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A time-change approach to Kotani’s extension of Yor’s formula
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Abstract. In [3], Kotani proved analytically that expectations for additive
functionals of Brownian motion {Bt, t ≥ 0} of the form

E0

»
f(Bt)g

„Z t

0
ϕ(Bs)ds

«–

have the asymptotics t−3/2 as t → ∞ for some suitable non-negative functions ϕ,
f and g. This generalizes, in the asymptotic form, Yor’s explicit formula [10] for
exponential Brownian functionals.

In the present paper, we discuss this generalization probabilistically, by using a
time-change argument. We may easily see from our argument that this asymptotics
t−3/2 comes from the transition probability of 3-dimensional Bessel process.

1. Introduction.

Let (B = {Bt, t ≥ 0}, Px) be a one-dimensional Brownian motion starting from x:
Px(B0 = x) = 1. Yor’s formula for exponential additive functionals of Brownian motion
states that, for all non-negative Borel-measurable functions f and g,

E0

[
f(Bt)g

( ∫ t

0

e−2Bsds

)]
=

∫

R

dx

∫ ∞

0

dy

y
f(x)g(y) exp

(
− 1 + e2x

2y

)
θ

(
ex

y
, t

)
. (1.1)

See [10, formula (6.e)]; we also refer to [1]. Here, for fixed z > 0, θ(z, ·) denotes the
density of the so-called Hartman-Watson distribution, whose integral representation is
obtained in [9, Théorème (5.4)]. It is noted in [1] that limt→∞

√
2πt3θ(z, t) = K0(z),

the Macdonald function of order 0. From these, we may deduce that, for some suitable
functions f and g, the expectation as on the left hand side of (1.1) has the asymptotics
t−3/2 as t →∞.

Later in [3], Kotani proved the same asymptotics for more general additive function-
als, replacing e−2x by ϕ(x) ≥ 0 satisfying certain conditions. He employed an analytic
approach, namely the Krein theory, in doing this.

In this paper, we deal with the same problem. Our approach employed here is a
probabilistic one. Although we only discuss here the case where g is given by g(x) =
exp(−x), we think that our approach provides us with a simpler way to understand
why such an asymptotics appears even for general additive functionals, and that it is
worthwhile to present it; we may easily deduce from our argument that the asymptotics
t−3/2 comes from the transition probability of 3-dimensional Bessel process:
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√
2πt3P (3)

x (Rt ∈ dz) → 2z2dz, t →∞.

We assume ϕ(x) ≥ 0 (x ∈ R) is locally integrable and satisfies:

(P1)
∫ ∞

xϕ(x)dx < ∞, (P2) lim inf
x→−∞

ϕ(x) > 0.

We denote by f0 the unique, strictly positive solution to the Sturm-Liouville equation

1
2
f ′′(x) = ϕ(x)f(x) (1.2)

with boundary conditions

f ′(x) → 1 (x →∞) and f(x) → 0 (x → −∞). (1.3)

The existence and uniqueness of such a solution is ensured by the above assumptions on
ϕ.

Remark 1.1. By (P2), there exist constants a < 0 and c, c′ > 0 such that

f0(x) ≤ c′e−c|x| for all x < a.

See Remark 2.1.

Let f be a non-negative function on R satisfying

(A)
∫

R

f(z)f0(z)dz < ∞.

The purpose of this paper is to prove the following limit theorem: for every x ∈ R,

lim
t→∞

√
2πt3Ex

[
f(Bt) exp

{
−

∫ t

0

ϕ(Bs)ds

}]
= 2f0(x)

∫

R

f(z)f0(z)dz. (∗)

We shall show that (∗) holds under some additional condition on f . Although we only
discuss the simple case with g(x) = exp(−x), an assumption on f imposed in [3] is
relaxed somewhat; indeed, in some case, we only need the minimal assumption (A) for
(∗) to hold.

To state the result, we introduce the exponent γ0 ≥ 0 defined by:

γ0 = inf
{

γ ≥ 0; lim inf
x→−∞

|x|−2γϕ(x) > 0
}

.

Theorem 1.1. (i) The case γ0 ≤ 1: Assume (A). Moreover, we assume
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(B)
∫

−∞
|z|f(z)f0(z)dz < ∞.

Then (∗) holds.
(ii) The case γ0 > 1: Assume (A). Then (∗) holds.

Remark 1.2. In [3], it is assumed that, in the present setting,

∫

−∞
|z|3/2f(z)f0(z)dz < ∞

for both cases (i) and (ii).

Remark 1.3. If, in particular, ϕ(x) = O(|x|γ) as x → −∞ for some 0 < γ ≤ 1,
then the condition (B) can be relaxed as:

(B′)

{∫
−∞ |z|1−γf(z)f0(z)dz < ∞ for γ < 1,

∫
−∞(log |z|)f(z)f0(z)dz < ∞ for γ = 1.

We may easily deduce this from our argument used in the proof of Theorem 1.1. See, in
particular, the proof of Lemma 3.6.

As a corollary to Theorem 1.1, we also see:

Corollary 1.1. Under the same assumption as in Theorem 1.1, we have, for all
x ∈ R,

lim
t→∞

√
t

∫ ∞

t

dsEx

[
f(Bs) exp

{
−

∫ s

0

ϕ(Bu)du

}]
=

4√
2π

f0(x)
∫

R

f(z)f0(z)dz. (1.4)

Note that the assertion is also a rewriting of Proposition 3.1. We give some remark
on this corollary in Section 4.

As an application of Theorem 1.1, we give two examples; in both examples, we take
f(x) = e−µx (µ > 0), which means, by the Cameron-Martin relation, that we may rewrite
the assertions using the Brownian motion with drift B(−µ) = {Bt − µt, t ≥ 0} instead of
the Brownian motion.

Example 1.1. For α > 0, we take ϕ(x) = αe−2x. In this case f0 is given by

f0(x) = K0

(√
2αe−x

)
,

where K0 denotes the Macdonald function of order 0. Using one of its integral represen-
tations (see, e.g., [4, formula (5.10.25)]), we may easily see:

∫

R

e−µxK0

(√
2αe−x

)
dx = 2µ−2 1

(
√

2α)µ

{
Γ

(
µ

2

)}2

.
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Note that, in this case, we may apply (ii) of Theorem 1.1 and obtain

lim
t→∞

√
2πt3eµ2t/2Ex

[
exp

{
− α

∫ t

0

e−2B(−µ)
s ds

}]
= 2µ−1

{
Γ

(
µ

2

)}2

eµx K0(
√

2αe−x)
(
√

2α)µ
.

This asymptotics has already been discussed in [2, Theorem 2.1], where Yor’s formula
was used.

Example 1.2. We take ϕ(x) = β1(−∞,0)(x) for β > 0. In this case f0 is given by

f0(x) =





x +
1√
2β

, x ≥ 0,

1√
2β

e−
√

2β|x|, x ≤ 0.

Note that, if µ <
√

2β, then

∫

R

e−µxf0(x)dx =
√

2β

µ2(
√

2β − µ)
< ∞,

and the assumption (B) is also fulfilled. Therefore, by (i) of Theorem 1.1, we have, for
µ <

√
2β,

lim
t→∞

√
2πt3eµ2t/2Ex

[
exp

{
− β

∫ t

0

1(−∞,0)(B(−µ)
s )ds

}]
=

2
√

2β

µ2(
√

2β − µ)
eµxf0(x).

The organization of this paper is as follows: in Section 2, we present some prelim-
inaries; in Subsection 3.a, we prove Theorem 1.1; in Subsections 3.b and 3.c, we prove
two propositions that are used in the proof of Theorem 1.1; in Section 4, we give some
remark on a connection between our result and a related one in [7].

Throughout this paper, R = {Rt, t ≥ 0}, together with a probability measure P
(3)
x ,

denotes a 3-dimensional Bessel process starting from x: P
(3)
x (R0 = x) = 1, and E

(3)
x

denotes the expectation with respect to P
(3)
x . Other notation will be introduced as

needed.

2. Preliminaries.

In this section, we prepare several preliminary results.

2.a. h-transform with respect to f0.
Let X be the solution to the following SDE:

Xt = x + Wt +
∫ t

0

f ′0
f0

(Xs)ds, t ≥ 0, x ∈ R, (2.1)
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where W is a standard one-dimensional Brownian motion. We denote by Px the proba-
bility measure on the path space C([0,∞);R), induced by X. For every t > 0 and every
non-negative, measurable functional F (w(s), s ≤ t) (w ∈ C([0,∞);R)), it holds that, by
the Girsanov theorem (see, e.g., [5]),

Ex[F (Xs, s ≤ t)] = Ex

[
F (Bs, s ≤ t)

f0(Bt)
f0(x)

exp
{
−

∫ t

0

ϕ(Bs)ds

}]
.

Here we made the abuse of notation by letting X denote the canonical path in
C([0,∞);R) under Px. From this relation, we have in particular

Ex

[
f(Bt) exp

{
−

∫ t

0

ϕ(Bs)ds

}]
= f0(x)Ex

[
f

f0
(Xt)

]
. (2.2)

2.b. Time-change.
Since f ′0(x) → 1 as x → ∞, the drift term (f ′0/f0)(x) of the SDE (2.1) behaves

as 1/x when x → ∞. So we may expect the solution Xt to behave asymptotically as
3-dimensional Bessel process as t → ∞. To formulate this intuition mathematically, we
shall consider expressing X as a time-change of a 3-dimensional Bessel process. For this
purpose, we define the function g0 by

g0(x) =
{ ∫ ∞

x

dy

f0(y)2

}−1

, x ∈ R.

By using the inverse function g−1
0 of g0, X is expressed as:

Xt = g−1
0 (Rat(R)) (2.3)

for some 3-dimensional Bessel process R starting from y = g0(x) > 0. Here

at(R) = inf{s ≥ 0;As(R) > t},

As(R) =
∫ s

0

∣∣(g−1
0 )′(Ru)

∣∣2 du.

Since (g−1
0 )′(x) ≥ 1 and converges to 1 as x → ∞ (see Lemma 2.1 below), we see that,

P
(3)
y -a.s.,

As(R) ≥ s for all s ≥ 0 and As(R)/s → 1 as s →∞. (2.4)

The latter follows from L’Hospital’s rule and the fact that R is transient. Since at(R) is
the inverse of As(R), we also see that, P

(3)
y -a.s.,

at(R) ≤ t for all t ≥ 0 and at(R)/t → 1 as t →∞.
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The latter property, in particular, combined with (2.3) and the fact that (g−1
0 )′(x) → 1

as x →∞, does indicate that Xt behaves as Rt as t →∞.

2.c. Key identity.
By (2.2), we are led to study the asymptotics of Ex[ f

f0
(Xt)] instead of that of

Ex[f(Bt) exp{− ∫ t

0
ϕ(Bs)ds}] itself. The key to doing this is the following identity:

∫ t

0

f

f0
(Xs)ds =

∫ at(R)

0

f

f0

(
g−1
0 (Rs)

)∣∣(g−1
0 )′(Rs)

∣∣2 ds. (2.5)

To see that this relation holds, we differentiate the right hand side with respect to t,
noting d

dtat(R) = |(g−1
0 )′(Rat(R))|−2:

d

dt
(right hand side of (2.5)) =

f

f0

(
g−1
0 (Rat(R))

)∣∣(g−1
0 )′(Rat(R))

∣∣2 d

dt
at(R)

=
f

f0

(
g−1
0 (Rat(R))

)
=

f

f0
(Xt), (by (2.3))

which implies (2.5).

2.d. Properties of g0.
We summarize here several properties of g0 in a lemma. Some of them were already

referred to above.

Lemma 2.1.

(i) limx→∞ g′0(x) = 1, limx→−∞ g0(x) = 0.
(ii) g0 is convex.
(iii) (g−1

0 )′(x) ≥ 1, is non-increasing, and converges to 1 as x →∞.
(iv) g0 ≥ f0f

′
0.

(v) lim supx↓0 x(g−1
0 )′(x) < ∞.

Before giving a proof, we give an example:

Example 2.1 (recall Example 1.2). In the case ϕ(x) = β1(−∞,0)(x) for β > 0, g0

and (g−1
0 )′ are given respectively by:

g0(x) =





x +
1√
2β

, x ≥ 0,

2√
2β

1
1 + exp(−2

√
2βx)

, x ≤ 0;

(g−1
0 )′(x) =





1√
2β

1
x(2−√2βx)

, 0 < x ≤ 1√
2β

,

1, x ≥ 1√
2β

.
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Note that x(g−1
0 )′(x) → 1/(2

√
2β) as x ↓ 0.

Proof of Lemma 2.1. The latter assertion of (i) is obvious. For the former, note
that g′0 = (g0/f0)2. So it suffices to check f0(x)/g0(x) → 1 as x →∞, which is immediate
from L’Hospital’s rule:

lim
x→∞

f0(x)
g0(x)

= lim
x→∞

( ∫∞
x

dy
f0(y)2

)′
(

1
f0(x)

)′ = lim
x→∞

1
f ′0(x)

= 1.

Now we set h0 = f0/g0. We have just seen h0(x) → 1 as x → ∞. Note that h0 also
satisfies (1/2)h′′0 = ϕh0 (in fact, h0 gives a solution to (1.2) linearly independent of f0).
This indicates, in particular, that h0 is convex. Combining these, we see that h0 ≥ 1
and is non-increasing. Properties (ii)–(iv) are variants of this fact on h0, so we omit the
proof. For (v), first note that, by the condition (P2) on ϕ, there exist a < 0, c > 0 such
that ϕ ≥ c on (−∞, a). Therefore f ′′0 = 2ϕf0 ≥ 2cf0 on (−∞, a). Multiplying both sides
by f ′0 > 0 and integrating over (−∞, x) for x < a, we get f ′0(x)2 ≥ 2cf0(x)2, hence

f ′0(x)
f0(x)

≥
√

2c for all x < a. (2.6)

Noting (g−1
0 )′(x) = 1/g′0(g

−1
0 (x)) = f0(g−1

0 (x))2/x2, we see that

lim sup
x↓0

x(g−1
0 )′(x) = lim sup

y→−∞
f0(y)2

g0(y)
≤ lim sup

y→−∞
f0(y)
f ′0(y)

≤ 1√
2c

,

where we used the property (iv) for the first inequality and (2.6) for the second. This
shows (v). ¤

Remark 2.1. From (2.6), we may see that, as x → −∞, f0 decays exponentially
or faster; indeed, by (2.6),

log
f0(a)
f0(x)

=
∫ a

x

f ′0(y)
f0(y)

dy ≥
√

2c(a− x), x < a,

which is rewritten as

f0(x) ≤ f0(a)e
√

2c(x−a), x < a.

2.e. Proof of (2.3).
Before closing this section, we prove the time-change relation (2.3) for the sake of

completeness of the paper.
By definition, it is easily checked that
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1
2
g′′0 (x) +

f ′0
f0

(x)g′0(x) =
g′0(x)2

g0(x)
.

So, by Itô’s formula,

g0(Xt) = y +
∫ t

0

g′0(Xs)dWs +
∫ t

0

g′0(Xs)2

g0(Xs)
ds, (2.7)

where, as before, we write y = g0(x). Since the second term on the right hand side is a
martingale, there exists a Brownian motion W̃ such that

∫ t

0

g′0(Xs)dWs = W̃Gt(X), Gt(X) =
∫ t

0

g′0(Xs)2 ds.

Now we prepare the 3-dimensional Bessel process R that is given as the strong solution
to the following SDE driven by W̃ :

Rt = y + W̃t +
∫ t

0

ds

Rs
.

Note that RGt(X) satisfies:

RGt(X) = y + W̃Gt(X) +
∫ Gt(X)

0

ds

Rs

= y +
∫ t

0

g′0(Xs)dWs +
∫ t

0

g′0(Xs)2

RGs(X)
ds.

Comparing this with (2.7), we conclude the following relation:

g0(Xt) = RGt(X). (2.8)

We remark that (2.8) is a Feller-type representation of X in terms of 3-dimensional Bessel
process. It now remains to prove Gt(X) = at(R). Since at(R) is the inverse of As(R), it
suffices to check AGt(X)(R) = t. To this end, we compute:

d

dt
AGt(X)(R) =

∣∣(g−1
0 )′(RGt(R))

∣∣2 d

dt
Gt(X) (by definition)

=
∣∣g′0(g−1

0 (RGt(R)))
∣∣−2

g′0(Xt)2

= g′0(Xt)−2g′0(Xt)2 (by (2.8))

= 1,

which implies AGt(X)(R) = t. Here, for the second line, we used the relation (g−1
0 )′ =
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1/g′0(g
−1
0 ). Now (2.3) is proved.

3. Proof of Theorem 1.1.

In this section, we prove Theorem 1.1.

3.a. Proof of Theorem 1.1.
We begin with the following lemma.

Lemma 3.1. Let k(ξ) (ξ > 0) be a non-negative, locally integrable function satis-
fying

∫

0+

ξ2k(ξ)dξ < ∞ and
∫ ∞

ξk(ξ)dξ < ∞.

Then it holds that, for all y > 0,

E(3)
y

[ ∫ ∞

0

k(Rs)ds

]
< ∞.

Proof. The assertion is immediate from Fubini’s theorem and the fact that

∫ ∞

0

dsP (3)
y (Rs ∈ dξ) =

2ξ

y
(ξ ∧ y)dξ. ¤

Now we take k(ξ) = f
f0

(g−1
0 (ξ))|(g−1

0 )′(ξ)|2. Then the assumption of Lemma 3.1 is
fulfilled; indeed, by making the change of variables with ξ = g0(z),

∫ ∞

0

ξ2k(ξ)dξ =
∫

R

f(z)f0(z)dz, (3.1)

which is finite by (A). Applying Lemma 3.1 to this k, we see in particular that, for each
y > 0,

E(3)
y

[ ∫ ∞

at(R)

k(Rs)ds

]
< ∞, t ≥ 0.

Note that, since at(R) → ∞ as t → ∞ P
(3)
y -a.s., the left hand side converges to 0 as

t →∞.

Proposition 3.1. Under the same assumption as in Theorem 1.1, it holds that,
as t →∞,

√
tE(3)

y

[ ∫ ∞

at(R)

k(Rs)ds

]
→ 4√

2π

∫

R

f(z)f0(z)dz.
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A key step to showing Proposition 3.1 is:

Lemma 3.2. We have the following decomposition:

E(3)
y

[ ∫ ∞

at(R)

k(Rs)ds

]
= I1(t) + I2(t),

where

I1(t) =
∫ ∞

t

dsE(3)
y [k(Rs)], I2(t) =

∫ t

0

dsE(3)
y [1{As(R)>t}k(Rs)].

Proof. By the definition of at(R) and by Fubini’s theorem,

E(3)
y

[ ∫ ∞

at(R)

k(Rs)ds

]
= E(3)

y

[ ∫

{s;As(R)>t}
k(Rs)ds

]

=
∫ ∞

0

dsE(3)
y [1{As(R)>t}k(Rs)].

Now the assertion follows from the fact that As(R) ≥ s for all s ≥ 0 (recall (2.4)). ¤

We have the following two propositions concerning this decomposition:

Proposition 3.2. Under the assumption (A),

√
tI1(t) → 4√

2π

∫

R

f(z)f0(z)dz as t →∞.

Proposition 3.3. Under the same assumption as in Theorem 1.1,

√
tI2(t) → 0 as t →∞.

Proofs are given in Subsections 3.b and 3.c, respectively. We now easily see Propo-
sition 3.1 follows from these:

Proof of Proposition 3.1. The assertion is an immediate consequence of
Lemma 3.2, Propositions 3.2 and 3.3. ¤

Using Proposition 3.1, we prove Theorem 1.1:

Proof of Theorem 1.1. By the relation (2.5), we have, for each x ∈ R,

∫ ∞

t

Ex

[
f

f0
(Xs)

]
ds = E(3)

y

[ ∫ ∞

at(R)

k(Rs)ds

]
, t ≥ 0.

Here, as before, y = g0(x). Then, by Proposition 3.1, we have
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∫ ∞

t

Ex

[
f

f0
(Xs)

]
ds ∼ t−1/2 × 4√

2π

∫

R

f(z)f0(z)dz as t →∞.

Here and below, for positive functions α(t), β(t) (t > 0), we use the notation α(t) ∼ β(t)
as t →∞ to mean limt→∞ α(t)/β(t) = 1. Since the convergence of the left hand side to
0 is monotone, we may differentiate both sides with respect to t to get

Ex

[
f

f0
(Xt)

]
∼ t−3/2 × 2√

2π

∫

R

f(z)f0(z)dz as t →∞.

Now the theorem follows from this and the relation (2.2). ¤

The rest of the section is devoted to proving Propositions 3.2 and 3.3. In the
following, every argument is done for an arbitrarily fixed y > 0, which means it is
not necessary to relate y to the starting point of the Brownian motion B in such a way
as y = g0(x). So we use below x to denote a variable, not the starting point.

3.b. Proof of Proposition 3.2.
Here we prove Proposition 3.2.

Proof. By changing the variables with s = tu in the definition of I1(t),

√
tI1(t) =

√
t× t

∫ ∞

1

duE(3)
y [k(Rtu)]

= t3/2

∫ ∞

1

du

∫ ∞

0

dξ p(3)(tu; y, ξ)k(ξ),

where p(3) denotes the transition density of 3-dimensional Bessel process:

p(3)(s;x, z) =
1√
2πs

z

x
exp

{
− (z − x)2

2s

}{
1− exp

(
− 2xz

s

)}
, s > 0, x, z > 0.

Noting the function (1− e−x)/x (x > 0) is dominated by 1 and converges to 1 as x ↓ 0,
we easily see that, for each fixed u and ξ,

t3/2p(3)(tu; y, ξ) ≤ 2ξ2

√
2πu3

for all t > 0, t3/2p(3)(tu; y, ξ) → 2ξ2

√
2πu3

as t →∞.

(3.2)

Moreover,

∫ ∞

1

du

∫ ∞

0

dξ
2ξ2

√
2πu3

k(ξ) =
2√
2π

∫ ∞

1

du√
u3

∫ ∞

0

dξ ξ2k(ξ)

=
4√
2π

∫

R

dz f(z)f0(z) < ∞
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by (A). The second equality follows from the relation (3.1). Now the assertion is imme-
diate from the dominated convergence theorem. ¤

3.c. Proof of Proposition 3.3.
Similarly to the proof of Proposition 3.2, we rewrite

√
tI2(t) as:

√
tI2(t) = t3/2

∫ 1

0

du

∫ ∞

0

P (3)
y (Rtu ∈ dξ) k(ξ)P (3)

y,tu,ξ(Atu(r) > t)

=
∫ 1

0

du

∫ ∞

0

dξ k(ξ)ψy(u, ξ, t), (3.3)

where we set

ψy(u, ξ, t) = t3/2p(3)(tu; y, ξ)P (3)
y,tu,ξ(Atu(r) > t) (3.4)

and, for s > 0 and x, z > 0, we denote by the pair (r = {ru, 0 ≤ u ≤ s}, P (3)
x,s,z) a pinned

3-dimensional Bessel process over [0, s] such that P
(3)
x,s,z(r0 = x, rs = z) = 1. We prove

Proposition 3.3 in four steps.

Step 1. We start with the following proposition:

Proposition 3.4. For each fixed 0 < u < 1 and ξ > 0,

ψy(u, ξ, t) → 0 as t →∞.

As was already seen in (3.2), t3/2p(3)(tu; y, ξ) is dominated by a quantity independent
of t. Therefore, rewriting the set {Atu(r) > t} = { 1

tuAtu(r) > 1
u}, we see the proof of

Proposition 3.4 is reduced to showing the following proposition:

Proposition 3.4′. For each ε > 0 and ξ > 0,

P
(3)
y,T,ξ

(
1
T

AT (r) > 1 + ε

)
→ 0 as T →∞.

The proof given here relies on the fact that the FKG inequality is applicable to the
laws of pinned 3-dimensional Bessel processes (see the appendix).

Lemma 3.3. For each ε > 0 and x, z > 0,

P
(3)

x,T,
√

Tz

(
1
T

AT (r) ≤ 1 + ε

)
→ 1 as T →∞.

In the following proof, we say that a function F defined on the path space C([0, T ];R)
is non-decreasing (resp. non-increasing) if F (w1) ≤ F (w2) (resp. F (w1) ≥ F (w2)) for all
w1, w2 ∈ C([0, T ];R) satisfying w1(t) ≤ w2(t) for all 0 ≤ t ≤ T .
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Proof of Lemma 3.3. Since (g−1
0 )′ is non-increasing, AT (r) is non-increasing in

r, hence the indicator function of the set { 1
T AT (r) ≤ 1 + ε} is non-decreasing in r. So,

by the FKG inequality, we see P
(3)
x,T,η( 1

T AT (r) ≤ 1 + ε) is non-decreasing in η. By using
this, we have

P (3)
x

(
1
T

AT (R) ≤ 1 + ε,RT ≤
√

Tz

)

=
∫ √

Tz

0

P (3)
x (Rt ∈ dη)P (3)

x,T,η

(
1
T

AT (r) ≤ 1 + ε

)

≤ P
(3)

x,T,
√

Tz

(
1
T

AT (r) ≤ 1 + ε

)
P (3)

x (RT ≤
√

Tz).

Dividing both sides by P
(3)
x (RT ≤

√
Tz), we obtain:

P
(3)
x ( 1

T AT (R) ≤ 1 + ε,RT ≤
√

Tz)

P
(3)
x (RT ≤

√
Tz)

≤ P
(3)

x,T,
√

Tz

(
1
T

AT (r) ≤ 1 + ε

)
. (3.5)

Since, as T → ∞, AT (R)/T → 1 P
(3)
x -a.s. (recall (2.4)), the convergence in probability

is implied:

lim
T→∞

P (3)
x

(
1
T

AT (R) ≤ 1 + ε

)
= 1.

We also note that, by the scaling property,

lim
T→∞

P (3)
x (RT ≤

√
Tz) = P

(3)
0 (R1 ≤ z) > 0.

Combining these, we see that the left hand side of (3.5) converges to 1 as T → ∞, and
so does the right hand side. This shows the lemma. ¤

By using this lemma, we prove Proposition 3.4′:

Proof of Proposition 3.4′. Conditionally on rT/2 = η, the process {rt, 0 ≤ t ≤
T} is identical in law with the process r1 • r2 defined by:

(r1 • r2)(t) =





r1(t), 0 ≤ t ≤ T

2
,

r2(T − t),
T

2
≤ t ≤ T,

where r1 (resp. r2) is a pinned 3-dimensional Bessel process over [0, T/2] with r1(0) =
y, r1(T/2) = η (resp. with r2(0) = ξ, r2(T/2) = η), and r1 and r2 are taken to be
independent. It then holds that
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P
(3)
y,T,ξ

(
1
T

AT (r) > 1 + ε

)

=
∫ ∞

0

P
(3)
y,T,ξ

(
rT

2
∈ dη

)
P

(3)

y, T
2 ,η

⊗ P
(3)

ξ, T
2 ,η

(
1
T

AT (r1 • r2) > 1 + ε

)
. (3.6)

Note that the integrand on the right hand side is non-increasing in η by the FKG in-
equality (recall the argument in the proof of Lemma 3.3). Therefore, using the FKG
inequality again, we see that (3.6) is dominated by

∫ ∞

0

P
(3)
0,T,0

(
rT

2
∈ dη

)
P

(3)

y, T
2 ,η

⊗ P
(3)

ξ, T
2 ,η

(
1
T

AT (r1 • r2) > 1 + ε

)
. (3.7)

Changing the variables with η =
√

Tz, and noting

{
1
T

AT (r1 • r2) > 1 + ε

}
⊂

{
2
T

AT
2
(r1) > 1 + ε

}
∪

{
2
T

AT
2
(r2) > 1 + ε

}
,

we see further that (3.7) is dominated by

∫ ∞

0

P
(3)
0,1,0

(
r 1

2
∈ dz

)

×
{

1− P
(3)

y, T
2 ,
√

Tz

(
2
T

AT
2
(r1) ≤ 1 + ε

)
P

(3)

ξ, T
2 ,
√

Tz

(
2
T

AT
2
(r2) ≤ 1 + ε

)}
,

which converges to 0 as T →∞ by Lemma 3.3. So the proposition is proved. ¤

Step 2. First we introduce the cut-off of |(g−1
0 )′|2:

θy(x) =
∣∣(g−1

0 )′(x ∧ y)
∣∣2 −

∣∣(g−1
0 )′(y)

∣∣2, x > 0.

Here ∧ means the minimum. We fix u0 ∈ (0, 1) in such a way that u0 < 1/|(g−1
0 )′(y)|2.

We divide the strip {(u, ξ); 0 < u < 1, ξ > 0} into three regions:

D1 = (0, u0)× (0, y), D2 = (0, u0)× [y,∞), D3 = [u0, 1)× (0,∞).

In this step, we prove:

Proposition 3.5. For each fixed 0 < u < 1, ξ > 0,

ψy(u, ξ, t) ≤ Ψy(u, ξ) for all t > 0,

where
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Ψy(u, ξ) =





C1
ξ√
u

( ∫ ξ

0

z2θy(z)dz + ξ

∫ y

ξ

zθy(z)dz

)
on D1,

C2
ξ√
u

on D2,

2ξ2

√
2πu3

on D3,

with constants C1, C2 independent of u and ξ:

C1 = 8/
{√

2πy2(1− u0|(g−1
0 )′(y)|2)}, C2 = C1

∫ y

0

z2θy(z)dz.

Remark 3.1. The constant C2 above is finite; to see this, we only have to check,
by the definition of θ,

∫
0+

z2|(g−1
0 )′(z)|2 dz < ∞, which is immediate from (v) of Lemma

2.1.

The bound on D3 is obvious (recall (3.2)). So we keep u < u0 for a while and will
not indicate this unless it is necessary. Since y is fixed, we often suppress it from the
notation; e.g., we write θ for θy. Put tu = T .

Lemma 3.4. It holds that

P
(3)
y,T,ξ

(
1
T

AT (r) >
1
u

)
≤ C3uE

(3)
y,T,ξ

[
1
T

∫ T

0

θ(rs)ds

]
.

Here C3 = 1/(1− u0|(g−1
0 )′(y)|2).

Proof. Note that the following inclusions hold:

{
1
T

AT (r) >
1
u

}
⊂

{
1
T

∫ T

0

∣∣(g−1
0 )′(rs ∧ y)

∣∣2 ds >
1
u

}

=
{

1
T

∫ T

0

θ(rs)ds >
1− u|(g−1

0 )′(y)|2
u

}

⊂
{

1
T

∫ T

0

θ(rs)ds >
1− u0|(g−1

0 )′(y)|2
u

}
,

Here, for the first line, we used the fact that (g−1
0 )′ is non-increasing (Lemma 2.1 (iii)),

and the definition of θ for the second. Now the assertion follows from Chebyshev’s
inequality. ¤

By using this lemma, we shall prove:

Lemma 3.5. ψ(u, ξ, t) is dominated by
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C3
ξ

y
√

2πu

∫ y

0

dz θ(z)
∫ z+ξ

|z−ξ|
da

(
exp

{
− (a + y − z)2

2T

}
− exp

{
− (a + y + z)2

2T

})
.

Proof. By Lemma 3.4, and by the definition (3.4) of ψ(u, ξ, t),

ψ(u, ξ, t) ≤ C3t
1/2p(3)(T ; y, ξ)E(3)

y,T,ξ

[ ∫ T

0

θ(rs)ds

]
.

Using the law of r at time s, we see:

E
(3)
y,T,ξ

[ ∫ T

0

θ(rs)ds

]
=

∫ T

0

ds

∫ y

0

dz θ(z)
p(3)(s; y, z)p(3)(T − s; z, ξ)

p(3)(T ; y, ξ)
.

The second integral is taken only over (0, y) because, by definition, θ(z) = 0 for z ≥ y.
We also note that

∫ T

0

ds p(3)(s; y, z)p(3)(T − s; z, ξ)

=
ξ

y

∫ z+y

|z−y|
db

∫ z+ξ

|z−ξ|
da

a + b√
2πT 3

exp
{
− (a + b)2

2T

}

=
ξ

y

∫ z+ξ

|z−ξ|

da√
2πT

(
exp

{
− (a + y − z)2

2T

}
− exp

{
− (a + y + z)2

2T

})

for z < y. Combining these yields the lemma. ¤

Now we are prepared to prove Proposition 3.5.

Proof of Proposition 3.5. The bound for the case (u, ξ) ∈ D3 follows from the
former of (3.2). For the other two cases, we use the following fact: for 0 < α < β, the
function e−αx − e−βx (x ≥ 0) is bounded from above by 1− (α/β). Using this, we easily
see that, for each a > 0 and z < y,

exp
{
− (a + y − z)2

2T

}
− exp

{
− (a + y + z)2

2T

}
≤ 4z

a + y + z
for all T > 0.

Combining this with Lemma 3.5, we have, for all t > 0,

ψ(u, ξ, t) ≤ 4C3
ξ

y
√

2πu

∫ y

0

dz zθ(z)
∫ z+ξ

|z−ξ|

da

a + y + z
.

Note that the integral with respect to da above is dominated by 2(z ∧ ξ)/y; indeed,
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∫ z+ξ

|z−ξ|

da

a + y + z
= log

(
1 +

z + ξ − |z − ξ|
|z − ξ|+ y + z

)

≤ z + ξ − |z − ξ|
|z − ξ|+ y + z

≤ z + ξ − |z − ξ|
y

.

Now the bounds for the cases D1 and D2 follow from these. ¤

Step 3. The purpose of this step is to show the following:

Proposition 3.6. Under the same assumption as in Theorem 1.1,

∫ 1

0

du

∫ ∞

0

dξ k(ξ)Ψ(u, ξ) < ∞.

Once this proposition is shown, then, combining this with Propositions 3.4 and 3.5,
we see Proposition 3.3 follows immediately from the dominated convergence theorem.

The integrability of k(ξ)Ψ(u, ξ) on D2 and D3 is obvious; indeed, by definition,

∫

Di

dudξ k(ξ)Ψ(u, ξ) =





C2

∫ u0

0

du√
u

∫ ∞

y

dξ ξk(ξ), i = 2,

2√
2π

∫ 1

u0

du√
u3

∫ ∞

0

dξ ξ2k(ξ), i = 3,

both of which are finite by the relation (3.1) and the assumption (A). So we need only to
prove the integrability on D1. For this purpose, we prove the following proposition first.

Proposition 3.7. Under the same assumption as in Theorem 1.1, it holds that

∫

0+

dξ ξ2k(ξ)
∫ y

ξ

dz z
∣∣(g−1

0 )′(z)
∣∣2 < ∞. (3.8)

To see this proposition holds, first note that, by changing the variables, the left hand
side of (3.8) is rewritten as:

∫

−∞
dη f(η)f0(η)

∫ x∗

η

dz
f0(z)2

g0(z)
. (3.9)

Here we write x∗ = g−1
0 (y). Recall γ0 = sup{γ ≥ 0; lim infx→−∞ |x|−2γϕ(x) > 0}.

Lemma 3.6. (i) If γ0 ≤ 1, then there exists a constant c > 0 such that

∫ x∗

η

dz
f0(z)2

g0(z)
≤ c(1 + |η|) for all η ≤ x∗.
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(ii) If γ0 > 1, then
∫ x∗

−∞
dz

f0(z)2

g0(z)
< ∞.

Once this lemma is shown, then Proposition 3.7 follows immediately:

Proof of Proposition 3.7. Using (i) of Lemma 3.6, we see that, in the case
γ0 ≤ 1, (3.9) is dominated by

c

∫

−∞
dη f(η)f0(η)(1 + |η|).

Note that this is finite by the assumption (B). For the case γ0 > 1, we may bound (3.9)
from above by

∫

−∞
dη f(η)f0(η)×

∫ x∗

−∞
dz

f0(z)2

g0(z)
.

Note that this is also finite by the assumption (A) and (ii) of Lemma 3.6. So the
proposition is proved. ¤

With the help of Proposition 3.7, we give a proof of Proposition 3.6, the main
objective of this step:

Proof of Proposition 3.6. We have already seen above that k(ξ)Ψ(u, ξ) is
integrable on D2 ∪ D3. For the integrability on D1 = (0, u0) × (0, y), it suffices to
prove, by the definition of Ψ ,

∫ y

0

dξ ξk(ξ)
∫ ξ

0

dz z2θ(z) < ∞, (3.10)

∫ y

0

dξ ξ2k(ξ)
∫ y

ξ

dz zθ(z) < ∞. (3.11)

Note that, by (v) of Lemma 2.1, we may find a constant c > 0 such that

∫ ξ

0

z2
∣∣(g−1

0 )′(z)
∣∣2 dz ≤ cξ

for every sufficiently small ξ. Therefore

∫

0+

dξ ξk(ξ)
∫ ξ

0

dz z2
∣∣(g−1

0 )′(z)
∣∣2 ≤ c

∫

0+

dξ ξ2k(ξ),

which is finite by the relation (3.1) and the assumption (A). From this and the definition
of θ, (3.10) follows. (3.11) is a consequence of Proposition 3.7 and the definition of θ. ¤
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It now remains to prove Lemma 3.6. To this end, we prepare the following lemma:

Lemma 3.7. Suppose that there exists a γ ≥ 0 such that

lim inf
x→−∞

|x|−2γϕ(x) > 0.

Then there exist constants a < 0 and c > 0 such that

f0(x)2

g0(x)
≤ c|x|−γ for all x < a.

Proof. By the assumption, there exist a < 0, c > 0 such that ϕ(z) ≥ c|z|2γ for all
z < a. Combining this with f ′′0 = 2ϕf0, we see that, for all z < a, f ′′0 (z) ≥ 2c|z|2γf0(z).
Multiplying both sides by f ′0 > 0, we have

f ′′0 (z)f ′0(z) ≥ 2c|z|2γf0(z)f ′0(z) for all z < a.

Integrating both sides over (−∞, x) for x < a, we see:

1
2
f ′0(x)2 ≥ 2c

∫ x

−∞
|z|2γf0(z)f ′0(z) dz

= c|x|2γf0(x)2 + 2cγ

∫ x

−∞
|z|2γ−1f0(z)2 dz

≥ c|x|2γf0(x)2.

Here we used integration by parts formula for the equality. (As was seen in Remark 2.1,
f0 decays exponentially or faster at −∞, provided that lim infx→−∞ ϕ(x) > 0. So the
assumption here also ensures limx→−∞ |x|2γf0(x)2 = 0.) We thus obtain f0(x)/f ′0(x) ≤√

2c|x|−γ for all x < a. Note that, by (iv) of Lemma 2.1, f2
0 /g0 ≤ f0/f ′0. Combining

these ends the proof. ¤

Using this lemma, we prove Lemma 3.6:

Proof of Lemma 3.6. For the case (i), we may apply Lemma 3.7 with γ = 0
and get

∫ a

η

dz
f0(z)2

g0(z)
≤ c(a + |η|) for all η < a,

for some a < 0 and c > 0. This implies (i). For the case (ii), we may take 1 < γ < γ0 so
that lim infx→−∞ |x|−2γϕ(x) > 0. Applying Lemma 3.7 to this γ yields, in particular,

∫

−∞
dz

f0(z)2

g0(z)
< ∞;
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indeed, by Lemma 3.7, for some a < 0 and c > 0,

∫ a

−∞
dz

f0(z)2

g0(z)
≤ c

∫ a

−∞

dz

|z|γ < ∞.

So the assertion (ii) is also proved. ¤

Step 4. We are now in a position to prove Proposition 3.3:

Proof of Proposition 3.3. Recall the expression (3.3) of
√

tI2(t). We then see
that the proposition is a consequence of Propositions 3.4, 3.5 and 3.6, and the dominated
convergence theorem. ¤

4. A remark on Corollary 1.1.

We shall consider taking ϕ as f in Corollary 1.1. Then we see every assumption in
Theorem 1.1 is fulfilled; indeed, by the equation (1/2)f ′′0 = ϕf0,

∫

R

ϕ(z)f0(z) dz =
1
2

∫

R

f ′′0 (z) dz

=
1
2
{
f ′0(+∞)− f ′0(−∞)

}
=

1
2

< ∞,

and, from integration by parts, it is also seen that, for all a < 0,

∫ a

−∞
|z|ϕ(z)f0(z) dz =

1
2

∫ a

−∞
|z|f ′′0 (z) dz

=
1
2
(|a|f ′0(a) + f0(a)

)
< ∞.

As a consequence, (1.4) holds with f = ϕ:

lim
t→∞

√
t

∫ ∞

t

dsEx

[
ϕ(Bs) exp

{
−

∫ s

0

ϕ(Bu) du

}]
=

√
2
π

f0(x).

Note that

Ex

[
ϕ(Bs) exp

{
−

∫ s

0

ϕ(Bu) du

}]
= − d

ds
Ex

[
exp

{
−

∫ s

0

ϕ(Bu) du

}]
.

Moreover, since ϕ can be bounded from below by c1(−∞,a) for some a < 0 and c > 0 by
the condition (P2), it can be easily checked that

lim sup
s→∞

Ex

[
exp

{
−

∫ s

0

ϕ(Bu) du

}]
≤ lim sup

s→∞
Ex

[
exp

{
− c

∫ s

0

1(−∞,a)(Bu) du

}]
= 0,
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with the help of the scaling property of Brownian motion. Combining these, we have

lim
t→∞

√
tEx

[
exp

{
−

∫ t

0

ϕ(Bs) ds

}]
=

√
2
π

f0(x),

which partly recovers the result of [7, Section 3].

Appendix.

In this appendix, we prove the FKG inequality is applicable to the laws of pinned
3-dimensional Bessel processes (or, more precisely, to their finite-dimensional marginals).
For the formulation of the FKG inequality, we refer to [6], [8].

For t > 0 and x, y > 0, let q(t;x, y) denote the transition density function of absorb-
ing Brownian motion:

q(t;x, y) =
2√
2πt

exp
(
− x2 + y2

2t

)
sinh

(
xy

t

)
.

Note that

p(3)(t;x, y) =
y

x
q(t;x, y). (A.1)

Lemma A.1. For each fixed t > 0, it holds that

q(t;x1 ∨ y1, x2 ∨ y2)q(t;x1 ∧ y1, x2 ∧ y2) ≥ q(t;x1, x2)q(t; y1, y2) (A.2)

for all (x1, x2), (y1, y2) ∈ (0,∞)× (0,∞). Here x ∨ y = max{x, y}, x ∧ y = min{x, y}.
Proof. We divide the case into four cases: (i) x1 ≥ y1, x2 ≥ y2; (ii) x1 ≤ y1,

x2 ≤ y2; (iii) x1 ≥ y1, x2 ≤ y2; (iv) x1 ≤ y1, x2 ≥ y2. In both cases (i) and (ii), (A.2)
holds as an equality. So, by symmetry, we only need to consider either (iii) or (iv). Here
we give a proof in the case (iii). By the definition of q(t;x, y), the proof is reduced to
showing the following: for x1 ≥ y1 and x2 ≤ y2,

sinh
(

x1y2

t

)
sinh

(
x2y1

t

)
≥ sinh

(
x1x2

t

)
sinh

(
y1y2

t

)
. (A.3)

Rewriting (A.3) as

sinh(y2
t x1)

sinh(x2
t x1)

≥ sinh(y2
t y1)

sinh(x2
t y1)

,

we see that it suffices to prove, for β > α > 0,

sinh(βx)
sinh(αx)

is non-decreasing in x > 0.



150 Y. Hariya

This can be easily checked as:

d

dx

{
sinh(βx)
sinh(αx)

}
=

(β2 − α2)x
2{sinh(αx)}2

(
sinh{(β + α)x}

(β + α)x
− sinh{(β − α)x}

(β − α)x

)
≥ 0,

where the last inequality follows from the fact that sinh(y)/y is increasing in y > 0. So
the lemma is proved. ¤

For T > 0, let ∆ = {0 < t1 < · · · < tn < T} be a partition of the interval [0, T ].
For a, b > 0, we denote by Φ∆(x; a, b) (x = (xi)1≤i≤n) the finite-dimensional distribution
function of the pinned 3-dimensional Bessel process P

(3)
a,T,b taken at the time sequence

(ti)1≤i≤n:

Φ∆(x; a, b) =
p(3)(t1; a, x1)p(3)(t2 − t1;x1, x2)× · · · × p(3)(T − tn;xn, b)

p(3)(T ; a, b)
.

The next lemma shows Φ∆(·; a, b) fulfills the assumption of [6, Theorem 3]:

Lemma A.2. For a ≥ a′ > 0 and b ≥ b′ > 0, it holds that

Φ∆(x ∨ y; a, b)Φ∆(x ∧ y; a′, b′) ≥ Φ∆(x; a, b)Φ∆(y; a′, b′)

for all x = (xi)1≤i≤n ∈ (0,∞)n and y = (yi)1≤i≤n ∈ (0,∞)n. Here x∨y = (xi∨yi)1≤i≤n

and x ∧ y = (xi ∧ yi)1≤i≤n.

Proof. Note that, by the relation (A.1), Φ∆(x; a, b) is rewritten as

Φ∆(x; a, b) =
q(t1; a, x1)q(t2 − t1;x1, x2)× · · · × q(T − tn;xn, b)

q(T ; a, b)
.

Therefore the assertion follows immediately from Lemma A.1. ¤

Remark A.1. It is easily checked that the assertion of this lemma still holds even
if either a′ or b′ is (or, both of them are) equal to 0; in that case, Φ∆(x; a′, b′) should be
replaced by, say, if a′ = 0,

Φ∆(x; 0, b′) =
q̃(t1;x1)q(t2 − t1;x1, x2)× · · · × q(T − tn;xn, b′)

q̃(T ; b′)
,

where

q̃(t;x) =
x√
2πt3

exp
(
− x2

2t

)
.
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