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By Benôıt Audoubert, Tu Chanh Nguyen and Mutsuo Oka

(Received Aug. 19, 2004)

Abstract. Let p and q be integers such that p > q ≥ 2 and q divides p. Let
ϕ(q) be the Euler number of q. We exhibit a Zariski ϕ(q)-ple, distinguished by
the Alexander polynomial, whose curves are tame torus curves of type (p, q), with q
smooth irreducible components of degree p, and one single singular point topologically

equivalent to the Brieskorn-Pham singularity vq + uqp2
= 0.

Introduction.

Let C ⊂ P 2 be a projective plane curve defined over the complex numbers. By the
Hyperplane section theorem of Zariski [29] (completed by Hamm and Lê [7]), the study of
the fundamental group π1(P 2\C) lies at the heart of an understanding of the fundamental
group of the complement of a hypersurface of any dimension V ⊂ P N . Namely, by
induction, π1(P N \V ) is isomorphic to the fundamental group of the complement of the
plane curve C obtained by intersecting V with a generic linear space of dimension two.

Let us assume that the curve C is given in affine coordinates by f(x, y) = 0. For
any integer n, one may consider the cyclic branched coverings of P 2 defined by the
surface Wn : tn − f(x, y) = 0 in P 3. Zariski proved that simple homological invariants
of Wn provide non-trivial invariants of the complement to the branch locus, linking the
algebraic-geometric and knot-theoretic situations together, as follows.

Let ξ ∈ C be a singular point. Let us assume for simplicity that the germ (C, ξ) has
only one branch. Let S3

ε be the 3-sphere centered at ξ and with radius ε. For suitably
small ε, the intersection K = C ∩ S3

ε is an iterated torus knot (called an algebraic knot),
completely determined by the Puiseux pairs of the singularity (C, ξ). It is classical in
knot theory to consider, for all integer n, the compact 3-manifold M3

n, which is a cyclic
n-fold covering of S3

ε ramified along K. The manifold M3
n is intimately related to the

Alexander polynomial of the knot K (see [1]). Zariski studied algebraic knots of the
singularities and 3-manifolds M3

n in [30] and observed that there is a formula connecting
the Alexander polynomials of knots and links of the singularities of the curve C with the
first Betti number b1(M3

n) of M3
n.

In the spirit of Zariski’s works, A. Libgober introduced the global Alexander poly-
nomial ∆C(t) of the curve C, with respect to a general line, whose main property is the
following (see [10]): The (global) Alexander polynomial ∆C(t) of C divides the product
∆1(t) · · ·∆k(t) of the (local) Alexander polynomials of the singularities of C.
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It is in general very difficult to calculate the fundamental group π1(P 2 \ C), but
the Alexander polynomial ∆C(t) is an invariant of π1(P 2 \ C), which is easier to be
computed. A. Libgober announced in [11] how to compute ∆C(t) by the data of the
degree of C, the topological type of the singularities of C and their relative positions,
without passing by the calculation of π1(P 2 \ C). The first published complete proof of
the results of [11] is due to Loeser and Vaquié [12], using R. Randell’s interpretation [23]
of the Alexander polynomial ∆C(t) as the characteristic polynomial of the monodromy
acting on the Milnor fiber of the affine cone of C, and H. Esnault’s description [5] of
the mixed Hodge structure of this Milnor fiber. In the present work, we will use the
computational method which can be extracted from the results of H. Esnault [5] and E.
Artal [2], in terms of data coming from the resolution of the singularities of the curve C.

The first non-trivial example studied extensively by Zariski is the case of a sextic
with six cusps. If n is a multiple of 6, the irregularity q(Wn) = b1(Wn)/2 of the associated
cyclic branched covering Wn is 1 or 0, depending on whether or not the six cusps lie on
a conic. If q(Wn) = 1, the sextic is a torus curve of type (3, 2), with fundamental group
the free product of cyclic groups Z/2Z ∗Z/3Z and Alexander polynomial t2 − t + 1. If
q(Wn) = 0, the fundamental group of the sextic is abelian (assuming the irreducibility of
the moduli of such sextics), isomorphic to the cyclic group Z/6Z, and with Alexander
polynomial 1.

This striking topological phenomenon has been studied further by many authors
(see e.g. [2], [20], [24], [25]), and leads E. Artal to the following formulation [2]. A pair
of reduced curves {C ′, C ′′} is called a Zariski pair if the curves have the same degree,
the configurations of local singularities are the same up to topological equivalence, and
there exist regular neighbourhoods N(C ′) and N(C ′′) of C ′ and C ′′ respectively, such
that the pairs (N(C ′), C ′) and (N(C ′′), C ′′) are homeomorphic but the pairs (P 2, C ′)
and (P 2, C ′′) are not homeomorphic. Similarly, k-ple of plane curves {C1, . . . , Ck} is
called a Zariski k-ple if each pair {Ci, Cj} is a Zariski pair for 1 ≤ i < j ≤ k.

Let p and q be integers such that p ≥ q ≥ 2. A torus curve of type (p, q) and degree
pq is by definition a curve C which admits an equation of the form

(fq(x, y))p + (fp(x, y))q = 0,

where fp(x, y) and fq(x, y) are polynomials of degree p and q respectively. The geometry
of such a curve C is strongly related to the geometry of the intersection of the curves
Cp : fp(x, y) = 0 and Cq : fq(x, y) = 0. A torus curve is said to be tame if its singular
locus coincides with the intersection of the associated curves Cp and Cq. The case of tame
generic torus curves, i.e. when the associated curves Cp and Cq intersect transversally
at pq distinct points, is classical (see [27], [15]). The study of the other extreme case,
i.e. when Cp and Cq intersect at one single point, is the purpose of the present paper.
One of our main results may be stated as follows (the definition of Zariski multiple is
straightforward ).

Theorem. Let p and q be integers such that p > q ≥ 2 and q divides p. Let
ϕ(q) be the Euler number of q and let ν ≥ 1 be a divisor of q. Let fν(x, y) and
fp(x, y) be polynomials of degree ν and p respectively. Assume that the torus curve Γν :
((fν(x, y))q/ν)p + (fp(x, y))q = 0 satisfies the following conditions:
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(1) Sing(Γν) = {fp(x, y) = 0} ∩ {fν(x, y) = 0} = {(0, 0)};
(2) {fp = 0} and {fν = 0} are smooth at (0, 0), and the intersection multiplicity of

{fν = 0} with its tangent line at (0, 0) is equal to ν.

Then the family of torus curves {Γν}ν|q is a Zariski ϕ(q)-ple, distinguished by the
Alexander polynomial, whose curves have q smooth irreducible components of degree p,
and one single singular point topologically equivalent to the Brieskorn-Pham singularity
Bq,qp2 : vq + uqp2

= 0.

The content of our paper is the following. We state our results in Section 1, where
we compare two extreme cases of tame torus curves: the generic case and the maximal
contact case, and eventually exhibit from the latter Zariski multiples. In Section 2,
we prove our main theorem by an explicit calculation of Alexander polynomial. The
calculation reduces to a Diophantine equation, which can be solved in an elementary
way. In Section 3, we give the proof of the description of the moduli space of torus
curves of maximal contact and maximal flex order. Finally, Section 4 is devoted to a new
proof of the classical formula of the Alexander polynomial of generic tame torus curves
(see [15], [19]).

Notations. For any rational number a/b, let us note [a/b] its integral part defined
by a/b − 1 < [a/b] ≤ a/b. For any integer m ≥ 1, let ϕ(m) be the number of strictly
positive divisors of m (the Euler number of m).

1. Statements of the results.

1.1. Alexander polynomial.
Let X, Y , Z be homogeneous coordinates of the complex projective plane P 2 and

let {Z = 0} be the line at infinity. Let x = X/Z, y = Y/Z be affine coordinates of
the affine plane C2 = P 2 \ {Z = 0}. Let C ⊂ P 2 be a reduced projective plane curve
of degree d. Let us assume that {Z = 0} is general position with respect to C, i.e.
that {Z = 0} intersects C at d distinct points. One associates with the fundamental
group π1(P 2 \ (C ∪ {Z = 0})) = π1(C2 \C) an infinite cyclic covering whose Alexander
polynomial is by definition the (generic) Alexander polynomial of the curve C (see [10]).

The definition of the Alexander polynomial of a curve C does not depend on the
choice of a general line for C, but for simplicity we will consider projective curves for
which the line at infinity is in general position, and compute Alexander polynomial
relatively to {Z = 0}.

Let us recall the following classical example. Let p and q be integers such that
p ≥ q ≥ 2. The Brieskorn-Pham singularity C : xp + yq = 0 has r = gcd(p, q) branches.
The corresponding link K = C ∩ S3

ε consists of r torus knots of type (p/r, q/r). The
Alexander polynomial of the curve C is equal to the product of cyclotomic polynomials
∆p,q(t) given by the formula (see [4], [22] and also [21])

∆p,q(t) =
(tpq/r − 1)r (t− 1)

(tp − 1)(tq − 1)
.
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1.2. Torus curves.
Let p and q be integers such that p ≥ q ≥ 2 and let d ≥ 2 be a common multiple

of p and q. Let m = d/p and n = d/q. A torus curve C of type (p, q; d) is classically a
reduced projective curve of degree d, given in affine coordinates by an equation of the
form

(fm(x, y))p + (fn(x, y))q = 0,

where fm(x, y) and fn(x, y) are polynomials of degree m and n respectively. Different
torus expressions fp

m+fq
n and gp

m+gq
n may define the same curve. To clear this ambiguity,

let us attach a fixed torus decomposition, each time we consider a torus curve, as stated
in the following definition.

Definition 1.2.1. Let p and q be integers such that p ≥ q ≥ 2 and let d ≥ 2 be
a common multiple of p and q. Let m = d/p and n = d/q. A torus curve C of type
(p, q; d) consists of the data of two fixed polynomials fm(x, y) and fn(x, y) of degree m

and n respectively, such that (fm(x, y))p + (fn(x, y))q is a reduced polynomial of degree
d. We associate to a torus curve of type (p, q; d) the curves Cm : fm(x, y) = 0 and
Cn : fn(x, y) = 0.

1.3. Singular locus.
Let C be a torus curve of type (p, q; d). Any intersection point of the associated

curves Cm and Cn is a singular point of C. Conversely, suppose that we are given
polynomials fm(x, y) and fn(x, y) of degree m and n respectively, such that mp = nq = d.
They define a pencil of torus curves of type (p, q; d), with (λ, µ) ∈ P 1, as follows

λ (fm(x, y))p + µ (fn(x, y))q = 0.

By Bertini theorem for a pencil (see e.g. [6, p. 137]), the curves of the pencil of torus
curves of type (p, q; d) defined by the polynomials fm(x, y) and fn(x, y) are, except a
finite number of curves of the pencil, smooth away from the base locus, which is nothing
but the intersection of the curves Cm : fm(x, y) = 0 and Cn : fn(x, y) = 0.

Definition 1.3.1. A torus curve of type (p, q; d) is said to be tame if its singular
locus coincides with the intersection of the associated curves Cn and Cm.

Let C be a torus curve of type (p, q; d). Let ξ ∈ Cn ∩ Cm be a singular point of
C. If the curve Cn is smooth at ξ then the topological type of the singularity (C, ξ) is
determined by the intersection multiplicity of the curves Cn and Cm at ξ. More precisely
one has the following lemma which extends [17, Lemma 23, p. 264].

Lemma 1. Let C be a torus curve of type (p, q; d). Let ξ ∈ Cn ∩ Cm such that
Cn is non-singular at ξ and let ι be the intersection multiplicity I(Cn, Cm; ξ). Then
the singularity (C, ξ) is topologically equivalent to the Brieskorn-Pham singularity Bq,pι :
vq + upι = 0.

Proof. The assumption implies that there exist local complex analytic coordinates
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(u, v) such that fn = v and fm ≡ cuι modulo (v, uι+1), for some constant c ∈ C∗. Then

fp
m + fq

n = cpupι + vq +
∑

qi+pιj>ιpq

ai,ju
ivj .

As the Newton principal part is Newton non-degenerate, the topological type of the germ
at the origin is determined by the Newton principal part and does not depend on the
terms with higher degree with respect to the Newton filtration (see [8], [26] combined
with [9]). ¤

1.4. Generic torus curves.
Let us recall some known results about torus curves.

Definition 1.4.1. A torus curve C of type (p, q; d) is said to be generic if the
associated curves Cm and Cn intersect transversally at mn distinct points. The singular
points of C given by the intersection of the curves Cm and Cn are topologically equivalent
to the Brieskorn-Pham singularity (see Lemma 1)

Bq,p : vq + up = 0.

The fundamental group of the complement of a generic tame torus curve was com-
puted by O. Zariski [27] for the case of sextics, i.e. (p, q; d) = (3, 2; 6) and by M. Oka [15],
[19] for general (p, q; d). For example, when the integers p and q are coprime and d = pq,
the fundamental group π1(P 2 \C) is isomorphic to the free product Z/pZ ∗Z/qZ (see
[15]). When {Z = 0} is in general position with respect to C, the fundamental groups
π1(C2 \ C) and π1(P 2 \ C) are related by the central extension (see [28]), and the
Alexander polynomial is obtained using a result of A. Nemethi (see [19]).

Theorem 1 ([15], [19]). Let C be a generic tame torus curve of type (p, q; d). The
Alexander polynomial ∆C(t) of the curve C is equal to ∆p,q(t).

Remark 1.4.2. The Alexander polynomial of a generic tame torus curve of type
(p, q; d) depends only on the integers p and q, and not on the degree d.

1.5. Torus curves of maximal contact.
Our interest in the present paper is the other extreme case.

Definition 1.5.1. We say that a torus curve C of type (p, q; d) is a torus curve
of maximal contact if the associated curves Cm and Cn satisfy the following conditions.

(1) The intersection of the curves Cm and Cn is a single point, which is noted by ξ0;
(2) The curve Cn is smooth at the point ξ0.

Let us remark that the intersection multiplicity I(Cn, Cm; ξ0) is equal to nm, by Bézout
theorem, and the singularity (C, ξ0) is topologically equivalent to the Brieskorn-Pham
singularity (see Lemma 1)

Bq,qn2 : vq + uqn2
= 0.
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Example 1.5.2. Let fm(x, y) = y − xm and fn(x, y) = yn + y − xm such that
m ≤ n and mp = nq = d. The curves Cm : fm(x, y) = 0 and Cn : fn(x, y) = 0
are irreducible, smooth at the origin, and intersect only at the origin, with intersection
multiplicity mn. The curves of the pencil of torus curves of type (p, q; d) defined by the
polynomials fm(x, y) and fn(x, y) are, except a finite number of curves of the pencil,
tame torus curves of maximal contact.

1.5.3. Tangent cone. The reduced tangent cone at the singular point ξ0 of a torus
curve of maximal contact is given by the following proposition.

Proposition 1. Let C be a torus curve of type (p, q; d) and of maximal con-
tact, and let ξ0 be the intersection of the associated curves Cn : fn(x, y) = 0 and Cm :
fm(x, y) = 0. The tangent line of Cn at ξ0, the reduced tangent cone of Cm at ξ0 and
the reduced tangent cone of the curve C at ξ0 all coincide.

Proof. The proof is left to the reader. ¤

1.6. Moduli spaces.
A projective plane curve of degree d, which does not contain the line at infinity, is

given by a polynomial f(x, y) of degree d, in affine coordinates x = X/Z, y = Y/Z. The
number of monomials xiyj such that 0 ≤ i + j ≤ d is equal to

(
d+2
2

)
= (d+2)(d+1)

2 .

Definition 1.6.1. Let us define the moduli space M (d) of reduced projective
plane curves of degree d, which do not contain the line at infinity {Z = 0}, as the set of
reduced polynomials f(x, y) of degree d, considered as a Zariski-open subset of C(d+2

2 ).
The topology of M (d) ⊂ C(d+2

2 ) is the induced transcendental topology.

One may consider spaces of plane curves of degree d, with a prescribed (up to
topological equivalence) configuration of singularities.

Definition 1.6.2. Let M (Bq,qn2 ; d) be the submoduli space of M (d) which con-
sists of curves with a single singular point topologically equivalent to the Brieskorn-Pham
singularity

Bq,qn2 : vq + uqn2
= 0.

The germ vq + uqn2
= 0 at the origin is Newton non-degenerate. The Milnor number is

(q − 1)(qn2 − 1).

The moduli space M (Bq,qn2 ; d) has several connected components, but we do not
know how many in general. However, for the case of sextics, i.e. when (p, q; d) = (3, 2; 6),
the moduli space M (B2,18; 6) has four irreducible components (see [2], [14], [13]).

1.7. Deformation with constant Milnor number.
Let us recall the following classical fact. It follows from Lê D. T. [9] that an analytic

family of germs of plane curves with constant Milnor number is equisingular, and, by
the theory of equisingularity of Zariski, has a simultaneous resolution. This observation
leads, via a partition of unity argument, to a geometric proof of the invariance of the
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embedded topological type of projective plane curves, which stay in a fixed connected
component of a space of plane curves with a prescribed configuration of singularities.

1.8. Torus curves of maximal contact and flex points.
Let us first fix a notation for the space of torus curves of maximal contact.

Definition 1.8.1. Let M max
torus(p, q; d) be the submoduli space of M (d) which

consists of torus curves of type (p, q; d) and of maximal contact. For C ∈ M max
torus(p, q; d),

let us note the single intersection point of the associated curves Cm and Cn by ξ0.

Remark 1.8.2. Let us remark that by Lemma 1, the germ of a curve C at the
singular point ξ0, if C ∈ M max

torus(p, q; d), is topologically equivalent to the Brieskorn-
Pham singularity Bq,qn2 : vq + uqn2

= 0. Also, by Bertini theorem for a pencil of curves,
the subspace of the tame curves of the moduli space M max

torus(p, q; d) is a Zariski-open
subspace, which is contained in M (Bq,qn2 ; d).

For C ∈ M max
torus(p, q; d), let ` be the reduced tangent cone of the associated curve

Cm at ξ0. The moduli space M max
torus(p, q; d) splits into disjoint subspaces, according to

the contact between the curve Cm and the line ` at ξ0, as follows.

Definition 1.8.3. Let C be a curve in M max
torus(p, q; d).

(1) We say that the associated curve Cm has flex-order s at ξ0 if the intersection
multiplicity I(Cm, `; ξ0) is equal to s. Note that 2 ≤ s ≤ m. We use the notation

flex(Cm, ξ0) = I(Cm, `; ξ0).

(2) For 2 ≤ s ≤ m, let Ns(p, q; d) be the moduli space of torus curves C of type
(p, q; d) and of maximal contact, such that flex(Cm, ξ0) = s. The moduli space of
torus curves of maximal contact decomposes into

M max
torus(p, q; d) =

⋃

2≤s≤m

Ns(p, q; d).

The description of the submoduli space Ns(p, q; d) seems to be extremely difficult in
general. However the submoduli space Nm(p, q; d) has a simpler structure. For each divi-
sor ν ≥ 1 of the integer m, the moduli space Nm(p, q; d) contains a subspace N ν

m (p, q; d)
that we are able to describe easily. Let us define N ν

m (p, q; d) the subset of Nm(p, q; d)
such that fm(x, y) takes the form fm(x, y) = fν(x, y)m/ν , for a polynomial fν(x, y) of
degree ν, and the curve Cν : fν(x, y) = 0 is smooth at ξ0, and flex(Cν , ξ0) = ν. Note
that fm is not reduced if ν 6= m. It is easy to see that Nm(p, q; d) = ∪ν|m N ν

m (p, q; d).
To describe each subspace, we take the following normal slice. Let N ν

m (p, q; d)(ξ0)
be the subset of N ν

m (p, q; d) such that ξ0 = (0, 0) and {y − δν,1 x = 0} is the tangent
line of Cν at (0, 0), where δν,1 = 1 if ν = 1, or 0 otherwise. One can easily observe that
PGL(3, C) ·N ν

m (p, q; d)(ξ0) = N ν
m (p, q; d). The slices N ν

m (p, q; d)(ξ0) are described by
the following lemma.
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Lemma 2. Let ν ≥ 1 be a divisor of m. The slice N ν
m (p, q; d)(ξ0) is described as

follows.

(1) For each curve C : fp
m + fq

n = 0 in N ν
m (p, q; d)(ξ0) with fm = f

m/ν
ν , there exist a

unique expression

fn(x, y) =
[n/ν]∑

i=1

ri(x, y)fν(x, y)i + c0 yn,

where c0 is a non-zero complex number and ri(x, y), i = 1, . . . , [n/ν] are polynomi-
als with

deg ri(x, y) ≤ n− iν, degxri(x, y) < ν, and r1(0, 0) 6= 0.

In particular, fn(x, y) ≡ c0y
n modulo fν(x, y). Conversely for a given curve fν = 0

of degree ν which is smooth at ξ0 and I(fν , y−δν,1x; ξ0) = ν, and for any fn which
is given by the above equality, the curve C : fp

m + fq
n = 0, (fm = f

m/ν
ν ) belongs to

the slice N ν
m (p, q; d)(ξ0).

(2) The dimension of the space of fm’s is equal to the number α of monomials xayb

such that 0 ≤ a + b ≤ ν, (a, b) 6= (0, 0), . . . , (ν − 1, 0). The dimension of the space
of fn’s (when fν is fixed) is equal to the sum β of βi, for i = 1, . . . , [n/ν], where βi

is the number of monomials xayb such that 0 ≤ a + b ≤ n− iν, a < ν. The space
N ν

m (p, q; d)(ξ0) is identified with a Zariski-open subset of C(α−2)+(β−1) × (C∗)4.
(3) The tame curves of N ν

m (p, q; d) have gcd(d/ν, q) irreducible components. In par-
ticular, tame curves in N m

m (p, q; d) have gcd(p, q) irreducible components.

The proof is given in §3. For ν = 1, we have chosen y−x = 0 as the reduced tangent
cone of fm = 0 for the simplicity of the description.

Example 1.8.4. Let m ≤ n such that mp = nq = d and let ν ≥ 1 be divisor of
m. Let fν(x, y) = y − xν , and fm(x, y) = (fν(x, y))m/ν , and fn(x, y) = yn + y − xν .
The curves Cν : fν(x, y) = 0 and Cn : fn(x, y) = 0 are irreducible, smooth at the
origin, and intersect only at the origin, with intersection multiplicity νn. Furthermore
flex(Cm, O) = νm/ν = m. The curves of the pencil of torus curves of type (p, q; d)
defined by the polynomials fm(x, y) = (y−xν)m/ν and fn(x, y) = yn−y−xν are, except
a finite number of curves of the pencil, tame torus curves which belong to the moduli
space N ν

m (p, q; d).

Remark 1.8.5. By Lemma 2, (2), and §1.7, the embedded topological type of the
tame torus curves in the subspace N ν

m (p, q; d) is completely determined by the embedded
topological type of the tame torus curves of Example 1.8.4.

1.9. Main Results.
Theorem 2. Let ∆(t) be the Alexander polynomial of a tame curve in N m

m (p, q; d).
Then ∆(t) is equal to
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∆p,q(t) =
(tpq/r − 1)r(t− 1)
(tp − 1)(tq − 1)

,

which is equal to the Alexander polynomial of a generic tame torus curve of type (p, q; d)
if p > q (see §1 and Theorem 1).

The case p = q is exceptional and ∆(t) is given by (tp2−1)p−1 (t−1)
(tp−1) .

For the proof, we may consider the tame torus curves of the pencil of torus curves
defined by the polynomials fm(x, y) = y−xm and fn(x, y) = yn + y−xm, by the moduli
space description in §1.8.

Let m < n such that mp = nq = d and let ν ≥ 1 be a divisor of m. Let fν(x, y) =
y − xν , and fm(x, y) = (fν(x, y))m/ν , and fn(x, y) = yn + y − xν and we consider the
pencil of the curves Cν(s) : fp

m + s fq
n = f

pm/ν
ν + s fq

n = 0. Let us remark that Cν(s) ∈
N ν

m (p, q; d) = N ν
ν (pm/ν, q; d) for generic s 6= 0. Thus by Theorem 2, we obtain

Corollary 1. The Alexander polynomial of Cν(s) is, except for a finite number
of curves of the pencil, equal to ∆pm/ν,q(t), and {∆pm/ν,q(t), ν|m} are mutually distinct.

As the Alexander polynomial of the tame curves in one fixed connected component
of the submoduli space Nm(p, q; d) of M max

torus(p, q; d) remains the same (see §1.7), one
gets the following result (see §1.8, Lemma 2).

Corollary 2. Let us assume that p > q. The submoduli space Nm(p, q; d) of
M max

torus(p, q; d) has at least ϕ(m) connected components, given by the submoduli space
N ν

m (p, q; d), where ν is a divisor of m.

1.9.1. Zariski multiple. Let p and q be integers such that p > q ≥ 2, and let d ≥ 2
be a common multiple of p and q. Put m = d/p and n = d/q. Let ν ≥ 1 be a divisor of
m. Let fν(x, y), and fm(x, y) = (fν(x, y))m/ν , and fn(x, y) be polynomials of degree ν,
m and n respectively, such that the torus curve C : (fm(x, y))p + (fn(x, y))q = 0 of type
(p, q; d) is tame, and belongs to the moduli space N ν

m (p, q; d) (see §1.8, Lemma 2).

Hypothesis: Let us assume that q divides p.

Let us remark that if q|p and ν|m, then ν|n and the curve C has q irreducible
components (see (3) of Lemma 2), as it can be seen from the equality fp

m+fq
n = (fn/ν

ν )q +
fq

n (recall that pm = qn). Furthermore the irreducible components are smooth and of
degree n, and intersect at the single singular point of the curve C, topologically equivalent
to the Brieskorn-Pham singularity Bq,qn2 : vq + uqn2

= 0, which has q branches. The
irreducible component of the curve C which contains a given branch of the singular point
is well-defined, up to the choice of a q-th root of unity. Following E. Artal’s terminology
introduced in [2], one says that the tame curves in N ν

m (p, q; d), for ν|m, have the same
combinatorics (data coming from the resolution of the singularity, which determine the
topology of a regular neighbourhood of the curve), independently from the integer ν.
Thus, one gets the following result (see also [3] for other Zariski multiples).

Theorem 3. Let p and q be integers such that p > q ≥ 2 and let d ≥ 2 be a
common multiple of p and q. Let m = d/p and n = d/q. Let us assume that q divides p.
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Then any ϕ(m)-ple {Bν , ν|m}, where Bν is a tame torus curve in N ν
m (p, q; d) for each

ν|m, is a Zariski ϕ(m)-ple, distinguished by the Alexander polynomial, whose curves have
q smooth irreducible components of degree n, and one single singular point topologically
equivalent to the Brieskorn-Pham singularity Bq,qn2 : vq + uqn2

= 0.

Example 1.9.2. The curves of M max
torus(4, 2; 8) are the union of two smooth irre-

ducible quartics, which intersect at a single point. There are only two possibilities for
the embedded topological type of the tame curves of M max

torus(4, 2; 8), described according
to the decomposition

M max
torus(4, 2; 8) = N 1

2 (4, 2; 8)
⋃

N 2
2 (4, 2; 8)

as follows.

(1) The tame curves in N 1
2 (4, 2; 8) represented by the curves of the pencil of torus

curves of type (4, 2; 8), except a finite number of curves of the pencil, defined by
the polynomials f2(x, y) = (y − x)2 and f4(x, y) = y4 + y − x, whose Alexander
polynomial is given by

∆1(t) = (t− 1)(t2 + 1)(t4 + 1);

(2) The tame curves in N 2
2 (4, 2; 8) represented by the curves of the pencil of torus

curves of type (4, 2; 8), except a finite number of curves of the pencil, defined by
the polynomials f2(x, y) = y − x2 and f4(x, y) = y4 + y − x2, whose Alexander
polynomial is given by

∆2(t) = (t− 1)(t2 + 1).

2. Proof of Theorem 2.

2.1. Calculation of Alexander Polynomials.
What follows is directly extracted from [5]. Let f ∈ C[X, Y, Z] be a homogeneous

polynomial of degree d, and X = {(x, y, z) ∈ C3 | f(x, y, z) = 1} the associated Milnor
fiber. Let X = {(X, Y, Z, T ) ∈ P 3 | T d − f(X, Y, Z) = 0} so that the projection
τ : X −→ P 2 is a ramified covering of P 2, with branch locus the projective plane curve
C : f(X,Y, Z) = 0 (we assume that C is reduced). The quasi-projective subvariety
X \ τ−1(C) of P 3 is isomorphic to the Milnor fiber X. Let ω = exp(2π

√−1/d), a
primitive root of unity. The monodromy of the covering τ |X : X −→ P 2 \C is given by
(X, Y, Z) 7−→ (ωX, ωY, ωZ), and coincides with the monodromy of the Milnor fiber X.

Let σ : Y −→ P 2 be an embedded resolution of the curve C. One has D = σ∗C =
C ′ +

∑
νkEk, where C ′ is the normalization (strict transform) of C and D is a divisor

with normal crossings. Let τ ′ : Y ′ −→ Y be the pull-back of τ by σ, Y the normalization
of Y ′, and Z a desingularization of Y whose boundary ∆ = Z \ X is a divisor with
normal crossings. One has H∗(X) = H∗(Z \∆), and by Deligne’s mixed Hodge theory
for smooth quasi-projective varieties, one has the decomposition:
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H1(Z \∆) = H0(Z,Ω1
Z(log ∆))⊕H1(Z, OZ),

where Ω∗
Z(log ∆) is the complex of holomorphic differential forms with logarithmic poles

along the divisor ∆. Moreover, this decomposition is compatible with the monodromy
action. For each index j such that 0 ≤ j ≤ d− 1,

H1(X)ωj = H1(Z \∆)ωj = H0(Z, Ω1
Z(log ∆))ωj ⊕H1(Z, OZ)ωj ,

where we note by subscript ωj the eigenspace of the monodromy action corresponding
to the eigenvalue ωj .

Definition 2.1.1 ([5, p. 479]). Let L = σ∗OP 2(1), and for j = 0, . . . , d − 1, let
L (j) = L ⊗j ⊗ OY (−∑

k[νkj/d]Ek). Let us define lj = dim H1(Y, L (j)−1).

By [5, Lemma 2, p. 479], H1(Z, OZ)ωj
is isomorphic to H1(Y, L (j)−1). By

[5, Corollary 4, p. 481 and Lemma 7, p. 485], dim H0(Z, Ω1
Z(log ∆))ωj is equal to

dim H1(Y, L (d−j)−1) = ld−j (see [12, proposition 4.6] for more details).
For j = 0, . . . , d− 1, let us define jc = d− j. From the above discussion, one has

dim H1(X)ωj = lj + ljc .

Let r be the number of irreducible components of the curve C. For j = 0, classical
homological arguments (see e.g. [19]), or again results of [5], show that dim H1(X)ω0 =
r− 1. The Alexander polynomial ∆C(t) of the curve C is given by the following formula
(via [23])

(ALEX) ∆C(t) = (t− 1)r−1
d−1∏

j=1

(
t− exp(2πj

√−1/d)
)lj+ljc .

We will use E. Artal’s Theorem [2, Theorem 2.7] to compute the lj ’s, in terms of
the singularities of the curve C and their relative positions (see [18, Lemma 3, §2.1] for
a description in the Newton non-degenerate setting).

2.2. Proof of Theorem 2.
Let p and q be integers such that p ≥ q ≥ 2 and let d ≥ 2 be a common multiple of

p and q. Put m = d/p and n = d/q. Let fm(x, y) = y − xm and fn(x, y) = yn + y − xm

(let us remark that 1 ≤ m ≤ n). By Bertini theorem, the curves of the pencil of torus
curves of type (p, q; d) defined by the polynomials fm(x, y) and fn(x, y) are, except a
finite number of curves of the pencil, tame torus curves that belong to the moduli space
N m

m (p, q; d) (see §1.8, Lemma 2). Let C be such a curve. In particular, the curve C has
r = gcd(p, q) irreducible components. We calculate the Alexander polynomial of C with
respect to a generic line at infinity {Z = 0}.

By implicit function theorem at the origin, there exists a unique convergent power
series without constant term ϕm(x), which is the solution in y of the equation yn + y −
xm = 0. This power series has the expansion
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ϕm(x) = xm − xnm + (higher terms).

We take the following change of local coordinates Φ : (C2, O) −→ (C2, O) near the origin

(x, y) = (u, v + ϕm(u)),

and define (Φ∗f)(u, v) = f(u, v+ϕm(u)), the pull-back by Φ of a polynomial f(x, y). The
germ of the curve (C,O) is topologically equivalent to the Brieskorn-Pham singularity
vq + uqn2

= 0 (see Lemma 1, §1.2), as we have (Φ∗fn)(u, v) = v modulo (uv, v2), or
equivalently, the Newton principal part of (Φ∗fn)(u, v) is reduced to the linear coordinate
v, and

(Φ∗fm)(u, v) = v − unm +
∑

i>nm

aiu
i.

Let Q = (1, n2) be the primitive weight covector of the one-dimensional face of the
Newton boundary of vq + uqn2

= 0. For each index j such that 1 ≤ j ≤ d − 1, let us
define

α(j) =
[

j

d
ν(vq + uqn2

, Q)
]
− |Q|+ 1

where ν(−, Q) : C{u, v} −→ Z≥0 is the multiplicity of a function germ in the ring
of power series C{u, v}, with respect to the weight covector Q (see [16, p. 106]), and
|Q| = 1 + n2. One has ν(vq + uqn2

, Q) = qn2, thus the integer α(j) is given by

α(j) = n(j − n).

The ideals of quasi-adjunction Ij of the function germ vq + uqn2
at the origin are the

ideals of the ring C{u, v} given by the following property

g(u, v) ∈ Ij ⇔ ν(g(u, v), Q) ≥ α(j).

For j = 1, . . . , d−1, let C[x, y]≤j−3 be the vector space of polynomials P (x, y) such that
deg P (x, y) ≤ j − 3 (if deg P (x, y) < 0, then by convention P (x, y) = 0). Let Φ∗j be the
canonical morphism of vector spaces

Φ∗j : C[x, y]≤j−3 −→ C{u, v}/Ij

induced by the change of local coordinates Φ.

The multiplicity lj (see Definition 2.1.1) is equal to the dimension of the cokernel of
the linear map Φ∗j (see [2, Theorem 2.7] and [18, Lemma 3, §2.1]).

The main idea is now to consider an appropriate basis of the vector space
C[x, y]≤j−3.
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Lemma 3. For any non-negative integers γ, δ, α and β such that 0 ≤ α ≤ m− 1
and 0 ≤ β ≤ n− 1, let us define the polynomials

Mα,β,γ,δ(x, y) = xαyβ(yn + y − xm)γ(y − xm)δ.

The degree of Mα,β,γ,δ is equal to α + β + nγ + mδ. Then the set of polynomials
Mα,β,γ,δ(x, y) such that α + β + nγ + mδ ≤ j − 3 is a basis of C[x, y]≤j−3.

Proof. Let xayb be a monomial such that a + b ≤ j − 3. Let us assume that
a ≥ m. Then we have xa = xa−m(−y + xm) + yxa−m. If b ≥ n, we use the equality
yb = yb−n(yn + y− xm)− yb−n(y− xm). Using these equalities inductively, we can write
xayb as a linear combination of Mα,β,γ,δ whose degree is not greater than a+b. This shows
that {Mα,β,γ,δ; deg Mα,β,γ,δ ≤ j − 3} generates C[x, y]≤j−3. The linear independence of
the Mα,β,γ,δ’s is shown as follows.

By the definition of ϕm(u), we observe that Φ∗(yn + y − xm)(u, v) = v modulo
(uv, v2), and Φ∗(y − xm)(u, v) = v − unm +

∑
i>nm aiu

i. Thus, the Newton principal
part of (Φ∗Mα,β,γ,δ)(u, v) is reduced to the single monomial uα+βm+δnmvγ , which implies
that the multiplicity with respect to the weight vector Q = (1, n2) is given by

ν(Φ∗jMα,β,γ,δ(u, v), Q) = α + βm + δnm + γn2.

In particular, if Mα,β,γ,δ 6= Mα′,β′,γ′,δ′ , the Newton principal parts of Φ∗jMα,β,γ,δ and
Φ∗jMα′,β′,γ′,δ′ are different. Let us assume that ψ =

∑
cα,β,γ,δMα,β,γ,δ = 0. Then by the

above observation, the Newton principal part of Φ∗j (ψ) must be 0, which implies that the
corresponding coefficient is 0. Thus, repeating the argument, we get ψ = 0. ¤

At the target space of Φ∗j , a basis of the vector space C{u, v}/Ij is given by the
monomials ulvγ such that ν(ulvc, Q) ≤ α(j) − 1, with ν(ulvγ , Q) = l + γn2. There is a
bijective correspondence induced by Φ∗j between the polynomials Mα,β,γ,δ(x, y) such that
ν(Φ∗jMα,β,γ,δ, Q) ≤ α(j) − 1, and the monomials ulvγ such that ν(ulvγ , Q) ≤ α(j) − 1
(see Lemma 8, §2.3). Let us consider the following subspaces of C[x, y]≤j−3

V ′ = 〈Mα,β,γ,δ| deg Mα,β,γ,δ ≤ j − 3, ν(Φ∗jMα,β,γ,δ, Q) ≤ α(j)− 1〉
V ′′ = 〈Mα,β,γ,δ| deg Mα,β,γ,δ ≤ j − 3, ν(Φ∗jMα,β,γ,δ, Q) > α(j)− 1〉.

Then C[x, y]≤j−3 is the direct sum of V ′ and V ′′, and the above considerations show
that the kernel of Φ∗j is V ′′.

Lemma 4 (Key Lemma). If ν(Φ∗jMα,β,γ,δ(u, v), Q) ≤ α(j) − 1, then
deg Mα,β,γ,δ(x, y) ≤ j − 2. Furthermore the degree of the polynomial Mα,β,γ,δ(x, y) is
equal to j − 2 if and only if

• either (a): n > m, α = m− 1, β = n− 1 and ν(Φ∗jMα,β,γ,δ(u, v), Q) = α(j)− 1,
• or (b): n = m, α = m− 1 and ν(Φ∗jMα,β,γ,δ(u, v), Q) = α(j)− 1.

Proof of Lemma 4. Let us assume that ν(Φ∗jMα,β,γ,δ(u, v), Q) ≤ α(j)− 1. We
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will show that n((j − 2) − deg(Mα,β,γ,δ)) ≥ 0. As α(j) = n (j − n) the hypothesis is
equivalent to nj ≥ ν(Φ∗jMα,β,γ,δ, Q) + n2 + 1. Then,

n [(j − 2)− deg(Mα,β,γ,δ)] = nj − 2n− n deg(Mα,β,γ,δ)

≥ n2 + 1− 2n + ν(Φ∗jMα,β,γ,δ, Q)− n deg(Mα,β,γ,δ).

As ν(Φ∗jMα,β,γ,δ, Q)− n deg(Mα,β,γ,δ) = −α(n− 1) + β(m− n) and 0 ≤ β ≤ n− 1,
one gets (let us recall that n ≥ m)

n [(j − 2)− deg(Mα,β,γ,δ)] ≥ (n− 1)(n− 1− α) + (n− 1)(m− n)

= (n− 1)(m− 1− α).

The last term is positive, because α ≤ m−1. It is straightforward to see that the equality

n [(j − 2)− deg(Mα,β,γ,δ)] = 0

holds if and only if either (a) n > m, and α = m − 1, and β = n − 1,
and ν(Φ∗jMα,β,γ,δ(u, v), Q) = α(j) − 1, or (b) n = m, and α = m − 1 and
ν(Φ∗jMα,β,γ,δ(u, v), Q) = α(j)− 1. ¤

According to Lemma 4, let us distinguish two cases.

2.2.1. The case n > m (or equivalently p > q). Let us assume that n > m, and
α = m − 1, and β = n − 1, and that ν(Φ∗jMα,β,γ,δ(u, v), Q) = α(j) − 1. Then γ and δ

satisfy the equation

j = n(γ + 1) + m(δ + 1). (1)

By Lemma 4, the multiplicity lj (see Definition 2.1.1) is equal to the number of solutions
(γ, δ) of the equation (1). Because of the restriction on the integer j, namely 1 ≤ j ≤ d−1,
the integers γ and δ must satisfy 0 < γ + 1 < d/n = q and 0 < δ + 1 < d/m = p.
The determination of the integer lj thus becomes an arithmetic problem. Let us define
jc = d − j. By Lemma 6 and Lemma 7 of §2.3, the sum of the multiplicities lj + ljc is
given as follows.

Let r′ = gcd(n,m) and r = gcd(p, q). Let us recall that r is the number of irreducible
components of the curve. The integers r and r′ satisfy the equality rd = pqr′.

• If r′ does not divide j, then lj + ljc = 0;
• If r′ divides j:

– If n does not divide j and m does not divide j, then lj + ljc = r;
– If n divides j and m does not divide j, or if n does not divide j and m divides

j, then lj + ljc = r − 1;
– If n divides j and m divides j, then lj + ljc = r − 2.

Let us substitute in the formula (ALEX) §2.1, and conclude by the following obser-
vations:
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• exp(2πj
√−1/d) is a root of the polynomial td/r′ − 1 = tpq/r − 1 if and only if r′|j.

• exp(2πj
√−1/d) is a root of the polynomial tq − 1 (resp. tp − 1) if and only if n|j

(resp. m|j).
2.2.2. The case m = n (or equivalently p = q). According to Lemma 4, let us

assume that n = m, that α = m − 1 and that ν(Φ∗jMα,β,γ,δ, Q) = α(j) − 1. Then the
integers β, γ and δ satisfy the following equation

j = n(γ + δ + 1) + β + 1, (2)

with 0 ≤ β ≤ n − 1, and γ ≥ 0, and δ ≥ 0. The number of solutions of the equation
(2) is precisely, by our construction, equal to the multiplicity lj (see Definition 2.1.1).
The number of solutions (β, γ, δ) of the equation (2) is equal to the number of solutions
(β′, γ) of the equation j = n(γ +1)+(β′+1), such that β′ ≥ 0 and γ ≥ 0. To see this, let
us write in a unique way, by Euclidean division, any positive integer β′ as β′ = δn + β,
with 0 ≤ β ≤ n − 1. Then by Lemma 6 and Lemma 7, §2.3, one gets (let us recall that
jc = d− j):

• If n does not divide j, then lj + ljc
= p− 1;

• If n divides j, then lj + ljc = p− 2.

The number of irreducible components of the curve C is equal to p and we conclude as
in the previous case. ¤

2.3. Arithmetic Lemmas.
We collect in this section some technical but elementary arithmetic lemmas we need

to complete the proof of Theorem 2. Let p and q be integers such that p ≥ q ≥ 2 and let
d ≥ 2 be a common multiple of p and q. Define m = d/p and n = d/q. For each index
j such that 1 ≤ j ≤ d − 1, let us consider the following arithmetic problem: Find the
integral solutions in x and y of the equation

j = nx + my, x > 0, y 6= 0, (3)

and discuss their number. Because of the condition on the integer j, namely 1 ≤ j ≤ d−1,
the integer x must satisfy 1 ≤ x ≤ q − 1. Let us remark that if the greatest common
divisor of n and m does not divide the integer j, then the equation (3) has no integral
solution.

Lemma 5. Let r′ = gcd(n,m). Let us assume that r′ divides j and let us write
j = r′j1, n = r′n1 and m = r′m1, where the integers n1 and m1 are coprime. The
equation j1 = n1x+m1y (or equivalently j = nx+my) admits a unique integral solution
(x1, y1) such that 0 ≤ x1 ≤ m1 − 1.

Proof. As the ideal generated by n1 and m1 in the ring of integers is the whole
ring, there exist integers x0 and y0 such that j1 = n1x0 + m1y0. By Gauss lemma, the
integral solutions of the equation j1 = n1x + m1y are of the form x = x0 + im1 and
y = y0 − in1, with i ∈ Z. ¤
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Lemma 6. Let r′ = gcd(n, m) and r = gcd(p, q). Let us assume that r′ divides j

and let us write j = r′j1, n = r′n1 and m = r′m1, where the integers n1 and m1 are
coprime. Let (x1, y1) be the unique integral solution of the equation j1 = n1x+m1y such
that 0 ≤ x1 ≤ m1 − 1 (see Lemma 5). Then the solutions (x, y) of the equation (3) have
to be chosen amongst the following candidates

(x1 + im1, y1 − in1), for i = 0, . . . , r − 1.

Moreover the number Nj of solutions of the equation (3) is given according to the following
rules.

• If n does not divide j and m does not divide j, then Nj = r;
• If n divides j and m does not divide j, or if n does not divide j and m divides j,

then Nj = r − 1;
• If n divides j and m divides j, then Nj = r − 2.

Proof. By Gauss lemma, the integral solutions (x, y) of the equation j = nx+my

(or equivalently j1 = n1x + m1y) are of the form x = x1 + im1 and y = y1 − in1, with
i ∈ Z. Because of the restriction on the integer x, namely x < q, the index i must
satisfy the condition 0 ≤ i ≤ q/m1 − 1 = r′q/m− 1. As the integers r′ = gcd(n,m) and
r = gcd(p, q) satisfy the relation qr′ = mr, we get r′q/m = r.

The number of solutions is deduced from the following discussion.

• Assume that neither n nor m divides j. In this case none of the x = x1 + im1’s
for 0 ≤ i ≤ r − 1 is equal to zero, otherwise m1 divides x1 and then m1 divides
j1 = n1x1 + m1y1 i.e. m divides j. Similarly, as n does not divide j, none of
the y = y1 − in1’s can be equal to zero. Therefore the r candidates have to be
considered as true solutions.

• Assume that n divides j and that m does not divide j. If m does not divide j, then
x = x1 + im1 is non-zero. If n divides j (or equivalently n1 divides j1) then by
Gauss lemma n1 divides y1. Write y1 = i1n1. The only candidate x = x1 + i1m1,
y = y1 − i1n1 is not a true solution, thus r − 1 solutions.

• Assume that n does not divide j and that m divides j. By Gauss lemma, m1

divides y1, but 0 ≤ x1 < m1, so y1 = 0. If y = y1 − in1 is equal to zero then n1

divides j1. So the only candidate x = 0, y = y1 is not a true solution and we get
r − 1 solutions.

• Assume that both n and m divides j. From the previous cases one gets x1 = 0 and
y1 = i1n1. The only candidates which are not true solutions are x = 0, y = y1 and
x = i1m1, y = 0, thus r − 2 solutions. ¤

One may describe the solutions (x, y) of the equation (3) according to the sign of y.

Lemma 7. Let Sj (respectively S+
j ) be the set of integral solutions (x, y) of the

equation j = nx + my such that 0 < x < q and y 6= 0 (respectively 0 < x < q and y > 0).
Let us define jc = d − j. There is a bijection between the set Sj and the disjoint union
S+

j tS+
jc

. In particular if Nj (respectively lj) is the number of elements of Sj (respectively
S+

j ) then Nj = lj + ljc .



On Alexander polynomials of torus curves 951

Proof. The lemma is a consequence of the following observation. If (x, y) is a
solution of j = nx + my, then jc = n(q − x) + m(−y). ¤

Finally we need the following fact.

Lemma 8. Let l be a fixed positive integer. There exist unique positive integers α,
β and δ such that α ≤ m− 1, β ≤ n− 1 and l = α + βm + δnm.

Proof. The integer δ is equal to the integral part of the rational number l/nm.
¤

3. Description of the Moduli Spaces.

3.1. Normal form of fn(x, y).
In this subsection, we give a demonstration of the assertions 1 and 2 of Lemma 2,

§1.8. Thus we consider a torus curve of type (p, q; d) and of maximal contact, such that
the associated curve Cm has flex-order m at ξ0.

We consider the case ν = m (the general case is straightforward). Up to a linear
change of coordinates, we may assume that ξ0 = (0, 0) and that the line {y−δm,1 x = 0} is
the common tangent line of Cn and Cm at the origin. By the assumption, degx fm(x, 0) =
m and therefore fm(x, y) is a monic polynomial in C[y][x]. By Euclidean division of
fn(x, y) by fm(x, y) in the polynomial ring C[y][x], there exist polynomials h1(x, y) and
r0(x, y) such that fn(x, y) = h1(x, y)fm(x, y) + r0(x, y), with degx r0 < m. Moreover,
deg h1 ≤ n − m and deg r0 ≤ m. If degx h1 ≥ m, then h1(x, y) = h2(x, y)fm(x, y) +
r1(x, y), with degx r1 < m, deg h2 ≤ n − 2m and deg r1 ≤ n − m. By induction, one
obtains the following expansion of the polynomial fn(x, y):

fn(x, y) =
[n/m]∑

i=0

ri(x, y)fm(x, y)i,

with degx ri < m and deg ri ≤ n− im.
By assumption, the curve Cm is smooth at the origin and its intersection multiplicity

with the line y = 0 at the origin is equal to m. Therefore the curve Cm admits a
parametrization of the form (t, γtm +

∑
i>m ait

i), where γ is a non-zero complex number.
The intersection multiplicity at the origin of the curves Cn and Cm, which by as-

sumption is equal to nm, is given by the valuation of the power series

fn

(
t, γtm +

∑

i>m

ait
i

)
= r0

(
t, γtm +

∑

i>m

ait
i

)
.

One has degx r0 < m and deg r0 ≤ n, so one may write

r0(x, y) = c0(x)yn + c1(x)yn−1 + · · ·+ cn−1(x)y + cn(x),

where the polynomials ci(x) satisfy deg ci(x) ≤ min{i,m − 1} (in particular c0(x) is
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a constant). The term in t of the lowest degree given by ci(x)yn−i is of the form
tn(i) γn−it(n−i)m, where n(i) is an integer satisfying 0 ≤ n(i) ≤ m− 1. For i = 1, . . . , n,
one has n(i) + (n − i)m < nm. Moreover, if n(i) + (n − i)m = n(j) + (n − j)m, then
i = j. Therefore, ci(x) = 0 for i = 1, . . . , n, which proves the first assertion of Lemma 2,
§1.8.

The dimension of the space of fm’s is given by the number α of monomials xayb

such that 0 ≤ a + b ≤ m, with (a, b) 6= (a, 0), a = 0, . . . , m − 1. The dimension of the
space of fn’s is given (when fm is fixed) by the number β =

∑[n/m]
i=1 βi, where βi is the

number of monomials xayb such that 0 ≤ a+b ≤ n−mi and a < m, for i = 1, . . . , [n/m].
By assumption on the curve Cm, the polynomial fm(x, y) contains the monomials y

and xm. The curve Cn is smooth at (0, 0) with tangent y = 0, which implies that
r1(0, 0) 6= 0. We have also observed that r0(x, y) = c0, with c0 6= 0. Thus the moduli
space N m

m (p, q; d)(ξ0) is identified with a Zariski-open subset of C(α−2)+(β−1) × (C∗)4,
which proves the second assertion of Lemma 2, §1.8.

3.2. Irreducibility of a certain polynomial.
We prove in this subsection the assertion 3 of Lemma 2, §1.8. The curves of the

moduli N ν
m (p, q; d) are in fact torus curves in the moduli N ν

ν (d/ν, q; d), thus the problem
is reduced to compute the number of irreducible components of the tame curves of the
moduli N m

m (p, q; d). Then, let us recall that the number of irreducible components of
a plane curve is an invariant of the embedded topological type of the curve (it is equal
to the multiplicity plus one of the root 1 of the Alexander polynomial of the curve).
So, by the assertions 1 and 2 of Lemma 2 which we have just proved in the previous
section, it is sufficient to find the number of irreducible components of the tame torus
curves of type (p, q; d) of the pencil, with t ∈ C, (y − xm)p + t (yn + y − xm)q = 0.
Putting r = gcd(p, q), one observes that these curves are the union of r torus curves in
N m

m (p/r, q/r; d/r). Finally tame torus curves in N m
m (p/r, q/r; d/r) are irreducible by

the following lemma.

Lemma 9. Let q be an integer ≥ 1 and g(x, y) be a polynomial. Let us assume
that the polynomial equation g(0, y) = 0 has at least one simple root. Let D be the affine
curve defined by g(x, y) = 0 and D′ be the curve defined by g(xq, y) = 0. Then, D is
irreducible if and only if D′ is irreducible.

In fact, assuming this lemma, the argument goes as follows. The curve (y−xm)p/r +
t (yn+y−xm)q/r = 0, t ∈ C, is irreducible if and only if (y−x)p/r+t (yn+y−x)q/r = 0 is
irreducible. The latter is equivalent to the irreducibility of the curve xp/r+t (yn+x)q/r =
0 after a change of coordinates. This is irreducible as xp/r +t (y+x)q/r = 0 is irreducible,
which is obvious.

Proof of Lemma 9. If D′ is irreducible then it follows at once that D is irre-
ducible. Conversely, under the assumption that D is irreducible, we give a topological
proof of the irreducibility of D′, taking advantage of the fact that a reduced complex
analytic set is irreducible if and only if its smooth locus is connected.

Let us consider the projections π : D −→ C and π′ : D′ −→ C induced by the
canonical projection C2 → C : (x, y) 7→ y. Let Σ be a finite subset of points of C such
that the restrictions π : D \ π−1(Σ) −→ C \Σ and π′ : D′ \ π′−1(Σ) −→ C \Σ induce
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topological coverings. The total space of a topological covering on C \ Σ is connected
if and only if the fundamental group π1(C \ Σ) acts transitively on a fixed fiber of the
covering.

Let γ0 be a simple root of g(0, y) and let ξ0 be a point in C \ Σ, distinct from
γ0 but arbitrarily close to γ0. Let us define F = π−1(ξ0) and F ′ = π′−1(ξ0). Let
n = degx g(x, y) be the degree of the covering induced by the projection π and note
F = {(η1, ξ0), . . . , (ηn, ξ0)}, with ηi 6= 0 for i = 1, . . . , n, when ξ0 is sufficiently close to
γ0. For i = 1, . . . , n, let ηi,1, . . . , ηi,q be the solutions of xq = ηi. The fiber F ′ is given
by the points (ηi,j , ξ0), for i = 1, . . . , n and j = 1, . . . , q. If the curve D is irreducible,
there exists a continuous path τi : I → D \ π−1(Σ) connecting (η1, ξ0) to (ηi, ξ0) for
i = 1, . . . , n, so that it induces the loop π ◦ τi : (I, ∂I) → (C \ Σ, ξ0). Recall that the
action of the loop τi on η1 ∈ F is nothing but ηi. Taking the pull-back by the map
C∗ → C∗ : x 7→ xq, for k = 1, . . . , q, there exists a continuous path in D′ \ π′−1(Σ)
connecting (η1,k, ξ0) to a unique (ηi,j(k), ξ0).

Up to reordering, one may assume that (η1, ξ0) lies in an arbitrarily small neigh-
bourhood of (0, γ0), and that η1 converges to 0 along the fibers π−1(tγ0 + (1 − t)ξ0),
0 ≤ t ≤ 1, when ξ0 converges to γ0. To end the proof, we show that π1(C \ Σ) acts
transitively on the set {(η1,1, ξ0), . . . , (η1,q, ξ0)}. As γ0 is a simple root of g(0, y), one has
∂g/∂y(0, γ0) 6= 0. By implicit function theorem, there exist an integer s ≥ 1 and a power
series

∑
i≥s aix

i, with as 6= 0, such that the curve D is given, in a small neighbourhood
of (0, γ0), by

y − γ0 =
∑

i≥s

aix
i.

A local topological model for D (respectively for D′) at (0, γ0) is given by y− γ0 = asx
s

(respectively by y− γ0 = asx
qs). Let x1, . . . , xs be the points of the fiber π−1(ξ0), which

is described locally around (0, γ0) by the model ξ0 − γ0 = asx
s, and let xi,1, . . . , xi,q be

the points of the fiber π′−1(ξ0), which are over xi. Under a suitable ordering and with the
abuse of notation xs+1 = x1 and xs+1,j = x1,j , we may assume that xi,j is transformed
into xi+1,j , for 1 ≤ i ≤ s − 1, and xs,j is transformed into x1,j+1, by the action of the
small loop τ(t) = γ0 + ε0 exp(2π

√−1t), with ε0 = |ξ0 − γ0|. In particular, the points
x1,1, . . . , x1,q are in the same orbit. ¤

4. Appendix. New Proof of Theorem 1.

Let p and q be integers such that p ≥ q ≥ 2, and let d ≥ 2 be a common multiple
of p and q. Let n = d/q and m = d/p. Let C be the generic tame torus curve of type
(p, q; d) defined by the polynomial equation

(xm + 1)p + (yn + 1)q = 0.

The singular locus of C coincides with the intersection of the lines Cm : xm + 1 = 0 and
Cn : yn + 1 = 0, so that C is a tame torus curve. In this appendix, we calculate the
Alexander polynomial of the curve C with respect to the line at infinity {Z = 0}, which
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is in general position with respect to the curve C. We refer to the proof of Theorem 2
for the notations.

Let r = gcd(p, q) be the number of irreducible components of the curve C. We can
write p = rp1 and q = rq1, with gcd(p1, q1) = 1, and thus m = q1r

′, n = p1r
′ and

d = rr′p1q1, with r′ = gcd(m,n).
Let {aλ}0≤λ≤m−1 be the set of solutions of xm + 1 = 0, and let {bµ}0≤µ≤n−1 be

the set of solutions of yn + 1 = 0. The singular points of the curve C are the points
Pλ,µ = (aλ, bµ). For any singular point Pλ,µ, let Φλ,µ be the change of local coordinates
Φλ,µ : (C2, Pλ,µ) −→ (C2, O) defined by

(uλ,µ, vλ,µ) = (xm + 1, yn + 1),

and let Φ∗λ,µ : C{x, y} −→ C{uλ,µ, vλ,µ} be the pull-back by Φλ,µ. The singularity
(C,Pλ,µ) is isomorphic to the Brieskorn-Pham singularity

Bq,p : vq
λ,µ + up

λ,µ = 0,

which is Newton non-degenerate. Let Q = (q1, p1) be the primitive weight covector of
the one-dimensional face of the Newton boundary. One has ν(up

λ,µ + vq
λ,µ;Q) = pq1. For

j = 1, . . . , d− 1, let α(j) be the integer defined by

α(j) =
[
jpq1

d

]
− (p1 + q1) + 1 =

[
j

r′

]
− (p1 + q1) + 1.

For any singular point Pλ,µ, the ideal of quasi-adjunction Ij,Pλ,µ
is generated (as a

complex vector space) by the monomials uγ
λ,µvδ

λ,µ, such that ν(uγ
λ,µvδ

λ,µ; Q) ≥ α(j). Let
us recall that ν(uγ

λ,µvδ
λ,µ; Q) = γq1 + δp1.

For j = 1, . . . , d − 1, let C[x, y]≤j−3 be the vector space of polynomials P (x, y)
such that deg P (x, y) ≤ j − 3, and for 0 ≤ λ ≤ m − 1 and 0 ≤ µ ≤ n − 1 let Vλ,µ =
C{uλ,µ, vλ,µ}/Ij,Pλ,µ

. We consider the linear mapping

Φ∗j : C[x, y]≤j−3 −→
⊕

λ,µ

Vλ,µ

where the component mapping of Φ∗j to Vλ,µ is the morphism of vector spaces induced
by Φ∗λ,µ : C{x, y} −→ C{uλ,µ, vλ,µ}. The multiplicity lj (see Definition 2.1.1) is equal
to the dimension of coker(Φ∗j ) (see the proof of Theorem 2, §2.2).

Lemma 10. For any singular point Pλ,µ, let (uλµ, vλµ) be the local coordinates
around Pλ,µ defined by uλ,µ = xm +1 and vλ,µ = yn +1. For any positive integers γ and
δ with γq1 + δp1 ≤ α(j)− 1, let Nγ,δ be the vector subspace of

⊕
λ,µ Vλ,µ defined by the

direct sum

Nγ,δ =
⊕

λ,µ

〈uγ
λ,µvδ

λ,µ〉 ⊂
⊕

λ,µ

Vλ,µ.
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For j = 1, . . . , d− 1, one has an isomorphism of vector spaces

⊕

λ,µ

Vλ,µ
∼=

⊕

γq1+δp1≤α(j)−1

Nγ,δ.

Proof. The proof is straightforward. ¤

For any positive integers γ and δ and for any integers α and β such that 0 ≤ α ≤ m−1
and 0 ≤ β ≤ n− 1, let us consider the polynomials basis

Mα,β,γ,δ = xαyβ(xm + 1)γ(yn + 1)δ.

The Newton principal part of (Φ∗λ,µMα,β,γ,δ)(uλ,µ, vλ,µ) is reduced to the single monomial
uγ

λ,µvδ
λ,µ, which implies that the multiplicity with respect to the weight covector Q =

(q1, p1) is given by

ν(Φ∗λ,µMα,β,γ,δ;Q) = γq1 + δp1.

Lemma 11. For any positive integers γ and δ let Lγ,δ be the mn-dimensional vector
space of polynomials generated by the polynomials

{Mα,β,γ,δ | 0 ≤ α ≤ m− 1, 0 ≤ β ≤ n− 1}.

For j = 1, . . . , d− 1, let Lj be the space of polynomials generated by Mα,β,γ,δ, such that
0 ≤ α ≤ m− 1, and 0 ≤ β ≤ n− 1, and ν(Φ∗λ,µMα,β,γ,δ; Q) ≤ α(j)− 1. By construction

Lj =
⊕

γq1+δp1≤α(j)−1

Lγ,δ,

and the restriction of Φ∗j to Lj is an isomorphism.

Proof. The vector spaces have the same dimension, therefore it is sufficient to
prove injectivity. For this purpose, let (Φ∗j )0 be defined by

(Φ∗j )0(Mα,β,γ,δ) = {uγ
λ,µvδ

λ,µaα
λbβ

µ}λ,µ.

In particular (Φ∗j )0(Lγ,δ) ⊂ Nγ,δ. Thus it is sufficient to prove that the restriction
(Φ∗j )0|Lγ,δ : Lγ,δ −→ Nγ,δ is injective. Let h(x, y)(xm+1)γ(yn+1)δ, with degx(h) ≤ m−1
and degy(h) ≤ n− 1, be an element of Lγ,δ such that

(Φ∗j )0(h(x, y)(xm + 1)γ(yn + 1)δ) = {uγ
λ,µvδ

λ,µh(aλ, bµ)}λ,µ

is equal to zero. Then h(aλ, bµ) = 0 for 0 ≤ λ ≤ m − 1 and 0 ≤ µ ≤ n − 1. As
degx h(x, y) ≤ m−1, this implies that h(x, bµ) = 0 for any bµ, which implies that h(x, y)
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is divisible by
∏

µ(y − bµ). As degy h(x, y) ≤ n− 1, this implies h(x, y) = 0. ¤

Lemma 12 (Key Lemma). If ν(Φ∗λ,µMα,β,γ,δ; Q) ≤ α(j)−1, then deg(Mα,β,γ,δ) ≤
j − 2. Furthermore deg(Mα,β,γ,δ) = j − 2 if and only if

r′|j, α = m− 1, β = n− 1, and ν(Φ∗λ,µMα,β,γ,δ; Q) = α(j)− 1.

Proof. Let us assume ν(Φ∗λ,µMα,β,γ,δ;Q) ≤ α(j)− 1. Multiplying by r′, one gets
γm + δn + n + m ≤ r′[j/r′]. Note that j ≥ r′[j/r′], and equality holds if and only if r′|j.
Then

(j − 2)− deg(Mα,β,γ,δ) ≥ γm + δn + n + m− 2− deg(Mα,β,γ,δ)

= (m− α) + (n− β)− 2.

Now, let us assume that r′|j, and α = m−1, and β = n−1, and ν(Φ∗λ,µMα,β,γ,δ; Q) =
α(j)− 1. Then by construction, the multiplicity lj (see Definition 2.1.1) is equal to the
number of solutions (γ, δ) of the equation

j = (γ + 1)n + (δ + 1)m. (4)

Because of the restriction on the integer j, namely 1 ≤ j ≤ d − 1, the integers γ and δ

must satisfy the inequalities 0 < γ +1 < d/n = q and 0 < δ +1 < d/m = p. We conclude
by the arithmetic lemmas of §2.3. ¤
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