right F-module and right kH-module related by the equalities

(mh)e = (m(a(h)(e)))h
or equivalently
(me)h = (mh)o(h=)(e)

for all m € M, e € E and h € H. The bijection (—)~!: H — H induces an equivalence
between the categories of left and right kH-modules. Consequently, by the last equal-
ity a right EH-module M can be regarded as a (left) k-representation of H equipped
simultaneously with a structure of a right F-module, such that

h(me) = (hm)a(h)(e) (%)

forallme M,ec€ Fand h € H.

Another approach to the above interpretation of right £ H-modules refers to fact that
the action o induces the action of H on the category MOD E by translations *(—), h € H.
Recall that to each M in MOD E, the translation " (—) assigns the module "M = (M, ),
where -4, : M x E — M is the multiplication given by the formula m-,e = ma(h=1)(e), for
m € M and e € E. Then any right FH-module M can be treated as a pair (Mg, 1), where
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M is aright E-module and p is the right E-action of H an M, that is the family p = (up, :
M — hilM)heH of E-homomorphisms such that y; = idy; and hiluhl “pp = pp,p for all
h,hy € H. The category formed by all pairs (Mg, ) and E-homomorphisms compatible
with E-actions of H is traditionally denoted by MOD # E. We will identify the categories
MOD (EH) with MOD ' E via the correspondence M +— (M, (h- : M — " 'M)pep),
where M is an EH-module given by original fashion data (see (x)).

It is clear now that the module Eg is equipped with the canonical natural structure
of a right EH-module, given by the E-action 7 = (o(h) : Eg — " (Eg))aen of H.
In the paper we will consider some special class of right FH-modules containing the
module (Fg,m); namely, consisting of all those M in MOD (FH) that Mg is a finitely
generated projective E-module. Following the idea of [2] we call these modules the
maximal Cohen-Macaulay EH-modules with respect to the algebra embedding E C EH.
The full subcategory of MOD (EH) formed by all EH-modules from this class will be
denoted by CM (EH) (= CMg(EH)).

3.2.

Let B = (B,v) be a fixed R-module together with an R-action of a subgroup H of
the group G on B (clearly, H C Gg). Denote by E the endomorphism algebra Endg(B).
Then the k-linear action

Homg(v,v) : HX E — E

given by the mapping (h,e) — v, "ev, 1, h € H, e € E (see [6]), induces the group
homomorphism

o:H — Auti(FE)

defined by the family o(h) =", "(=)vy-1 : E — E, h € H, of the maps.

LEMMA. (a) The inclusion Imo C Autg_ag(E) holds.
(b) If E = Hom®& (B, B) then EH (= E,H) is a group algebra of H over E in the

classical sense. In particular, this is always the case when E = k.

PROOF. (a) For any e, e’ € E, h € H we have "vy, "(ee/)v,—1 = ", hele’ vy 1 =
(" hevy 1) (v Me' vy -1) and Py Midg vy = Py idgngyvp-1 = idg. Consequently,
o(h) is an algebra homomorphism, for every h € H, and (a) is proved.

(b) Note that under the assumptions Im o = {idg}, so the first assertion is straight-

forward. The last assertion follows easily from the equality "(aidg) = aidppy, a € k,

heH. O
3.3.
Consider some special case of the situation discussed above. Let B; = (B;,v;),

i = 1,...,n, be a family of objects in Modf{R. We assume that all R-modules
B; are indecomposable (so H-atoms) and are pairwise nonisomorphic. We set %, =
{Bi,...,Bn}. Denote by B = (B,v) the direct sum of all objects B;, i = 1,...,n, in
Mod fIR, that is the pair consisting of the R-module B = @, B; and the R-action
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v=(B"()n: B, Bi— @, " 'Bi)nen of H (cf. [9]). We have the induced by v
action o : H — Autg_as(F) of H on the endomorphism algebra E = Endg(B).
Now we formulate the most important result of this section.

THEOREM. For B, = {By,...,Bn} as above, there exists an equivalence of cate-
gories

mod z,(R/H) ~ CM (EH)

where EH = E,H. If n =1, the equivalence has the form

modg(R/H) ~ CM (EH) (xx)

where E is a local algebra.
The proof of the theorem needs some preparation.

3.4.
Let B = (B,v), E and ¢ : H — Autg_as(F) be as in 3.2. We set EH = E,H.
Consider the functors

Hompg(B, —) : MOD R — MOD E

and

Hp = Hp,,) : MOD" R — MOD (kH)

assigning to any M = (M, p) in MOD® R, the left kH-module defined by the action
Hompg (v, p) on the k-vector space Hompg(B, M).

LEMMA. (a) The pair (Hompg (B, M),Homg(v, 1)) is a right EH-module.
(b) The mapping M +— (Hompg(B, M)g,Hompg (v, u)) defines a functor
Hp = H g, : MOD' R — MOD EH .

ProOOF. (a) It is enough to check (%) for an arbitrary module M = (M, p) in
MODR. Fix any e € F and f € Hompg (B, M). Then we have the sequence of equalities

Pup(fe)vp-r ="un " frevp—1 = "pn " frp-1) ("pn te vy 1)

and (*) holds for M.
The statement (b) follows immediately from functoriality of Hompg(B,—) and
KB, v)- O

3.5.
Now we return to the context of the last theorem. We assume that B = (B,v), E
and o : H — Auty_a;(F) are as in 3.3.
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ProproOSITION. The functor% : MOD? R — MOD EH restricts to an equivalence
of categories

Mod{’, R~ CM (EH). (%)

PrOOF. Denote by P;, i« = 1,...,n, the indecomposable projective E-modules
Hompg(B, B;). Recall that the functor Hompg (B, —) yields the isomorphism of the addi-
tive closures of %, in MOD R and {P;};=1,..» in MOD E. (In fact, the second closure
is equivalent to the category of all finitely generated projective E-modules). Therefore
Hp is faithful and we have %(Modﬁ@o R) C CM(EH), so we need only to show that
M is dense and full.

To prove density of Ay it is enough, for any object X = (X,a) in CM (EH),
X =, P dy,...,d, € Nyand a = (aj : X — "' X) e, to construct an R-action
() = (un : @, B — @, " 'B¥)nen of H on the R-module M = @, B¥, such
that the canonical E-isomorphism Hompg(B, M) ~ @, Pidi yields the isomorphism
Hp(X) ~ M in CM (EH), where M = (M, ().

Fix X as above. By the projectivity of P,;’s each E-isomorphism «y, : @), Pid"’ —
D, hilPZ‘di, h € H, is uniquely determined by the R-homomorphism f(h) =
(5 M)isssie - D@L B — O @i B, B = By, BYY = B, which
is given by an(nt) = (f77(h)is € O, @I, Homp(B,B") = @, " P, j =
1,...,n,t=1,...,d;, where 7r§ : B — Bj is the canonical jth projection in the ¢th copy
of P;. Note that in fact, we have ay(rt) = (fff(h))” e @, B, Homg(B;, B ¢
@r_, @ Homp(B, BY)) = @7, " 'P%. This follows from the fact that each stan-
dard primitive idempotent in E (the composition of the canonical jth projection and
jth embedding, j = 1,...,n) is o(h)-invariant, for every h € H (all v’s are diagonal!).
Let p(a) = (up : M — hilM)heH be the family of R-homomorphisms p;, defined by the
composite maps

h

n n

d; Un hlnd;
Ds —P" B
i=1 i=1

_1 n
_f(>h) @ }leZ{ii
i=1

where M = @, (v;)%. We show that p(«) is an R-action of H on the R-module M.
It is sufficient to prove that the formula

F(hah) = f(ha) - ("ol " f(R) - wpt) (i)
holds for all h, hy € H, since then we have

1
fnyn = MW7 f (b)) - v,

h71h71 h—l h—l h—lh —1 h—l y
=) ("l G ) ()

=0T ) oY - () ) =
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(clearly, by the construction of f(1), 1 € H, we have u; = idps). To prove (i) we compare
for any (i,s) and (l,u), 1 <4,1 <mn,1<s<d;, 1 <u<d, the (i,s)th components of
the equalities

ann (7 = (" an, - an) (7 (i1) ()

h,h1 € H, regarded as element of HomR(Bl,B(s)) (see below). For this purpose

(2

we compute the image ahl((f;”;i(h))j,t) of the element (f]tl"(h))jt € @i, P,

Hompg(By, BYY) € @, @/, Homg(B, B\") by an,, where an(n}) = (£ "(h));..
Note that each f;lu(h) € HomR(B,B]<t)) can be viewed in the form f;’l‘(h) =7l e,

where e = e;,(f'%(h)) € Endg(B) is given by the matrix with all but one components

gl
equal to zero, and only nonzero, the (7, )th component, equal to f;qf(h) € Hompg(By, Bj).
Therefore, for a fixed (j,t), we have

an, (f3' () = an, (75) -1 e = (f57"(B))is - o (ha) (e) -

Hence, the (i,s)th component of ahl(f;:f(h)) belongs to HomR(Bl,BZ(s)) C Homp

(B,Bl-(s)) and is equal to f;’jt(h1) (M w)n, - hlf;,’ﬂ(h) . (Vl)hl—l). Then, by (ii)(l,u),

for any (i,s) and (I,u) we have the equalities

U
<

TN GUED DI DR QYL A ORI (ii) ()

of elements in HomR(Bl,Bi(s)), where ap,n(m}) = (f77"(h1h))is € D, @le Homp
(By, Bi(s)) ch:, @g;l Hompg(B, BZ(S)). Consequently, (i) holds for all h, hy € H, since
by (ii)gi’s)), all components (1)§lss)) of the equality (i) hold, fori,l =1,...,n,u=1,...,d;,
s=1,...,d;. In this way u(«) is really an R-action of H on M.

Next we show that %(M) ~ X in CM (FH). By definition of p(«) and the action
Hompg(u(a),v) of H on Homg(B, M), we have

hey =" "y vy = f(h) - ("vpt Py vyea)

for all h € H and v € Hompg(B, M). In particular, for v = 775», j=1...,nt=1,...,d;,
we obtain

Bt = (2 ()i = on(r!)

: h,M . h_t _ ot > t
since "v," - "m; - vp-1 = m; by the definition (7]

; is regarded here as an element of
Homp(B, M)). Consequently, %(M, w(a)) ~ (X, «) and the functor Hp is dense.
To prove that J#p is full, it suffices to show that for any morphism ¢ : X — X’

in CM(EH), X = (X,a), X' = (X',o), X = D]_, dei, X' =@, Pidg‘7 the unique
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R-homomorphism 1) : @?:1 @?il B; — @, EB?,;:l B;, with coordinates z/)f:;-t7 i,j =
1,...,n, t =1,...,d;, s =1,...,d;, such that Hompg(B, M) = ¢, is compatible with
the R-actions p(a) = (up : M — " 'M)pen and ule) = (), : M — WM Ypen of H
on the R-modules M = @]_, B;jj and M' = @, Bf “, respectively. By definitions of
w(a) and p(a’), the required equality

—1 iee
ph - =""0-p, (iii)
for h € H, has the form
—1 ’ —1 —1 .
S EOR7 e e R (O 7 (iv)

where f(h) and f'(h) are determined by oy, and «}, as before. Therefore we need only
to show that

b f(h) = f(h) - (" L) (v)

in Homp(M, M’), for all h € H (apply to (iv) autoequivalence " ' (—) and then the
composition with V}]LW from the right).

We know that ¢ = Hompg(B, ), as a morphism in CM (EH), satisfies equalities
©-ap =ajy - @, for all h € H. Consequently, for any v € Hompg(B, M) we have

¥ (an (7)) = ap (7). (vi)
In particular, (vi) holds for v = nj*, for any [ = 1,...,n, u = 1,...,d;. To prove (v),
observe first that passing to components (I,u), (4,5'),i=1,...,n, s =1,...,d}, (v) has
the form

n dj n d;'
SNt ) =303 (e W) - (e GO

j=1t=1 j=1t'=1

of equality in HomR(Bl,Bl(S/)), where Bi(s/) = B; for every (i,s’). Next, that for any
(I,u), we have the equality

in @, @ggﬂ Hompg(B;, BZ-(S/)) ch:, @f}zl Hompg (B, Bl-(sl))7 as an immediate conse-
quence of the definition of f;’ J/(h)’s. Finally, we have also
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’
n 4

o (') = (Z S mC -y (W)hl))

j=1¢=1

1,8’

The final equality follows by arguments similar to those from the first part of the proof.
Namely, ¢7j* regarded as an element of @7_, @f/:l HomR(Bl,Bj(t )y € D), @fle
Hompg(B, BJ(-t/)) is equal to (7/};/}“)]}15’7 and for any (j,¢') we have

o, (") = (£ ) Cwn - (5") - )na))

i,8’

in @, @%_, Homp(B;, B®)) € @', @%_, Homp (B, B*"). We finish the proof by
observing that (v) holds if and only if it holds after passing to the components (V)Ef/l)“ ),
forall i,l =1,...,n, u=1,...,d;, s = 1,...,d}; but this is the case because the all
components (Vl)Ef/l)u)’ of (vi), for v = 7}, hold. In this way the proof of the proposition

is complete. O

PROOF OF THEOREM 3.3. Denote by F' : R — R/H the canonical Galois cov-
ering functor. As usually the “pull-up” functor F, : MOD (R/H) — MOD R induce the
equivalence

mod g, (R/H) ~ Mod {5 R. (st )

2

Consequently, the functors #3 and F! induces the equivalence mod @, (R/H) ~
CM (EH).

O

As consequence, we can give an alternative description of the functors PB V) =
— @k FA(B"), H = Gp, for a G-atoms B’ = (B’,1’). Recall that these functors are
used for constructing regularly orbicular indecomposable R/G-modules.

Consider the tensor product functor

— @k E : MOD (kH)®® — CM (EH)

defined by the mapping (V, u) — (V @y E, p® ), where p ® 7 is given by the homomor-
phisms pu(h) @o(h): V@R E —V@," E,he H (note that * (V@R E) =V @, E
since (V ®k E)E = V ®k EE)

COROLLARY. Letn =1. The functors
(M0 Fl)o (- @pn Fi(B1)), —®, E: MOD (kH)®” — CM (EH)

are isomorphic.

PROOF. Apply the description of (k) as a composition of (k) and (xxxx) (see
[4, 2.3]), and the fact that canonical k-isomorphism Hompg(B1,V ®; B1) ~V ®; E is a
natural, with respect to V' in MOD (kH)°P, EH-homomorphism. O
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3.6.

One can also consider more general situation and form the object 6% (B) in Mod fG R,
for B = (B,v) is as in 3.3, where #% : Modf’ R — Mod{’ R denotes the induction functor
(see 1.3). The object 05 (B) is a pair (B, #), where B = @ g, 9B (= @, cs, Biey *B:)
is an R-module and 7 = 1© is a standard R-action of G on B induced by v. We denote
byo:G— Autk,alg(E) the action given by Homp(7, 7) of G on E = Endg(B) induced
by U (see 3.2).

One can prove the result analogous to Proposition 3.5 and Theorem 3.3.

THEOREM. Assume that all objects B; are periodic G-atoms with a common sta-
bilizer H = G, fori=1,...,n. If the index |G : H] of H in G is finite, then we have
the equivalences

modg, (R/G) ~ Mod S@OR ~ CM (EG)

of categories, where EG = E5G.

REMARK. If [G : H] is infinite then CM (E5G) is not the right object to de-
scribe modg, (R/G) (the algebra E should be replaced by the category, namely, the full
subcategory of Mod R formed by the set B = {9B;}i=1,... n;gesn)-

4. Categories with a trivial action of group on objects.

4.1.

To study the category modg(R/H) we construct certain covering of the category
CM (EH). For this purpose we need some generalization of the notion of locally bounded
k-category.

DEFINITION. A k-category & is called weakly locally bounded provided & satisfies
the following three conditions:

(a) x =y if and only if z =y, for all x,y € ob &,

(b) &(x,x) is a local semiprimary k-algebra for every xz € ob &,

(c) for any x € ob &, &(z,y) = 0 (respectively, &(y,z) = 0) for almost all y € ob &.

We usually consider weakly locally bounded categories & satisfying the following
extra condition:
(d) &(x,2)/J(&(z,x)) =k, for every z € ob&.

Note that any locally bounded k-category & is weakly locally bounded ; moreover,
if k is algebraically closed field then (d) is satisfied for &.

The lemma below presents an example being a motivation of the introduced notion.

LEMMA. The full subcategory & = &(AB) of Mod R, formed by any finite set B =
{B4i,...,B,} of pairwise nonisomorphic G-atoms, is a weakly locally bounded k-category.
Moreover, if k is algebraically closed field then & satisfies the condition (d).

PROOF. The first assertion follows immediately from [7, Theorem 2.9]. To prove
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the second it suffices to observe that since Endg(B;) is a local algebra, the factor
field End(B;)/J(End(B;)) is always a k-subalgebra of the finite dimensional algebra
Endy(B;(z)), for any x € supp B;. O

REMARK. Each finitely generated projective &-module has a unique, up to isomor-
phism, decomposition into a finite direct sum of indecomposable (projective) &-modules
of the form &(—,z), x € ob&. Note that the discussed problem can be regarded as the
analogous one for a semiprimary ring, and then the assertion follows by the uniqueness
property for decomposition into a direct sum of indecomposables for finitely generated
projective &-modules over semiperfect rings (see [1]).

From now on we consider only weakly locally bounded categories & that satisfy the
condition (d)!

4.2.

Suppose we are given a k-liner action of an abstract group H on a weakly locally
bounded k-category &, viewed as a group homomorphism o : H — Auty_cat(&). Then o
induces the action of H on the category MOD & of all &-modules. We can also consider
the category MOD & of all &-modules with &-action of H whose object as always are

-1 . .
"W "M)pen is an & action of

pairs (M, u), where M is an &-module and p = (up, : M —
H on M (cf. 1.2). Analogously as in the algebra case there exists a construction of a
skew group category &, H and the module category MOD &, H is equivalent to MOD &
(see [26]). We do not present it here, since we do not need its precise description but
only the fact that we can identify these two module categories.

From now on writing MOD &H we mean simply MOD & (whenever this does not
lead to any confusion we usually write for simplicity & H instead of &,H).

Observe that, if ¢ is a trivial action then the category MOD & can be viewed as
the category of all kH- & -bimodules, that is the k-functors M : &°P — MOD (kH )°P.
In particular, if H is the trivial group then MOD# & = MOD &.

Analogously as in the algebra case, we denote by CM (&£ H) the full subcategory of
MOD &H formed by all the pairs (M, p) such that M is a finitely generated projective
&-module, in fact isomorphic to a finite direct sum of &-modules P, = &(—, ), x € ob &
(see Remark 4.1). Note that P, = &(—, x) itself carries the canonical structure of object
in CM (£ H); namely, P, = (Py,7m;), where 7, = ((7z)n : &(—,2) = &(—, hx))nhen is
given by (m;)n(2) = o(h)(z,z), for h € H and z € ob &.

REMARK. The subcategory CM (§£H) of MOD &H is closed under direct sum-
mands.

A fundamental role in studying the category CM (£H) is played by the following
result.

THEOREM. If M = (M,u) is an indecomposable object in CM (£H) then the
endomorphism algebra Endgen (M) is local.

The proof of the theorem is based on the following well known fact.

LEMMA. Let C be a k-category (respectively, k-algebra), a € E = Ende(X) an
endomorphism of an object X in MOD C, a € End¢(Ima) the restriction of a to Ima



A construction of non-regularly orbicular modules 1103

andIma % Im a® a Ima the standard factorization of a| via Im (aj). Then the following
conditions are equivalent:

(a) a’ is a monomorphism and o'’ is an epimorphism,

(b) a) € End¢(Ima) is an automorphism,

(¢) X =Ima®Kera

(d) there exists an idempotent e € E and element u € eFe, invertible in eFe, such
that a = ue.

Each a € End¢(X) satisfying one of the equivalent conditions above, will be called
a splitting endomorphism (of X).

COROLLARY. Assume that C' is a k-algebra.

(a) If dimg(Ima) is finite, then a € Ende(X) is a splitting endomorphism if and
only if either a’ is a monomorphism or a’ is an epimorphism. Moreover, for any a €
Endg(X), there exists positive m € N such that o™ is a splitting endomorphism.

(b) If C is the Laurent polynomial algebra k[t,t'] and (Ima)c is a finitely generated
C-module, then a is a splitting epimorphism if and only if a’ is an epimorphism.

PrOOF. (a) The first assertion is straightforward, the second follows easily if one
consider a decreasing sequence of C-submodules {Ima™},,en of X.

To show (b) assume that Ima? = Ima. We can present Ima as a direct sum
Ima = F@&T, where F is a finitely generated free and T a finite-dimensional C-module.

aill 0

Then the epimorphism a| has the form a) = [ } , where a1 is an isomorphism by the

az1 a22
uniqueness of the decomposition into indecomposables. Consequently, a| is an isomor-

. . . . . idp 0 ] _ al 0 : . :
phism since so is the epimorphism [ o am] = [ﬂm o tidp | O (age is an epimorphic

endomorphism of 7', so isomorphism). O

4.3.

In the proof of Theorem 4.2 we will also apply the change of base field technique.

Let C be a k-category and K a commutative field containing k. Then using the
functor K ®; — : MODk — MOD K, one can form the category C¥) = K @, C,
analogously as in algebra case. The functor K ®; — induces also the “scalar extension”
functor

(—=)*) . MOD € — MOD C'¥)

which is exact. Note that, Y = 0 if and only if Y5) = 0, for any Y in MOD C.

LEMMA. (a) IfY is a finitely generated projective C-module then YK s a finitely
generated projective C)-module.

(b) Let a be as in Lemma 4.2. Then a € Ende(X) is a splitting endomorphism if
and only if a) € Endqo (X)) is a splitting endomorphism.

(c) If C is a weakly locally bounded k-category then C5) is a weakly locally bounded
K -category.

PROOF. The assertion (a) is an immediate consequence of the definition of (—));
(b) follows easily from Lemma 4.2(a), by basic properties of (—)) formulated before
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the statement of the lemma.

To prove (c), we verify the conditions 4.1(a)—(d). Note first that for any = €
obCK) = ob(C, the K-subspace JU)(z,2) = K ® J(C(z,z)) is a nilpotent ideal
in CH)(z,2) = K ®; C(x,2). Moreover, since (—)) is exact, by 4.1(d) we have
CE)(z,2)/JH) (2,2) ~ K @k ~ K. Consequently, J5)(z,2) = J(C¥)(z,2)) and
CE)(z,z) is a local semiprimary K-algebra with O (z,2)/J(C¥)(z,2)) ~ K.

Since 4.1(c) is trivially satisfied for C(*) it remains to show the condition 4.1(a).
Observe that the inclusion C(z,y) o C(y,2) C J(C(z,z)) holds for all z,y € obC,
x # y (otherwise, z is a direct summand of y, so = y by 4.1(a) for C, a contradiction).
Consequently, C ) (z,y)oCH) (y, x) € JF) (z, 2) = J(CF)(z,x)), and 4.1(a) is satisfied
for C ), O

PROOF OF THEOREM 4.2. We show that any endomorphism f € Endgg (M) is ei-
ther invertible or nilpotent. Then applying standard arguments we infer that Endg g (M)
is local.

To prove our claim it suffices to show the following:

i) for any finitely generated projective &-module and endomorphism €
i) f finitely g ted jective &-module M and end hi
Endg (M), f™ is a splitting endomorphism of M, for some positive m € IN.

Note that, if (i) is satisfied then we have a decomposition M = Im f™ @ Ker f™ in
MOD & in case f € Endgy (M), it is also a decomposition in MOD &H, so in CM (& H)
(see Remark 4.2). Consequently, by indecomposability of the object M = (M, p) in
CM (£H), we infer that, either Ker f™ = M, so f is nilpotent; or Ker f™ = 0 and
Im f™ = M, so f is invertible.

From now on we assume that M and f are as in (i). Observe that by Lemma 4.3,
we have to prove the assertion of (i) only in the case k = k (k is an algebraically closed
field). Moreover, note that f™ is a splitting endomorphism of M if and only if so is f,
for some ¢ € Autg (M), where f, =1 f- .

The idea of the proof of (i) is the following. For f € Endg(M) (in case k = k),
we construct an automorphism ¢ € Autg(M) and the subalgebra A C F = Endg(M)
such that A contains an element v = ( fw)m' for some positive m/ € N, and that v™" €
A = End,(A4) is a splitting endomorphism of A, for some positive m” € N. Then
v™" € Endy(A,) satisfies 4.2(d); consequently, so does the endomorphism (f,)™ ™" =
v™" € Endg (M) of M (apply Lemma 4.2(d), e/e is a subalgebra of eEe!). Hence, by the
second observation, f™ € Endg (M) is a splitting endomorphism of M, for m = m'm”.

To counstruct, for a given f € Endg(M), the pair (p, A) as above, we need more
information on the structure of the algebra E = Endg(M).

Without loss of generality, we can assume that the &-module M is of the form
M=, Pidi, where P, = &(—, x;) for some 1, ...,2, €ob& and dy,...,d, € N (see
Remark 4.1). By the Yoneda Lemma and the general assumption 4.1(d) (4.1(d) implies
the isomorphism & (z,z) = k -id, @ J(&(x,x)), for any = € ob &) the equality defining
M yields the s