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Abstract. For a given finite dimensional k-algebra A which admits a presen-
tation in the form R/G, where G is an infinite group of k-linear automorphisms
of a locally bounded k-category R, a class of modules lying out of the image of
the “push-down” functor associated with the Galois covering R → R/G, is studied.
Namely, the problem of existence and construction of the so called non-regularly
orbicular indecomposable R/G-modules is discussed. For a G-atom B (with a sta-
bilizer GB), whose endomorphism algebra has a suitable structure, a representation

embedding ΦB(f, s)| : In-spr l(s)(kGB) → mod (R/G), which yields large families of

non-regularly orbicular indecomposable R/G-modules, is constructed (Theorem 2.2).
An important role in consideration is played by a result interpreting some class of
R/G-modules in terms of Cohen-Macaulay modules over certain skew grup algebra
(Theorem 3.3). Also, Theorems 4.5 and 5.4, adapting the generalized tensor product
construction and Galois covering scheme, respectively, for Cohen-Macaulay modules
context, are proved and intensively used.

Introduction.

The last thirty years have been a period of a great and permanent progress of
representation theory of finite-dimensional algebras. Many deep problems and classical
conjectures have been solved in that time. In the meantime also new, challenging and
stimulating questions, phrased already in a language of modern notions and concepts,
have been appeared.

The essential reason of that progress was an appearance of several fresh, original
ideas. After short time they brought an inventing and development of completely new,
efficient research tools, transformed afterwards to powerful methods of contemporary
representation theory. Galois covering techniques ([27], [19], [3], [21], [12], [11], [13],
[4], [7]) have remained one of them. It is usually used to reduce a problem for modules
over an algebra to an analogous one, often much simpler, for its cover category. This kind
of treatment allows to answer many interesting theoretical questions and obtain classifi-
cations for various classes of algebras (respectively, matrix problems) in representation-
finite or tame case ([34], [35], [36], [37], [20], [38], [39], [40], [16], [17], [18], [22], [28],
[29], [30], [15], [10]).

In the last decade the main interest in the coverings topics was concentrated, for
obvious reasons, on “Galois covering tame-conjecture”. Roughly speaking it asserts that
the base algebra R/G is of tame representation type provided so is its cover category R
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(see [12], [11], [13], [4], [7] for partial solutions, also unpublished preprint [14]). But
also other more detailed questions concerning the tame case were studied. For example
closely related to the previous one, the so-called “stabilizer conjecture” is affirmatively
solved in [8] for a representation-tame locally bounded category R over an algebraically
closed field (the stabilizers GB of infinite G-atoms B with respect to a free action of a
torsion-free group G on R are infinite cyclic groups).

Recently, a behaviour of the category mod (R/G) of R/G-modules that is quite
different from that one in the tame case was studied. The investigations concern the
notion of non-orbicular module introduced in [9]. Recall that an indecomposable module
X in mod (R/G) is called orbicular (respectively, non-orbicular) if the “pull-up” F•X
of X, with respect to the Galois covering F : R → R/G, decomposes into a direct
sum of indecomposable locally finite-dimensional modules which belong (respectively,
do not belong) to one G-orbit (see 1.3). According to the conjecture formulated long
time ago, all indecomposable R/G-modules in the tame case (studied in terms of Galois
covering F ) are supposed to be always orbicular (with respect to G). Moreover, they are
expected to be formed by use of the standard functorial construction ΦB = −⊗kGB

FλB :
mod kGB → mod (R/G), defined by periodic G-atoms B (see 1.3). In [9] the problem of
existence of non-orbicular indecomposable modules was discussed. It is presented there
a construction of a representation embedding into the category mod (R/G) whose image
contains a large, usually wild subcategory consisting of non-orbicular indecomposable
R/G-modules. The construction is based on the notion of generalized tensor product
with respect to a suitable sequence of periodic G-atoms.

In this paper we consider an analogous question for the so-called non-regularly or-
bicular R/G-modules. An indecomposable orbicular R/G-module X in mod (R/G) is
called non-regularly orbicular provided there exists no R-action of the stabilizer GB

on a periodic G-atom B such that X ' Φ(B,ν)(V ), for some (indecomposable) V in
mod (kGB)op (see 2.1). In a discussion of our problem we use the generalized tensor
product for the sequences B(f, s) consisting of several copies of the same periodic G-
atom B, dependent on some endomorphism f ∈ EndR(B) and certain finite sequence
s = (s2, . . . sn) of positive integers. Applying this construction, we define the functors
ΦB(f,s) : In-spr (kGB) → mod (R/G), where In-spr (kGB) denotes the category of finite-
dimensional n-filtered kGB-modules. We study a behavior of these functors with respect
to possibility of creating indecomposable non-regularly orbicular R/G-modules. The
main result of the paper, Theorem 2.2, asserts that under specific assumptions expressed
in terms of certain conditions on the structure of the endomorphism algebra EndR(B),
the restrictions of ΦB(f,s) to some subcategories of In-spr (kGB) are representation em-
beddings (in the sense of [32], see also 1.3). Moreover, they furnish large, usually wild,
families of searched modules. The idea used in the proof relies on the replacement of
R/H-modules with a fixed direct summand support (see 1.3, they seem to form to a
narrow class for making internally some covering construction), by more friendly world
of the so-called maximal Cohen-Macaulay modules over skew group algebras (see Theo-
rem 3.3). We study this class of modules by considering its analogue for weakly locally
bounded categories with a trivial action of a fixed group (we introduce the correspond-
ing notions in 4.1 and 4.4). We adopt into that context the generalized tensor product
construction (see Theorem 4.5) and formulate a variant of the classical Galois covering
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scheme (see Theorem 5.4). Finding a common platform which allowed for simultaneous
applying and efficient combining of these two concepts, is a crucial point of the proof.

The paper is organized as follows. In Section 1 we recall basic definitions and fix
notation used in the paper. Section 2 is devoted to a discussion of properties of the
functors ΦB(f,s) for various sequences s. There a precise definition of non-regularly
orbicular module is given and the main result of the paper, Theorem 2.2, is formulated.
In Section 3, Theorem 3.3 about interpretation of the category mod Bo(R/H) in term
of the category of maximal Cohen-Macaulay modules over the skew group algebra EH

is proved, where E is the endomorphism algebra of direct sum of all G-atoms from
Bo. In Section 4 the notion of a weakly locally bounded k-category is introduced. It
is shown there that indecomposable maximal Cohen-Macaulay modules over E H (H is
a group operating trivially on objects of a weakly locally bounded category E ) have
local endomorphisms rings (see Theorem 4.2). Moreover, the construction of generalized
tensor product is adopted into a context of the category CM (E H) (see Theorem 4.5).
Section 5 is devoted to Galois coverings for weakly locally bounded categories equipped
with an action of a fixed group H that acts trivially on objects. Theorem 5.4 shows that
the “push-down” functor associated to a Galois covering behaves nicely in restriction to
categories of maximal Cohen-Macaulay modules. Also the concept of the Galois coverings
associated to suitable gradings is discussed there. Section 6 is devoted to the proof of
Theorem 2.2. The properties of the induction functor and the left Kan extension functor
in a context of maximal Cohen-Macaulay modules are studied there (see Lemma 6.1 and
Proposition 6.2).

1. Preliminaries.

Throughout the paper we use the notation and definitions established in [5], [7],
[9]. Nevertheless, for a benefit of the reader, we briefly recall the general situation and
notions we deal with in the paper.

For basic information concerning representation theory of algebras (respectively,
rings and modules, notions of theory of categories) we refer to [31] (respectively, [1],
[23]).

1.1.
Let k be a field (not necessarily algebraically closed) and R be a k-category, that is,

each set R(x, y) of morphisms from x to y in R, x, y ∈ obR, is the k-linear spaces and
composition in R is k-bilinear. By an R-module we mean a contravariant k-linear functor
from R to the category of all k-vector spaces. We denote by MOD R the category of all
R-modules. We denote by JR the Jacobson radical of the category MODR.

Let R be a locally bounded k-category, that is, all objects of R have local endomor-
phism rings, the different objects are nonisomorphic, and the sums

∑
y∈R dimk R(x, y)

and
∑

y∈R dimk R(y, x) are finite for each x ∈ R. An R-module M is locally finite-
dimensional (respectively, finite-dimensional) if dimk M(x) is finite for each x ∈ R

(respectively, the dimension dimk M =
∑

x∈R dimk M(x) of M is finite). We denote
by ModR (respectively, mod R) the full subcategory of all locally finite-dimensional
(respectively, finite-dimensional) R-modules and by IndR (respectively, indR) the full
subcategory of all indecomposable R-modules in ModR (respectively, mod R). By the
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support of an object M in MODR we mean the full subcategory suppM of R formed by
the set {x ∈ R : M(x) 6= 0}.

For any k-algebra A we denote analogously by MODA (respectively, mod A) the
category of all (respectively, all finite-dimensional) right A-modules and by J(A) the
Jacobson radical of A. Clearly, MODA can be always interpreted as MODR(A), where
R(A) is a k-category consisting of one object with the endomorphism k-algebra equal to
A.

To any finite full subcategory C of R we can attach the finite-dimensional algebra
A(C) =

⊕
x,y∈ob C R(x, y) endowed with the multiplication given by the composition in

R. It is well known that the mapping M 7→ ⊕
x∈ob C M(x) yields an equivalence

mod C ' mod A(C) .

1.2.
Let G be a group acting by k-linear automorphisms on a k-category R. Then G

acts on the category MODR by translations g(−), which assign to each M in MODR

the R-module gM = M ◦ g−1 and to each f : M → N in MODR the R-homomorphism
gf : gM → gN given by the family (f(g−1(x)))x∈R of k-linear maps.

Given M in MODR, the subgroup

GM = {g ∈ G : gM ' M}

of G is called the stabilizer of M .
Let R be a locally bounded k-category. Assume that G acts freely on the objects

of R (that is the stabilizer Gx is trivial for every x ∈ obR) so it can be regarded as a
subgroup of Autk−cat(R). Then the orbit category R/G of the action of G on R is again
a locally bounded k-category (see [19]). One can study the module category mod (R/G)
in terms of the category ModR using the pair of functors

MODR
Fλ−→←−
F•

MOD(R/G)

where F• : MOD (R/G) → MODR is the “pull-up” functor associated with the canonical
Galois covering functor F : R → R/G, assigning to each X in MOD(R/G) the R-module
X ◦ F , and the “push-down” functor Fλ : MODR → MOD(R/G) is the left adjoint to
F•.

The classical results from [19] asserts that if G acts freely on (indR)/ ' (that is
GM = {idR} for every M in indR) then Fλ induces an embedding of the set ((indR)/
')/G of the G-orbits of isoclasses of objects in indR into (ind (R/G))/'.

Let H be a subgroup of the stabilizer GM of a given M in MODR. By an R-action
of H on M we mean a family

µ = (µg : M → g−1
M)g∈H
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of R-homomorphisms such that µe = idM , where e = idR is the unit of H, and g−1
1 µg2 ·

µg1 = µg2g1 for all g1, g2 ∈ H (see [19]). We note that if H is a free group then M admits
an R-action of H (see [4, Lemma 4.1]).

For any subgroup H of G we denote by MODHR (respectively, ModHR) the
category consisting of pairs (M, µ), where M is an R-module (respectively, a locally
finite-dimensional R-module) and µ an R-action of H on M . For any M = (M, µ)
and N = (N, ν) in MODHR (respectively, ModHR) the space of morphisms from
M to N in MODHR (respectively, ModHR) consists of all f ∈ HomR(M, N) such
that g−1

f · µg = νg · f , for every g ∈ H, and is denoted by HomH
R (M, N). Note

that HomH
R (M, N) is the set of H-invariant elements in HomR(M, N) with respect to

the action HomR(µ, ν) : H × HomR(M, N) → HomR(M, N), given by the mapping
(g, f) 7→ gνg

gf µg−1 , g ∈ H, f ∈ HomR(M, N). By Mod H
f R we denote the full sub-

category of the category ModHR formed by all (M, µ) such that suppM is contained
in the union of a finite number of H-orbits in R (see [19], [13], [4]). Then the functor
F•, associating with any X in mod (R/G) the R-module F•X endowed with the natural
R-action of G, yields an equivalence

mod (R/G) ' Mod G
f R .

The main notions of this paper refer to the structure of objects from Mod G
f R (conse-

quently, mod (R/G)) based on the concept of G-atoms. Following [4], an indecomposable
R-module B in ModR (with local endomorphism ring) is called a G-atom (over R) pro-
vided suppB is contained in the union of a finite number of GB-orbits in R. The G-atom
B is said to be finite (respectively, infinite) if GB (equivalently suppB) is finite (respec-
tively, infinite).

Denote by A a fixed set of representatives of isoclasses of all G-atoms in ModR,
by Ao a fixed set of representatives of G-orbits of the induced action of G on A and for
any B ∈ Ao by SB a fixed set of representatives of left cosets of GB in G, containing
the unit idR of the group G. One can show that the category mod (R/G) is equivalent
via F• to the full subcategory of Mod G

f R formed by all possible pairs (Mn, µ), where
n = (nB)B∈Ao is a sequence of natural numbers, such that almost all nB are zeros, Mn

an R-module given by the formula

Mn =
⊕

B∈Ao

( ⊕

g∈SB

g(BnB )
)

and µ an arbitrary R-action of G on Mn. Therefore to any module X in mod (R/G) one
can attach the direct summand support dss(X) of X which is the finite set consisting of
all B ∈ Ao such that nB 6= 0.

For any U ⊆ Ao one can study the full subcategory modU (R/G) of mod (R/G)
consisting of all X in mod (R/G) such that dss(X) ⊆ U .

1.3.
Following [9], an indecomposable module X in mod (R/G) is called orbicular (cf.

[19]) provided dss(X) = {B}, for some B ∈ Ao. This condition simply means that in
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a decomposition of the R-module F•X into a direct sum of indecomposables occur only
G-atoms contained, up to isomorphism, in one orbit of G in A . The module X is called
non-orbicular if X is not orbicular. The additive closure of all indecomposable orbicular
R/G-modules can be presented as a splitting union

∨

B∈Ao

modB(R/G) ,

in the sense of [9], whereas, indecomposable non-orbicular modules are those objects of
ind (R/G), which lay out of

∨
B∈Ao

modB(R/G), where modB(R/G) = mod{B}(R/G).
The category of orbicular modules forms an essential part of the category

mod (R/G). Recall that if R/G is representation-finite then all R/G-modules are or-
bicular (see [19], [24]). According to a general conjecture, all R/G-modules would be or-
bicular in the tame case (especially those which belong to 1-parameter families). Roughly
speaking all R/G-modules which occurred up to now in the Galois covering context (in
representation-finite and tame case) were orbicular. Moreover, they were described by
use of the following construction.

Suppose that a G-atom B admits an R-action νB of GB on itself (this is always the
case if the group GB is free). Then FλB carries the structure of a kGB-R/G-bimodule,
which is finitely generated free as a left kGB-module, where kGB is the group algebra of
GB over k (see [13, 3.6]). This bimodule induces a functor

Φ(B, νB) = −⊗kGB
FλB : mod kGB → modB(R/G)

which is a representation embedding, provided the field EndR(B)/J(EndR(B)) is equal
to k (see [5, Proposition 2.3]). (Following [32], a k-linear functor T : mod A1 → MODA2,
between module categories of finitely generated k-algebras A1 and A2, is a representation
embedding, provided it is exact and induces an injection between the sets of isomorphism
classes of indecomposable modules.) Note that if GB is trivial then kGB ' k and if GB

is an infinite cyclic group then kGB is isomorphic to the algebra k[t, t−1] of Laurent
polynomials. We refer to [13], [4], [7], [9] for more details about the functors

{Φ(B, νB)}B∈U :
∐

B∈U

mod kGB → mod (R/G)

where U consists of cyclic G-atoms.

1.4.
Let H be a group. Then left modules over the group k-algebra kH are just k-

representations, so each module V in MOD (kH)op is uniquely represented by a pair
(V, µ), where V is a k-vector space and µ : H → Autk(V ) is a group homomorphism.

For any n ∈ N , we denote by In-spr (kH) the chain category whose objects are
sequences of the form

V : V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn
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where Vi, i = 1, . . . , n−1, are kH-submodules of a left finite-dimensional kH-module Vn,
and the set of morphisms from V to V ′ consists of all kH-homomorphisms f : Vn → V ′

n

such that f(Vi) ⊆ V ′
i for every i = 1, . . . , n− 1 (see [9], [33]).

Suppose we are given a sequence

B : B1
β2← B2 ← · · · ← Bn−1

βn← Bn (∗)

in ModHR, that is all objects Bi = (Bi, νi) are in ModHR (Bi is an R-module and
νi is an R-action of H on Bi) and all R-homomorphisms βi are morphisms in ModHR

(βi are compatible with the actions). We denote by β = β(B) the family (βi,j(h) =
(νi)h·βi,j : Bj → h−1

Bi)1≤i,j≤n, h∈H , of R-homomorphisms, where the R-homomorphisms
(βi,j : Bj → Bi)1≤i,j≤n are defined as follows:

βi,j =





βi+1 · · · · · βj if i < j ,

idBi if i = j ,

0 if i > j .

Then for any object

V : V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn

in In-spr (kH), Vn = (Vn, µ), one constructs an object V ⊗k B = (V ⊗k B,µ ⊗k β) in
ModHR [9], where V = (V i) i=1,...,n is a fixed sequence of complementary direct sum-
mands for V (V is a sequence of subspaces V i of V such that V 1 = V1 and Vi = Vi−1⊕V i

for i = 2, . . . , n). We set

V ⊗k B =
n⊕

i=1

V i ⊗k Bi ,

and µ⊗kβ = ((µ⊗kβ)h : V⊗kB → h−1
(V⊗kB))h∈H , where R-homomorphisms (µ⊗kβ)h,

h ∈ H, are defined as the matrix R-homomorphisms

[µ(h)i,j ⊗k βi,j(h)] 1≤i,j≤n :
n⊕

j=1

Vj ⊗k Bj →
n⊕

i=1

h−1
(V i ⊗k Bi)

(µ(h) = [ µ(h)i,j ] 1≤i,j≤n is the matrix presentation of the k-automorphism µ(h) :⊕n
j=1 Vj →

⊕n
i=1 V i, for h ∈ H). It is not hard to check that the data (V ⊗k B,µ⊗k β)

defines correctly an object V ⊗k B in ModHR. Moreover, V ⊗k B belongs to ModH
f R

provided so do all objects Bi = (Bi, νi), i = 1, . . . , n.
The above construction can be extended to a functor

−⊗k B : In-spr (kH) → ModHR
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(we set V ⊗k B = V ⊗k B), called the generalized tensor product functor. So in the case
all objects Bi belong to ModH

f R, we can define the composite functor

ΦB : In-spr (kH) → mod (R/G)

which is given by the composition

In-spr (kH) −⊗kB−→ ModH
f R

θ→ ModG
f R

F−1
•−→ mod (R/G) ,

where F−1
• is a fixed quasi-inverse for F• : mod (R/G) → ModG

f R, and

θ = θG
H : ModH

f R → ModG
f R

is the induction functor assigning to any M = (M, µ) in Mod H
f R, the object θ(M) =

(⊕g1∈SH
g1M, µG) in ModG

f R. (Here SH is a fixed set of representatives of G/H containing
e = idR, µG a standard R-action of G induced by µ, consisting of the R-isomorphisms
µG

g : ⊕g1∈SH
g1M → ⊕g2∈SH

g−1g2M , g ∈ G, given by the families g1µh : g1M → g−1g2M ,
g1 ∈ SH , where g2 ∈ SH and h ∈ H are determined by the equality gg1 = g2h; see [9,
3.1] for the precise definitions).

The functors ΦB introduced in [9] were used for studying non-orbicular modules,
where the sequences B were formed by pairwise different periodic G-atoms with a com-
mon stabilizer H. This construction was, in a natural way, an extension of that described
in 1.3. More precisely, ΦB = Φ(B1, ν1) for n = 1 (see [4, Proposition 2.3]).

2. The main result.

2.1.
In the paper we study a certain class of indecomposable orbicular R/G-modules

distinguished in internal terms of coverings, for a given Galois covering F : R → R/G.

Definition. Let B be a G-atom in ModR. An indecomposable (orbicular) R/G-
module X in modB(R/G) is called regularly orbicular provided there exists an R-action
of GB on B such that

X ' Φ(B,ν)(V )

for some (indecomposable) V in mod (kGB)op.
An indecomposable (orbicular) R/G-module X in modB(R/G) is called non-

regularly orbicular if it is not regularly orbicular.

Note that preselection of a G-atom B in the definition does not restrict generality
and does not cause any problems, since each indecomposable orbicular R/G-module
belongs to precisely one subcategory modB(R/G), B ∈ Ao.

We present a construction which shows (under some circumstances) an existence of
indecomposable non-regularly orbicular R/G-modules appearing in large, usually wild
families.
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2.2.
Let B = (B, ν) be a periodic G-atom together with a selected R-action of GB on

itself. For simplicity we denote by H the stabilizer GB of B. For any H-invariant
endomorphism f ∈ EndR(B) and sequence s = (s2, . . . sn) of positive integers, n ≥ 2, we
denote by B(f, s) a sequence

B : B1
β2← B2 ← · · · ← Bn−1

βn← Bn

of objects and morphisms in the category in ModHR such that all objects Bi = (Bi, νi)
are equal to B and βi = fsi , for i = 2, . . . , n. We obtain the functor

ΦB = ΦB(f,s) : In-spr (kH) → modB(R/G) .

We assume that fs2+···+sn 6= 0. Note that if f ∈ EndR(B) is nilpotent and r = r(f) ∈ N

is a nilpotency degree of f then the longest possible sequence s̄ = s̄(f), with that property,
has the form s̄ = (s̄2, . . . , s̄r), where s̄2 = · · · = s̄r = 1.

Before we formulate the main result of this paper we recall some definitions and fix
a notation.

To any V = (V1 ⊆ V2 ⊆ · · · ⊆ Vn) in In-spr (kH) we attach the coordinate vector

cdn(V ) = (d1, . . . , dn)

in Nn, given by di = dimk Vi/Vi−1 (V0 = 0), and the coordinate support csupp(V ) which
by definition is the increasing sequence consisting of all i ∈ {1, . . . , n} such that di 6= 0.
We say that the object V is sincere if all coordinates di, i = 1, . . . , n, are nonzero.
By In-spr ′(kH) (respectively, In-spr 1(kH)) we denote the additive closure of the full
subcategory formed by all indecomposables V in In-spr (kH) such that cdn(V ) has at
least two nonzero coordinates (respectively, the first coordinate of cdn(V ) is nonzero).
By In-spr ′1(kH) we denote the additive closure of the full subcategory formed by all
indecomposable V in In-spr (kH) lying simultaneously in In-spr ′(kH) and In-spr 1(kH).
For a fixed sequence s as above, by In-spr l(s)(kH) (respectively, In-spr ′l(s)(kH)) we
denote the additive closure of the full subcategory formed by all indecomposables V in
In-spr (kH) whose coordinate support csupp(V ) = (u1, . . . , um), m ≤ n, has the property
that there exists no u′ = (u′1, . . . , u

′
m) ∈ Nm, 1 ≤ u′1 < · · · < u′m ≤ n, satisfying the

condition





su′1+1+ . . . +su′2 = su1+1+ . . . +su2...
...

su′1+1+ . . . +su′m = su1+1+ . . . +sum

(∗)

or equivalently,





su′1+1+ . . . +su′2 = su1+1+ . . . +su2...
...

su′m−1+1+ . . . +su′m = sum−1+1+ . . . +sum

(∗′)
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such that u′1 < u1 (respectively, all indecomposables lying simultaneously in In-spr ′(kH)
and In-spr l(s)(kH)). Clearly, always In-spr 1(kH) is contained in In-spr l(s)(kH). Note
that if s2 = · · · = sn = 1 then In-spr l(s)(kH) = In-spr 1(kH) since for any V in
In-spr (kH) with u1 > 1, csupp(V ) = u = (u1, . . . , um), one can take for u′ any of the
sequences u[i] = (u1− i, . . . , um− i), where um−n ≤ i ≤ u1− 1 (we discuss the meaning
of this effect in 2.4).

Theorem. Let B = (B, ν) be a periodic G-atom with a fixed R-action of the
stabilizer H = GB, such that EndR(B)/J(EndR(B)) ' k. Assume that the algebra
EndR(B) admits a grading EndR(B) =

⊕
γ∈Γ Eγ by an infinite cyclic group Γ = Z,

satisfying the following conditions:
(a) each Eγ , γ ∈ Γ , is an H-invariant subspace and Eγ = 0, for almost all γ ∈ Γ ,
(b) there exists a homogeneous element f ∈ EndH

R (B) ∩ J(EndR(B)) which admits
a surjective H-invariant algebra homomorphism π : EndR(B) → A, where A = k[f ] =⊕r−1

i=0 kf i, r = r(f), is the subalgebra of EndR(B) generated by f , such that π|A = idA

and

π(Eγ) =

{
kfγ if γ ≥ 0 ,

0 if γ < 0 .

Then for any f as above and a sequence s = (s2, . . . , sn) of positive integers, n ≥ 2, such
that s2 + · · ·+ sn < r, the restriction of the functor

ΦB(f,s) : In-spr (kH) → mod (R/G)

to the category In-spr l(s)(kH) is a representation embedding. Moreover, the all in-
decomposables from modB(R/G) lying in the image of the restriction of ΦB(f,s) to
In-spr ′l(s)(kH) are non-regularly orbicular indecomposable R/G-modules. In particular,
the full subcategory formed by all indecomposable non-regularly orbicular modules from
modB(R/G) is wild, provided n ≥ 2 and H has a factor which is an infinite cyclic group
(respectively, a cyclic p-group of order greater than 7, if char k = p > 0).

Note that all maps f i, i = 1, . . . , n, are morphisms in Mod HR (see 1.2 and 3.2) and
that f is nilpotent since EndR(B) is semiprimary (see [7, Theorem 2.9]).

A complete proof of the theorem (together with closer explanation of the real mean-
ing of the assumptions) is given in Section 6. It needs several preparatory results.

2.3.
We start by analyzing quite general problem when an R/G-module of the form

ΦB(f,s)(V ) can be indecomposable regularly orbicular. We keep the notation introduced
in 2.2 (without assumptions of Theorem 2.2 on the structure of EndR(B)).

Let B′ = (B′, ν′) be another (cf. 2.2) periodic G-atom together with a selected
R-action of GB′ on itself. Assume that EndR(B′)/J(EndR(B′)) ' k. Then by

Ψ (B′, ν′) : mod (R/G) → mod (kGB′)op
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we denote the composite functor

mod (R/G) F•−→ ModG
f

H̄−→ mod (kGB′)op

where H̄ = HomR(B′,−)/J (B′,−). Recall that the structure of kGB′ -module on the
k-linear space HomR(B′,M)/J (B′,M), for M = (M, µ) in ModG

f , is induced by the
k-linear action HomR(ν′, µ) of the stabilizer GB′ on the space HomR(B′,M). We have at
our disposal the formula

Ψ (B′, ν′) ◦ Φ(B, ν) =

{
−⊗k k(ν′, ν) if B = B′

0 if B 6' B′ (∗∗)

where k(ν′, ν) = Ψ (B, ν′)(B, ν) is the representation of GB in the space EndR(B)/
J(EndR(B)) (' k) with the action of GB induced by HomR(ν′, ν). In particular, we
have (see [5])

Ψ (B′, ν′) ◦ Φ(B′, ν′) ' idmod kGB′

and the functor

Φ(B′, ν′) : mod kGB′ → modB′(R/G)

is a representation embedding in the sense of [32].
Let

Gr : In-spr (kH) → mod (kH)op

be the classical functor attaching to a filtered module V = (V1 ⊆ V2 ⊆ · · · ⊆ Vn) in
In-spr (kH), the associated graded one, given by the formula

Gr(V ) =
n⊕

i=1

Vi/Vi−1 .

Note that Gr(V ) is a decomposable R/G-module whenever V belongs to In-spr ′(kH).
We can formulate the following important, for the proof of Theorem 2.2, result.

Lemma. Assume that B′ = B in Mod R and that f belongs to J(EndR(B)). Then
the endofunctors

(−⊗k k(ν′, ν)) ◦Gr, Ψ (B, ν′) ◦ ΦB(f,s) : In-spr (kH) → In-spr (kH)

are isomorphic.
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Proof. Fix an object V = (V1 ⊆ V2 ⊆ · · · ⊆ Vn) in In-spr (kH). Then we have
the sequence of kH-isomorphisms

Ψ (B, ν′) ◦ ΦB(f,s)(V ) ' H̄

(
B,

⊕

g∈SH

g

( n⊕

i=1

V i ⊗k B

))

' H̄

(
B,

n⊕

i=1

V i ⊗k B

)
⊕ H̄

(
B,

⊕

e 6=g∈SH

g

( n⊕

i=1

V i ⊗k B

))

= H̄

(
B,

n⊕

i=1

V i ⊗k B

)
.

Note that, by the definition of SH , the decomposition

⊕

g∈SH

g

( n⊕

i=1

V i ⊗k B

)
=

( n⊕

i=1

V i ⊗k B

)
⊕

( ⊕

e 6=g∈SH

g

( n⊕

i=1

V i ⊗k B

))

of R/G-modules (see also definition of the induced R-action of G), and the equality

H̄

(
B,

⊕

e 6=g∈SB

g

( n⊕

i=1

V i ⊗k B

))
= 0

hold. Moreover, the standard k-isomorphism

H̄

(
B,

n⊕

i=1

V i ⊗k B

)
'

n⊕

i=1

H̄ (B, V i ⊗k B)

yields in fact a decomposition into a direct sum of kH-modules (the action of H on
V i is given by the family µ

i,i
= (µi,i(h))h∈H) since all but the diagonal components

of the matrices (µ ⊗k B(f, s))(h), h ∈ H, defining the R-action of H on the R-module
V ⊗k B(f, s), belong to the Jacobson radical J . Finally, for B′ = (B′, ν′) with B′ = B

(as R-modules), the k-linear maps V i ⊗k HomR(B′, B) → HomR(B′, V i ⊗k B), given by
the mapping v⊗ t 7→ v⊗ t(−), v ∈ V i, t ∈ HomR(B′, B), are H-invariant with respect to
the standard actions induced by µ

i,i
and HomR(ν′, ν). They yield the kH-isomorphisms

V i ⊗k k(ν′, ν) ' H̄ (B′, V i ⊗k B)

i = 1, . . . , n; in consequence, the kH-isomorphism

Gr(V )⊗k k(ν′, ν) '
n⊕

i=1

V i ⊗k k(ν′, ν) '
n⊕

i=1

H̄ (B′, V i ⊗k B) .
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It is easy to check that the composite kH-isomorphism

Ψ (B, ν′) ◦ ΦB(f,s)(V ) ' Gr(V )⊗k k(ν′, ν)

is natural with respect to V in In-spr (kH). ¤

Corollary. For any V in In-spr ′(kH), ΦB(f,s)(V ) is not an indecomposable
regularly orbicular R/G-module.

Proof. Suppose that ΦB(f,s)(V ) is a regularly orbicular R/G-module, where V is
as above. Since ΦB(f,s)(V ) belongs to modB(R/G), we have ΦB(f,s)(V ) ' Φ(B′, ν′)(W )
for some indecomposable! kH-module W , where B′ = B and ν′ is an R-action of H on
B. Then by the lemma and the formula (∗∗) it follows that

W ' Gr(V )⊗k k(ν′, ν) .

On the other hand the kH-module Gr(V ) has the decomposition Gr(V ) =
⊕n

i=1 Vi/Vi−1 ,
therefore Gr(V ) ⊗k k(ν′, ν) '

⊕n
i=1(Vi/Vi−1 ⊗k k(ν′, ν)) , and the kH-module Gr(V ) ⊗k

k(ν′, ν) is not indecomposable since V belongs to In-spr ′(kH), a contradiction.
Consequently, ΦB(f,s)(V ) can not be an indecomposable regularly orbicular R/G-
module. ¤

2.4.
Next we discuss the problem how can the fibers of the functor ΦB(f,s) look like.
For any m ≤ n and a sequence u = (u1, . . . , um) ∈ Nm such that 1 ≤ u1 < u2 <

· · · < um ≤ n, we denote by Iu
n -spr (kH) the full subcategory of In-spr (kH) formed

by all V = (V1 ⊆ · · · ⊆ Vn) such that csupp(V ) is contained in u (regarded as a set).
Moreover, we denote by

εu
n : Im-spr (kH) ↪→ In-spr (kH)

the full embedding given by (V1 ⊆ · · · ⊆ Vm) 7→ (V ′
1 ⊆ · · · ⊆ V ′

n), where V ′
j = 0 for

j < u1, V ′
j = Vi for ui ≤ j < ui+1, i = 1, . . . , n − 1, and V ′

j = Vm for j ≥ um (in
particular cdn(εu

n(V ))j = cdn(V )i if j = ui for some i and cdn(εu
n(V ))j = 0 otherwise).

It is clear that εu
n yields the equivalence

Im-spr (kH) ' Iu
n -spr (kH)

of categories. Consequently, for any increasing sequences u, u′ ∈ Nm of positive integers
as above, the functors εu

n and εu′
n induce the equivalence

εu, u′
n : Iu′

n -spr (kH) → Iu
n -spr (kH)

of categories; in particular, Iu
n -spr (kH) ' I

u[i]
n -spr (kH) for any i, um − n ≤ i ≤ u1 − 1.

Assume we are given a sequence s = (s2, . . . , sn) of positive integers such that
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s2+· · ·+sn < r = r(f). For any u ∈ Nm, 1 ≤ u1 < u2 < · · · < um ≤ n, we denote by s(u)
the sequence s(u) = (s(u)2, . . . , s(u)m), where s(u)i = sui−1+1 + · · ·+ sui

, i = 2, . . . , m,
and by ūs the minimal with respect to u′1 increasing sequence u′ ∈ Nm of positive
integers, satisfying together with u the condition (∗) (generally 1 ≤ u′1 ≤ u1, but it can
happen 1 < u′1 or even u′1 = u1). Then the equalities (∗′) mean exactly s(u) = s(u′). It
is also clear that indecomposable V in In-spr (kH) belongs to In-sprl(s)(kH) if and only
if u = ūs, where u = csupp(V ).

Lemma. (a) Let u ∈ Nm be a sequence as above. Then the functors

ΦB(f,s) ◦ εu
n, ΦB(f,s(u)) : Im-spr (kH) → mod (R/G)

are isomorphic.
(b) Let u = (u1, . . . , um) and u′ = (u′1, . . . , u

′
m) be a pair of sequences in Nm such

that 1 ≤ u1 < u2 < · · · < um ≤ n and 1 ≤ u′1 < u′2 < · · · < u′m ≤ n. Assume that u and
u′ satisfy the equalities (∗) for s. Then the functors

ΦB(f,s) ◦ εu
n, ΦB(f,s) ◦ εu′

n : Im-spr (kH) → mod (R/G)

are isomorphic; equivalently, the functors

ΦB(f,s)
| Iu′

n -spr(kH) ◦ εu′, u
n , ΦB(f,s)| Iu

n-spr(kH) : Iu
n -spr (kH) → mod (R/G)

are isomorphic.
(c) Let V and V ′ be a pair of objects in In-spr (kH) with csupp(V ) = u and

csupp(V ′) = u′, where u = (u1, . . . , um) and u′ = (u′1, . . . , u
′
m). Assume that u and

u′ satisfy (∗) for s (in particular, this is the case if u′ = ūs). If there exists a sincere
object V ′′ in Im-spr (kH) such that V = εu

n(V ′′) and V ′ = εu′
n (V ′′) then the R/G-modules

ΦB(f,s)(V ) and ΦB(f,s)(V ′) are isomorphic.
(d) The full subcategories of mod (R/G) formed by all modules in the images of the

functors ΦB(f,s) and ΦB(f,s)| In-sprl(s)(kH) are equivalent. Moreover, for any V and V ′

in In-spr (kH) with coordinate supports u and u′, respectively, we have ΦB(f,s)(V ) '
ΦB(f,s)(V ′) if and only if ΦB(f,s)(V̄ ) ' ΦB(f,s)(V̄ ′), where V̄ = εūs, u

n (V ) and V̄ ′ =
εū′s, u′

n (V ′).

Proof. (a) Let V = (V1 ⊆ V2 ⊆ · · · ⊆ Vm), Vm = (Vm, µ), be an object in
Im-spr (kH). We set V ′ = εu

n(V ). V ′ is the object of In-spr (kH) given by V ′
1 ⊆ V ′

2 ⊆
· · · ⊆ V ′

n defined as above, and V ′
n = (V ′

n, µ′) = (Vm, µ). Fix a sequence of complementary
direct summands V = (V i)i=1,...,m for V . Then the sequence V ′ = (V ′j)j=1,...,n, given by
V ′

ui
= V i for i = 1, . . . , m, and V ′j = 0 for j ∈ {1, . . . , n} \ {u1, . . . , um}, is a sequence of

complementary direct summands for V ′. Therefore, we can assume that V ′ ⊗k B(f, s) is
equal to

V ′ ⊗k B(f, s) =
( n⊕

j=1

V ′j ⊗k B,µ′ ⊗k β

)
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where β = β(B(f, s)) and the R-homomorphisms (µ′ ⊗k β)h :
⊕n

j=1 V ′j ⊗k B → ⊕n
j′=1

h−1
(Vj′ ⊗k B), h ∈ H, defining the R-action µ′ ⊗k β of H, have the upper-triangular

matrix form, with the components µ′(h)j′, j ⊗k (νh fsj′+1+···+sj ), for 1 ≤ j′ ≤ j ≤ n (see
1.4). Since Vj = 0 for j 6= u1, . . . , um, we have the canonical R-isomorphism

n⊕

j=1

V ′j ⊗k B '
m⊕

i=1

V i ⊗k B (∗∗∗)

and under this identification (µ ⊗k β)h corresponds to the upper-triangular matrix R-
homomorphism with the components µ(h)i′, i ⊗k (νh fsu

i′+1+···+sui ), for 1 ≤ i′ ≤ i ≤ m

(compare components of µ(h) and µ′(h)). On the other hand V ⊗kB(f, s(u)) is given by

V ⊗k B(f, s(u)) =
( m⊕

i=1

V i ⊗k B, µ⊗k βu

)

where βu = β(B(f, s(u))) and the R-homomorphisms (µ⊗kβ
u)h :

⊕m
i=1 V i⊗kB → ⊕m

i′=1
h−1

(V i′ ⊗kB), h ∈ H, defining the R-action µ ⊗k βu of H, are given by the upper-
triangular matrix with the components µ(h)i′, i ⊗k (νh fs(u)i′+1+···+s(u)i), for 1 ≤ i′ ≤
i ≤ m. By the definition of s(u) we have s(u)i′+1 + · · ·+ s(u)i = sui′+1 + · · ·+ sui

.
Consequently, (∗∗∗) yields the isomorphism V ′⊗k B(f, s) ' V ⊗k B(f, s(u)) in ModH

f,BR

and induces the R/G-isomorphism η(V ) : ΦB(f,s)εu
n(V ) → ΦB(f, s(u))(V ). It is easy to

check that (η(V ))V ∈ ob Im-spr (kH) is an isomorphism of the appropriate functors.
The assertion (b) follows from (a), since by (∗), we have s(u) = s(u′), (c) is a

consequence of (b), (d) follows from (b) and (c). ¤

We apply the lemma to the longest (for a given f) sequence s̄ = s̄(f), with all r− 1
components equal to 1. We denote for simplicity by B(f) the sequence

B(f, s̄(f)) : B1
f← B2 ← · · · ← Bn−1

f← Br

(Bi = B for every i = 1, . . . , r); consequently, ΦB(f) = ΦB(f,s̄). Then we obtain immedi-
ately.

Corollary. (a) Let V be an object in Ir-spr (kH) with csupp(V ) = u, u =
(u1, . . . , um), V ′ the corresponding to V sincere object in Im-spr (kH) such that V =
εu

r (V ′), and s the sequence s = (u2 − u1, . . . , um − um−1) (= s̄(u)). Then the R/G-
modules ΦB(f,s)(V ′) and ΦB(f)(V ) are isomorphic. Moreover, the functors

ΦB(f,s), ΦB(f) ◦ εu
r : Im-spr (kH) → mod (R/G)

are isomorphic, in fact for any arbitrary sequence u = (u1, . . . , um), 1 ≤ u1 < u2 < · · · <
um ≤ r, where s is given as above.

(b) Let u = (u1, . . . , um) ∈ Nm be a sequence such that 1 ≤ u1 < · · · < um ≤ r.
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Then for any i, r − um ≤ i ≤ u1 − 1, the functors

ΦB(f) ◦ εu
r , ΦB(f) ◦ εu[i]

r : Im-spr (kH) → mod (R/G)

are isomorphic; equivalently, the functors

ΦB(f)
| Iu[i]

r -spr(kH)
◦ εu[i], u

r , ΦB(f)| Iu
r -spr(kH) : Iu

r -spr (kH) → mod (R/G)

are isomorphic.
(c) Let V be an object in Ir-spr (kH) with csupp(V ) = (u1, . . . , um) and V ′ be a

sincere object in Im-spr (kH) such that V = εu
r (V ′). Then for any u′ = u[i], where i is

as above (in particular, for u′ = (1, u2 − u1 + 1, . . . , um − u1 + 1)), the R/G-modules
ΦB(f)(V ) and ΦB(f)εu′

m(V ′) are isomorphic.
(d) The full subcategories formed by all modules in the images of the functors ΦB(f)

and ΦB(f)| Ir-spr1(kH) are equivalent. Moreover, for any V and V ′ in Ir-spr (kH) with
coordinate supports u and u′, respectively, we have ΦB(f)(V ) ' ΦB(f)(V ′) if and only if
ΦB(f)εū, u

r (V ) ' ΦB(f)εū′, u′
r (V ′), where ū = u[u1 − 1] and ū′ = u′[u′1 − 1].

Remark. The above results do not answer the basic questions concerning the
functor ΦB(f,s)| In-sprl(s)(kH): when ΦB(f,s)(V ) ' ΦB(f,s)(V ′) for indecomposables V, V ′

in In-spr l(s)(kH), and if ΦB(f,s)(V ) is indecomposable provided V is so.

2.5.
Now we study more precisely “intersections of the images by different functors

ΦB(f,s)”. We formulate the answer comparing the functors ΦB(f,s) to the functor ΦB(f).

Lemma. (a) Let s = (s2, . . . , sn) be a sequence of positive integers such that s2 +
· · ·+sn < r, p ∈ N a positive number such that p ≤ r−(s2+· · ·+sn), and u = (u1, . . . , un)
the sequence given by ui = p+s1+· · ·+si, i = 1, . . . , n (we set s1 = 0). Then the functors

ΦB(f,s), ΦB(f) ◦ εu
r : In-spr (kH) → mod (R/G)

are isomorphic. In particular, for any object V in In-spr (kH) there exists V ′ in
Iu
r -spr (kH) (V ′ = εu

r (V )) such that the R/G-modules ΦB(f,s)(V ) and ΦB(f)(V ′) are
isomorphic.

(b) Let s be as in (a), V an object in In-spr (kH) with csupp(V ) = u, u =
(u1, . . . , um), and V ′ the corresponding to V sincere object in Im-spr (kH) such that
V = εu

n(V ′). Then for any pair of sequences, the sequence u′ = (u′1, . . . , u
′
m) of pos-

itive integers, 1 ≤ u′1 < · · · < u′m ≤ n, satisfying (∗) together with u, and the se-
quence v = (p, p + su1+1 + · · · + su2 , . . . , p + su1+1 + · · · + sum) determined by p ∈ N ,
1 ≤ p ≤ r − (su1+1 + · · ·+ sum), we have the R/G-isomorphisms

ΦB(f,s)(V ) ∼= ΦB(f,s)εu′
n (V ′) ∼= ΦB(f)εv

r(V ′) ;

in particular,
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ΦB(f,s)(V ) ∼= ΦB(f,s)εūs, u
n (V ) ∼= ΦB(f)εv

r (εu
n)−1(V )

where v = (1, 1 + su1+1 + · · ·+ su2 , . . . , 1 + su1+1 + · · ·+ sum
).

Proof. Note that s = s̄(u) and (a) follows by applying Lemma 2.4(c) and Corol-
lary 2.4(c). To prove (b) we use similar arguments. ¤

Combining the lemma and the facts from 2.4 we obtain the following result.

Proposition. (a) The full subcategories of mod R/G formed by all modules in
the images of the functors ΦB(f,s) (respectively, ΦB(f,s)| In-sprl(s)(kH)), for all sequences
s, and all modules in the image of the functor ΦB(f)| Ir-spr1(kH) are equivalent.

(b) Let s = (s2, . . . , sn) and s′ = (s′2, . . . , s
′
n′) be a pair of sequences of positive

integers such that s2+· · ·+sn, s′2+· · ·+s′n′ < r, and w = (w1, . . . , wn), w′ = (w′1, . . . , w
′
n′)

be a pair of increasing sequences of positive integers such that wn, w′n′ ≤ r, satisfying the
equalities wi − wi−1 = si, for i = 2, . . . , n, and w′i′ − wi′−1 = si′ , for i′ = 2, . . . , n′,
respectively. Then for any V in In-spr (kH) and V ′ in In′ -spr (kH) with coordinate
supports u = (u1, . . . , um) and u′ = (u′1, . . . , u

′
m′), respectively, the following conditions

are equivalent:
(i) ΦB(f,s)(V ) ∼= ΦB(f,s′)(V ′),
(ii) ΦB(f)εw

r (V ) ∼= ΦB(f)εw′
r (V ′),

(iii) ΦB(f,s)εūs, u
n (V ) ∼= ΦB(f,s′)εū′s

′
, u′

n′ (V ′),
(iv) ΦB(f)εv

r (εu
n)−1(V ) ∼= ΦB(f)εv′

r (εu′
n′)

−1(V ′), where v = (1, 1 + su1+1 + · · · +
su2 , . . . , 1+su1+1+ · · ·+sum

) and v′ = (1, 1+s′u′1+1+ · · ·+s′u′2 , . . . , 1+s′u′1+1+ · · ·+s′u′
m′

).

As a consequence of the above, the proof of the main assertion of Theorem 2.2,
stating that the functor ΦB(f,s)| In-sprl(s)(kH) is a representation embedding, reduces to
the case of the sequence s = s̄ and the functor ΦB(f)| Ir-spr1(kH) (cf. also Remark 2.4).

In the next sections we develop the tools we need for the proof of that case (see 6.4).

3. Another description of the category modBR/H.

Let B be a periodic G-atom together with a fixed R-action of ν of GB on itself.
The main aim of this section is to describe the category modB(R/GB) in terms of the
module category of the skew group algebra of the stabilizer GB over the endomorphism
algebra EndR(B), with respect to some natural action induced by ν. We also express in
this language the functors used for creating R/G-modules, in particular the generalized
tensor functor.

3.1.
Let H be a group, E a k-algebra and σ an action of H on E which can be regarded

as a group homomorphism σ : H → Autk−alg(E), where Autk−alg(E) denotes the group
of all k-algebra automorphisms of E. Then we denote by EH = EσH the skew group
algebra of H over E under the action σ. By definition, EσH is the k-vector space

EH =
⊕

h∈H

Eh
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(EEh ' EE, for every h ∈ H) equipped with the multiplication given by the formula

e1h1 · e2h2 = (e1(σ(h1)(e2)))(h1h2)

for h1, h2 ∈ H and e1, e2 ∈ E. It is a straightforward observation that E is in natural
way a subalgebra of EH, H is a subgroup of the unit group of EH and we have the
“relations”

h · e = σ(h)(e)h

e ∈ E, h ∈ H, connecting this two embeddings. Therefore any left EH-module M

can be regarded as a k vector space equipped with structures of a left E-module and a
k-representation of H (that is a left kH-module), related by the equalities

(h·) ◦ (e·) = (σ(h)(e)·) ◦ (h·)

in Endk(M), for all e ∈ E, h ∈ H. They can be rephrased in terms of elements in the
following form

h(em) = (σ(h)(e)(hm))

for all m ∈ M , e ∈ E and h ∈ H.
By analogy a right EH-module M is just a k-vector space equipped with the struc-

tures of right E-module and right kH-module related by the equalities

(mh)e = (m(σ(h)(e)))h

or equivalently

(me)h = (mh)σ(h−1)(e)

for all m ∈ M , e ∈ E and h ∈ H. The bijection (−)−1 : H → H induces an equivalence
between the categories of left and right kH-modules. Consequently, by the last equal-
ity a right EH-module M can be regarded as a (left) k-representation of H equipped
simultaneously with a structure of a right E-module, such that

h(me) = (hm)σ(h)(e) (∗)

for all m ∈ M , e ∈ E and h ∈ H.
Another approach to the above interpretation of right EH-modules refers to fact that

the action σ induces the action of H on the category MODE by translations h(−), h ∈ H.
Recall that to each M in MODE, the translation h(−) assigns the module hM = (M, ·h),
where ·h : M×E → M is the multiplication given by the formula m·he = mσ(h−1)(e), for
m ∈ M and e ∈ E. Then any right EH-module M can be treated as a pair (ME , µ), where
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ME is a right E-module and µ is the right E-action of H an M , that is the family µ = (µh :
M → h−1

M)h∈H of E-homomorphisms such that µ1 = idM and h−1
µh1 ·µh = µh1h for all

h, h1 ∈ H. The category formed by all pairs (ME , µ) and E-homomorphisms compatible
with E-actions of H is traditionally denoted by MOD HE. We will identify the categories
MOD(EH) with MOD HE via the correspondence M 7→ (M, (h· : M → h−1

M)h∈H),
where M is an EH-module given by original fashion data (see (∗)).

It is clear now that the module EE is equipped with the canonical natural structure
of a right EH-module, given by the E-action π = (σ(h) : EE → h−1

(EE))h∈H of H.
In the paper we will consider some special class of right EH-modules containing the
module (EE , π); namely, consisting of all those M in MOD (EH) that ME is a finitely
generated projective E-module. Following the idea of [2] we call these modules the
maximal Cohen-Macaulay EH-modules with respect to the algebra embedding E ⊆ EH.
The full subcategory of MOD (EH) formed by all EH-modules from this class will be
denoted by CM (EH) (= CME(EH)).

3.2.
Let B = (B, ν) be a fixed R-module together with an R-action of a subgroup H of

the group G on B (clearly, H ⊆ GB). Denote by E the endomorphism algebra EndR(B).
Then the k-linear action

HomR(ν, ν) : H × E → E

given by the mapping (h, e) 7→ hνh
he νh−1 , h ∈ H, e ∈ E (see [6]), induces the group

homomorphism

σ : H → Autk(E)

defined by the family σ(h) = hνh
h(−) νh−1 : E → E, h ∈ H, of the maps.

Lemma. (a) The inclusion Im σ ⊆ Autk−alg(E) holds.
(b) If E = HomH

R (B,B) then EH (= EσH) is a group algebra of H over E in the
classical sense. In particular, this is always the case when E = k.

Proof. (a) For any e, e′ ∈ E, h ∈ H we have hνh
h(ee′) νh−1 = hνh

he he′ νh−1 =
(hνh

he νh−1)(hνh
he′ νh−1) and hνh

hidB νh−1 = hνh id(hB) νh−1 = idB . Consequently,
σ(h) is an algebra homomorphism, for every h ∈ H, and (a) is proved.

(b) Note that under the assumptions Imσ = {idE}, so the first assertion is straight-
forward. The last assertion follows easily from the equality h(α idB) = α id(hB), α ∈ k,
h ∈ H. ¤

3.3.
Consider some special case of the situation discussed above. Let Bi = (Bi, νi),

i = 1, . . . , n, be a family of objects in Mod H
f R. We assume that all R-modules

Bi are indecomposable (so H-atoms) and are pairwise nonisomorphic. We set Bo =
{B1, . . . , Bn}. Denote by B = (B, ν) the direct sum of all objects Bi, i = 1, . . . , n, in
Mod H

f R, that is the pair consisting of the R-module B =
⊕n

i=1 Bi and the R-action
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ν = (
⊕n

i=1(νi)h :
⊕n

i=1 Bi →
⊕n

i=1
h−1

Bi)h∈H of H (cf. [9]). We have the induced by ν

action σ : H → Autk−alg(E) of H on the endomorphism algebra E = EndR(B).
Now we formulate the most important result of this section.

Theorem. For Bo = {B1, . . . , Bn} as above, there exists an equivalence of cate-
gories

mod Bo
(R/H) ' CM(EH)

where EH = EσH. If n = 1, the equivalence has the form

modB(R/H) ' CM(EH) (∗∗)

where E is a local algebra.

The proof of the theorem needs some preparation.

3.4.
Let B = (B, ν), E and σ : H → Autk−alg(E) be as in 3.2. We set EH = EσH.

Consider the functors

HomR(B,−) : MODR → MODE

and

HB = H(B, ν) : MODHR → MOD(kH)op

assigning to any M = (M, µ) in MODHR, the left kH-module defined by the action
HomR(ν, µ) on the k-vector space HomR(B,M).

Lemma. (a) The pair (HomR(B,M),HomR(ν, µ)) is a right EH-module.
(b) The mapping M 7→ (HomR(B,M)E ,HomR(ν, µ)) defines a functor

H̃B = H̃(B,ν) : MODHR → MODEH .

Proof. (a) It is enough to check (∗) for an arbitrary module M = (M, µ) in
MODHR. Fix any e ∈ E and f ∈ HomR(B,M). Then we have the sequence of equalities

hµh
h(fe) νh−1 = hµh

hf he νh−1 = (hµh
hf νh−1)(hµh

he νh−1)

and (∗) holds for M .
The statement (b) follows immediately from functoriality of HomR(B,−) and

H(B, ν). ¤

3.5.
Now we return to the context of the last theorem. We assume that B = (B, ν), E

and σ : H → Autk−alg(E) are as in 3.3.
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Proposition. The functor H̃B : MODHR → MODEH restricts to an equivalence
of categories

ModH
f,Bo

R ' CM(EH) . (∗∗∗)

Proof. Denote by Pi, i = 1, . . . , n, the indecomposable projective E-modules
HomR(B,Bi). Recall that the functor HomR(B,−) yields the isomorphism of the addi-
tive closures of Bo in MODR and {Pi}i=1,...,n in MODE. (In fact, the second closure
is equivalent to the category of all finitely generated projective E-modules). Therefore
H̃B is faithful and we have H̃B(ModH

f,Bo
R) ⊂ CM(EH), so we need only to show that

H̃B is dense and full.
To prove density of H̃B it is enough, for any object X = (X, α) in CM (EH),

X =
⊕n

i=1 P di
i , d1, . . . , dn ∈ N , and α = (αh : X → h−1

X)h∈H , to construct an R-action
µ(α) = (µh :

⊕n
i=1 Bdi

i → ⊕n
i=1

h−1
Bdi

i )h∈H of H on the R-module M =
⊕n

i=1 Bdi
i , such

that the canonical E-isomorphism HomR(B,M) ' ⊕n
i=1 P di

i yields the isomorphism
H̃B(X) ' M in CM (EH), where M = (M, µ(α)).

Fix X as above. By the projectivity of Pi’s each E-isomorphism αh :
⊕n

i=1 P di
i →⊕n

i=1
h−1

P di
i , h ∈ H, is uniquely determined by the R-homomorphism f(h) =

(fs,t
i,j (h))i,s; j,t :

⊕n
j=1

⊕dj

t=1 B
(t)
j → ⊕n

i=1

⊕di

s=1 B
(s)
i , B

(t)
j = Bj , B

(s)
i = Bi, which

is given by αh(πt
j) = (fs,t

i,j (h))i,s ∈ ⊕n
i=1

⊕di

s=1 HomR(B,B
(s)
i ) =

⊕n
i=1

h−1
P di

i , j =
1, . . . , n, t = 1, . . . , dj , where πt

j : B → Bj is the canonical jth projection in the tth copy

of Pj . Note that in fact, we have αh(πt
j) = (fs, t

i, j (h))i,s ∈
⊕n

i=1

⊕di

s=1 HomR(Bj , B
(s)
i ) ⊆⊕n

i=1

⊕di

s=1 HomR(B,B
(s)
i ) =

⊕n
i=1

h−1
P di

i . This follows from the fact that each stan-
dard primitive idempotent in E (the composition of the canonical jth projection and
jth embedding, j = 1, . . . , n) is σ(h)-invariant, for every h ∈ H (all νh’s are diagonal!).
Let µ(α) = (µh : M → h−1

M)h∈H be the family of R-homomorphisms µh defined by the
composite maps

n⊕

i=1

Bdi
i

νM
h−→

n⊕

i=1

h−1
Bdi

i

h−1
f(h)−→

n⊕

i=1

h−1
Bdi

i

where νM
h =

⊕n
i=1(νi)di

h . We show that µ(α) is an R-action of H on the R-module M .
It is sufficient to prove that the formula

f(h1h) = f(h1) · (h1νM
h1
· h1f(h) · νM

h−1
1

) (i)

holds for all h, h1 ∈ H, since then we have

µh1h = (h1h)−1
f(h1h) · νM

h1h

= h−1h−1
1 f(h1) ·

(
h−1

νM
h1
· h−1

f(h) · h−1h1
−1

νM
h−1
1

) · (h−1
νM

h1
· νM

h

)

= h−1(h1
−1

f(h1) · νM
h1

) · (h−1
f(h) · νM

h

)
= h−1

µh1 · µh
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(clearly, by the construction of f(1), 1 ∈ H, we have µ1 = idM ). To prove (i) we compare
for any (i, s) and (l, u), 1 ≤ i, l ≤ n, 1 ≤ s ≤ di, 1 ≤ u ≤ dl, the (i, s)th components of
the equalities

αh1h(πu
l ) =

(
h−1

αh1 · αh

)
(πu

l ) (ii)(l,u)

h, h1 ∈ H, regarded as element of HomR(Bl, B
(s)
i ) (see below). For this purpose

we compute the image αh1((f
t, u
j, l (h))j,t) of the element (f t, u

j, l (h))j,t ∈ ⊕n
j=1

⊕dj

t=1

HomR(Bl, B
(t)
j ) ⊆ ⊕n

j=1

⊕dj

t=1 HomR(B,B
(t)
j ) by αh1 , where αh(πu

l ) = (f t, u
j, l (h))j,t.

Note that each f t, u
j, l (h) ∈ HomR(B,B

(t)
j ) can be viewed in the form f t,u

j, l (h) = πt
j · e,

where e = ej,l(f
t,u
j, l (h)) ∈ EndR(B) is given by the matrix with all but one components

equal to zero, and only nonzero, the (j, l)th component, equal to f t,u
j, l (h) ∈ HomR(Bl, Bj).

Therefore, for a fixed (j, t), we have

αh1(f
t,u
j,l (h)) = αh1(π

t
j) ·h−1

1
e = (f t,u

j,l (h))i,s · σ(h1)(e) .

Hence, the (i, s)th component of αh1(f
t,u
j,l (h)) belongs to HomR(Bl, B

(s)
i ) ⊆ HomR

(B,B
(s)
i ) and is equal to fs, t

i, j (h1) · (h1(νj)h1 · h1f t, u
j, l (h) · (νl)h−1

1
). Then, by (ii)(l,u),

for any (i, s) and (l, u) we have the equalities

fs, u
i, l (h1h) =

n∑

j=1

dj∑
t=1

fs, t
i, j (h1) ·

(h1(νj)h1 · h1f t, u
j, l (h) · (νl)h−1

1

)
(ii)(s,u)

(l,u)

of elements in HomR(Bl, B
(s)
i ), where αh1h(πu

l ) = (fs, u
i, l (h1h))i,s ∈

⊕n
i=1

⊕di

s=1 HomR

(Bl, B
(s)
i ) ⊆ ⊕n

i=1

⊕di

s=1 HomR(B,B
(s)
i ). Consequently, (i) holds for all h, h1 ∈ H, since

by (ii)(s,u)
(l,u) , all components (i)(s,u)

(l,u) of the equality (i) hold, for i, l = 1, . . . , n, u = 1, . . . , dl,
s = 1, . . . , di. In this way µ(α) is really an R-action of H on M .

Next we show that H̃B(M) ' X in CM(EH). By definition of µ(α) and the action
HomR(µ(α), ν) of H on HomR(B,M), we have

h · γ = hµh · hγ · νh−1 = f(h) · (hνM
h · hγ · νh−1)

for all h ∈ H and γ ∈ HomR(B,M). In particular, for γ = πt
j , j = 1, . . . , n, t = 1, . . . , dj ,

we obtain

h · πt
j = (fs, t

i, j (h))i,s = αh(πt
j)

since hνM
h · hπt

j · νh−1 = πt
j by the definition (πt

j is regarded here as an element of
HomR(B,M)). Consequently, H̃B(M, µ(α)) ' (X, α) and the functor H̃B is dense.

To prove that H̃B is full, it suffices to show that for any morphism ϕ : X → X ′

in CM (EH), X = (X, α), X ′ = (X ′, α′), X =
⊕n

j=1 P di
j , X ′ =

⊕n
i=1 P

d′i
i , the unique
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R-homomorphism ψ :
⊕n

j=1

⊕dj

t=1 Bj →
⊕n

i=1

⊕d′i
s′=1 Bi, with coordinates ψs′, t

i, j , i, j =
1, . . . , n, t = 1, . . . , dj , s′ = 1, . . . , d′i, such that HomR(B,M) = ϕ, is compatible with
the R-actions µ(α) = (µh : M → h−1

M)h∈H and µ(α′) = (µ′h : M ′ → h−1
M ′)h∈H of H

on the R-modules M =
⊕n

j=1 B
dj

j and M ′ =
⊕n

i=1 B
d′i
i , respectively. By definitions of

µ(α) and µ(α′), the required equality

µ′h · ψ = h−1
ψ · µh , (iii)

for h ∈ H, has the form

h−1
f ′(h) · νM ′

h · ψ = h−1
ψ · h−1

f(h) · νM
h (iv)

where f(h) and f ′(h) are determined by αh and α′h as before. Therefore we need only
to show that

ψ · f(h) = f ′(h) · (hνM ′
h · hψ · νM

h−1

)
(v)

in HomR(M, M ′), for all h ∈ H (apply to (iv) autoequivalence h−1
(−) and then the

composition with νM
h from the right).

We know that ϕ = HomR(B,ψ), as a morphism in CM (EH), satisfies equalities
ϕ · αh = α′h · ϕ, for all h ∈ H. Consequently, for any γ ∈ HomR(B,M) we have

ψ · (αh(γ)) = α′h(ψγ) . (vi)

In particular, (vi) holds for γ = πu
l , for any l = 1, . . . , n, u = 1, . . . , dl. To prove (v),

observe first that passing to components (l, u), (i, s′), i = 1, . . . , n, s′ = 1, . . . , d′i, (v) has
the form

n∑

j=1

dj∑
t=1

ψs′, t
i, j · f t, u

j, l (h) =
n∑

j=1

d′j∑

t′=1

f ′ s
′, t′

i, j (h)
(
h(νj)h · h

(
ψt′, u

j, l

) · (νl)h−1

)
(v)(s

′, u)
(i, l)

of equality in HomR(Bl, B
(s′)
i ), where B

(s′)
i = Bi for every (i, s′). Next, that for any

(l, u), we have the equality

ψ · (αh(πu
l )) =

( n∑

j=1

dj∑
t=1

ψs′, t
i, j · f t, u

j, l (h)
)

i,s′

in
⊕n

i=1

⊕d′i
s′=1 HomR(Bl, B

(s′)
i ) ⊆ ⊕n

i=1

⊕d′i
s′=1 HomR(B,B

(s′)
i ), as an immediate conse-

quence of the definition of f t, u
j, l (h)’s. Finally, we have also
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α′h(ψπu
l ) =

( n∑

j=1

d′j∑

t′=1

f ′s
′, t′

i, j (h)(h(νj)h · hψ · (νl)h−1)
)

i,s′
.

The final equality follows by arguments similar to those from the first part of the proof.
Namely, ψπu

l regarded as an element of
⊕n

j=1

⊕d′j
t′=1 HomR(Bl, B

(t′)
j ) ⊆ ⊕n

j=1

⊕d′j
t′=1

HomR(B,B
(t′)
j ) is equal to (ψt′, u

j, l )j,t′ , and for any (j, t′) we have

α′h
(
ψt′, u

j, l

)
=

(
f ′s

′, t′

i, j (h)
(
h(νj)h · h

(
ψt′, u

j, l

) · (νl)h−1

))
i,s′

in
⊕n

i=1

⊕d′i
s′=1 HomR(Bl, B

(s′)
i ) ⊆ ⊕n

i=1

⊕d′i
s′=1 HomR(B,B

(s′)
i ). We finish the proof by

observing that (v) holds if and only if it holds after passing to the components (v)(s
′, u)

(i, l) ,
for all i, l = 1, . . . , n, u = 1, . . . , dl, s′ = 1, . . . , d′i; but this is the case because the all
components (vi)(s

′, u)
(i, l) ’ of (vi), for γ = πu

l , hold. In this way the proof of the proposition
is complete. ¤

Proof of Theorem 3.3. Denote by F ′ : R → R/H the canonical Galois cov-
ering functor. As usually the “pull-up” functor F ′• : MOD (R/H) → MODR induce the
equivalence

mod Bo(R/H) ' Mod H
f,Bo

R . (∗∗∗∗)

Consequently, the functors H̃B and F ′• induces the equivalence mod Bo(R/H) '
CM(EH). ¤

As consequence, we can give an alternative description of the functors Φ(B′,ν′) =
− ⊗kH Fλ(B′), H = GB′ , for a G-atoms B′ = (B′, ν′). Recall that these functors are
used for constructing regularly orbicular indecomposable R/G-modules.

Consider the tensor product functor

−⊗k E : MOD (kH)op → CM(EH)

defined by the mapping (V, µ) 7→ (V ⊗k E, µ⊗π), where µ⊗π is given by the homomor-
phisms µ(h)⊗ σ(h) : V ⊗k E → V ⊗k

h−1
E, h ∈ H (note that h−1

(V ⊗k E) = V ⊗k
h−1

E

since (V ⊗k E)E = V ⊗k EE).

Corollary. Let n = 1. The functors

(H̃B ◦ F ′•) ◦ (−⊗kH F ′λ(B1)), −⊗k E : MOD (kH)op −→ CM(EH)

are isomorphic.

Proof. Apply the description of (∗∗) as a composition of (∗∗∗) and (∗∗∗∗) (see
[4, 2.3]), and the fact that canonical k-isomorphism HomR(B1, V ⊗k B1) ' V ⊗k E is a
natural, with respect to V in MOD (kH)op, EH-homomorphism. ¤
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3.6.
One can also consider more general situation and form the object θG

H(B) in Mod G
f R,

for B = (B, ν) is as in 3.3, where θG
H : ModH

f R → ModG
f R denotes the induction functor

(see 1.3). The object θG
H(B) is a pair (B̃, ν̃), where B̃ =

⊕
g∈SH

gB (=
⊕

g∈SH

⊕n
i=1

gBi)
is an R-module and ν̃ = νG is a standard R-action of G on B̃ induced by ν. We denote
by σ̃ : G → Autk−alg(Ẽ) the action given by HomR(ν̃, ν̃) of G on Ẽ = EndR(B̃) induced
by ν̃ (see 3.2).

One can prove the result analogous to Proposition 3.5 and Theorem 3.3.

Theorem. Assume that all objects Bi are periodic G-atoms with a common sta-
bilizer H = GBi

for i = 1, . . . , n. If the index [G : H] of H in G is finite, then we have
the equivalences

modBo
(R/G) ' Mod G

f,Bo
R ' CM(ẼG)

of categories, where ẼG = Ẽσ̃G.

Remark. If [G : H] is infinite then CM(Ẽσ̃G) is not the right object to de-
scribe modBo(R/G) (the algebra Ẽ should be replaced by the category, namely, the full
subcategory of ModR formed by the set B̃ = {gBi}i=1,...,n; g∈SH

).

4. Categories with a trivial action of group on objects.

4.1.
To study the category modB(R/H) we construct certain covering of the category

CM(EH). For this purpose we need some generalization of the notion of locally bounded
k-category.

Definition. A k-category E is called weakly locally bounded provided E satisfies
the following three conditions:

(a) x ' y if and only if x = y, for all x, y ∈ obE ,
(b) E (x, x) is a local semiprimary k-algebra for every x ∈ obE ,
(c) for any x ∈ obE , E (x, y) = 0 (respectively, E (y, x) = 0) for almost all y ∈ obE .

We usually consider weakly locally bounded categories E satisfying the following
extra condition:

(d) E (x, x)/J(E (x, x)) = k, for every x ∈ obE .

Note that any locally bounded k-category E is weakly locally bounded ; moreover,
if k is algebraically closed field then (d) is satisfied for E .

The lemma below presents an example being a motivation of the introduced notion.

Lemma. The full subcategory E = E (B) of Mod R, formed by any finite set B =
{B1, . . . , Bn} of pairwise nonisomorphic G-atoms, is a weakly locally bounded k-category.
Moreover, if k is algebraically closed field then E satisfies the condition (d).

Proof. The first assertion follows immediately from [7, Theorem 2.9]. To prove
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the second it suffices to observe that since EndR(Bi) is a local algebra, the factor
field End(Bi)/J(End(Bi)) is always a k-subalgebra of the finite dimensional algebra
Endk(Bi(x)), for any x ∈ suppBi. ¤

Remark. Each finitely generated projective E -module has a unique, up to isomor-
phism, decomposition into a finite direct sum of indecomposable (projective) E -modules
of the form E (−, x), x ∈ obE . Note that the discussed problem can be regarded as the
analogous one for a semiprimary ring, and then the assertion follows by the uniqueness
property for decomposition into a direct sum of indecomposables for finitely generated
projective E -modules over semiperfect rings (see [1]).

From now on we consider only weakly locally bounded categories E that satisfy the
condition (d) !

4.2.
Suppose we are given a k-liner action of an abstract group H on a weakly locally

bounded k-category E , viewed as a group homomorphism σ : H → Autk−cat(E ). Then σ

induces the action of H on the category MODE of all E -modules. We can also consider
the category MODHE of all E -modules with E -action of H whose object as always are
pairs (M, µ), where M is an E -module and µ = (µh : M → h−1

M)h∈H is an E action of
H on M (cf. 1.2). Analogously as in the algebra case there exists a construction of a
skew group category EσH and the module category MODEσH is equivalent to MODHE
(see [26]). We do not present it here, since we do not need its precise description but
only the fact that we can identify these two module categories.

From now on writing MODE H we mean simply MODHE (whenever this does not
lead to any confusion we usually write for simplicity E H instead of EσH).

Observe that, if σ is a trivial action then the category MODHE can be viewed as
the category of all kH- E - bimodules, that is the k-functors M : E op → MOD(kH)op.
In particular, if H is the trivial group then MODHE = MODE .

Analogously as in the algebra case, we denote by CM (E H) the full subcategory of
MODE H formed by all the pairs (M, µ) such that M is a finitely generated projective
E -module, in fact isomorphic to a finite direct sum of E -modules Px = E (−, x), x ∈ obE
(see Remark 4.1). Note that Px = E (−, x) itself carries the canonical structure of object
in CM (E H); namely, Px = (Px, πx), where πx = ((πx)h : E (−, x) → E (−, hx))h∈H is
given by (πx)h(z) = σ(h)(z, x), for h ∈ H and z ∈ obE .

Remark. The subcategory CM (E H) of MODE H is closed under direct sum-
mands.

A fundamental role in studying the category CM(E H) is played by the following
result.

Theorem. If M = (M, µ) is an indecomposable object in CM(E H) then the
endomorphism algebra EndE H(M) is local.

The proof of the theorem is based on the following well known fact.

Lemma. Let C be a k-category (respectively, k-algebra), a ∈ E = EndC(X) an
endomorphism of an object X in MODC, a| ∈ EndC(Im a) the restriction of a to Im a
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and Im a
a′→ Im a2 a′′→ Im a the standard factorization of a| via Im (a|). Then the following

conditions are equivalent:
(a) a′ is a monomorphism and a′′ is an epimorphism,
(b) a| ∈ EndC(Im a) is an automorphism,
(c) X = Im a⊕Ker a

(d) there exists an idempotent e ∈ E and element u ∈ eEe, invertible in eEe, such
that a = ue.

Each a ∈ EndC(X) satisfying one of the equivalent conditions above, will be called
a splitting endomorphism (of X).

Corollary. Assume that C is a k-algebra.
(a) If dimk(Im a) is finite, then a ∈ EndC(X) is a splitting endomorphism if and

only if either a′ is a monomorphism or a′′ is an epimorphism. Moreover, for any a ∈
EndC(X), there exists positive m ∈ N such that am is a splitting endomorphism.

(b) If C is the Laurent polynomial algebra k[t, t−1] and (Im a)C is a finitely generated
C-module, then a is a splitting epimorphism if and only if a′′ is an epimorphism.

Proof. (a) The first assertion is straightforward, the second follows easily if one
consider a decreasing sequence of C-submodules {Im am}m∈N of X.

To show (b) assume that Im a2 = Im a. We can present Im a as a direct sum
Im a = F ⊕ T , where F is a finitely generated free and T a finite-dimensional C-module.
Then the epimorphism a| has the form a| =

[
a11 0

a21 a22

]
, where a11 is an isomorphism by the

uniqueness of the decomposition into indecomposables. Consequently, a| is an isomor-

phism since so is the epimorphism
[

idF 0

0 a22

]
=

[
a−1
11 0

−a21 a11
−1 idT

]
· a| (a22 is an epimorphic

endomorphism of T , so isomorphism). ¤

4.3.
In the proof of Theorem 4.2 we will also apply the change of base field technique.
Let C be a k-category and K a commutative field containing k. Then using the

functor K ⊗k − : MOD k → MODK, one can form the category C(K) = K ⊗k C,
analogously as in algebra case. The functor K ⊗k− induces also the “scalar extension”
functor

(−)(K) : MODC → MODC(K)

which is exact. Note that, Y = 0 if and only if Y (K) = 0, for any Y in MODC.

Lemma. (a) If Y is a finitely generated projective C-module then Y (K) is a finitely
generated projective C(K)-module.

(b) Let a be as in Lemma 4.2. Then a ∈ EndC(X) is a splitting endomorphism if
and only if a(K) ∈ EndC(K)(X(K)) is a splitting endomorphism.

(c) If C is a weakly locally bounded k-category then C(K) is a weakly locally bounded
K-category.

Proof. The assertion (a) is an immediate consequence of the definition of (−)(K);
(b) follows easily from Lemma 4.2(a), by basic properties of (−)(K) formulated before
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the statement of the lemma.
To prove (c), we verify the conditions 4.1(a)–(d). Note first that for any x ∈

obC(K) = ob C, the K-subspace J (K)(x, x) = K ⊗k J(C(x, x)) is a nilpotent ideal
in C(K)(x, x) = K ⊗k C(x, x). Moreover, since (−)(K) is exact, by 4.1(d) we have
C(K)(x, x)/J (K)(x, x) ' K ⊗k k ' K. Consequently, J (K)(x, x) = J(C(K)(x, x)) and
C(K)(x, x) is a local semiprimary K-algebra with C(K)(x, x)/J(C(K)(x, x)) ' K.

Since 4.1(c) is trivially satisfied for C(K), it remains to show the condition 4.1(a).
Observe that the inclusion C(x, y) ◦ C(y, x) ⊆ J(C(x, x)) holds for all x, y ∈ obC,
x 6= y (otherwise, x is a direct summand of y, so x = y by 4.1(a) for C, a contradiction).
Consequently, C(K)(x, y)◦C(K)(y, x) ⊆ J (K)(x, x) = J(C(K)(x, x)), and 4.1(a) is satisfied
for C(K). ¤

Proof of Theorem 4.2. We show that any endomorphism f ∈ EndE H(M) is ei-
ther invertible or nilpotent. Then applying standard arguments we infer that EndE H(M)
is local.

To prove our claim it suffices to show the following:

(i) for any finitely generated projective E -module M and endomorphism f ∈
EndE (M), fm is a splitting endomorphism of M , for some positive m ∈ N .

Note that, if (i) is satisfied then we have a decomposition M = Im fm ⊕ Ker fm in
MODE ; in case f ∈ EndE H(M), it is also a decomposition in MODE H, so in CM (E H)
(see Remark 4.2). Consequently, by indecomposability of the object M = (M, µ) in
CM(E H), we infer that, either Ker fm = M , so f is nilpotent; or Ker fm = 0 and
Im fm = M , so f is invertible.

From now on we assume that M and f are as in (i). Observe that by Lemma 4.3,
we have to prove the assertion of (i) only in the case k = k̄ (k is an algebraically closed
field). Moreover, note that fm is a splitting endomorphism of M if and only if so is fϕ

for some ϕ ∈ AutE (M), where fϕ = ϕ−1 · f · ϕ.
The idea of the proof of (i) is the following. For f ∈ EndE (M) (in case k = k̄),

we construct an automorphism ϕ ∈ AutE (M) and the subalgebra Λ ⊆ E = EndE (M)
such that Λ contains an element v = (fϕ)m′

for some positive m′ ∈ N , and that vm′′ ∈
Λ = EndΛ(ΛΛ) is a splitting endomorphism of ΛΛ for some positive m′′ ∈ N . Then
vm′′ ∈ EndΛ(ΛΛ) satisfies 4.2(d); consequently, so does the endomorphism (fϕ)m′m′′

=
vm′′ ∈ EndE (M) of M (apply Lemma 4.2(d), eΛe is a subalgebra of eEe!). Hence, by the
second observation, fm ∈ EndE (M) is a splitting endomorphism of M , for m = m′m′′.

To construct, for a given f ∈ EndE (M), the pair (ϕ,Λ) as above, we need more
information on the structure of the algebra E = EndE (M).

Without loss of generality, we can assume that the E -module M is of the form
M =

⊕n
i=1 P di

i , where Pi = E (−, xi) for some x1, . . . , xn ∈ obE and d1, . . . , dn ∈ N (see
Remark 4.1). By the Yoneda Lemma and the general assumption 4.1(d) (4.1(d) implies
the isomorphism E (x, x) = k · idx ⊕ J(E (x, x)), for any x ∈ obE ) the equality defining
M yields the standard isomorphism

E '
n⊕

i=1

Mdi(k)⊕
n⊕

i,j=1

Mdj×di(JE (Pi, Pj)) . (ii)



A construction of non-regularly orbicular modules 1105

Observe that under the above identification we have

J(E) =
n⊕

i,j=1

Mdj×di
(JE (Pi, Pj))

'
n⊕

i=1

Mdi
(J(E (xi, xi)))⊕

⊕

i 6=j; i,j=1,...,n

Mdj×di
(E (xi, xj)) .

Note that, since all algebras EndE (Pi) are semiprimary, the k-space J =
⊕n

i,j=1 Mdj×di

(JE (Pi, Pj)) is a nilpotent ideal of E. More precisely, we have Jns = 0, where s is
a common bound of nilpotency degrees for all J(EndE (Pi)), i = 1, . . . , n. Moreover,
for any f ∈ EndE (M), we denote by (f̄ , f ′), f̄ = (f̄i)i=1,...,n ∈

⊕n
i=1 Mdi

(k) and f ′ ∈⊕n
i,j=1 Mdj×di

(JE (Pi, Pj)) the pair corresponding to f via (ii). Then the map f has
the canonical decomposition

f = f̄ + f ′ . (iii)

(For any U = (Uj)
p
j=1 ∈ ⊕p

j=1 Md′j (k), d′1, . . . , d
′
p ∈ N , 1 ≤ i(1), . . . , i(p) ≤ n, we

can identify U with the E -homomorphism ϕU =
⊕p

j=1 Uj · idPi(j) :
⊕p

j=1 P
d′j
i(j) →

⊕p
j=1 P

d′j
i(j)). Since J is an ideal in E, we have f1f2 = f̄1f̄2 in

∏n
i=1 Mdi(k), for any

f1, f2 ∈ E; and therefore, E/J ' ∏n
i=1 Mdi

(k).
In conclusion, J(E) = J and E is a semiprimary k-algebra.
Fix now f ∈ EndE (M). We construct first the announced automorphism ϕ ∈

AutE (M). By the structure theorem for finitely generated modules over principal ideal
domains, for every i = 1, . . . , n, there exists a nonsingular matrix Ci ∈ Md(k) such that

C−1
i f̄i Ci =

[
f̄

(1)
i 0

0 f̄
(2)

i

]

where f̄
(1)

i ∈ M
d

(1)
i

(k) is invertible (the block diagonal block matrix, consisting of Jordan

blocks with nonzero eigenvalues), f̄
(2)

i ∈ M
d

(2)
i

(k) is nilpotent and d
(1)
i + d

(2)
i = di. Let

C ∈ Md(k), d =
∑n

i=1 di, be the block diagonal nonsingular matrix defined by blocks Ci,
i = 1, . . . , n. Modulo some natural slight renumbering of indices, the matrix C−1f̄ C can
be regarded as a matrix

[
f̄ (1) 0

0 f̄ (2)

]

where f̄ (1) ∈ Md (1)(k), d (1) =
∑n

i=1 d
(1)
i , is an invertible block diagonal matrix given

by the square matrices f̄
(1)

i , i = 1, . . . , n, and f̄ (2) ∈ M
d

(2)
i

(k), d (2) =
∑n

i=1 d
(2)
i , is a

nilpotent block diagonal matrix given by the square matrices f̄
(2)

i , i = 1, . . . , n. We set
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ϕ = ϕ(Ci)i=1,...,n
. Note that we have fϕ = C−1f̄ C since ϕ = C and ϕ−1 = C−1.

Let m′ be an upper bound of nilpotency degrees of all homomorphisms f̄
(2)

i , i =
1, . . . , n. Then

(fϕ)m′ = (C−1f̄ C)m′
=

[
(f̄ (1))m′

0

0 0

]

and consequently the E -homomorphism v = (fϕ)m′
: M → M has the form

v =

[
v11 v12

v21 v22

]
: P (1) ⊕ P (2) → P (1) ⊕ P (2)

where P (1) =
⊕n

i=1 P
d

(1)
i

i , P (2) =
⊕n

i=1 P
d

(2)
i

i , v11 = v̄11 + v′11, v̄11 = (f̄ (1))m′
and

v′11, v12, v21, v22 ∈ J(E).
By the construction of homomorphisms f̄

(1)
i , i = 1, . . . , n, there exist natural

numbers d′1, . . . d
′
p, i(1), . . . , i(p) ∈ N , matrices v

(j)
11 , Nj ∈ Md′j (k), j = 1 . . . , p, and

scalars λ1, . . . , λp ∈ k \ {0}, such that
∑p

j=1 d′i(j) = d(1), 1 ≤ i(1), . . . , i(p) ≤ n,

P (1) =
⊕p

j=1 P
d′j
i(j) (some refinement of the decomposition P (1) =

⊕n
i=1 P

d
(1)
i

i ), v̄11 =

ϕ
(v̄

(j)
11 )j=1,...,p

(as elements of EndE (P (1))); finally, v̄
(j)
11 = λjId′j + Nj and N

d′j
j = 0,

for j = 1, . . . p. We can view v11 (respectively, v′11) in the form (v(j, l)
11 )j, l=1,...,p (re-

spectively, (v′(j, l)
11 )j, l=1,...,p), as elements of

⊕p
j, l=1 HomE (P d′l

i(l), P
d′j
i(j)). Then we have

v
(j,j)
11 = v̄

(j)
11 + v

′(j,j)
11 and v

(j, l)
11 = v

′(j, l)
11 for all j, l = 1 . . . , p, j 6= l. Moreover, we

have also presentations v12 = (v(j)
12 )j ∈ ⊕p

j=1 HomE (P 2, P
d′j
i(j)) and v2,1 = (v(j)

21 )j ∈
⊕p

j=1 HomE (P
d′j
i(j), P

(2)). We set e1 = idP (1) = ϕ(Id′
j
)j=1,...,p

, e2 = idP (2) , u = v̄11 and

ũ = (v̄11)−1 (in EndE (P (1))).
Now we define the subalgebra Λ of E. We set Λ = k[X ], where X = {e1, e2}∪V ∪

N ∪U , V = {v22} ∪ {v(j)
12 }j=1,...,p ∪ {v(j)

21 }j=1,...,p ∪ {v′(j, l)
11 }j, l=1,...,p, N = {Nj}j=1,...,p

and U = {u, ũ}. Note that the element

v = u +
p∑

i, l=1

v
′(j, l)
11 +

p∑

i=1

v
(j)
12 +

p∑

i=1

v
(j)
21 + v22

belongs to Λ. To show that vm′′ ∈ Λ = EndΛ(ΛΛ) is a splitting endomorphism for some
positive m′′ ∈ N , we need more information on the structure of Λ. For this aim we
compare Λ to the subalgebra Λ′ = k[X ′] of E, where X ′ = {e1, e2} ∪ V ∪N .

First we prove that Λ′ is a finite-dimensional k-algebra. For this aim it suffices to
find q ∈ N such that kΛ′, as k-linear vector space, is generated by words in X ′ of length
bounded by q (that is products of at most q elements from X ′). Observe that e1, e2

are orthogonal idempotents in Λ′ (so in Λ) such that e1 + e2 = 1E , and that ezx, xez

belong to {x, 0}, for all x ∈ X , z = 1, 2. Moreover, V is contained in J(E) and we
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have xy, yx ∈ J(E) for all x ∈ N , y ∈ V . Therefore, since J(E)ns = 0, kΛ′ (over k) is
generated by e1, e2 and all words w in V ∪N that contains at most ns − 1 generators
from V . Note that Nd′ = 0 and NjNl = 0 for all j, l = 1, . . . , p, j 6= l, where d′ is an
upper bound of d′1, . . . , d

′
p. Consequently, kΛ′ is generated by all words in generators

from X ′ of length bounded by q = nsd′ − 1.
Now we prove the fundamental property of Λ for further considerations; namely,

that e1Λe2, e2Λe1, e2Λe2 are finite-dimensional k-vector spaces and e1Λe1 is a finitely
generated (left and right) A-module, where A is the subalgebra of e1Λe1 generated by U
(U ⊆ e1Λe1 since ue2, e2u, ũe2, e2ũ = 0). Note that either A ' k[t, t−1] or A is a finite-
dimensional k-algebra, since A is the image of the canonical k-algebra homomorphism
k[t, t−1] → e1Λe1 defined by t 7→ u.

In the main step of the proof of the assertion above, we show that any (nonzero!)
word w in generators from V ∪N ∪U belongs either to Λ′ or to A. We apply an induction
on the number degU w of occurring in w (as a formal product) generators from U . If
degU w = 0 then clearly we have w ∈ Λ′. Assume that w 6= 0 and degU w > 0. Then w

contains as a subword one of the words xy or yx, where x ∈ U , y ∈ (V \ {v22}) ∪N .
In the first case we have to consider three possibilities y = v

(j)
12 , y = v′(j, l)

11 and y = Nj ,
for suitable j, l. In all these cases we have the equalities xy = λjy + Njy and xy =∑d′

z=1(−1)z−1λ−z
j Nz−1

j y, when x = u and x = ũ, respectively. Then, by the inductive
assumption, we infer that w belongs to Λ. Analogously, in the second case, we have to
consider again three possibilities y = v

(l)
21 , y = v′(j, l)

11 and y = Nl. Then, applying the
equalities yx = λly + yNl and yx =

∑d′

z=1(−1)z−1λ−z
l y Nz−1

l for x = u and x = ũ,
respectively, we infer similarly that w belongs to Λ.

A straightforward consequence of that just proved above is the equality Λ = Λ′+A.
Multiplying this equality from both sides by suitable idempotents, we get the equalities
e1Λe2 = e1Λ

′e2, e2Λe1 = e2Λ
′e1, e2Λe2 = e2Λ

′e2 and e1Λe1 = e1Λ
′e1 + A. Now the

required properties of Λ follows from the fact that Λ is finite-dimensional. In particular,
we also obtain that (Λe2)e2Λe2 is a finite-dimensional e2Λe2-module and (Λe1)A is finitely
generated A-module.

Now we complete the proof of the theorem and show that vm′′ ∈ Λ = EndΛ(ΛΛ) is
a splitting endomorphism for some positive m′′ ∈ N . For any m ∈ N , vm has the form
vm = vm(·)e1⊕vm(·)e2 : Λe1⊕Λe2 → Λe1⊕Λe2. Moreover, we have vm(·)e1 = (v(·)e1)m,
vm(·)e2 = (v(·)e2)m and Im vm = (Im vm)e1 ⊕ (Im vm)e2 = Im (vm(·)e1)⊕ Im (vm(·)e2).
It suffices to show that if A ' k[t, t−1] then Im (vm1(·)e1) = Im (vm1+1(·)e1), for some
positive m1 ∈ N . Then, since (Λe2)e2Λe2 is finite-dimensional and (Λe1)A is finitely
generated (= finite-dimensional if A 6' k[t, t−1]), we infer by Corollary 4.2 that both,
vm1(·)e1 and vm2(·)e2 (for some positive m1,m2 ∈ N) are splitting endomorphisms
of (Λe1)e1Λe1 and (Λe2)e2Λe2 , respectively. Consequently, vm′′ ∈ Λ = EndΛ(ΛΛ) is a
splitting endomorphism of ΛΛ, where m′′ = m1m2.

To prove the final claim, we show that the decreasing sequence

vΛe1 ⊇ v2Λe1 ⊇ · · · ⊇ vmΛe1 ⊇ vm+1Λe1 ⊇ . . . (iv)

of e1Λe1-submodules of Λe1 stabilizes (note that, vmΛe1 = Im (vm(·)e1)).
Let
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vm =

[
(vm)11 (vm)12
(vm)21 (vm)22

]

be a matrix presentation of vm with respect to the decomposition M = P (1) ⊕P (2). By
the definition of (vm)11, (vm)11−um belongs to the nilpotent ideal J(E)∩e1Λe1 of e1Λe1,
so (vm)11 is invertible in e1Λe1 (((vm)11)−1 ∈ e1Λe1), for every m ∈ N . Therefore the
composite Λ-homomorphism

vmΛΛ ↪→ ΛΛ
e1·−→ e1Λ

m ∈ N , are surjective since the equality

[
e11 0

0 0

]
vm

[
((vm)11)−1 0

0 0

]
=

[
e11 0

0 0

]

in EndΛ(e1Λ⊕ e2Λ) holds. Hence, the e1Λe1-homomorphisms

πm : vmΛe1 ↪→ Λe1
π−→ e1Λe1

m ∈ N , are also surjective, where each π is a restriction of e1· to Λe1. By (iv), the family
{Ker πm}m∈N forms a decreasing sequence

Kerπ1 ⊇ Kerπ2 ⊇ · · · ⊇ Kerπ1 ⊇ Kerπm+1 ⊇ . . .

of submodules of the finite-dimensional right e1Λe1-module Ker π=e2Λe1. Consequently,
Kerπm1 = Ker πm1+1 for some positive m1 ∈ N . Then we have vm1Λe1/vm1+1Λe1 '
(vm1Λe1/Kerπm1)/(vm1+1Λe1/Kerπm1+1) = 0, and vm1Λe1 = vm1+1Λe1.

In conclusion, (iv) stabilizes, so vm′′ ∈ EndΛ(ΛΛ), vm′′ ∈ E = EndE (M)) and
fm ∈ E = EndE (M) are splitting endomorphisms, where m = m′m′′, m′,m′′ as above.
In this way the proof of the theorem is finished. ¤

4.4.
The considered here actions of the group H on weakly locally bounded k-categories

E are usually trivial on objects (Hx = H for every x ∈ obE ). The general aim of this
section is to study the category CM(E H) under this assumption.

The typical example of this situation is in fact that one discussed in 3.3. To interpret
it in the context of notions introduced in 4.2 consider the family

HomR(νj , νi) : HomR(Bi, Bj) → HomR(Bi, Bj)

i, j = 1, . . . , n, of k-linear actions of the group H. We keep further the notation and
assumptions from 3.3 concerning the group H, the set Bo and the action σ of H on the
algebra E.

Lemma. (a) The above family gives rise to the action σ′ : H → Autk−cat(E ) of the
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group H on the weakly locally bounded k-category E = E (Bo) that is trivial on objects.
(b) The standard mapping M 7→ ⊕n

i=1 M(Bi), M in MODE , induces an equivalence

MOD(Eσ′H) ' MOD(EσH)

of categories, that restricts to an equivalence

CM(Eσ′H) ' CM(EσH)

that is induced by the mapping E (−, Bi) 7→ HomE(B,Bi), i = 1, . . . , n.

Proof. (a) An easy check on definitions.
(b) Follows by slight adaptation of the classical arguments. ¤

Corollary. There are equivalences of categories

mod Bo(R/H) ' ModH
f,Bo

R ' CM(EσH) ' CM(Eσ′H) .

Note that, under the above equivalence, F ′•
−1(

⊕n
i=1 Bdi

i , µ) corresponds to
(
⊕n

i=1 P di
i , µ′), where µ′ is the E -action of H induced by µ.

4.5.
The above result leads to a definition of generalized tensor product in the category

MOD(E H), and in particular in CM (E H), where E , H satisfy the general assumptions
of 4.4 (H acts by σ′ : H → Autk−cat(E ) trivially on objects of a weakly locally bounded
k-category E ) and E H stands for Eσ′H.

Let

P : P1
p2← P2 ← · · · ← Pn−1

pn← Pn (∗)

be a sequence of objects and morphisms in MOD(E H), where Pi = (Pi, νi) for every
i = 1, . . . , n. Then for any

V : V1 ⊆ V2 ⊆ · · · ⊆ Vn−1 ⊆ Vn

in In-spr (kH), Vn = (Vn, µ), we denote by V ⊗k P the E -module

V ⊗k P =
n⊕

i=1

V i ⊗k Pi

where V = (V i) i=1,...,n is a fixed sequence of complementary direct summands for V

(see 1.4). The E -module V⊗kP is equipped with the structure of H-representation. It is
given by the family µ⊗kp = ((µ⊗kp)(h))h∈H of the maps (µ⊗kp)(h) : V⊗kP → V⊗kP ,
h ∈ H, with components µ(h)i,j ⊗k pi,j(h) : Vj ⊗k Pj → V i ⊗k Pi, 1 ≤ i, j ≤ n, where for
any h ∈ H,

µ(h) = [ µ(h)i,j ] 1≤i,j≤n
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is the matrix presentation of the k-automorphism

µ(h) :
n⊕

j=1

V j →
n⊕

i=1

V i ,

and the k-linear homomorphisms pi,j(h) : Pj → Pi, 1 ≤ i, j ≤ n, are defined as follows

pi,j(h) =





νi(h) · pi+1 · · · · · pj if i < j ,

νi(h) if i = j ,

0 if i > j .

Note that the maps pi,j(h), h ∈ H, are in fact E -homomorphisms pi,j(h) : Pj → h−1
Pi.

It is easy to check (see [9]) that the pair

(V ⊗k P, µ⊗k p) ,

where

µ⊗k p = ((µ⊗k p)(h) : V ⊗k P → h−1
(V ⊗k P )h∈H)

is the family of E -homomorphisms given by the E -homomorphisms µi,j(h) ⊗k pi,j(h),
h ∈ H, 1 ≤ i, j ≤ n, defines correctly an E H-module structure on V ⊗k P .

Analogously as in the original situation, we fix a selection of sequences V , for all
V in In-spr (kH). Then the mapping V 7→ V ⊗k P extends to the (generalized tensor
product) functor

−⊗k P : In-spr (kH) → MOD(E H) .

In particular, if all E -modules Pi occurring in the sequence P are finitely generated
projective then we obtain the functor

−⊗k P : In-spr (kH) → CM(E H) .

Applying a precise description of the equivalences from Corollary 4.4, we easily
obtain the following result.

Proposition. Let B be a sequence in ModH
f R as 1.4 (∗) such that all Bi’s are

indecomposable and pairwise nonisomorphic, and E = E (Bo) a weakly locally bounded
k-category associated to Bo = {B1, . . . , Bn} equipped with the induced by νi’s action σ′

of H that is trivial on objects. Assume that P is a sequence (∗), given by (Pi, νi) =
(HomR(−, Bi), πi), i = 1, . . . , n; pi = HomR(−, βi), i = 2, . . . , n. Then the functors

−⊗k P : In-spr (kH) → CM(E H)
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and

−⊗k B : In-spr (kH) → Mod H
f,Bo

R ,

under the identification from Corollary 4.4, are isomorphic.

Now we formulate the appropriate version of [9, Theorem 3.1] for the Cohen-
Macauley modules over E H.

Theorem. Let E be a finite weakly locally bounded k-category, obE =
{x1, . . . , xn}, equipped with an action σ′ : H → Autk−cat(E ) of a group H on it-
self, that is trivial on objects. Assume that there exist nonzero H-invariant morphisms
βi ∈ E (xi, xi−1), i = 2, . . . , n, and H-invariant ideal N in E , satisfying the following
conditions:

(a) β1,n 6= 0,
(b) E (xj , xi) = N (xj , xi)⊕ kβi,j for all 1 ≤ i, j ≤ n,

where

βi,j =





βi+1 · · · · · βj if i < j ,

idxi
if i = j ,

0 if i > j .

Then the functor

−⊗k P : In-spr (kH) → CM(E H)

where (Pi, νi) = (E (−, xi), πi), i = 1, . . . , n; pi = E (−, βi), i = 2, . . . , n, is a representa-
tion embedding.

Note that, by (b), N is contained in the Jacobson radical of E , so is a nilpotent
ideal of E .

Proof. After adaptation and slight modifications follows from that in [9], spe-
cialized to the case G = H. ¤

5. Galois covering for weakly locally bounded categories.

Now we briefly show how the classical scheme of Galois coverings [19] can be adopted
for the case of weakly locally bounded categories equipped with an action of a group H

that is trivial on objects.

5.1.
Let E be a weakly locally bounded k-category. Assume we are given a k-linear action

· : Γ×E → E of a group Γ on the category E which is free on obE (so Γ ↪→ Autk−cat(E )).
We have also the induced action Γ ×MODE → MODE of Γ on MODE by the shift
of structure, (γ, M) 7→ γM , where γM(x) = M(γ−1x), for E -module M , γ ∈ Γ and



1112 P. Dowbor

x ∈ obE . Similarly as in the case of locally bounded categories we can construct the
orbit category Ē = E /Γ and the Galois covering functor F : E → E /Γ inducing two
functors F• : MOD (E /Γ ) → MODE and Fλ : MODE → MOD(E /Γ ) with nice
properties.

We define Ē in a little bit different, but in fact equivalent, way as usually (cf. [19]).
An object class ob Ē of Ē is defined as a fixed set (obE )o of representatives of all Γ -orbits
in obE . For any xo, yo ∈ ob Ē we set

Ē (xo, yo) =
∏

γ∈Γ

E (xo, γ yo) .

(Note that
∏

γ∈Γ E (xo, γ yo) =
⊕

γ∈Γ E (xo, γ yo) by 4.1(c) for E ). If α′ = (α′γ)γ∈Γ ∈
Ē (xo, yo) and α′′ = (α′′γ)γ∈Γ ∈ Ē (yo, zo) are two morphisms in Ē then the composition
α′′ ◦α′ in Ē is by definition the collection α = (αγ)γ∈Γ ∈ Ē (xo, zo), with the components
given by the formula

αγ =
∑

γ′,γ′′; γ′γ′′=γ

γ′(α′′γ′′) · α′γ′ ,

where γ′(α′′γ′′) · α′γ′ denotes the composition of the respective morphisms in E (the sum
is finite since 4.1(c) holds for E ).

For any x ∈ obE , we set F (x) = xo, where xo ∈ ob Ē is such that x = γxxo for
some γx ∈ Γ (γx and xo are uniquely determined for x). For any α : x → y in E , we
denote by F (α) the morphism γ−1

x (α) : xo → γ−1
x y (= γ−1

x γy yo), regarded as an element
of E (xo, γ

−1
x γy yo) ⊆ Ē (xo, yo).

Proposition. (a) The category Ē , equipped with the structure defined above, is a
weakly locally bounded k-category.

(b) The mapping F defines a k-linear functor such that F ◦γ = F , for every γ ∈ Γ .
Moreover, for any pair x ∈ obE , yo ∈ ob Ē , F induces two k-isomorphisms:

⊕

y,F(y)=yo

E (x, y) ' Ē (F (x), yo)

and
⊕

y,F(y)=yo

E (y, x) ' Ē (yo,F (x))

(cf. [19], for definition of Galois covering functor).

Proof. (a) It is easy to check that the data Ē as above define correctly a k-
category structure. Moreover, Ē satisfies the condition 4.1(c) since so does E . We
prove that 4.1(b) holds for Ē , more precisely, that for every xo ∈ ob Ē , Ē (xo, xo)
is local semiprimary k-algebra with the factor field Ē (xo, xo)/J(Ē (xo, xo)) isomorphic
to E (xo, xo)/J(E (xo, xo)). It suffices to show that the k-space N = J(E (xo, xo)) ⊕⊕

ε 6=γ∈Γ E (xo, γ xo) forms a nilpotent ideal in Ē (xo, xo), where ε denotes the neutral
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element in Γ . Then clearly, Ē (xo, xo)/N is isomorphic to E (xo, xo)/J(E (xo, xo)), so it
is semisimple; hence, N = J(Ē (xo, xo)) and Ē (xo, xo) is a local algebra with the same
factor field as E (xo, xo). (Clearly, 4.1(d) holds for Ē if and only if it holds for E ).

We start by observing that N is an ideal since Γ acts freely on obE . Let s be a
common bound of the nilpotency degree of J(E (xo, xo)) and the cardinality of the set
{γ ∈ Γ : E (xo, γ xo) 6= 0}. We claim that Ns2

= 0. Suppose it is not the case. Then
there exist αi ∈ E (xo, γixo), i = 1, . . . , s2, such that each partial product αi ◦ · · · ◦ α1

(= γ1 . . . γi−1(αi) · · · · · α1) in Ē is nonzero. Therefore, we have γ1 . . . γi ∈ {γ ∈ Γ :
E (xo, γ xo) 6= 0}, for every i = 1, . . . , s2, and there exists γ ∈ Γ (E (xo, γ xo) 6= 0 !) such
that γ0γ1 . . . γi = γ for at least s + 1 indices i = 0, 1, . . . , s2, where γ0 = ε. Observe that,
if γ0γ1 . . . γi = γ0γ1 . . . γj and j > i then γi+1 . . . γj = ε. Consequently, either γl = ε and
αl belongs to J(E (xo, xo)) for at least one l with i+1 ≤ l ≤ j, or j > i+1 and all αl are
nonisomorphisms, for l = i+1, . . . , j. Thus always we have αj ◦ · · ·◦αi+1 ∈ J(Ē (xo, xo)).
Applying this observation to all elements γ0γ1 . . . γi such that γ0γ1 . . . γi = γ, we infer
that αs2 ◦ · · · ◦α1 = 0, a contradiction. Hence, we have Ns2

= 0 and the claim is proved.
To complete the proof of (a) note that 4.1(a) holds for Ē since it does so for E . This

follows easily from the description of the Jacobson radicals J(Ē (xo, xo)), xo ∈ ob Ē .
(b) The first isomorphism follows immediately from the fact that γ−1

x yields the
k-isomorphism

⊕
y,F(y)=yo

E (x, y) ' ⊕
γ∈Γ E (xo, γ yo). To show the second one, we use

the k-ismorphisms E (y, x) ' E (yo, γ
−1
y x), y ∈ F−1(yo), induced by γ−1

y , where y =
γyyo. ¤

Remark. (a) The category Ē admits a natural structure of Γ -graded category. The
decomposition Ē (xo, yo) =

⊕
γ∈Γ Ē (xo, yo)γ of the morphism spaces Ē (xo, yo), xo, yo ∈

ob Ē , defining the Γ -graded category structure on Ē , is given by setting Ē (xo, yo)γ =
E (xo, γ−1yo), for γ ∈ Γ .

(b) The different choices of the representative sets of Γ -orbits in obE , as objects of
Ē , lead to the isomorphic categories. More precisely, if x′o = γxoxo, xo ∈ ob Ē , is another
choice of representatives of Γ -orbits in ob Ē (γxo ∈ Γ are fixed elements for all xo ∈ ob Ē )
then the maps

ϕyo,xo :
⊕

γ∈Γ

E (xo, γyo) →
⊕

γ′∈Γ

E (x′o, γ
′y′o)

xo, yo ∈ ob Ē , given by E (xo, γyo) 3 αγ 7→ γxo(αγ) ∈ E (x′o, γ
′y′o) with γ′ = γxoγ γ−1

yo
,

induce an equivalence of categories Ē and Ē ′ (here Ē ′ denotes the orbit category E /Γ

with the object class {x′o}xo∈ob Ē ). The maps ϕyo,xo , xo, yo ∈ ob Ē , yield an equivalence
of Ē and Ē ′ as graded categories in the sense explained below. Each ϕyo,xo is given by
the k-isomorphisms ϕyo,xo(γ) : E (xo, yo)γ → E (x′o, y

′
o)ψyo,xo (γ), γ ∈ Γ , where ψyo,xo :

Γ → Γ is a family of maps compatible with multiplication in Γ (ψzo,yo(γ2)ψyo,xo(γ1) =
ψzo,xo(γ2γ1), for γ1, γ2 ∈ Γ ) defined by formula ψyo,xo(γ) = γyoγ

−1γ−1
xo

(see also 5.5).

5.2.
Denote by F• : MOD Ē → MODE the “pull-back” functor associated to F , given

by F•X = X◦F op, for X in MODE . More precisely, for any x, y ∈ obE and α ∈ E (x, y)
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we have F•X(x) = X(γ−1
x x); F•X(α) is just the map X(γ−1

x α) : X(γ−1
y y) → X(γ−1

x x),
where x = γxxo, y = γyyo for xo, yo ∈ ob Ē , γx, γy ∈ Γ , and γ−1

x α ∈ E (xo, γ
−1
x γyyo) ⊆

Ē (xo, yo). The functor F• admits the left adjoint, the so called “push-down” func-
tor Fλ : MODE → MOD Ē . For any M in MODE , FλM is defined as usually
by setting (FλM)(xo) =

⊕
γ∈Γ M(γxo), where xo ∈ ob Ē ; the maps (FλM)(α) :⊕

γ′∈Γ M(γ′yo) →
⊕

γ∈Γ M(γxo) for α = (αγ′′)γ′′∈Γ ∈ ⊕
γ′′∈Γ E (xo, γ

′′yo) = Ē (xo, yo)
are given by the components M(γαγ−1γ′) : M(γ′yo) → M(γxo), γ, γ′ ∈ Γ . It is easy to
see that Fλ(E (−, x)) = Ē (−,F (x)) ' Fλ(E (−, γx)), for every x ∈ obE and γ ∈ Γ .
Moreover, we have F•(Ē (−, xo)) =

⊕
x,F(x)=xo

E (−, x), for every xo ∈ ob Ē . Modifying
arguments from [19], one easily shows classical properties of the functors Fλ and F•,
which are formulated below.

Lemma. Let M be an E -module. Then
(a) FλM ' Fλ

γM , for every γ ∈ Γ ,
(b) F•FλM ' ⊕

γ∈Γ
γM .

5.3.
Assume that, under the general assumptions of 5.1, we have at our disposal also the

action σ : H → Autk−cat(E ) of the group H on E which commutes with the action of Γ

on E , that is:

γ ◦ σ(h) = σ(h) ◦ γ (∗)

in Autk−cat(E ), for all γ ∈ Γ , h ∈ H. We assume here that H always acts trivially
on obE . The action σ induces the family σ̄(h)(xo, yo) : Ē (xo, yo) → Ē (xo, yo), h ∈ H,
xo, yo ∈ ob Ē of k-linear maps, where σ̄(h)(xo, yo) :

⊕
γ∈Γ E (xo, γyo) →

⊕
γ∈Γ E (xo, γyo)

is the diagonal map given by mapping (αγ)γ∈Γ 7→ (σ(h)(αγ))γ∈Γ .

Lemma. The family (σ̄(h)(xo, yo))h∈H,xo,yo∈obĒ defines a group homomorphism
σ̄ : H → Autk−cat(Ē ) and a trivial on objects action of H on Ē = E /Γ such that
σ̄(h) ◦F = F ◦ σ(h), for all h ∈ H.

Proof. An easy check on definitions. ¤

From now on we write simply h instead the operators σ(h) and σ̄(h). Note that this
notation does not lead to any confusion since the actions of H and Γ on E commute and
they can be combined in a natural way into one action of the group Γ ×H (on E ).

5.4.
Consider now the induced by σ (respectively, σ̄) action of H on the category MODE

(respectively, MOD Ē ), and the category MOD (E H) (respectively, MOD (Ē H)), where
for simplicity E H stands for EσH (respectively, Ē H for Ēσ̄H). Then the action of the
group Γ on MODE induced by the action · : Γ × E → E , yields the action of Γ on
the category MOD (E H), which is given by the mapping (γ, (M, µ)) 7→ (γM,γ µ), for
γ ∈ Γ and (M, µ) in MOD (E H), µ = (µh : M → h−1

M)h∈H , where γµ = (γµh : γM →
γh−1

M)h∈H . (Note that γµ is an E -action of H on γM , since by (∗) we have γh−1
M =

h−1γM).
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Let (X, χ) be an object in MOD (Ē H), where the Ē -action χ = (χh : X → h−1
X)h∈H

of H on X is given by the compatible family (χh(xo) : X(xo) → X(xo))h∈H, xo∈obĒ of
k-linear maps. Then χ induces the family (χ̃h(x) : (F•X)(x) → (F•X)(x))h∈H, x∈obE of
k-linear maps, where χ̃h(x) is the map χh(γ−1

x x) : X(γ−1
x x) → X(γ−1

x x).
Let (M, µ) be an object in MOD (E H), where the E -action µ = (µh : M →

h−1
M)h∈H of H on M is given by the compatible family (µh(x) : M(x) →

M(x))h∈H, x∈obE of k-linear maps. Then µ induces the family (µ̄h(xo) : (FλM)(xo) →
(FλM)(xo))h∈H, xo∈obĒ of k-linear maps, where µ̄h(xo) is the map

⊕
γ∈Γ µh(γxo) :⊕

γ∈Γ M(γxo) →
⊕

γ∈Γ M(γxo).

Lemma. (a) The family (χ̃h(x))h∈H, x∈obE defines the E -action χ̃ of H on the E -
module F•X. The mapping X = (X, χ) 7→ (F•X, χ̃), for (X, χ) in MOD(Ē H), yields
the functor

F• : MOD (Ē H) → MOD(E H) ;

moreover, γF•X = F•X in MOD(E H), for every γ ∈ Γ .
(b) The family (µ̄h(xo))h∈H, xo∈obĒ defines the Ē -action µ̄ of H on the Ē -module

FλM . The mapping (M, µ) 7→ (FλM, µ̄), for M = (M, µ) in MOD(E H), yields the
functor

Fλ : MOD (E H) → MOD(E H)

such that Fλ(CM(E H)) ⊂ CM(Ē H); moreover, Fλ(γM) ' FλM in MOD(Ē H), for
every γ ∈ Γ .

(c) For any M = (M, µ) in MOD(E H), F•FλM ' ⊕
γ∈Γ

γM (in MOD(E H) ).

Proof. (a) By definition of F• and Lemma 5.3, we have F•(h−1
Y ) = h−1

(F•Y ),
for any h ∈ H and Y in MOD Ē . Moreover, each family χ̃h = (χ̃h(x))x∈ob E defines in
fact the E -homomorphism F•(χh) : F•X → F•(h−1

X) (= h−1
(F•X)), therefore χ̃ =

(F•(χh))h∈H is an E -action of H on F•X (we denote it by F•(χ)). Now a functoriality
of the mapping X = (X, χ) 7→ (F•X, F•(χ)) is straightforward. The last assertion
follows from the equality of the functors γ(−) ◦F•, F• : MOD Ē → MODE , γ ∈ Γ (see
[19]), applied to E -homomorphisms χh : X → h−1

X, h ∈ H.
(b) Using similar arguments as before we have Fλ(h−1

N) = h−1
FλN , for any h ∈ H

and N in MODE . Now each family µ̄h = (µ̄h(xo))xo∈obĒ defines Ē -homomorphisms
Fλ(µh) : FλM → Fλ(h−1

M) (= h−1
FλM) and therefore µ̄ = (Fλ(µh))h∈H is an E -

action of H on FλM . The remaining assertions follow now easily.
(c) The classical E -isomorphism F•FλN ' ⊕

γ∈Γ
γN , for N in MODE (see [19]),

is natural with respect to N . Now applying this fact to E -isomorphisms µh : M → h−1
M ,

h ∈ H, we obtain by (∗) the required assertion. ¤

The main result of this section is the following.

Theorem. Let M = (M, µ) be an indecomposable object in CM(E H). Then
(a) FλM is an indecomposable object in CM(Ē H),
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(b) if FλM ' FλN , for some N in CM(E H), then there exists γ ∈ Γ such that
N ' γM .

Proof. (a) Suppose that FλM ' X ⊕ Y for some X, Y in CM (E H). Then,
by Lemma 5.4, we have

⊕
γ∈Γ

γM ' F•FλM ' F•X ⊕ F•Y . Consequently, M is
isomorphic to a direct summand of F•X or F•Y in MOD (E H). Assume that the first
possibility holds. We show that (F•Y )(x) = 0 for every x ∈ obE ; hence Y = 0 and M

is indecomposable.
Note that γM is isomorphic to a direct summand of F•X in MOD (E H), for every

γ ∈ Γ , since γF•X = F•X. Consequently,
⊕n

s=1
γsM is a direct summand of F•X

for any pairwise different γ1, . . . , γn ∈ Γ . This follows from the fact that the composite
maps

n⊕
s=1

γsM
i−→ F•X

p−→
n⊕

s=1

γsM

where i and p are given, respectively, by the components γsi and γsp (here i : M → F•X
and p : F•X → M are such that pi = idM ), are isomorphisms in MOD (E H). Note that
we have γspγsi = idγs M and that γsp γs′ i’s are nonisomorphisms, for all s, s′, s 6= s′ (by
Theorem 4.2 all EndE H(γsM)’s are local, and γsM ’s are pairwise nonisomorphic since the
E -module M is isomorphic to a finite direct sum of the modules Pz = E (−, z), z ∈ obE ).

Fix x ∈ obE and establish the notation

{x}+ = {y ∈ obE : E (x, y) 6= 0} ,

Γ0 = {γ ∈ Γ : γM(x) 6= 0} ,

Γ1 =
{

γ ∈ Γ : ob
(

supp γM ∩
⋃

γ′∈Γ0

supp γ′M

)
6=∅

}
.

By 4.1 all of these three sets are finite. Observe that, for any γ ∈ Γ \Γ0 and y ∈ {x}+, Py

is not a direct summand of γM , therefore the multiplicities of Py as a direct summand in⊕
γ∈Γ0

γM and
⊕

γ∈Γ1

γM are the same. Moreover, there is no homomorphism between
E -modules

⊕
γ∈Γ0

γM and
⊕

γ∈Γ\Γ1

γM . On the other hand, by the first observation
we have the splittable monomorphisms

⊕

γ∈Γ0

γM → F•X →
⊕

γ∈Γ

γM =
( ⊕

γ∈Γ1

γM

)
⊕

( ⊕

γ∈Γ\Γ1

γM

)
.

Consequently, the composite map induces a splittable monomorphism

ι :
⊕

γ∈Γ0

γM →
⊕

γ∈Γ1

γM .

Therefore we have a decomposition
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⊕

γ∈Γ1

γM = ι

( ⊕

γ∈Γ0

γM

)
⊕M ′

into a direct sum of E -submodules in the category of finitely generated projective (free)
E -modules and M ′ is isomorphic to a finite direct sum of indecomposable projectives
Pz (note that Γ1 is finite). By the uniqueness of decomposition into a direct sum of
indecomposables for finitely generated E -modules (see Remark 4.1) and the considera-
tions above, non of modules Py, for y ∈ {x}+, can occur in the decomposition of M ′.
Consequently, M ′(x) = 0 and (F•Y )(x) = 0. Since this holds for an arbitrary x ∈ obE ,
we infer that Y = 0, and the proof of (a) is complete.

(b) Assume that FλM ' FλN , where M, N satisfy the assumptions. By (a), one
can assume that N is also an indecomposable object in CM (E H). By Lemma 5.4,
we have the isomorphism

⊕
γ∈Γ

γM ' ⊕
γ∈Γ

γN in MOD (E H). Consequently, M is
isomorphic to a direct summand of

⊕
γ∈Γ

γN . Denote by Γ2 a finite set consisting of
all γ ∈ Γ such that ob (suppM ∩ supp γN) 6= ∅. Note that since there is no nonzero
E -homomorphism between M and

⊕
γ∈Γ\Γ2

γN , M is isomorphic to a direct summand of⊕
γ∈Γ2

γN in CM(E H). Then M is isomorphic to a direct summand of γN in CM(E H),
for some γ ∈ Γ2 (EndE H(M) is local algebra). Consequently, we have M ' γN since N

is indecomposable. ¤

5.5.
Now we consider the situation in some sense converse to that from 5.1. Under special

assumptions we try to present a given weakly locally bounded k-category E in the form
Ẽ /Γ , for certain group Γ ⊆ Autk−cat(Ẽ ) acting freely on objects of some weakly locally
bounded k-category Ẽ .

Assume, we are given a k-category E admitting a Γ -grading defined by the decom-
positions

E (a, b) '
⊕

γ∈Γ

E (a, b)γ (∗∗)

a, b ∈ obE . Then we define a new category Ẽ . We set

ob Ẽ = Γ × obE ,

the morphisms in Ẽ are defined by the formula

Ẽ ((γ1, a), (γ2, b)) = E (a, b)γ2−1γ1

for γ1, γ2 ∈ Γ and a, b ∈ obE , the composition in Ẽ is given by the composition in E .
Moreover, we have Ẽ ((γγ1, a), (γγ2, b)) = E (a, b)(γγ2)−1(γγ2) = E (a, b)γ2−1γ1, for γ ∈ Γ .
Consequently, the mapping (γ, (γ1, a)) 7→ (γγ1, a) induces, in an obvious way, an action

· : Γ × Ẽ → Ẽ
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of the group Γ by k-linear automorphisms on Ẽ , that is free on objects (then clearly, Γ

can be embedded into Autk−cat(Ẽ )). We fix the set {(ε, a)}a∈ob E as a set representatives
of (ob Ẽ )/Γ . Then analogously as in 5.1, we can form the orbit category Ẽ /Γ and the
respective Galois covering functor F : Ẽ → Ẽ /Γ provided, for any pair a, b ∈ obE ,
E (a, b)γ = 0 for almost all γ ∈ Γ .

Proposition. Assume that E is a weakly locally bounded k-category equipped with
the Γ -grading (∗∗) satisfying the following two conditions:

(a) for every pair a, b ∈ obE , E (a, b)γ = 0 for almost all γ ∈ Γ ,
(b)

⊕
ε 6=γ∈Γ E (a, a)γ is contained in J(E (a, a)) for every a ∈ obE (follows from (a)

if Γ is torsion-free).
Then Ẽ is a weakly locally bounded category (the group Γ ⊆ Autk−cat(Ẽ ) acts freely on
ob Ẽ ) and the mapping obE 3 a 7→ (ε, a) ∈ ob (Ẽ /Γ ) induces the isomorphism

E ' Ẽ /Γ

of Γ -graded weakly locally bounded k-categories (see Remark 5.1 (i)) for definition of
natural Γ -grading on Ẽ /Γ ).

Proof. We show first that (b) follows from (a) if Γ is torsion-free. Suppose
that α =

∑
ε 6=γ∈Γ αγ ∈

⊕
ε 6=γ∈Γ E (a, a)γ \ J(E (a, a)). Then at least one homogeneous

component αγ , ε 6= γ ∈ Γ , does not belong to J(E (a, a)), so is invertible. Hence,
E (a, a)γn 6= 0 for all n ≥ 0, so γ is torsion since from (a) the set {γn : n ∈ N} is finite,
a contradiction. Consequently, (b) holds.

To prove that Ẽ is a weakly locally bounded category note first that 4.1(c) holds for
Ẽ by (a). To show the property 4.1(b) for Ẽ observe that, the ideal J(E (a, a))∩E (a, a)ε

of the algebra E (a, a)ε is nilpotent (note that ida ∈ E (a, a)ε) and by (b) we have the
isomorphisms

E (a, a)ε/(J(E (a, a)) ∩ E (a, a)ε) ' (E (a, a)ε + J(E (a, a)))/J(E (a, a))

= E (a, a)/J(E (a, a)) .

Consequently, J(E (a, a)ε) = J(E (a, a)) ∩ E (a, a)ε and E (a, a) is a local, semiprimary
k-algebra, for every a ∈ obE . Therefore, Ẽ satisfies 4.1(a), since so does E (we apply
(b) and the last equality). It is clear that Γ acts freely on ob Ẽ , so one can form the
quotient Ẽ /Γ and start to prove the last assertion. By the definition the equality

(Ẽ /Γ )((ε, a), (ε, b)) =
⊕

γ∈Γ

Ẽ ((ε, a), (γ, b)) =
⊕

γ∈Γ

E (a, b)γ−1

holds for every pair a, b ∈ obE . Then for any α1
γ1
∈ E (a, b)γ−1

1
⊆ (Ẽ /Γ )((ε, a), (ε, b)),

α2
γ2
∈ E (b, c)γ−1

2
⊆ (Ẽ /Γ )((ε, b), (ε, c)) we have α2

γ2
◦α1

γ1
= γ1(α2

γ2
) · α1

γ1
= α2

γ2
α1

γ1
(∈

E (a, c)γ−1
2 γ−1

1
= E (a, c)(γ1γ2)−1), where the first composition refers to (Ẽ /Γ ), the second

to Ẽ , the third to E . Finally, note that (Ẽ /Γ )((ε, a), (ε, b))γ = Ẽ ((ε, a), γ−1(ε, b)) =
E (a, b)γ , for all a, b ∈ obE and γ ∈ Γ . ¤
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Note that in the case Γ is not torsion-free (a) not always implies (b).

Example. Let Γ = Z2 (= {0, 1}) and E consists of one object a such that
E (a, a) = k[t ]/(t2). If char k = 2 then E admits Z2-grading given by k[t ]/(t2) = k1 ⊕
k(1 + t̄); deg 1 = 0, deg (1 + t̄) = 1, where t̄ = t + (t2). Then E (a, a)1 is not contained
in J(E (a, a)) and Ẽ does not satisfy 4.1(a).

Remark. (a) The functor ζ : Ẽ → E , corresponding under the identification
E ' Ẽ /Γ above to the Galois covering functor F : Ẽ → Ẽ /Γ , is given by the projection
π2 : Γ × obE → obE on the second component (on objects) and by the embeddings
E (a, b)γ2−1γ1 ⊆ E (a, b), γ1, γ2 ∈ Γ , a, b ∈ obE (on morphisms).

(b) The category MOD Ẽ is equivalent to the category formed by all Γ -graded E -
modules and E -homomorphisms of “zero degree”.

5.6.
Assume that E is weakly locally bounded k-category with a fixed Γ -grading (∗∗).

Suppose we are given an action σ : H → Autk−cat(E ) of the group H on E which is
compatible with the Γ -grading, that is each σ(h), h ∈ H, induces the k-isomorphism

E (a, b)γ ' E (σ(h)(a), σ(h)(b))γ

for all a, b ∈ obE and γ ∈ Γ . In particular, if H acts trivially on obE this simply means
that for any a, b ∈ obE all subspaces E (a, b)γ ⊆ E (a, b), γ ∈ Γ , are H-invariant.

Consider the family σ̃(h)((γ1, a), (γ2, b)) : Ẽ ((γ1, a), (γ2, b)) → Ẽ ((γ1, a), (γ2, b)), h ∈
H, a, b ∈ obE , γ1, γ2 ∈ Γ , of k-linear maps given by the restrictions of σ(h) : E (a, b) →
E (a, b) to E (a, b)γ2−1γ1 .

Lemma. (a) The family (σ̃(h)((γ1, a), (γ2, b)))h∈H; (γ1,a),(γ2,b)∈ob Ẽ yields a group

homomorphism σ̃ : Γ → Autk−cat(Ẽ ), in fact an action of H on the k-category Ẽ , that
is trivial on objects and commutes with the action of Γ on Ẽ .

(b) Assume that 5.5(a) and 5.5(b) hold. The action ¯̃σ : H → Autk−cat(Ẽ /Γ ), induced
by σ̃, is trivial on objects and coincides with σ under the identification E ' Ẽ /Γ , given
by the mapping a 7→ (ε, a) (see Lemma 5.3 and Proposition 5.5).

Proof. Follows easily from definitions. ¤

From now on we will identify E with Ẽ /Γ , MOD (EσH) with MOD((Ẽ /Γ )¯̃σH), and
CM(EσH) with CM ((Ẽ /Γ )¯̃σH). Then, as an immediate consequence of Theorem 5.4,
Proposition 5.5 and Lemma 5.6, we obtain the following.

Corollary. Given a Galois covering F : Ẽ → E (= Ẽ /Γ ), the “push-down”
functor Fλ |CM(Ẽσ̃H) : CM (Ẽσ̃H) → CM(EσH) induces an injection of the G-orbits of

the isoclasses of indecomposables in CM(Ẽσ̃H) into the set of the isoclasses of indecom-
posables in CM(EσH).

6. The proof of the main result.

We start with three preparatory facts used in the proof.
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6.1.
Let B be an arbitrary G-atom in ModR and

θ : Mod H
f,BR → Mod G

f,BR ,

the restriction of the induction functor

θG
H : ModH

f R → ModG
f R

to Mod H
f,BR, where H = GB . The following property of θ is used in the proof.

Lemma. (a) If M is an indecomposable object in Mod H
f,BR then θ(M) is an inde-

composable object in Mod G
f,BR.

(b) Let M , M ′ be a pair of indecomposable objects in Mod H
f,BR. Then M ' M ′ in

Mod H
f,BR if and only if θ(M) ' θ(M ′) in Mod G

f,BR.

Proof. (a) Consider the restriction R : Mod G
f,BR → Mod HR of the functor

RG
H : MODGR → MODHR. Recall that, RG

H attaches to any (N, ν), ν = (νg)g∈G, the
pair (N, ν|H), where ν|H = (νh)h∈H . (It is clear that θG

H is the left adjoint functor to
RG

H .) By the definition of θ and R, for any M = (Bn, µ) in ModH
f,BR, n ∈ N , the

decomposition

Rθ(M) = Bn ⊕
( ⊕

e6=g∈SB

gBn

)
(i)

(e = idR) in ModR yields a decomposition of the object Rθ(M) in ModHR into a
direct sum of M = (Bn, µ) and the complementary direct summand (

⊕
e 6=g∈SB

gBn) in
ModHR. It is clear (see 1.2) that in the proof we can restrict our attention only to the
objects M in ModH

f,BR of the form as above.
Fix an indecomposable object M = (Bn, µ) in ModH

f,BR. Suppose that we have
θ(M) ' M1 ⊕ M2 in ModG

f,BR, for some M1, M2. We can assume that as R-modules
they have the form M1 = (

⊕
g∈SB

gBn1) and M2 = (
⊕

g∈SB

gBn2), respectively. By the
uniqueness of the decomposition into a direct sum of indecomposables in ModR (see [7])
we have n1 +n2 = n, since

⊕
g∈SB

gBn ' (
⊕

g∈SB

gBn1)⊕ (
⊕

g∈SB

gBn2). On the other
hand Rθ(M) ' R(M1)⊕R(M2) in ModHR; consequently, by (i), M is a direct summand
of R(M1) or R(M2) in ModHR. Assume that M is a direct summand of R(M1). Then⊕

g∈SB

gBn is a direct summand of
⊕

g∈SB

gBn2 in ModR and by arguments as before
we have n ≤ n2, hence n2 = 0 and M2 = 0. This immediately implies that M is an
indecomposable object in ModG

f,BR and the proof of (a) is finished.
(b) Suppose now that M = (Bn, µ), M ′ = (Bn′ , µ) are objects in ModH

f,BR such
that θ(M) ' θ(M ′). Then we obtain the isomorphism

u : Rθ(M) → Rθ(M ′)

in ModHR. The isomorphism u, regarded as a map
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u : Bn ⊕
( ⊕

e 6=g∈SB

gBn

)
−→ Bn′ ⊕

( ⊕

e 6=g∈SB

gBn′
)

,

is given by the matrix

[
u11 u12

u21 u22

]
,

where the components u11 : M → M ′, u12 :
⊕

e 6=g∈SB

gBn → M ′, u21 : M → ⊕
e 6=g∈SB

gBn′ and u22 :
⊕

e 6=g∈SB

gBn → ⊕
e 6=g∈SB

gBn′ are morphisms in ModHR (see (i)).
Then by [7, Proposition 2.2] the R-homomorphisms u11, u22 are R-isomorphisms and we
have M ' M ′ in ModH

f,BR. Consequently, the proof of (b) is complete. ¤

Remark. Applying the arguments from the proof one can show that (a) and (b)
hold also for the functor θG

H : Mod H
f R → Mod G

f R.

The crucial role in the proof of the main theorem is played by the following conse-
quence of the lemma.

Corollary. For any f ∈ EndH
R (B)∩J(EndR(B)) and a sequence s = (s2, . . . , sn)

of positive integers, n ≥ 2, the functor

ΦB(f,s)| In-sprl(s)(kH) : In-spr l(s)(kH) → modB(R/G)

is a representation embedding if and only if so is

−⊗k B(f, s)| In-sprl(s)(kH) : In-spr l(s)(kH) → Mod H
f,BR .

6.2.
Let E0 be a full subcategory of a weakly locally bounded k-category E . Assume, as

usually, that E is equipped with an action σ : H → Autk−cat(E ) that is trivial on objects.
We denote by σ| : H → Autk−cat(E0) the action given by the family (σ(h)|E0)h∈H of k-
equivalences. Let e• : MODE → MODE0 be the restriction functor induced by the
embedding E0 ↪→ E , and eλ : MODE0 → MODE the associated left Kan extension
functor, that is the left adjoint to e• (see [23] for the precise definition). It is easily seen
that e• induces the functor

e• : MOD (E H) → MOD(E0H)

where E H = EσH and E0H = (E0)σ1H (note that he•(N) = e•(hN), for any N in
MODE and h ∈ H). We discuss briefly the analogous problem for eλ.

Lemma. (a) Let M be an object in MODE0. For any h ∈ H, the maps hM ⊗E0

E (x,−) → M ⊗E0 E (x,−), x ∈ obE , given by m ⊗ ψ 7→ m ⊗ σ(h−1)(ψ), m ∈ M(z),
ψ ∈ E (x, z), z ∈ obE0, yield the isomorphisms
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ηh = ηh(M) : eλ(hM) → heλ(M)

in MODE . Moreover, the family (ηh(M))M∈ob MOD E0 is a natural family of E -
homomorphisms, for every h ∈ H.

(b) Let M = (M, µ) be an object in MOD(E0H). The family eλ(µ) = (ηh−1 ·
eλ(µh))h∈H forms an E -action of H on eλ(M).

Proof. (a) Note first that the maps above are well defined k-isomorphisms since
hM(α)(m) ⊗ ψ − m ⊗ αψ is mapped to the element M(σ(h−1)(α))(m) ⊗ σ(h−1)(ψ) −
m⊗ σ(h−1)(αψ) = 0, where m ∈ M(z), α ∈ E (z′, z), z′, z ∈ obE0, x ∈ obE . Moreover,
for any m ∈ M(z), ψ ∈ E (x, z), α ∈ E (y, x), z ∈ obE0, x, y ∈ obE , we have m ⊗ α ·h
σ(h−1)(ψ) = m ⊗ σh−1(αψ), so they yield an E -homomorphism. The final assertion
follows by an easy check.

(b) Follows by the equality of E -homomorphisms

h−1
ηh−1

1

h−1(
eλ

(
µh1

))
ηh−1 = η(h1h)−1 eλ

(
h−1

µh1

)
: eλ

(
h−1

M
) → (h1h)−1

(eλ(M))

which for any m ∈ h−1
M(z), ψ ∈ E (x, z), z ∈ obE0, x ∈ obE , maps the element m⊗ ψ

to µh1(m)⊗ h−1h−1
1 ψ. ¤

Proposition. The mapping (M, µ) 7→ (eλ(M), eλ(µ)) yields a full and faithful
functor

eλ : MOD (E0H) → MOD(E H)

such that eλ(CM(E0H)) ⊂ CM(E H).

Proof. Since the functor eλ : MODE0 → MODE is full and faithful, it suffices to
show that, for any M = (M, µ), M ′ = (M ′, µ′) in MOD (E0H) and ϕ ∈ HomE0(M, M ′),
ϕ is a morphism from M to M ′ in MOD(E0H) if and only if eλ(ϕ) is a morphism from
eλ(M) to eλ(M ′) in MOD (E H). But this follows (by the definition of eλ(µ), eλ(µ′)
and properties of eλ) from the fact that (ηh(N))N∈ob MOD E0 is a natural family of E -
homomorphisms, for every h ∈ H.

The final assertion is an immediate consequence of the E -isomorphisms
eλ(E0(x,−)) ' E (x,−), x ∈ obE0. ¤

6.3.
The following fact allows us to describe the structure of the k-algebra EndR(B)

under the assumption of Theorem 2.2.

Lemma. Let E be a local k-algebra equipped with a grading E =
⊕

γ∈Γ Eγ , by an
infinite cyclic group Γ = Z, and with an action σ : H → Autk−alg(E) of a group H, com-
patible with the grading. Assume that there exists a homogeneous nilpotent H-invariant
f ∈ E which admits surjective H-invariant algebra homomorphism π : EndR(B) → A,
where A = k[f ] =

⊕r
i=0 kf i, r = r(f), is the subalgebra of EndR(B) generated by f ,

such that π|A = idA and
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π(Eγ) =

{
kfγ if γ ≥ 0

0 if γ < 0 .
(∗)

Then the algebra E has the following structure:
(a) A ⊆ EH , A ' k[t ]/(tr) as Γ -graded algebras and N = Ker π ⊆ E is a homoge-

neous H-invariant ideal,
(b) E = A⊕N as “Γ -graded H-representations”; more precisely, Eγ = Aγ ⊕Nγ as

kH-modules, for every γ ∈ Γ , where Nγ = N ∩ Eγ and Aγ = kfγ (6= 0) for 0 ≤ γ < r,
and Aγ = 0, otherwise.

(c) J(E) = N0 ⊕
⊕

0 6=γ∈Γ Eγ and J(E) = J(A) ⊕ N as “Γ -graded H-representa-
tions”,

(d) E0 is a local algebra with J(E0) = N0,
(e) EH = A⊕(EH∩N) and J(EH) (= EH∩J(A)) = J(A)⊕(EH∩N) as “Γ -graded

H-representations”.

Proof. Assume that 0 6= f ∈ Eγ , then γ ≥ 0, r = r(f) ≥ 2, f i ∈ Eiγ are
nonzero H-invariants for i = 0, . . . , r − 1, and fi = 0 for all i ≥ r. In fact γ = 1 since
f = π(f) ∈ π(Eγ) ⊆ kfγ ⊆ Eγ2 so Eγ ∩Eγ2 6= 0, hence γ2 = γ and γ = 1 (γ = 0 implies
f ∈ k1E , a contradiction). Consequently, the algebra homomorphism k[t ] → A, t 7→ f ,
induces Γ -graded algebra isomorphism k[t ]/(tr) ' A, where k[t ]/(tr) is equipped with
the standard Z-grading and A =

⊕
γ∈Γ A∩Eγ =

⊕r
i=0 kfγ . Since π preserves Γ -grading

and H-action, we have E = A ⊕ N , where N = Ker π is a homogeneous, H-invariant
ideal contained in J(E). Moreover, all summands Nγ = N ∩ Eγ in the decomposition
N =

⊕
γ∈Γ Nγ , are H-invariant and for every γ ∈ Γ we have a decomposition Eγ =

Aγ ⊕ Nγ of H-representations. Finally, J(E) = Ker p π = π−1((f)) ⊇ Ker π, where
p : K[t ]/(tr) → k is the canonical projection, so E/J(E) ' k and J(E) ⊇ ⊕

0 6=γ∈Γ Eγ .
The remaining assertions follow immediately from the previous and the proof. ¤

Remark. Let E be as above. Suppose we are given a homogeneous invariant f ∈ E

and a homogeneous ideal N ⊆ E. If a decomposition E = A⊕N of the k-linear space E

holds, where A = k[f ], then E = A⊕N as “Γ -graded H-representations” (A is equipped
with the standard Γ -grading determined by the degree of f). More precisely, this means
that Eγ = Aγ⊕Nγ as kH-modules, for every γ ∈ Γ , where Nγ = N∩Eγ and Aγ = A∩Eγ .
In this situation, the canonical projection π : E → A is not only an H-invariant surjective
algebra homomorphism such that π|A = idA, but also a homomorphism of Γ -graded
algebras. In particular, π satisfies (∗) if a degree of f is 1.

6.4.
Proof of Theorem 2.2. We have to prove that for a given sequence B(f, s)

as in 2.2, the functor ΦB(f,s)| In-sprl(s)(kH) is a representation embedding, under the as-
sumptions of Theorem 2.2. Due to considerations in 2.4 and 2.5 (see the final con-
clusion), we can assume without loss of generality that s = s̄ (then n = r and
ΦB(f,s)| In-sprl(s)(kH) = ΦB(f)| Ir-spr1(kH)). By Corollary 6.1 and Proposition 3.5, it suf-

fices to show that the functor H̃B ◦ (−⊗kB(f))| Ir-spr1(kH) : Ir-spr1(kH) → CM(EH) is
a representation embedding, where E = EndR(B), EH = EσH, σ is the action of H on
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E given by HomR(ν, ν) (see 3.2) and Bo = {B}. This is equivalent to the fact that, the
functor

(−⊗k P )| Ir-spr1(kH) : Ir-spr1(kH) −→ CM(E H)

is a representation embedding, where E = E (Bo), E H = Eσ′H, σ′ is the induced by σ

action of H on E and

P : P1
p2← P2 ← · · · ← Pr−1

pr← Pr

is the sequence in CM (E H) such that Pi = (HomR(−, B), πB), for i = 1, . . . , r; pi =
HomR(−, f), for i = 2, . . . , r (see Proposition 4.5).

On the other hand, by the assumptions, the category E is equipped with a grading
by an infinite cyclic group Γ = Z, compatible with the action σ′ of H on E that is
trivial on objects (cf. 5.5(∗∗)). Consequently, E admits the Galois covering F : Ẽ → E

by the associated with the Γ -grading of E weakly locally bounded k-category Ẽ (see
Proposition 5.5). The functor F is compatible with the actions σ̃′ and σ′ of H on Ẽ
and E , respectively (see Lemma 5.6 and Lemma 5.3). Therefore we have at our disposal
the nicely behaved “push-down” functor Fλ |CM(Ẽ H) : CM (Ẽ H) → CM(E H), where

Ẽ H = Ẽσ̃′H (see Corollary 5.6).
For any i ∈ Γ (= ob Ẽ ), we set P̃i = (Ẽ (−, i), π̃i), where π̃i is the canonical Ẽ -action

of H on Ẽ (−, i) induced by σ̃′ (see 4.2). Let

P̃ : P̃1
p̃2← P̃2 ← · · · ← P̃r−1

p̃r← P̃r

be the sequence in CM (Ẽ H), where p̃i = Ẽ (−, f), f ∈ EH
1 ⊆ Ẽ (i, i − 1) (see Lemma

6.3(b)). Observe first that by the definition the functors

Fλ ◦ (−⊗k P̃ ), −⊗k P : Ir-spr(kH) −→ CM(E H)

are isomorphic, since for Fλ(P̃i) = HomR(−, B) (=: P0) as E -modules and for any V in
Ir-spr(kH) the values of the both functors are canonically isomorphic to

⊕r
i=1 V i ⊗k P0,

where V = (V i)i=1,...,r is a fixed sequence of complementary direct summands for V (it
is easy to check that the respective actions of H correspond each to other).

Next we show that the functor − ⊗k P̃ is a representation embedding. For this
purpose, we present the functor −⊗k P̃ as a composition of the functor

−⊗k P ′ : Ir-spr1(kH) → CM(E ′H)

and the left Kan extension functor

eλ : CM (E ′H) → CM(Ẽ H) ,

where E ′ is the full subcategory of Ẽ formed by the set {1, . . . , r}, E ′H = E ′σ̃′|H, σ̃′| is
the restricted action of H on E ′ induced by σ̃′ (see 6.2) and
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P ′ : P1
p′2← P ′2 ← · · · ← P ′r−1

p′r← Pr

is the sequence in CM (E ′H) such that P ′i = (E ′(−, i), π′i), for i = 1, . . . , r, and p′i =
E ′(−, f), for i = 2, . . . , r. Since E has the structure as described in Lemma 6.3, the family
N ′ = (N ′(i, j))1≤ i,j≤r, N ′(i, j) = Ni−j ⊆ Ei−j = E ′(i, j), forms an H-invariant ideal
of E ′, and together with H-invariant morphisms βi = f ∈ EH

1 ⊆ E ′(i, i− 1), i = 1, . . . r,
satisfy the assumptions of Theorem 4.5 for the category E ′. Consequently, the functor
−⊗kP

′ is a representation embedding and by Proposition 6.2, so is −⊗k P̃ .
Now, we immediately obtain from Theorem 5.4(a) that the functor −⊗kP preserves

indecomposability. To complete our proof it suffices to show that for any two nonisomor-
phic indecomposables V, V ′ in Ir-spr1(kH), isoclasses of the modules M = V ⊗k P̃ and
M ′ = V ′⊗k P̃ from CM (Ẽ H) do not lie in the same Γ -orbit (see Theorem 5.4(b)). Note
that M and M ′ are nonisomorphic in CM (Ẽ H) and they both, as Ẽ -modules, have a
direct summand isomorphic to P̃1. Moreover, for any 0 6= γ ∈ Γ , either γM or γ−1

M ′ do
not contain a direct summand isomorphic to P̃1. Consequently, M ′ 6' γM for all γ ∈ Γ .

As conclusion, the functor (−⊗k P )| Ir-spr1(kH) is a representation embedding and
so is ΦB(f)| Ir-spr1(kH) (respectively, ΦB(f,s)| In-sprl(s)(kH), for any sequence s). Moreover,
by Corollary 2.3, we immediately infer that all indecomposables in the images of the
functors ΦB(f)| Ir-spr′1(kH) (respectively, ΦB(f,s)| In-spr′

l(s)(kH)) are non-regularly orbicular.
The final assertion of the theorem follows from [9, Lemma 3.7], since I2-spr′ (kH)

can be fully imbedded into In-spr ′l(s)(kH), for any n ≥ 2 and any sequence s. ¤

Remark. If char k = p > 0, then, taking [33, Theorem 1.4] into consideration,
we can slightly modify the final assertion of Theorem 2.2.
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[34] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc.,

34 (1986), 245–264.
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