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Abstract. Motivated by collapsing of Riemannian manifolds and inho-
mogeneous scaling of left invariant Riemannian metrics on a real Lie group G
with a sub-group H, we introduce a family of interpolation equations on G

with a parameter ϵ > 0, interpolating hypo-elliptic diffusions on H and trans-
lates of exponential maps on G and examine the dynamics as ϵ → 0. When H
is compact, we use the reductive homogeneous structure of Nomizu to extract
a converging family of stochastic processes (converging on the time scale 1/ϵ),

proving the convergence of the stochastic dynamics on the orbit spaces G/H
and their parallel translations, providing also an estimate on the rate of the
convergence in the Wasserstein distance. Their limits are not necessarily Brow-

nian motions and are classified algebraically by a Peter–Weyl’s theorem for real
Lie groups and geometrically using a weak notion of the naturally reductive
property; the classifications allow to conclude the Markov property of the limit
process. This can be considered as “taking the adiabatic limit” of the differ-

ential operators Lϵ = (1/ϵ)
∑

k(Ak)2 + (1/ϵ)A0 + Y0 where Y0, Ak are left
invariant vector fields and {Ak} generate the Lie-algebra of H.

1. Introduction.

By deforming the fibres of the Hopf fibration, the canonical round metric on the

Lie group S3 gives rise to a family of left invariant Berger’s metrics which we denote

by mϵ. As ϵ approaches zero, the Riemannian manifolds (S3,mϵ) converge to the lower

dimensional two sphere S2(1/2) of radius 1/2, while keeping the sectional curvatures

bounded. See Cheeger and Gromov [13], Fukaya [25], and Kasue and Kumura [38] for

other types of convergences of Riemannian manifolds. Let us denote by ∆ϵ
S3 and ∆S1

the Laplacians on (S3,mϵ) and on S1 respectively, and also denote by ∆h the horizontal

Laplacian identified with the Laplacian on S2(1/2) = S3/S1. These operators commute

and ∆ϵ
S3 = (1/ϵ)∆S1 + ∆h. If {X1, X2, X3} are the Pauli matrices, identified with left

invariant vector fields, then ∆S1 = (X1)
2, ∆h = (X2)

2 + (X3)
2. As ϵ approaches 0,

any eigenvalues of the Laplacian ∆ϵ
S3 coming from a non-zero eigenvalue of (1/ϵ)∆S1 is

pushed to the back of the spectrum and an eigenfunction of ∆ϵ
S3 , not constant in the

fibre, flies away. In other words the spectrums of S3 converge to that of S2, see Tanno

[67], Bérard-Bergery and Bourghignon [3], Urakawa [68] for discussions on the spectrum
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of Laplacians on spheres, on homogeneous Riemannian manifolds and on Riemannian

submersions with totally geodesic fibres.

Another interesting family of operators is {γ∆S1 + δY0 : γ > 0, δ > 0} where

Y0 = aX2 + bX3 is a non-zero unit length left invariant vector field. If γ = 0, the time

evolutions associated with the operators are geodesics on S2; if δ = 0 the time evolutions

with initial values in H are scaled Brownian motions on H. Let us take γ → ∞ and

keep δ = 1. In other words we consider Lϵ = (1/ϵ)∆S1 + Y0 where ϵ > 0. Unlike ∆ϵ
S3 ,

the summands of Lϵ do not commute, it is nevertheless easy to see that the orbits of the

corresponding random evolutions exhibit interesting asymptotics. For this observe that

the Hopf map on the Hopf fibration is a conservation law, this allows us to construct a

converging family of first order random linear differential operators L̃ϵ (the evaluations

of the Hopf map of the evolutions of Lϵ and L̃ϵ agree) such that their time evolutions

converge to a Markov process with effective limit λ∆h for an explicit constant λ. See

Example 11.1, and also see Li [45], where a related family of operators were studied. We

study such phenomena on homogeneous manifolds.

Let G be a smooth connected real Lie group, not necessarily compact, with a non-

trivial closed proper subgroup H. Denote by g and h their respective Lie algebras.

We assume that H is connected, and compact for certain type of results and in this

introduction. If H is compact, there exists an AdH -invariant inner product on g which

descends to ToM and induces a G-invariant Riemannian metric on M .

For a positive real number ϵ, let us scale the inner product on h by a number ϵ > 0.

Let {X1, . . . , Xp, Xp+1, . . . , Xn} be an orthonormal basis of g where {Xj , j ≤ p} is a

basis of h. By declaring the left invariant vector fields {(1/
√
ϵ)X1, . . . , (1/

√
ϵ)Xp, Xp+1,

. . . , Xn} an orthonormal frame we obtain a family of Riemannian metrics. Let us consider

the sum of the squares of vector fields operators, arising from the non-homogeneous

scaling,

Lϵ =
1

ϵ
L0 + Y0, where L0 =

1

2

∑
(Ak)

2 +A0,

{Ak ∈ h} are bracket generating left invariant vector fields, and Y0 is a left invariant

vector field to be specified later. Similar to the Hopf fibration, a family of interpolation

equations can be associated with L0 and Y0. We study the asymptotics of the family of

operators Lϵ on [0, 1] and on [0, 1/ϵ]. Observe that L0 is not necessarily symmetric nor

hypoelliptic in G.

We first consider Lϵ as a perturbation to the hypoelliptic diffusions induced by

(1/ϵ)L0. The hypoelliptic diffusion processes stay in the orbits/fibres of their initial values

while the perturbation in Y0 direction induces motions transversal to the fibres, describing

a conservation law. Our first task is to use it to understand the nature of the perturbation

and to extract from them a family of first order random differential operators, L̃ϵ, called

the ‘slow motions’. If the slow motions converge to a fixed point, we study the dynamics

on the longer time scale [0, 1/ϵ]. On the Riemannian homogeneous manifold, for Y0

appropriately chosen, the ‘effective limit’ on [0, 1] is either a non-degenerate ODE or a

fixed point. In the latter case and on the scale of 1/ϵ, we would however treat the term

involving L0 as a perturbation. It is counter intuitive to consider the dominate part as

perturbation to the smaller part, but the perturbation, although very large in magnitude,
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is fast oscillating. The large oscillating motion will be averaged out, leaving an effective

stochastic motion corresponding to a second order differential operator on G.

The singular perturbation problem described above can be considered as a stochas-

tic homogenisation problem for the following family of stochastic differential equations

(SDEs) on G,

dgϵt =
1√
ϵ

N∑
k=1

Ak(g
ϵ
t) ◦ dbkt +

1

ϵ
A0(g

ϵ
t)dt+ Y0(g

ϵ
t)dt, gϵ0 = g0, (1.1)

where ◦ denotes Stratonovich integrals. These SDEs belong to a family of equations,

see Section 3, which interpolate between translates of one parameter subgroups of G

and hypoelliptic diffusion on H. Scaled by 1/ϵ, the Markov generator of (gϵt/ϵ) is pre-

cisely (1/ϵ)Lϵ.

One of our tools is a reductive structure, in the sense of Nomizu [57], i.e. an AdH -

invariant sub-space m of g complementing h, not in the sense of having a completely

irreducible adjoint representation. Such a complement m exists if H is compact, see

Section 2 for further discussion where a non-Riemannian example is also given. If Y0

belongs to a non-trivial irreducible invariant subspace mk of m, the time scale for taking

the limit is determined by mk, see Sections 4–6.2. Indeed, the effective limits can be

classified using an orthogonal decomposition of m into invariant subspaces, see Sections 7–

10.

The reductive structure allows us to use the projection π : G → G/H as a ‘con-

servation law’, the projected process is a slow variable on the orbit space, and (gϵt ) is a

perturbation to the conservation law and we expect that the variable in the orbit space

converge over a long time scale (equation (1.1) is already on this large time scale. To

separate the slow and the fast variables, we ‘horizontally lift back’ the projected curves

and obtain a slow variable on the total space G, the fast variable is a diffusion process

on the subgroup H. The ‘horizontal lifts’ of the projected processes are random smooth

curves driven by random ODEs whose generator will be denoted by L̃ϵ, for almost surely

all sample paths they are parallel translations along the projection. It is easy to see

that they converge to the solution of an ODE: this is the averaging principle. We then

identify those Y0 for which the limiting ODE is trivial and in particular the projections

of their solution curves are fixed points in the orbit space G/H. For such Y0 we study the

dynamics in a longer time interval and conclude that the family of random differentiable

curves, determined by the family of random ODEs, converge to the sample paths of a

non-trivial Markov process, i.e. diffusion reaction, the proof for this convergence is based

on a theorem in [47]; we do however need to take care of the non-compactness of G

which is not entirely covered by [47]. In terms of the stochastic processes on the orbit

manifolds, we prove their convergence on the interval of size [0,1/ϵ] together with the

convergence of their horizontal lifts, i.e. parallel translations along them converge to the

stochastic parallel translation along the limiting diffusion process. The question whether

or not the latter is a Markov process, on its own, will also be studied. The convergence

will be in terms of the probability distributions induced by (1/ϵ)L̃ϵ in the weak topology

and Wasserstein distance on the space C([0, 1];G) of continuous paths over G and over

G/H, see Section 6, where the rate of convergence in the Wasserstein distance for their
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evaluations at specific times is given.

A heuristic argument based on multi-scale analysis, which we give shortly, appears

to suggest the following centering condition:
∫
H
Y0F0dh = 0 where F0 is a solution

to the effective parabolic equation and where dh is the right invariant Haar measure

on H. This is not quite the right assumption, we will assume instead that Y0 ̸= 0,

Ȳ0 ≡
∫
H
Ad(h)(Y0)dh = 0. Indeed, we show that (1/ϵ)L̃ϵ = Ad(ht/ϵ(ω))(Y0), where (ht)

is a stochastic process in H; and that Ȳ0 = 0 precisely when Y0 is orthogonal to h⊕m0,

where m0 is the set of AdH -invariant vectors in m (Section 6.2).

The heuristic Argument.

Let us give the heuristics argument, made rigorous in Sections 4–6. For simplicity

take A0 = 0 and denote by dh the normalised Haar measure on a compact H. Let

L0 = (1/2)
∑p

k=1(Ak)
2 and let F : R+ ×G → R be a solution to the evolution equation

∂F/∂t = LϵF . Expand F in ϵ, F (t) = F0(t) + ϵF1(t) + ϵ2F2(t) + o(ϵ2), and plug this

into the parabolic equation. Equating coefficients of ϵ0 and ϵ−1 we obtain the following

equations:

L0F1 + Y0F0 = 0,
∂F0

∂t
= Y0F1 + L0F2.

If Y0F0 averages to zero, the formal solution to the first equation is F1 = −L−1
0 (Y0F0).

We should interpret this as an equation on H, and will solve this equation explicitly.

The second equation reduces to ∂F0/∂t = −Y0(L−1
0 (Y0F0)) + L0F2 which we integrate

with respect to dh. Since L0 is symmetric by Lemma 5.1 and L0F2 averages to zero. We

obtain the equation for the effective motion:

d

dt

∫
H

F0dh = −
∫
H

Y0L−1
0 (Y0F0)dh.

The computations are formal. Firstly we neglected higher powers of 1/ϵ, which are very

large for ϵ small. Secondly we assumed that the Poisson equation L0 = Y0F0 is solvable.

Finally we assumed that
∫
H
L0F2dh = 0. Observing that L0 is not hypoelliptic on G, we

must reduce the system to a space where it is, to justify these assertions.

Main result.

We assume that m is a reductive structure in the sense of Nomizu, a list of useful

reductive decompositions are given in Section 2. Denote by AdH : H → L(g; g) the

restriction of the adjoint of G to H and also the restricted representation AdH : H →
L(m;m). Denote by m0 ⊂ m the space of invariant vectors of AdH . Let m = m0 ⊕m1 ⊕
· · ·⊕ml be an invariant decomposition for AdH where, for each l ̸= 0, ml is an irreducible

invariant space. If H is compact we may and will assume that the decomposition is

orthogonal. The main results are in three parts.

(1) Separation of slow and fast variables and Reduction. Use the Ehresman connection

on the principal bundle π : G → G/H, determined by m, and horizontal lifts of

curves from G/H to G we deduce stochastic equations for the horizontal lifts x̃ϵ
t of

xϵ
t = π(gϵt ), the slow motions, and for the fast motions hϵ

t on H.
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(2) Convergence of the slow components. If Y0 is orthogonal to m0 and {A0, A1, . . . ,

AN} generates h, the stochastic processes (x̃ϵ
t/ϵ, t ∈ [0, T ]) and (xϵ

t/ϵ, t ∈ [0, T ])

converge weakly, as ϵ → 0, to ūt and x̄t respectively, in the weak topology on the

path space over G and in Wasserstein distance. A rate of convergence is given.

(3) Effective Process. Assume A0 = 0 and Y0 ∈ ml. The effective process on G is

a Markov process with generator c∆ml
. If furthermore M is isotropy irreducible

and if M is naturally reductive (and more generally) then x̄t is a scaled Brownian

motion whose scale is computable.

We indicate the problems pertinent to part (3). The reduced first order random

differential operators give rise to second order differential operators by the action of the

Lie brackets. If the Lie bracket between Ak and Y0 is not trivial, randomness is generated

in the [Ak, Y0] direction and transmitted from the vertical to the horizontal directions.

We ask the question whether the limiting operators are scaled horizontal Laplacians. This

is so for the Hopf fibration. However it only takes a moment to figure out this cannot

be always true. The noise cannot be transmitted to directions in an irreducible invariant

subspace of m not containing Y0. If ml is the irreducible invariant subspace containing

Y0, the action of AdH generates directions in ml, not any direction in a component

complementary to ml and so the rank of L̄ is at most dim(ml). Within an irreducible

AdH -invariant subspace ml, the transmission of the noise should be ‘homogeneous’ and

we might expect that there is essentially only one, up to scalar multiplication, candidate

effective second order differential operator: the generalised Laplacian ‘operator’ ∆ml
:=∑

LYiLYi where {Yi} is an orthonormal basis of ml. The generalised Laplacian ∆ml
is

independent of the choice of the basis.

If {A1, . . . , Ap} is a basis of h, we solve a Poisson equation and prove that L̄ =∑
i,j ai,j(Y0)LYiLYj , where {Yi} is a basis of the irreducible AdH invariant space ml

containing Y0 and ai,j(Y0) trigonometric functions of the adjoint sub-representation in

this basis. It can be written in terms of eigenvalues of L0, computable from the ‘Casimir’,

and has an AdH -invariant form. If Y0 ∈ ml then by the real Peter–Weyl theorem, a

proof of which by Dmitriy Rumynin is appended at the end of the paper, we see that

L̄ = (1/dim(ml)λl)|Y0|2∆ml
. In case G is unimodular and m is irreducible this is the

‘horizontal Laplacian’. If {Ak} is only a set of generators of the Lie algebra h, a similar

formula holds with the constant λl replaced by a constant λ(Y0), depending on Y0 in

general.

The above descriptions are algebraic, in Section 10 we discuss their differential geo-

metric counterpart. Let G be endowed with a left invariant and AdH -invariant Rie-

mannian metric and let M = G/H be given the induced G-invariant Riemannian metric.

The translates of the one parameter subgroups of G are not necessarily geodesics for the

Levi-Civita connection on G. Their projections to the Riemannian homogeneous mani-

fold are not necessarily geodesics either. In general L̄ needs not be the Laplace–Beltrami

operator even if it is elliptic for it may have a nontrivial drift. The more symmetries

there are, the closer is the effective diffusion to a Brownian motion. A maximally sym-

metric and non-degenerate effective process ought to be a scaled Brownian motion. In

other words we like to see the convergence of the random smooth curves in the orbit

manifold to a scaled Brownian motion, which will be studied under the condition on the



524(102)

524 X.-M. Li

trace of ad(Z), under which traceml
∇Ld = traceml

∇d and traceml
∇cd = traceml

∇d on

M , where ∇ denotes the Levi-Civita connections on G and on M and ∇c denotes the

canonical connection on M .

The context.

The study of parabolic differential equation of the type ∂/∂t = Y0 + (1/ϵ)L0 where

L0 is an elliptic operator and Y0 a vector field, in the non-geometric settings goes back

to Smoluchowski (1916) and to Kramers (1940) [41] and are known as Smoluchowski–

Kramers limits. This was taken up by Nelson [56] for unifying Einstein’s theory and

Ornstein–Uhlenbeck’s theory of Brownian motions. The further scaling by 1/ϵ, lead-

ing to the asymptotic problems for (1/ϵ)Y0 + (1/ϵ2)L0, are known by the a number of

terminologies in a great many subjects: averaging principle, stochastic homogenisation,

multi-scale analysis, singular perturbation problem, or taking the adiabatic limit. They

also appear in the study of interacting particle systems. We treat our problem as a per-

turbation to a non conventional conserved system and use techniques from multi-scale

analysis and stochastic homogenisation. For perturbation to Hamiltonian systems see

Freidlin [22], see also Freidlin and Weber [23]. The use of ‘Hamiltonian’ is quite liberal,

by which we merely mean that they are conserved quantities, here they are manifold

valued functions or orbits. Some ideas in this paper were developed from Li [45]. Con-

vergences of Riemannian metrics from the probabilistic point of view, have been studied

by Ikeda and Ogura [35] and Ogura and Taniguchi [59].

Our reduced equations are ODEs on manifolds with random coefficients, the study

of random ODEs on Rn goes back to Stratonovich [66], Khasminski [28], Kohler and

Papanicolaou [60], Papanicolaou and Varadhan [61] and Borodin and Freidlin [11]. The

convergence from operator semigroup point of view is studied by Kurtz [42]. A collection

of limit theorems, some of which are used here, together with a set of more complete

references can be found by Li [47]. For stochastic averaging with geometric structures, we

refer to Li [44] for a stochastic integrable Hamiltonian systems in symplectic manifolds,

and to Gargate and Ruffino [26] and Hogele and Ruffino [31] for studies of stochastic

flows on foliated manifolds.

We also use multi-scale analysis to separate the slow and fast variables and draw

from the work by Elworthy, LeJan and Li [20]. Our reduction in complexity bears resem-

blance to aspects of geometric mechanics and Hamiltonian reduction, see Lázaro-Camı́

and Ortega [43], also Holm, Marsden, Ratiu and Weinstein [32], and Marsden, Misiolek,

Ortega, Perlmutter and Ratiu [51]. The problem of identifying limit operators is remi-

niscent of that in Freidlin and Wentzell [24] where an explicit Markov process on a graph

was obtained from the level sets of a Hamiltonian function in R2, but they are obviously

very different in nature.

The asymptotics of linear operators of the form (1/ϵ)Lϵ := (1/ϵ2)L0 + (1/ϵ)L1 are

often referred as taking the adiabatic limits in some contexts, see for example Mazzeo and

Melrose [52] and Berline, Getzler and Vergne [5]. These operators act not just on scalar

functions and their objectives are motivated by problems in topology. Motivated by anal-

ysis of loop spaces Bismut [8], [9] studied ‘limits’ of a family of hypoelliptic differential

operators on the tangent bundle or the cotangent bundle of a compact Riemannian man-

ifold M , see also Bismut and Lebeau [10] for an earlier work. They are devoted to study
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the convergence of probability distributions of the projections of hypoelliptic diffusions

to Brownian motion. Unlike in these studies our state space is not necessarily compact,

the operators Lϵ are not necessarily hypoelliptic, the projections of the effective limiting

diffusions are not always Brownian motions. Classify the limits are one of our objectives.

In another direction, Nelson [56], proved that the physical particles whose velocity are

one dimensional Ornstein–Uhlenbeck processes approximates, in high temperature, one

dimensional Brownian motions. This was generalised to manifolds by Dowell [15]. This

study bears much resemblance to the above mentioned articles; however the model and

the objectives in Li [46] are much closer: SDEs on the orthonormal frame bundle are

used to show that Brownian motions are generated by ‘geodesics’ with rapidly changing

directions.

2. Notation, preliminaries, and examples.

If g ∈ G we denote by Lg and Rg the left and right multiplications on G. Denote

by dLg and dRg their differentials. The differentials are also denoted by TLg and TRg

where these are traditionally used. Denote by Ad the adjoint representation of G with

AdH its restriction to H and ad the adjoint representation on g with restriction adh.

Both the notation adX Y and [X,Y ] are used. If m is a subspace of g, gm denotes the

set of left translates of elements of m to TgG. We identify the set of left invariant vector

fields with elements of the Lie algebra, denote them by the same letters or with the

superscript ∗. If V is a vector field and f function, both LV f and V f are use to denote

Lie differentiation in the direction V , the latter for simplicity, the first to avoid confusing

with operators denoted by L. Also, ∆H denotes the Laplacian for a bi-invariant metric

on the Lie group H.

A manifold M is homogeneous if there is a transitive action by a Lie group G. It can

be represented as the coset space G/H where H is the isotropy group at a point o. The

coset space is given the unique manifold structure such that gH ∈ G/H 7→ L̄go ∈ M is a

diffeomorphism where L̄g denotes the action of g. If π : G → M denotes the projection

taking g to the coset gH and 1 ∈ G the identity, the sub-Lie algebra h is the kernel of

(dπ)1 and ToM is isomorphic to a complement of h in g.

The homogeneous space G/H is reductive if in the Lie algebra g there exists a

subspace m such that Ad(H)(m) ⊂ m and g = h ⊕ m is a vector space direct sum. By

AdH(m) we mean the image ofH under the adjoint map, treated as linear maps restricted

to m. We say that g = h⊕m is a reductive decomposition and (g, h) a reductive pair. This

implies that [h,m] ⊂ m and vice versa if H is connected. The homogeneous space is also

called reductive, a reductive property in the sense of Nomizu, a concept different from a

Lie group being reductive. In particular, the Lie group G is not necessarily reductive, by

which we mean its adjoint representation is completely reducible.

We discuss briefly the connectedness of the Lie group. Firstly if H and G/H are

connected, so is G. This follows from the fact that a topological space X is connected

if and only if every continuous function from X to {0, 1} is constant. The identity

component G0 of G is a normal subgroup of G, and any other component of G is a

coset of G0. The component group G/G0 is discrete. If a Lie group G acts transitively

on a connected smooth manifold M , so does G0. See [27]. Our stochastic processes are



526(104)

526 X.-M. Li

continuous in time, and hence we may and will assume that both G and H are connected.

The existence of an AdH invariant inner product is much easier than requesting an

Ad-invariant inner product on g which is equivalent to G is of compact type. If H is

compact, by the unitary trick, there exists an AdH -invariant inner product on g and a

reductive structure by setting m = h⊥. The compactness of H is not a restriction for

a Riemannian homogeneous manifold. If G/H is a connected Riemannian homogeneous

space and G is connected then by a theorem of van Danzig and van der Waerden (1928),

the isotropy isometry groups at every point is compact, Kobayashi [39]. IfH is connected

and its Lie algebra is reductive in g, in the sense that ad(h) in g is completely reducible,

then G/H is reductive. The Euclidean space example below will cover the averaging

model used in Liao and Wang [49]. Let G = E(n) be the space of rigid motions on Rn,

E(n) =

{(
R v

0 1

)
: R ∈ SO(n), v ∈ Rn

}
and H its subgroup of rotations. Elements of H fix the point o = (0, 1)T , E(n)/H =

{(x, 1)T , x ∈ Rn} and a matrix in E(n) projects to its last column. We may take

h =

{(
A 0

0 0

)
, A ∈ so(n)

}
, m =

{(
0 v

0 0

)
, v ∈ Rn

}
.

A reductive structure may not be unique. For example, letG be a connected compact

Lie group, H = {(g, g) : g ∈ G} and h = {(X,X) : X ∈ g}. Then G = (G × G)/H is a

reductive homogeneous space in three ways: m0 = {(X,−X), X ∈ g},

m+ = {(0, X), X ∈ g}, m− = {(X, 0), X ∈ g}.

The first one, h⊕m0, is the symmetric decomposition.

A definite metric is not necessary either. If g admits an AdH invariant non-

degenerate bilinear form such that its restriction to h is non-degenerate, let m = {Y ∈
g : B(X,Y ) = 0,∀X ∈ h}. In [40, Chapter 10], Kobayashi and Nomizu considered the

case where B is Ad(G) invariant. Their proof can be modified to work here.

2.1. The Motivating Example.

As a motivating example, we take G = SU(2), H = U(1) and the bi-invariant

Riemannian metric such that ⟨A,B⟩ = (1/2) traceAB∗ where A,B ∈ g. Let

X1 =

(
i 0

0 −i

)
, X2 =

(
0 1

−1 0

)
, X3 =

(
0 i

i 0

)
(2.1)

be the Pauli matrices. They form an orthonormal basis of the Lie algebra g with respect

to the bi-invariant metric and G is the canonical three sphere in R4. The Lie algebra

h is generated by X1 and we take m to be the vector space generated by the remaining

two Pauli matrices and obtain the family of Berger’s metric, which we denote as before

by {mϵ, ϵ > 0}.
Let us first take the Brownian motions on Bergers’ spheres. A Brownian motion

on (S3,mϵ) is determined by the Hörmander type operator ∆ϵ = (X1)
2/ϵ+

∑3
i=2(Xi)

2.
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Although no longer associated with the round metric, there are many symmetries in the

following SDEs,

dgt =
1√
ϵ
X1(gt) ◦ db1t +X2(gt) ◦ db2t +X3(gt) ◦ db3t . (2.2)

In particular the probability distributions of its slow components at time t are indepen-

dent of ϵ, see Example 4.3 in Section 4. Breaking up the symmetry we may consider the

equation,

dgt =
1√
ϵ
X1(gt) ◦ db1t +X2(gt) ◦ db2t ,

in which the incoming noise is 2-dimensional and its Markov generator satisfies the strong

Hörmander’s conditions. We will go one step further and use a one dimensional noise.

Let (bt) be a real valued Brownian motion. If Y0 = c2X2+c3X3, where c2, c3 are numbers

not simultaneously zero, the infinitesimal generator of the equation

dgt =
1√
ϵ
X1(gt) ◦ dbt + (Y0)(gt)dt, (2.3)

satisfies weak Hörmander’s conditions. Indeed by the structural equations, [Y0, X1] =

2c2X3 − 2c3X2, and the matrix 
1√
ϵ

0 0

0 c2 −2c3
0 c3 2c2


is not degenerate. In general, equation (1.1) need not satisfy Hörmander’s condition.

This example is concluded in Example 11.1, using Corollary 9.2.

3. The interpolation equations.

Given a left invariant Riemannian metric on G, we consider a family of non-

homogeneously scaled Riemannian metrics. To define these let {X1, . . . , Xn} be an

orthonormal basis of g extending an orthonormal basis {X1, . . . , Xp} of h and let

Eϵ =

{
1√
ϵ
X∗

1 , . . . ,
1√
ϵ
X∗

p , X
∗
p+1, . . . X

∗
n

}
.

The superscript ∗ above a letter denotes the corresponding left invariant vector field

which we will omit, from time to time, in favour of simplicity. The dual frame of Eϵ

defines a family of left invariant Riemannian metrics on G which are denoted by mϵ,

then Eϵ is an orthonormal frame. In this article we are not concerned with the problem

of keeping the sectional curvatures bounded, and G needs not be compact.

Let (Ω,F ,Ft, P ) be a filtered probability space satisfying the usual assumptions and

(bkt , k = 1, . . . , N, ) a family of independent real valued Brownian motions. Let γ, δ be

positive real numbers, Xk ∈ h as above, and Y0 ∈ g. We study the stochastic dynamics
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associated with the above inhomogeneous scalings of Riemannian metrics and propose

the following interpolation equation that, in the limit of ϵ → 0, describes the ‘effective

motion’ across the ‘orbits’,

dgt =

p∑
k=1

γXk(gt) ◦ dbkt + δY0(gt)dt, (3.1)

with a given initial value g0. Here ◦ denotes Stratonovich integration. Their solutions are

Markov processes whose probability laws are determined by the fundamental solutions

to the following parabolic equation ∂/∂t = (1/2)γ2
∑p

k=1(Xk)
2 + δY0.

For γ = 1 and δ = 1/|Y0|, these equations are driven by unit length vector fields on

the Riemannian manifold (G,mϵ). If δ = 0 the solution with its initial value the identity

of the group is a scaled Brownian motion on the subgroup H. If γ = 0, the solutions

are translates of the one parameter family subgroup generated by Y0. We denote the

vector space generated by {Xp+1, . . . , Xn} by m. We assume in addition that m is AdH -

invariant. If Y0 ∈ m, these one parameter families, exp(δtY0), are horizontal curves for

the horizontal distribution determined by m. The solutions of (3.1) interpolate between

translates of the one parameter group, generated by δY0, on G and Brownian motion on

H. The question is: if we take γ → ∞ while keeping δ fixed, what can we say about the

solutions of these equations?

We will work on more general operators, allowing {Ak} to be a Lie algebra generating
subset of h instead of assuming ellipticity. Take Y0 ∈ m. We study the following family

of SDEs, where ϵ > 0 is a small parameter,

dgϵt =
1√
ϵ

N∑
k=1

Ak(g
ϵ
t ) ◦ dbkt +

1

ϵ
A0(g

ϵ
0)dt+ Y0(g

ϵ
t )dt, gϵ0 = g0.

The condition gϵ0 = g0, independent of ϵ, is assumed only for the simplicity of the

statements. Let L0 = (1/2)
∑

(Ak)
2 +A0. The corresponding parabolic problems are:

∂

∂t
=

1

ϵ
L0 + Y0,

∂

∂t
=

1

ϵ2
L0 +

1

ϵ
Y0.

For intuition, let us review the theory for randomly perturbed Hamiltonian dy-

namics. If H is a function on R2n, it is a first integral for the following Hamiltonian

system: q̇ = −∂H/∂p, ṗ = ∂H/∂q. Let xϵ(t) := (qϵ(t), pϵ(t)) denote solutions to a

perturbed Hamiltonian system, which we do not specify, then Hϵ(t) := H(pϵ(t), qϵ(t))

varies slowly with t on [0, 1]. Under suitable mixing conditions on the perturbation

the stochastic processes Hϵ(t/ϵ) converge, see e.g. Freidlin and Wentzel [24] and

Arnold [2]. Although we do not have a Hamiltonian system, the projection π : G → G/H

is a conservation law for an ‘unperturbed’ dynamical system, which is the key for

the reduction to the slow varying dynamics. If (yϵt ) are solutions to the equations

dyϵt = (1/
√
ϵ)
∑N

k=1 Ak(y
ϵ
t) ◦ dbkt + (1/ϵ)A0(y

ϵ
t ), where Ak ∈ h, then π(yϵt) = π(yϵ0) for all

t. The orbits of (gϵt ) are perturbations to the orbits of the vertical motions (yϵt ). The

‘constant of motion’ for the latter takes its value in the orbit manifold G/H. There will

be of course extra difficulties, which is mainly due to the fact that our slow motions are
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not necessarily local functions of (gϵt ), they depend not simply on (gϵt ) but also on its

whole trajectory.

For ϵ small, we would expect π(gϵt ) to measure its deviation from the ‘orbit’ contain-

ing gϵ0. The inherited non-linearity from π causes some technical problems, for example

the homogeneous manifold is in general not parallelisable, so it is not easy to work directly

with xϵ
t = π(gϵt). The operator (1/ϵ)L0 + Y0 does not satisfy Hörmander’s conditions, so

we do not wish to work directly with (gϵt ) either. To overcome these difficulties we use

an AdH -invariant decomposition of g, with which we construct a stochastic process (uϵ
t)

on G, having the same projection as (gϵt ). Since m is AdH invariant, G is a principal

bundle over M with structure group H. We lift (xϵ
t) to G to obtain a ‘horizontal’ sto-

chastic process (x̃ϵ
t) covering (xϵ

t). The horizontality is with respect to the Ehresmann

connection determined by m. Then (uϵ
t) is the horizontal lift process. As ‘perturbations’

to the random motions on the fibres, the horizontal lifts (x̃ϵ
t) describe transverse motions

across the fibres.

This consideration has a bonus: in addition to asymptotic analysis of the x processes,

we also obtain information on the asymptotic properties of their horizontal lifts. This is

more striking if we get out of the picture of homogenisation for a moment, and consider

instead the three dimensional Heisenberg group as a fibre bundle over R2. The horizontal

lift of an R2-valued Brownian motion to the Heisenberg group is their stochastic Lévy

area, c.f. [45]. Horizontal lifts of stochastic processes are standard tools in the study

of Malliavin calculus in association with the study of the space of continuous paths

over a Riemannian manifold. In Section 4 below we deduce an explicit equation for

the horizontal lift in terms of the vertical component of (gϵt ), making further analysis

possible.

4. Reduction, separation of slow and fast variables.

The sub-group H acts on G on the right by group multiplication and we have

a principal bundle structure P (G,H, π) with base space M and structure group H.

Each fibres π−1(x) is diffeomorphic to H and the kernel of dπg, the differential at g, is

gh = {TLg(X) : X ∈ h}. For a ∈ G, denote by L̄a the left action on M : L̄a(gH) = agH.

Then π ◦ La = L̄a ◦ π and (dπ)adLa|T1G = (dL̄a)(dπ)1 where 1 denotes the unit element

of G.

In this section we assume that H contains no normal subgroup of G, which is equiv-

alent to G acts on G/H effectively, i.e. an element of G acting as the identity transfor-

mation on G/H is the identity element of g. This is not a restriction on the homogeneous

space. If G does not act transitively on M = G/H, then there exists a normal subgroup

H0 of H such that G/H0 acts transitively on G/H = (G/H0)/(H/H0). We identify m

with ToM as below:

X 7→ (dπ)1(X) =
d

dt

∣∣∣∣
t=0

dL̄exp(tX)o.

An Ehresmann connection is a choice of a set of complements of gh that is right invariant

by the action of H. Our basic assumption is that g = h⊕m is a reductive decomposition,

in which case (gh)m = TRh(gm) and TgG = gh ⊕ gm is an Ehresmann connection. See
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Kobayashi and Nomizu [40].

An Ehresmann connection determines and is uniquely determined by horizontal

lifting maps hu : TgHM → TuG where u ∈ π−1(gH). Furthermore, to every piecewise C1

curve c on M and every initial value c̃(0) ∈ π−1(c(0)), there is a unique curve c̃ covering

c with the property that (d/dt)c̃(t) ∈ c̃(t)m. See Besse [7]. We can also horizontally lift

a sample continuous semi-martingale. The case of the linear frame bundle is specially

well known, see Eells and Elworthy [17], Malliavin [50]. See also Arnaudon [1], Emery

[21], Elworthy [18], Ikeda and Watanabe [36]. This study has been taken further in

Elworthy, LeJan and Li [20], in connection with horizontal lifts of intertwined diffusions.

A continuous time Markov process, whose infinitesimal generator is in the form of the

sum of squares of vector fields, is said to be horizontal if the vector fields are horizontal

vector fields.

Let {blt, wk
t , k = 1, . . . , N1, l = 1, . . . , N2} be real valued, not necessarily independent,

Brownian motions. Let g = h ⊕ m be a reductive structure. Let {Ai, 1 ≤ i ≤ p} be a

basis of h, {Xj , p+1 ≤ j ≤ n} a basis of m, and {cik, c
j
l } is a family of real valued smooth

functions on G. Let ϖ be the canonical connection 1-form on the principal bundle

P (G,H, π), determined by ϖ(A∗
k) = Ak whenever Ak ∈ h and ϖ(X∗

j ) = 0 whenever

Xj ∈ m. A left invariant vector field corresponding to a Lie algebra element is denoted

by an upper script ∗ for emphasizing.

Definition 4.1. A semi-martingale (x̃t) in G is horizontal if ϖ(◦dx̃t) = 0. If (xt)

is a semi-martingale on M , we denote by (x̃t) a horizontal lift.

Let Y h
k (g) =

∑n
i=p+1 c

i
k(g)X

∗
i (g) and Y v

l (g) =
∑p

j=1 c
j
l (g)A

∗
j (g). Denote by (gt, t <

ζ) the maximal solution to the following system of equations,

dgt = Y h
0 (gt)dt+

N1∑
k=1

Y h
k (gt) ◦ dwk

t + Y v
0 (gt)dt+

N2∑
l=1

Y v
l (gt) ◦ dblt, (4.1)

with initial value g0 and xt = π(gt). For simplicity let b0t = t and w0
t = t.

In the lemma below, we split (gt) into its ‘horizontal’ and ‘vertical part’ and describe

the horizontal lift of the projection of (gt) by an explicit stochastic differential equation

where the role played by the vertical part is transparent.

Lemma 4.1. Let x0 = π(g0). Take u0 ∈ π−1(x0) and define a0 = u−1
0 g0. Let

(ut, at, t < η) be the maximal solution to the following system of equations

dut =

N1∑
k=0

n∑
i=p+1

cik(utat) (Ad(at)Xi)
∗
(ut) ◦ dwk

t (4.2)

dat =

N2∑
l=0

p∑
j=1

cjl (utat)A
∗
j (at) ◦ dblt. (4.3)

Then the following statements hold.

(1) (utat, t < η) solves (4.1). Furthermore η ≤ ζ where ζ is the life time of (gt).
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(2) (ut, t < η) is a horizontal lift of (xt, t < ζ). Consequently ζ = η a.s.

(3) If (x̃t, t < ζ) is an horizontal lift of (xt, t < ζ), it is a solution of (4.2) with u0 = x̃0.

Proof. (1) Define g̃t := utat. On {t < η}, we have

dg̃t = dRat ◦ dut + (a−1
t ◦ dat)∗(g̃t).

Here dRg denotes the differential of the right translation Rg, a
−1
t in the last term denotes

the action of the differential, dL(at)−1 , of the left multiplication. See page 66 of Kobayashi

and Nomizu [40]. The stochastic differential d on both the left and right hand side denotes

Stratonovich integration. Then (g̃t, t < η) is a solution of (4.1), which follows from the

computations below.

dg̃t =

N1∑
k=0

n∑
i=p+1

cik(utat)dRat (Ad(at)Xi)
∗
(ut) ◦ dwk

t

+

N2∑
l=0

p∑
j=1

cjl (utat)A
∗
j (g̃t) ◦ dblt.

Since dRat (Ad(at)(Xj))
∗
(ut) = X∗

j (g̃t),

dg̃t =

N1∑
k=0

n∑
j=p+1

cjk(g̃t) (Xk)
∗
(ut) ◦ dwk

t +

N2∑
l=0

Y v
l (g̃t) ◦ dblt,

which is equation (4.1). Since the coefficients of (4.1) are smooth, pathwise uniqueness

holds. In particular gt = utat and the life time ζ of (4.1) must be greater or equal to η.

(2) It is clear that a0 ∈ H and ϖ(◦dut) = 0. Let yt = π(ut). Then

dyt =

N1∑
k=0

n∑
i=p+1

cik(utat)dL̄utat (dπ(Xi)) ◦ dwk
t ,

following from the identity dπ
(
(Ad(a)Xi)

∗
(u)
)
= dL̄udL̄a (dπ(Xi)). By the same rea-

soning (xt) satisfies the equation

dxt =

N1∑
k=0

dπ(Y h
k (gt)) ◦ dwk

t .

By the definition, dπ(Y h
k (gt)) =

∑n
i=p+1 c

i
k(gt)dπ(X

∗
i (gt)) and dπ(X∗

i (gt)) = T L̄gtdπ(Xi).

Using part (1), gt = utat, we conclude that the two equations above are the same and

π(ut) = xt. This concludes that (ut) is a horizontal lift of (xt) up to time η.

It is well known that through each u0 there is a unique horizontal lift (x̃t) and the

life time of (x̃t) is the same as the life time of (xt). See Shigekawa [64] and Darling [14].

The life time of (xt) is ζ. Let ãt be the process such that gt = utãt for t < η. On {t < η},
ãt = at and ut = x̃t. If η < ζ, as t → η, limt→η ut leaves every compact set. This is

impossible as it agrees with x̃t. Similarly (at) cannot explode before ζ.
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(3) Let (gt, t < ζ) be a solution of (4.1) and set xt = π(gt). For each t, gt and x̃t

belong to the same fibre. Define kt = x̃−1
t gt, which takes values in H and is defined for

all t < ζ. Then,

dx̃t = dR(kt)−1 ◦ dgt +
(
kt ◦ d(kt)−1

)∗
(x̃t).

From this and equation (4.1) we obtain the following,

dx̃t = dR(kt)−1

 N1∑
k=0

n∑
i=p+1

cik(gt)X
∗
i (gt) ◦ dwk

t


+ dR(kt)−1

 N2∑
l=0

p∑
j=1

cjl (gt)A
∗
j (gt) ◦ dblt

+ ((kt) ◦ d(kt)−1)∗(x̃t).

(4.4)

We apply the connection 1-form ϖ to equation (4.4), observing ω(◦dx̃t) = 0 and

Ad(kt)(Xi) ∈ m,

0 =

N2∑
l=0

p∑
j=1

cjl (gt)ϖx̃t

(
dR(kt)−1A∗

j (gt)
)
◦ dblt + (kt) ◦ d(kt)−1

=

N2∑
l=0

p∑
j=1

cjl (gt)Ad(kt)Aj ◦ dblt + (kt) ◦ d(kt)−1.

We have used the fact that X∗
j are horizontal, dR(kt)−1 ((Xj)

∗(gt)) = (Ad(kt)(Xj))
∗
(x̃t),

and ϖga−1(R(a−1)∗w) = Ad(a)ϖg(w) for any w ∈ TgG. It follows that d(kt)
−1 =

−
∑N2

l=0

∑p
j=1 c

j
l (gt)R(kt)−1Aj ◦ dblt. By the product rule,

dkt =

N2∑
l=0

p∑
j=1

cjl (gt)A
∗
j (kt) ◦ dblt.

Thus (kt) solves equation (4.3) and we take this back to (4.4). Since the vertical vector

field associated to kt ◦ dk−1
t evaluated at x̃t is given by the formula

(kt ◦ d(kt)−1)∗(x̃t) = −
N2∑
l=0

p∑
j=1

cjl (gt)(Ad(kt)Aj)
∗(x̃t) ◦ dblt,

the second term and the third term on the right hand side of (4.4) cancel. Using the

same computation given earlier, we see that

dx̃t = dR(kt)−1

 N1∑
k=0

n∑
i=p+1

cik(gt)X
∗
i (gt) ◦ dwk

t


=

N1∑
k=0

n∑
i=p+1

cik(x̃tkt) (Ad(kt)Xi)
∗
(x̃t) ◦ dwk

t ,
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proving that (x̃t, t < ζ) is a solution of (4.2) and concludes the proof. In particular

ζ ≥ τ . □

We observe that the Ehresmann connection induced by the reductive decomposition

is independent of the scaling of the Riemannian metric.

Corollary 4.2. Let ϵl > 0 and Y0 ∈ m. Let (gϵt ) be a solution to the equation

dgϵt = Y h
0 (gϵt )dt+

N1∑
k=1

Y h
k (gϵt) ◦ dwk

t +
1

ϵ0
Y v
0 (g

ϵ
t )dt+

N2∑
l=1

1

ϵl
Y v
k (g

ϵ
t) ◦ dblt, gϵ0 = g0. (4.5)

Then the horizontal lift of π(gϵt ) satisfies the following system of equations

dx̃ϵ
t =

N1∑
k=1

n∑
i=p+1

cik(x̃
ϵ
ta

ϵ
t) (Ad(a

ϵ
t)Xi)

∗
(x̃ϵ

t) ◦ dwk
t

+

n∑
i=p+1

ci0(x̃
ϵ
ta

ϵ
t) (Ad(a

ϵ
t)Xi)

∗
(x̃ϵ

t) dt,

daϵt =

N2∑
l=1

1

ϵl

p∑
j=1

cjl (x̃
ϵ
ta

ϵ
t)A

∗
j (a

ϵ
t) ◦ dblt +

p∑
j=1

1

ϵ0
cj0(x̃

ϵ
ta

ϵ
t)A

∗
j (a

ϵ
t) dt,

(4.6)

up to an explosion time. Here x̃ϵ
0 = g0 and aϵ0 is the identity.

Example 4.3. Let us take the Hopf fibration π : SU(2) → S2(1/2), given the

bi-invariant metric. If we represent SU(2) by the unit sphere in C2 and S2(1/2) as a

subset in R⊕C, the Hopf map is given by the formula π(z, w) = ((|w|2 − |z|2)/2, zw̄). It
is a Riemannian submersion. Let {X1, X2, X3} be Pauli matrices defined by (2.1) and let

m = ⟨X2, X3⟩. Then [m, h] ⊂ m. This is easily seen from the structure of the Lie bracket:

[X1, X2] = −2X3, [X2, X3] = −2X1, [X3, X1] = −2X2. Let (gϵt) be a solution to the

equation (2.2) and xϵ
t = π(gϵt). Denote by (uϵ

t) the horizontal lift of (xϵ
t). By Corollary

4.2, (uϵ
t, a

ϵ
t) satisfies

duϵ
t = (Ad(aϵt)X2)(u

ϵ
t) ◦ db2t + (Ad(aϵt)X3)(u

ϵ
t) ◦ db3t ,

daϵt =
1√
ϵ
X1(a

ϵ
t) ◦ db1t .

Since the metric is invariant by AdH , (uϵ
t, t ≥ 0) is a horizontal Brownian mo-

tion, its Markov generator is the horizontal Laplacian ∆h = trace∇md. Furthermore

{π∗((Ad(aϵt)X2)
∗), π∗((Ad(a

ϵ
t)X3)

∗)} is an orthonormal frame in S2(1/2) and then for

each ϵ > 0, (xϵ
t, t ≥ 0) is a Brownian motion on S2(1/2).

Corollary 4.4. Let Y0 ∈ m, A0 ∈ h and {Ak, 1 ≤ k ≤ N} ⊂ h. If there is an

AdH invariant inner product on g, the following SDEs are conservative for every ϵ.

u̇ϵ
t =

(
Ad(ht/ϵ)Y0

)∗
(uϵ

t), (4.7)
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dht =

N∑
k=1

A∗
k(ht) ◦ dbkt +A∗

0(ht)dt, (4.8)

dgϵt = Y ∗
0 (g

ϵ
t )dt+

1√
ϵ

N∑
k=1

A∗
k(g

ϵ
t ) ◦ dbkt +

1

ϵ
A∗

0(g
ϵ
t )dt. (4.9)

Furthermore π(gϵt ) = π(uϵ
t), and (gϵt) and (uϵ

tht/ϵ) are equal in law.

Proof. With respect to the left invariant Riemannian metric on G generated by

the AdH -invariant inner product, the random vector fields (Ad(hϵ
t/ϵ)Y0)

∗ are bounded,

so (4.7) is conservative for almost surely all ω. That (4.8) does not explode is clear, c.f.

Lemma 5.1 below. Since π(gϵt ) = π(uϵ
t), by Lemma 4.1, (4.9) is also conservative. □

Remark. By the averaging principle we expect that the processes {uϵ
· , ϵ > 0}

converge to the solution of the ODE

u̇t =

∫
H

(Ad(h)(Y0))
∗(ut) dh

where dh is the Haar measure onH. This can be seen, assuming G compact for simplicity,

by sub-dividing [0, t/ϵ] into sub-intervals of size ϵ−δ for a suitable positive number δ and

by the law of large numbers for Brownian motions on a compact manifold, stochastic

averaging of stochastic slow-fast systems is treated in [48]. Our main aim is to study

the effective diffusion on the next time scale in case Ȳ0 :=
∫
H
Ad(h)(Y ) dh vanishes. We

do not need an explicit statement on the averaging principle, and will therefore refer the

interested reader to [45] and also to [44].

5. Elementary lemmas.

Let {Xk, k = 1, . . . ,m} be smooth vector fields on a smooth manifold N . Denote

by L the Hörmander type operator (1/2)
∑m

k=1(Xk)
2 + X0. If at each point, X1, . . . ,

Xm and their Lie brackets generate the tangent space, we say that L satisfies strong

Hörmander’s condition. It satisfies Hörmander’s condition ifX0 is allowed. A Hörmander

type operator on a compact manifold satisfying strong Hörmander’s condition has a

unique invariant probability measure π; furthermore for f ∈ C∞(N ;R), LF = f is

solvable if and only if
∫
fdπ = 0. We denote by L−1f a solution to the Poisson equation

LF = f whenever it exists. If a Markov operator L has a unique invariant probability

measure π and f ∈ L1(N ;π) we write f̄ =
∫
N
fdπ.

Lemma 5.1. Let G be a Lie group with left invariant Riemannian metric. Then

an SDE driven by left invariant vector fields is conservative. If µ is a right invariant

measure on G then left invariant vector fields are divergence free and the linear operator

B = (1/2)
∑m

i=1(Xi)
2, where Xi ∈ g, is symmetric on L2(G; dµ).

Proof. The SDE is conservative follows from the fact that a Lie group with

left invariant metric is geodesically complete and has positive injectivity radius. The

left invariant vector fields and their covariant derivatives are bounded, so by localisa-
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tion or the uniform cover criterion in Elworthy [18, Chapter vii], solutions of equation

(4.8) from any initial point exist for all time. If f ∈ BC1(G;R), using the right invari-

ance of the measure µ,
∫
G
(Xf)(g)µ(dg) =

∫
G
(d/dt)f(g exp(tX))

∣∣
t=0

µ(dg) = 0. Conse-

quently X having vanishing divergence with respect to µ and for f1, f2 ∈ BC1(G;R),∫
G
f2(Xf1)dµ = −

∫
G
f1(Xf2)dµ. In particular B is symmetric on L2(G,µ). □

We say a family of vectors {A1, . . . , AN} in h ⊂ g is Lie algebra generating if

{A1, . . . , AN} and their iterated brackets generate h. Define L0 = (1/2)
∑N

k=1(Ak)
2+A0.

We restrict Ak to the compact manifoldH and treat L0 as an operator onH. If L0 is sym-

metric and satisfies Hörmander’s condition, the maximal principle states that L∗
0u = 0

has only constant solutions.

Lemma 5.2. If H is compact and {A0, A1, . . . , AN} ⊂ h is Lie algebra generating,

the following statements hold.

1. The normalised Haar measure dh is the unique invariant probability measure for

L0, and L0 is a Fredholm operator with Fredholm index 0.

2. If
∫
H
⟨Ad(h)(Y0), Y ⟩dh = 0, where Y ∈ g, there is a unique function F ∈ C∞(H;R)

solving the Poisson equation L0F = ⟨Ad(·)(Y0), Y ⟩.

Proof. Denote by L∗
0 the dual of L0 on L2(H;R) which, by Lemma 5.1, is

L∗
0 =

∑
k(Ak)

2−A0. Both L0 and L∗
0 satisfies Hörmander’s condition. We have seen that∫

H
L0fdh vanishes for all f ∈ C∞ and dh is an invariant measure, with full topological

support. Distinct ergodic invariant measures have disjoint supports, and since every in-

variant measure is a convex combination of ergodic invariant measures, the Haar measure

is therefore the only invariant measure, up to a scaling. Also L0 satisfies a sub-elliptic

estimate: ∥u∥s ≤ ∥L0u∥L2 +c∥u∥L2 , Hörmander [33], which implies that L0 has compact

resolvent, and L0 is a Fredholm operator. In particular L0 has closed range, Hörmander

[34] and L0u = ⟨Ad(h)(Y0), Y ⟩ is solvable if and only if ⟨Ad(h)(Y0), Y ⟩ annihilates the

kernel of L∗
0, i.e.

∫
H
⟨Ad(h)(Y0), Y ⟩dh vanishes. By the earlier argument the dimension

of the kernels of L0 and L∗
0 agree and L0 has Fredholm index 0. □

6. Diffusion creation and rate of convergence.

Let (ht) be a Markov process on a compact manifold H with generator L0 =∑
k(Ak)

2 +A0 where Ak are smooth vector fields satisfying Hörmander’s condition, and

a invariant probability measure µ. Let Φϵ
t(y) be the solution to a family of conservative

random differential equations ẏϵt =
∑m

k=1 αk(ht/ϵ)Yk(y
ϵ
t ) with yϵ0 = y0 and Yk smooth

vector fields.

Lemma 6.1. Suppose that N is compact ; or satisfies the following conditions.

• The injectivity radius of N is greater than a positive number 2a.

• For a Riemannian distance function ρ on N ,

C1(p) := sup
s,t≤1

sup
x∈N

E
(
|Yj(y

ϵ
t/ϵ)|

p1ρ(yϵ
t/ϵ

,x)≤2a

)
< ∞,
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for all p ; also C2(p) := sups,t≤1 supx∈N E(|∇dρ2(yϵt/ϵ, x)|
p1ρ(yϵ

t/ϵ
,x)≤2a) is finite.

Then (yϵt/ϵ) converge weakly to a Markov process with generator −
∑

i,j αiL−1
0 αjLYiLYj .

Proof. Let βj = L−1
0 αj and we first prove the tightness of the family of stochastic

processes {yϵt/ϵ, ϵ > 0}. Note that

ρ(yϵs/ϵ, y
ϵ
t/ϵ) =

∫ t/ϵ

s/ϵ

∇ρ(yϵs/ϵ, y
ϵ
r)

(
m∑

k=1

αk(hr/ϵ)Yk(y
ϵ
r)

)
dr,

where the gradient is on the second variable. At the first glance we expect that

ρ(yϵt/ϵ, y
ϵ
s/ϵ) to be of order (t − s)/ϵ, we will use a trick, the Itô trick, to overcome

this problem, see [44] where it was also used. We may assume that (ht) solves (4.8).

Since L0βj = αj ,

βj(ht/ϵ) = βj(h0) +

∫ t/ϵ

0

αj(hr)dr +M ϵ
t/ϵ

where M ϵ
t/ϵ denotes a local martingale, and

∫ t/ϵ

0
αj(hr)dr is of order 1, modulus the

fast oscillating local martingale. To use this in our setting let us take a C2 function

f : G → R, by the product rule:

df(Yj(y
ϵ
t/ϵ))βj(ht/ϵ2) = df(Yj(y

ϵ
s/ϵ))βj(hs/ϵ2) +

m∑
j=1

∫ t/ϵ

s/ϵ

LYiLYjf(y
ϵ
r)αi(hr/ϵ)βj(hr/ϵ)dr

+
1√
ϵ

m′∑
k=1

∫ t/ϵ

s/ϵ

LYjf(y
ϵ
r)dβj

(
Ak(hr/ϵ)

)
dbkr

+
1

ϵ

∫ t/ϵ

s/ϵ

LYjf(y
ϵ
r)L0βj(hr/ϵ)dr.

Since the Riemannian distance function fails to be C2 if the two points are on the

cut locus of each other, we take a smooth function ϕ : R+ → R+ such that ϕ(r) = r if

r < a and ϕ(r) = 1 for all r > 2a and define ρ̃ = ϕ ◦ ρ. We inverse engineer with the

last term in the equation above, replacing f by ρ̃2 to see that, c.f. [47, Lemma 3.1], for

s, t ≤ 1,

ρ̃2(yϵs/ϵ, y
ϵ
t/ϵ) =

∫ t/ϵ

s/ϵ

m∑
k=1

LYk(yϵ
r)
(ρ̃2)(yϵs/ϵ, y

ϵ
r)
(
αk(hr/ϵ)

)
dr

= ϵ

m∑
j=1

(
LYj ρ̃

2(yϵs/ϵ, y
ϵ
t/ϵ)
)
βj(ht/ϵ2)

− ϵ
m∑

i,j=1

∫ t/ϵ

s/ϵ

(
LYiLYj ρ̃

2(yϵs/ϵ, y
ϵ
r)
)
αi(hr/ϵ)βj(hr/ϵ)dr

−
√
ϵ

m∑
j=1

m′∑
k=1

∫ t/ϵ

s/ϵ

(LYj
ρ̃2)(yϵs/ϵ, y

ϵ
r)(LAk

βj)(hr/ϵ)db
k
r .
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We raise both sides to the power p where p > 2 to see for a constant cp depending on

|βj |∞, |αj |∞, |Ak|∞, m, and p, C1 and C2, which may represent a different number in a

different line,

E
[
ρ̃2p(yϵs/ϵ, y

ϵ
t/ϵ)
]

≤ cpϵ
p

m∑
j=1

E
∣∣∣LYj ρ̃

2(yϵs/ϵ, y
ϵ
t/ϵ)
∣∣∣p + cpϵ

p
m∑

i,j=1

E

(∫ t/ϵ

s/ϵ

∣∣∣LYiLYj ρ̃
2(yϵs/ϵ, y

ϵ
r)
∣∣∣ dr)p

+ cpϵ
p/2

m∑
j=1

m′∑
k=1

E

(∫ t/ϵ

s/ϵ

|LYj ρ̃
2(yϵs/ϵ, y

ϵ
r)|2dr

)p/2

≤ cpC1(p)ϵ
p + cp(t− s)p

√
C1(4p)

√
C2(2p) + cp(t− s)p/2

√
C1(2p)

√
C2(2p).

Applying ρ̃ directly to yϵt/ϵ giving another estimate:

E
∣∣∣ρ̃2(yϵs/ϵ, yϵt/ϵ)∣∣∣p ≤ cpE

∑
j

∣∣∣∣∣
∫ t/ϵ

s/ϵ

LYj ρ̃
2(yϵs/ϵ, y

ϵ
r/ϵ)αj(hr/ϵ)dr

∣∣∣∣∣
p

≤ cp

(
t− s

ϵ

)p√
C1(2p)

√
C2(2p).

Interpolate the estimates for ϵp ≤ (t− s)p/2 and for ϵp ≥ (t− s)p/2, to see

E
∣∣∣ρ̃(yϵs/ϵ, yϵt/ϵ)∣∣∣2p ≤ cp|t− s|p/2.

Taking p > 4 and applying Kolmogorov’s theorem we obtain the required tightness.

The weak convergence follows just as for the proof of [47, Theorem 5.4], using a law of

large numbers with rate of convergence the square root of time [47, Lemma 5.2]. For

a Fredholm operator L0 of index zero, the limit is identified as following. Let {ui, i =

1, . . . , n0} be a basis of ker(L0) and {πi, i = 1, . . . , n0} the dual basis for the null space

of L∗
0. Then L̄ = −

∑
i,j

∑n0

b=1 ub⟨αiβj , πb⟩LYiLYj , where the bracket denotes the dual

pairing between L2 and (L2)∗. In our case there is only one invariant probability measure

for L0, from which we conclude that L̄ = −
∑

i,j αiβjLYiLYj . □

Let use return to our equations on the product space G×H,

u̇ϵ
t =

(
Ad(ht/ϵ)Y0

)∗
(uϵ

t), uϵ
0 = u0 (6.1)

dht =
N∑

k=1

A∗
k(ht) ◦ dbkt +A∗

0(ht)dt, h0 = 1. (6.2)

Let xϵ
·/ϵ = π(uϵ

·/ϵ) and x0 = π(u0). Let ⟨, ⟩ denote a left invariant and AdH invariant

scalar product on g, {Yj} an orthonormal basis of m and define

α(Y0, Yj)(h) = ⟨Ad(h)(Y0), Yj⟩ . (6.3)
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Also denote by dh the normalised Haar measure on H, we define

Ȳ0 ≡
∫
H

Ad(h)(Y0)dh.

Proposition 6.2. Suppose that the subgroup H is compact, {A0, A1, . . . , AN} is

a Lie algebra-generating subset of h, and Y0 ∈ m is such that Ȳ0 = 0. Let T be a positive

number. Then as ϵ → 0, (uϵ
s/ϵ, s ≤ T ) converge weakly to a Markov process (ūs, s ≤ T ),

whose Markov generator is

L̄ = −
m∑

i,j=1

α(Y0, Yi) (L−1
0 α(Y0, Yj)) LY ∗

i
LY ∗

j
.

Also, (xϵ
s/ϵ, s ≤ T ) converges weakly to a stochastic process (x̄s, s ≤ T ).

Proof. By the left invariance of the Riemannian metric, Equation (6.1) is equiv-

alent to uϵ
t =

∑N
j=1 α(Y0, Yj)(ht/ϵ)Y

∗
j (u

ϵ
t) and

(Ad(h)(Y0))
∗(g) =

N∑
j=1

⟨
(Ad(h)(Y0))

∗, Y ∗
j

⟩
Y ∗
j (g) =

N∑
j=1

α(Y0, Yj)(h)Y
∗
j (g).

We may rewrite (6.1) as u̇ϵ
t =

∑N
j=1 Yj(u

ϵ
t)α(Y0, Yj)(ht/ϵ). Since Ȳ0 vanishes apply

Lemma 5.2, so L−1
0 αj exists and is smooth for each j. Furthermore by Lemma 5.1,

the L̄ diffusions exist for all time. Since the Riemannian metric on G is left invariant,

its Riemannian distance function ρ is also left invariant, ρ(gg1, gg2) = ρ(g1, g2) for any

g, g1, g2 ∈ G. Furthermore, supp:ρ(p,y)<δ ∇2ρ(y, p) is finite, for sufficiently small δ > 0,

and is independent of y, where ∇ is the Levi-Civita connection. Thus C1(p) and C2(p),

from Lemma 6.1, are both finite. We observe that G has positive injectivity radius and

bounded geometry, and we then apply Lemma 6.1 to conclude that (uϵ
s/ϵ, s ≤ t) converges

weakly as ϵ approaches 0. As any continuous real valued function f on M lifts to a con-

tinuous function on G, the weak convergence passes, trivially, to the processes (xϵ
t/ϵ). □

For p ≥ 1, denote by Wp or Wp(N) the Wasserstein distance on probability measures

over a metric space N . For T a positive number, let Cx([0, T ];N) denote the space of

continuous curves defined on the interval [0, T ] starting from x. Given two probability

measures µ1, µ2 and Cx([0, T ];N),

Wp(µ1, µ2) :=

(
inf

∫
sup

0≤s≤T
ρp(σ1(s), σ2(s))dν(σ1, σ2)

)1/p

.

Here σ1 and σ2 take values in Cx([0, T ];N) and the infimum is taken over all probability

measures ν whose marginals are µ1, µ2.

Remark 6.3. The weak convergence of a sequence of stochastic processes {yϵs/ϵ},
in the case where the limit belongs to Wp and that E sups≤t ρ(0, y

ϵ
s/ϵ)

p is uniformly

bounded in ϵ, implies their convergence in the Wasserstein p distance. Thus, if G is
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compact or has negative curvature and s.t. every point is a pole, our processes converge

in the Wasserstein distance. The compact case is trivial. For the latter just note that

in the proof of the lemma, ρ̃2 can be replaced by ρ2 and the left invariant vector fields

are bounded. Since the sectional curvature is bounded, |∇dρ2| is bounded by curvature

comparison theorem. Thus ρ(0, yϵs/ϵ)
2 has finite moments, the assertion follows.

6.1. Rate of convergence.

The definition of BCr functions on a manifold depend on the linear connection on

TM , in general. We use the flat connection ∇L for BCr functions on the Lie group G.

The canonical connection ∇c is a convenient connection for defining BCr functions on

M = G/H, as the parallel transports for ∇c are differentials of the left actions of G

on M . See Section 10 below for more discussions on the canonical connection. In the

theorem below, M is given the induced G-invariant Riemannian metric. Set

BCr(M ;R) =
{
f ∈ Cr(M ;R) : |f |∞ + |∇f |∞ +

r∑
k=1

|(∇c)(k)df |∞ < ∞
}

BCr(G;R) =
{
f ∈ Cr(G;R) : |f |∞ + |∇f |∞ +

r∑
k=1

|(∇L)(k)df |∞ < ∞
}
.

Denote |f |r,∞ =
∑r

k=0 |∇(k)df |∞ where ∇ is one of the connections above.

Remark 6.4. A function f belongs to BCr(G) if and only if for an orthonormal

basis {Yi} of g, the following functions are bounded for any set of indices: f , Y ∗
i1
f , . . . ,

Y ∗
i1
. . . Y ∗

ir
f . In fact ∇f =

∑
i df(Y

∗
i )Y

∗
i and ∇L

· ∇f =
∑

i Y
∗
i L·(Y

∗
i f), and so on. Here

L· denotes Lie differentiation so L·f = df(·).

Denote by µ̄ the probability measure of (ū·) and P̄t the associated probability semi-

group. We give the rate of convergence, which essentially follows from [47, Theorem 7.2],

to follow which we would assume one of the following conditions. (1)G is compact; (2) For

some point o ∈ G, ρ2o is smooth and |∇Ldρ2o| ≤ C+Kρ2o. (3) There exist V ∈ C2(M ;R+),

c > 0, K > 0 and q ≥ 1 such that

|∇V | ≤ C +KV, |∇dV | ≤ c+KV, |∇dρ2o| ≤ c+KV q.

However it is better to prove the rate of convergence directly.

Theorem 6.5. Suppose that H is compact and {A1, . . . , AN} is Lie algebra gen-

erating and Ȳ0 = 0. Then,

(1) Both (uϵ
t/ϵ, t ≤ T ) and (xϵ

t/ϵ, t ≤ T ) converge in Wp for any p > 1.

(2) There are numbers c such that for all f ∈ BC4(G;R),

sup
0≤t≤T

∣∣∣Ef
(
uϵ
t/ϵ

)
− P̄tf(u0)

∣∣∣ ≤ C ϵ
√
| log ϵ| (1 + |f |4,∞), u0 ∈ G.

(3) For any r ∈ (0, 1/4), sup0≤t≤T W1(Law(u
ϵ
t/ϵ), µ̄t) ≤ Cϵr. An analogous statement

holds for xϵ
t/ϵ.
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Proof. If ρ2 is bounded or smooth, LY ∗
i
LY ∗

j
ρ = ∇Ldρ(Y ∗

i , Y
∗
j ) + ∇L

Y ∗
i
Y ∗
j is

bounded. Denote T L the torsion of ∇L and ∇ the Levi-Civita connection. The de-

rivative flow for (6.1) satisfying the following equation

∇vϵt = −1

2

∑
j

α(Y0, Yj)(h
ϵ
t) T L(vϵt , Yj(u

ϵ
t)).

Indeed this follows from linearising the equation u̇ϵ
t =

∑N
j=1 Y

∗
j (u

ϵ
t)α(Y0, Yj)(ht/ϵ) and

the relation ∇L = ∇ + (1/2)T L. Since T L(u, v) = −[u, v], the torsion tensor and their

covariant derivatives are bounded. Thus all covariant derivatives of Y ∗
j with respect to

the Levi-Civita connection are bounded. We use Lemma 6.2 and follow the proof of [47,

Theorem 7.2], to conclude the first assertion for the u process. These are proved by

discretising time and writing the differences as telescopic sums. The main ingredients

are: (1) (ht) has an exponential mixing rate which follows from Hörmander’s conditions,

(2) estimates for |P̄tf − P̄sf − (t− s)P̄sL̄f | ≤ C(t− s)2 which follows from the fact that

the vector fields Yj have bounded derivatives of all order.

For the process on the homogeneous manifold, take f ∈ BC4(M ;R) and let f̃ =

f ◦ π. Then YiYj f̃ = ∇cdf(π∗Y
∗
i , π∗Y

∗
j ) + df(∇c

Y ∗
i
dπ(Y ∗

j )). The last term vanishes, as

(dπ)u(Y
∗
i ) = TL̄u((dπ)1Yi), c.f. Lemma 10.2 below. Since π∗ is a Riemannian isometry,

Y ∗
i Y

∗
j f̃ is bounded if ∇cdf is. The same assertion holds for higher order derivatives.

Thus f ◦ π ∈ BC4(G;R) and

sup
0≤t≤T

∣∣∣Ef(xϵ
t/ϵ)− π∗P̄tf(x0)

∣∣∣ ≤ C ϵ
√
| log ϵ| γ(x0) (1 + |f |4,∞),

where γ is a function in Bρ,o.

For the convergence in the Wasserstein distance, denote by ρ̃ and ρ respectively the

Riemannian distance function on G and on M . For i = 1, 2, let xi ∈ M and ui ∈ π−1(xi).

If u1 and u2 are the end points of a horizontal lift of the unit speed geodesic connecting

x1 and x2, then ρ̃(u1, u2) = ρ(x1, x2). Otherwise ρ̃(u1, u2) ≥ ρ(x1, x2). If c1 and c2 are

C1 curves on M with c1 curves c̃1 and c̃2 on G covering c1 and c2 respectively, then

ρ(c1, c2) = supt∈[0,T ] ρ(c1(t), c2(t)) ≤ ρ̃(c̃1, c̃2).

Since Cu0([0, T ];G) is a Polish space, there is an optimal coupling of the probability

law of uϵ
·/ϵ and µ̄ which we denote by µ. Then π∗µ̄ is a coupling of Law(xϵ

·/ϵ) and π∗µ̄

and

Wp(Law(u
ϵ
·/ϵ), µ̄)

=

(∫
Cu0 ([0,T ];G)

ρ̃p(γ1, γ2)dµ(γ1, γ2)

)1/p(∫
Cx0 ([0,T ];M)

ρp(π(γ1), π(γ2))dµ(γ1, γ2)

)1/p

=

(∫
Cx0 ([0,T ];M)

sup
0≤t≤T

ρp(σ1(t), σ2(t))dπ∗µ̄(σ1, σ2)

)1/p

≥ Wp(Law(x
ϵ
·/ϵ), π∗µ̄).

Consequently xϵ
·/ϵ converges in Wp. Similarly the rate of convergence passes from the
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u process to the x process. For r < 1/4 there is a number C such that, W1(Law(x
ϵ
t/ϵ),

π∗µ̄t) ≤ Wp(Law(u
ϵ
t/ϵ), µ̄) ≤ Cγ(x0)ϵ

r. □

6.2. The centre condition.

We identify those vectors Y0 satisfying Ȳ0 = 0. Given a reductive structure, AdH
is the direct sum of sub representations AdH = AdH |h ⊕ AdH |m. The condition

Ad(H)(m) ⊂ m implies that [h,m] ⊂ m and Ad(H)(m) = m. Let

m0 = {X ∈ m : Ad(h)(X) = X for all h ∈ H},

be the subspace on which AdH acts trivially. We consider an AdH -invariant subspace

space m̃ of m, transversal to m0, i.e. m̃ ∩ m0 = {0}. It is more intuitive to study the

action of AdH through its isotropy representation τ of H on ToM which is defined by the

formula τh(π∗X) := (L̄h)∗(π∗X). Since left translation on ToM corresponds to adjoint

action on m, then π∗ Ad(h)(X) agree with (L̄h)∗(π∗X), the linear representation AdH
is equivalent to the isotropy representation. A representation ρ of H is said to acts

transitively on the unit sphere, of the representation space V , if for any two unit vectors

in V there is a ρ(h) taking one to the other. If AdH acts transitively, its representation

space is irreducible and m0 = {0}.
Recall thatH is unimodular is equivalent to that the Haar measure dh is bi-invariant.

Lemma 6.6. Suppose that H is uni-modular.

(1) If Y ∈ m0 is non-trivial, then Ȳ does not vanish.

(2) Ȳ = 0 for every Y ∈ m̃. In particular, if AdH |m has no non-trivial invariant

vectors, then Ȳ = 0 for all Y ∈ m.

Proof. Part (1) is clear by the definition. For any Y ∈ m̃, the integral Ȳ :=∫
H
Ad(h)(Y )dh is an invariant vector of AdH , using the bi-invariance of the measure dh.

Since Ȳ ∈ m̃ and m̃ ∩ {m0} = {0} the conclusion follows. □

Example 6.7. Let M be the Stiefel manifold S(k, n) of oriented k frames in Rn.

The orthogonal group takes a k-frame to a k frame and acts transitively. The isotropy

group of the k-frame o = (e1, . . . , ek), the first k vectors from the standard basis of Rn,

contains rotation matrices that keep the first k frames fixed and rotates the rest. Hence,

S(k, n) = SO(n)/SO(n−k). Then h =
{(

0 0
0 A

)}
where A ∈ so(n−k). Denote by Mn−k,k

the set of (n−k)×k matrices and let m =
{(

S −CT

C 0

)}
where S ∈ so(k) and C ∈ Mn−k,k.

Since Ad
((

1 0
0 R

))((
S −CT

C 0

))
=
(

S −CTRT

RC 0

)
for R ∈ SO(n − k), we see m0 =

{(
S 0
0 0

)}
.

Define m̃ =
{(

0 −CT

C 0

)}
. Let us identify m̃ with (n − k) × k matrices. For C ∈ Mn−k,k

denote by Y0 the corresponding skew symmetric matrix in m̃. It is clear that
∫
H
RCdR

and
∫
H
Ad(R)(Y0)dR vanish.

The symmetry group of a Riemannian homogeneous space of dimension d has at most

dimension d(d + 1)/2. If G/H is a connected d-dimensional manifold and if G admits

an AdH -invariant inner product with dim(G) = (1/2)d(d + 1), then Ȳ vanishes for all

Y ∈ m. Such Riemannian homogenous manifolds are of constant curvature, isometric to
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one of the following spaces: an Euclidean space, a sphere, a real projective space, and a

simply connected hyperbolic space.

Example 6.8. Suppose that M = G/H is a symmetric space, it is in particular a

reductive homogeneous space. Then Lhπ = πAd(h) and (dLh)odπ = dπAdh, where o is

the identity coset. Since dπ restricts to an isomorphism on m, left actions correspond to

the Ad action on G. For every Y0 there is an h with the property that Ad(h)(Y0) = −Y0.

A compact Lie group with the bi-invariant metric is a symmetric space.

Example 6.9. A more general class of manifolds, for which Ȳ0 = 0 for every

Y0 ∈ m, are weakly symmetric spaces among the Riemannian homogeneous spaces. A

Riemannian manifold is weakly symmetric if there exists some closed subgroup K of the

Isometry group I(M) and some µ ∈ I(M) such that µ2 ∈ K and for all p, q ∈ M there

exists I ∈ K such that I(p) = µ(q) and I(q) = µ(p). This concept was introduced in

Selberg [63] and studied by Szabó who characterises them as ray symmetric space. Also,

a Riemannian manifold is weakly symmetric if and only if any two points in it can be

interchanged by some isometry, see Berndt and Vanhecke [6]. The following property

characterizes weakly symmetric spaces among Riemannian homogeneous spaces: let H

be the isotropy subgroup of I(M) and τ : H → GL(ToM) its isotropy representation.

Then for each X ∈ h there exists an element of h ∈ H such that ρ(h)(X) = −X. Some

of the weakly symmetric spaces are given in the form of G/H where G is a connected

semi simple Lie group, K a closed subgroup of G, and H a closed subgroup K. Then

there is a principal fibration G/H → G/K with fibre K/H.

The three spheres with the left invariant Berger’s metrics, ϵ ̸= 1, are not locally

Riemannian symmetric spaces, they are reductive homogeneous spaces. We remark also

that irreducible symmetric spaces are in fact strongly isotropy irreducible. A connected

homogeneous manifold G/H is strongly isotropy irreducible if H is compact and its

identity component acting irreducibly on the tangent space. Such spaces admit left

invariant Einstein metric and are completely classified, for more study see [7] and see

also [12]. If the symmetric space has rank 1, i.e. it is the quotient space of a semi-

simple Lie group G whose maximal torus group H is of dimension 1, they are two point

homogeneous spaces, see [30, Proposition 5.1].

Theorem 6.10. Suppose that H is compact and {A0, A1, . . . , AN} is Lie algebra

generating. Let Y0 ∈ m̃, xϵ
t = π(gϵt), where (gϵt) is the solution to (1.1), and (uϵ

t) its

horizontal lift through g0. Then (uϵ
t/ϵ) and (xϵ

t/ϵ) converge weakly with respective limit

diffusion process (ūt) and (x̄t). Let {Yj , j = 1, . . . , N} be an orthonormal basis of m̃.

Then the Markov generator of (ūt) is

L̄ = −
N∑

i,j=1

ai,j(Y0) LY ∗
i
LY ∗

j
, ai,j(Y0) =

∫
H

α(Y0, Yi)L−1
0 (α(Y0, Yj))dh.

Proof. By Corollary 4.4 the horizontal lift process of (xϵ
t) solves equations (6.1)–

(6.2). By Lemma 6.6, Ȳ0 = 0. Since m̃ is an invariant space of AdH and Y0 ∈ m̃,

Ad(h)(Y0) ∈ m̃. In Proposition 6.2 it is sufficient to take {Yj} to be an orthonormal
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basis of the invariant subspace m̃. □

In the rest of the paper we study the effective limits L̄ given in Theorem 6.10.

Although ūt is always a Markov process, that its projection (x̄t) (describing the motion

of the effective orbits) is a Markov process on its own is not automatic. In the next two

sections we study this and identify the stochastic processes (ūt) and (x̄t) by computing

the Markov generator L̄ and its projection.

7. Effective limits, Casimir, and Markov property.

In this section H is a compact connected proper subgroup of G, L0 =

(1/2)
∑N

k=1(Ak)
2, ⟨, ⟩ an AdH -invariant inner product on g and m = h⊥. Let m =

m0 ⊕m1 ⊕ · · · ⊕mr be the orthogonal sum of AdH -invariant subspaces, where each mj is

irreducible for j ̸= 0. This is also an invariant decomposition for adh.

Let Badh,ml
(X,Y ) be the symmetric associative bilinear form of the adjoint sub-

representation of h on ml. The symmetric bilinear form for a representation ρ of a

Lie algebra g on a finite dimensional vector space is given by the formula Bρ(X,Y ) =

trace ρ(X)ρ(Y ) for X,Y ∈ h. A bilinear form B on a Lie algebra is associative if

B([X,Y ], Z) = B(X, [Y, Z]). Let Idml
be the identity map on ml. The following lemma

allows us to compute the coefficients of the generator.

Lemma 7.1. Let {Aj} be an orthonormal basis of h. The following statements hold.

1. There exists λl such that (1/2)
∑p

k=1 ad
2(Ak)|ml

= −λl Idml
. Furthermore λl = 0

if and only if l = 0.

2. Suppose that adh : h → L(ml;ml) is faithful. Then Badh,ml
is non-degenerate,

negative definite, and AdH-invariant. If l ̸= 0,

λl = −Badh,ml
(X,X)

dim(h)

2 dim(ml)
,

where X is any unit vector in h. If the inner product on h agrees with −Badh,ml

then λl = dim(h)/2 dim(ml).

Proof. Part (1). For Z ∈ h and X,Y ∈ g, we differentiate the identity

⟨Ad(exp(tZ))(X),Ad(exp(tZ))(Y )⟩ = ⟨X,Y ⟩

at t = 0 to see that

⟨ad(Z)(X), Y ⟩+ ⟨X, ad(Z)(Y )⟩ = 0. (7.1)

Let {A1, . . . , Ap} be an orthonormal basis of h, for the AdH invariant metric, then∑p
k=1(ad(Ak))

2 commutes with every element of h. Indeed if X ∈ h let [X,Ak] =∑
l′ akl′Al′ , then

akl =
∑
l′

ak,l′⟨Al′ , Al⟩ = ⟨[X,Ak], Al⟩ = −⟨[X,Al], Ak⟩ = −alk,
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ad(X),

p∑
k=1

ad2(Ak)

]
=
∑
k

[ad(X), ad(Ak)] ad(Ak) +
∑
k

ad(Ak)[ad(X), ad(Ak)]

=
∑
k

ad([X,Ak]) ad(Ak) +
∑
k

ad(Ak) ad([X,Ak]) = 0.

If Y0 ∈ m, ad(Ak)(Y0) ∈ m and by the skew symmetry, (7.1),⟨
p∑

k=1

(ad(Ak))
2(Y0), Y0

⟩
= −

p∑
k=1

⟨ad(Ak)(Y0), ad(Ak)(Y0)⟩.

Thus
∑p

k=1(ad(Ak))
2(Y0) = 0, where p = dim(h), implies that ad(Ak)(Y0) = 0 for

all k which in turn implies that Y0 ∈ m0. Conversely if Y0 ∈ m0 it is clear that∑p
k=1 ad

2(Ak) = 0.

(2) Firstly, Badh,ml
is non-degenerate. If {Yj} is a basis of ml with respect to the

adH invariant inner product and X ∈ h, then

Badh,ml
(X,X) = −

∑
j

|[X,Yj ]|2 ,

which vanishes only if [X,Yj ] = 0 for all j. By the skew symmetry of adh, for any Y ∈ ml,

0 = ⟨[X,Yj ], Y ⟩ = −⟨Yj , [X,Y ]⟩ for all j. Since ad(X)(ml) ⊂ ml, Badh,ml
(X,X) = 0

implies that [X,Y ] = 0 for all Y which implies X vanishes from the assumption that adh
is faithful. It is clear that Badh,ml

is AdH -invariant. Let X ∈ h and h ∈ H, then

Badh,ml
(Ad(h)(X),Ad(h)(X)) =

∑
j

⟨ad(Ad(h)(X)) ad(Ad(h)(X))Yj , Yj⟩

= −
∑
j

⟨[Ad(h)(X), Yj ], [Ad(h)(X), Yj ]⟩

= −
∑
j

⟨
Ad(h)[X,Ad(h−1)Yj ],Ad(h)[X,Ad(h−1)Yj ]

⟩
= −

∑
j

⟨
[X,Ad(h−1)Yj ], [X,Ad(h−1)Yj ]

⟩
= Badh,ml

(X,X).

Since there is a unique, up to a scalar multiple, AdH -invariant inner product on a compact

manifold, Badh,ml
is essentially the inner product on H. There is a positive number al

such that Badh,ml
= −al⟨, ⟩. It is clear that al > 0. For the orthonormal basis {Ak},

Badh,ml
(Ai, Aj) = −alδi,j . We remark that {(1/al)Ak} is a dual basis of {Ak} with

respect to Badh,ml
and (1/al)

∑
k ad

2(Ak) is the Casimir element.

By part (1), there is a number λl such that (1/2)
∑dim(h)

k=1 ad2(Ak) = −λl Idml
.

The ration between the symmetric form Badh,ml
and the inner products on ml can be

determined by any unit length vector in h. It follows that

traceml

dim(h)∑
k=1

ad2(Ak) = traceml
(−2λlIdml

) = −2λl dim(ml).



545(123)

Homogenisation on homogeneous spaces 545

On the other hand,

traceml

dim(h)∑
k=1

ad2(Ak)

 =

dim(h)∑
k=1

traceml
(ad2(Ak)) =

dim(h)∑
k=1

Badh,ml
(Ak, Ak).

Consequently λl = −Badh,ml
(A1, A1)dim(h)/2 dim(ml). We completed part (2). □

If h = h0 ⊕ h1 s.t. h0 acts trivially on ml and h1 a sub Lie-algebra acts faithfully, we

take h1 in place of h, λl can be computed using the formula in (2) with {Ak} taken to

be an orthonormal basis of h1.

If A = (1/2)
∑N

k=1(Xk)
2 + X0 where Xk ∈ g, we denote by c(A) =

(1/2)
∑N

k=1 ad
2(Xk) + ad(X0) to be the linear map on g.

Lemma 7.2. For any Y0 ∈ m, L0(Ad(·)Y0) = Ad(·)(c(L0)(Y0)). If Y0 is an

eigenvector of c(L0) corresponding to an eigenvalue −λ(Y0) then for any Y ∈ m,

⟨Y,Ad(h)(Y0)⟩ is an eigenfunction of L0 corresponding to −λ(Y0). The converse also

holds.

Proof. Just note that

LAk
(Ad(·)(Y0))(h) =

d

dt

∣∣∣∣
t=0

Ad(h exp(tAk))(Y0) = Ad(h)([Ak, Y0]),

which by iteration leads to LAk
LAk

Ad(·)(Y0) = Ad(h)([Ak, [Ak, Y0]]) and to the required

identity L0 (Ad(·)Y0) = Ad(·)c(L0)(Y0). Furthermore, for every Y ∈ m,

L0 (⟨Ad(·)Y0, Y ⟩) = ⟨Ad(·)(c(L0)Y0), Y ⟩,

from which follows the statement about the eigenfunctions. □

We take an orthonormal basis {Yj} of ml and for Y0 fixed set αj(Y0) =

⟨Ad(·)(Y0), Yj⟩. If f is a real valued function, set f =
∫
H
fdh and by L−1

0 f

we denote a solution to the Poisson equation L0u = f . Also set L̄ =

−
∑ml

i,j=1 αj(Y0)L−1
0 (αi(Y0)) LYiLYj . Below we give an invariant formula for the lim-

iting operator on G.

Theorem 7.3. Suppose that {A1, . . . , Ap} is a basis of h and Y0 ∈ ml where l ̸= 0.

Then, for any orthonormal basis {Y1, . . . , Yd} of ml,

L̄f =
d∑

i,j=1

ai,j(Y0)∇Ldf(Yi, Yj), f ∈ C2(G;R),

where ai,j(Y0) = (1/λl)
∫
H
⟨Yi,Ad(h)Y0⟩⟨Yj ,Ad(h)Y0⟩ dh, λl is an eigenvalue of L0, and

(−1/2)
∑p

k=1 ad
2(Ak) = λl Idml

. Equivalently,

L̄f =
1

λl

∫
H

∇Ldf ((Ad(h)(Y0))
∗, (Ad(h)(Y0))) dh. (7.2)
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Furthermore, x̄t is a Markov process with Markov generator

L̄(F ◦ π)(u) = 1

λl

∫
H

(∇cdF )π(u)
(
dL̄uhY0, dL̄uhY0

)
dh, F ∈ C2(M ;R),

where ∇c be the canonical connection on the Riemannian homogeneous manifold.

Proof. For the left invariant connection, ∇L
Yi
Y ∗
j = 0 for any i, j, and so

−
m∑

i,j=1

αi(Y0) (L−1
0 αj(Y0))Y

∗
i Y

∗
j f = −

m∑
i,j=1

αi(Y0) (L−1
0 αj(Y0))∇Ldf(Y ∗

i , Y
∗
j ).

We can always take the AdH invariant inner product on h w.r.t. which {A1, . . . , Ap} is an

orthonormal basis of h, and so Lemma 7.1 applies. By Lemma 7.1, (1/2)c(L0) = −λl Idm.

For any Y0, Y ∈ ml, β(Y, Y0)(·) := ⟨Y,Ad(·)Y0⟩ is an eigenfunction of L0 with eigenvalue

−2λl, using Lemma 7.2. Note also that λ ̸= 0. Consequently,

αi(Y0) (L−1
0 αj(Y0)) = − 1

λl

∫
H

⟨Yi,Ad(h)Y0⟩⟨Yj ,Ad(h)(Y0)⟩ dh. (7.3)

The equivalent formula is obtained from summing over the basis of ml:∑
i,j

αi,j(Y0)∇Ldf(Y ∗
i (u), Y

∗
j (u))

=
1

λl

∫
H

(∇Ldf)u ((Ad(h)(Y0))
∗(u), (Ad(h)(Y0))

∗(u)) dh.

Finally we prove the Markov property of the projection of the effective process. For

g ∈ G,

∇Ld(F ◦ π) ((Ad(h)(Y0))
∗(g), (Ad(h)(Y0))

∗(g))

= LAd(h)(Y0)∗
(
dF
(
dπ
(
(Ad(h)Y0)

∗)))(g) = ∇cdF (dπ(Ad(h)(Y0)
∗), dπ(Ad(h)(Y0)

∗)) .

The last step is due to part (4) of Lemma 10.2 in Section 10, from which we conclude

that dF (∇c
π∗ Ad(h)(Y0)∗

dπ((Ad(h)Y0)
∗)) vanishes. It is clear that,∫

H

(∇cdF )π(g) (dπ(Ad(h)(Y0)
∗(g)), dπ(Ad(h)(Y0)(g))) dh

=

∫
H

(∇cdF )π(g)
(
dL̄ghdπ(Y0), dL̄ghdπ(Y0)

)
dh.

Since dh is right invariant, the above formulation is independent of the choice of g in

π−1(x). That the stochastic process π(ut) is a Markov process follows from Dynkin’s

criterion which states that if (ut) is a Markov process with semigroup Pt and if π : G → M

is a map such that Pt(f ◦ π)(y) depends only on π(y) then π(ut) is a Markov process.

See e.g. Dynkin [16] and Rosenblatt [62]. □

Remarks. If we take the AdH invariant product on h to be the one for which
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{Ak} is an o.n.b. then L0 = ∆H =
∑p

k=1(Ak)
2 which follows from H being compact,

c.f. Lemma 10.1. The operator L̄ in the above Lemma provides an example of a cohesive

operator, as defined by Elworthy, LeJan and Li [19].

8. Using symmetries.

We fix an AdH invariant inner product on g, and as usual, set m = h⊥ w.r.t an AdH
invariant inner product on g. Let m = m0⊕m1⊕· · ·⊕mk be an orthogonal decomposition.

By m̃ we denote an AdH invariant subspace of m not containing any non-trivial AdH -

invariant vectors. In this section we explore the symmetries of the manifold M to study

the functions of the form ⟨Ad(·)Y0, Yj⟩ where {Yi} is an orthonormal basis of m̃.

Definition 8.1. We say that AdH acts quasi doubly transitively (on the unit

sphere) of m̃ if for any orthonormal basis {Yi} of m̃ and for any pair of numbers i ̸= j

there is hi,j ∈ H such that Ad(hi,j)(Yi) = Yi and Ad(hi,j)(Yj) = −Yj .

The family of Riemannian manifold, with a lot of symmetry, are two-point homoge-

neous spaces by which mean for any two points x1, x2 and y1, y2 with d(x1, x2) = d(y1, y2)

sufficiently small, there exist an isometry taking (x1, x2) to (y1, y2). Such spaces were

classified by H.-C. Wang (1952, Annals) to be isometric to a symmetric Riemannian

space Isoo(M)/K where K is compact. They have constant sectional curvatures in odd

dimensions and the non-compact spaces are all simply connected and homeomorphic to

an Euclidean space. On a locally two point homogeneous space AdH acts transitively on

the unit sphere, and acts quasi doubly transitively. If (e, f) or orthogonal unit vectors

at ToM . Let x = expo(δe), x
′ = expo(−δe), and y = expo(δf) where δ is a number

sufficiently small for them to be defined. There is an isometry ϕ taking x to y leaving

o fixed. This isometry taking the geodesic 0x to the geodesic oy. It would take y to x′

which implies that ρ(x, y) = ρ(y, x′).

Lemma 8.1. Let {Y1, . . . , Yd} be an orthonormal basis of m̃, an AdH invariant

subspace of m with m̃ ∩m0 = {0}. Let Y0 ∈ m̃.

1. If AdH acts transitively on the unit sphere of m̃,∫
H

⟨Yi,Ad(h)Y0⟩2 dh =
|Y0|2

dim(m̃)
, i = 1, . . . ,dim(m̃).

2. If AdH acts quasi doubly transitively on m̃ then for i ̸= j,∫
H

⟨Yi,Ad(h)Y0⟩⟨Yj ,Ad(h)(Y0)⟩ dh = 0.

3. dim(m̃) > 1.

4. If dim(m̃) = 2 then
∫
H
⟨Yi,Ad(h)Y0⟩⟨Yj ,Ad(h)(Y0)⟩ dh = (|Y0|2/2)δi,j for all i, j.

Proof. Suppose that Ad(h0) take Yj to Y1. Then
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H

⟨Yj ,Ad(h)Y0⟩2dh =

∫
H

⟨Yj ,Ad(h
−1
0 )Ad(h)(Y0)⟩2dh =

∫
H

⟨Y1,Ad(h)(Y0)⟩2dh,

using the AdH -invariance of the Haar measure and the inner product. Set d = dim(m̃).

Since m̃ is an invariant space of AdH we sum over the basis vectors to obtain

d∑
j=1

∫
H

⟨Yj ,Ad(h)Y0⟩2dh =

∫
H

d∑
j=1

⟨Ad(h−1)Yj , Y0⟩2dh = |Y0|2.

It follows that
∫
H
⟨Yj ,Ad(h)Y0⟩2dh = |Y0|2/dim(m̃). For i ̸= j, there exists hi,j ∈ H

such that Ad(hi,j)(Yi) = Yi and Ad(hi,j)(Yj) = −Yj . By the bi-invariance of the Haar

measure and the AdH -invariance of the inner product again we obtain,∫
H

⟨Yi,Ad(h)Y0⟩⟨Yj ,Ad(h)Y0⟩dh

=

∫
H

⟨Yi,Ad(h
i,j)Ad(h)(Y0)⟩⟨Yj ,Ad(hi,j)Ad(h)Y0⟩dh

= −
∫
H

⟨Yi,Ad(h)(Y0)⟩⟨Yj ,Ad(h)Y0⟩dh

and part (2) follows.

We observe that no AdH -invariant subspace of m, containing no trivial AdH -

invariant vectors, can be one dimensional, for otherwise, every orthogonal transformation

Ad(h) takes a Y0 ∈ m̃ to itself or to −Y0, and one of which takes Y0 to −Y0, violating

connectedness. The connected component of the compact matrix group Ad(H) is its nor-

mal subgroup of the same dimension to which we apply the following facts to conclude

the lemma.

Suppose that d = 2, then m̃ is irreducible. If we identify m̃ with R2 then H can be

identified with SO(2). Let {Y1, Y2} be an orthonormal basis of m. Then∫
H

⟨Y1,Ad(h)Y0⟩⟨Y2,Ad(h)Y0⟩dh =

∫
SO(2)

⟨Y1, gY0⟩⟨Y2, gY0⟩dg

where dg is the pushed forward measure Ad∗(dh). Since dg is bi-invariant it is the

standard measure on SO(2), normalised to have volume 1. Thus the above integral

vanishes. This can be computed explicitly. The same proof as in Proposition 8.2 shows

that
∫
H
⟨Y,Ad(h)Y0⟩2dh = |Y0|2/2. □

Proposition 8.2. Let m̃ be an AdH invariant subspace of m not containing any

non-trivial AdH-invariant vectors. Suppose Y0 ∈ m̃ and let

L̄f =
1

λ(Y0)

∫
H

∇Ldf ((Ad(h)(Y0))
∗, (Ad(h)(Y0))

∗) dh.

Then L̄ = (|Y0|2/λ(Y0) dim(m̃))∆m̃ under one of the following conditions :

(a) dim(m̃) = 2;
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(b) AdH acts transitively and quasi doubly transitively on the unit sphere of m̃.

Proof. Expanding (Ad(h)(Y0))
∗ in {Y ∗

j } we see that L̄f =
∑d

i,j=1 ai,j(Y0)∇L

df(Y ∗
i , Y

∗
j ) where ai,j(Y0) = (1/λ(Y0))

∫
H
⟨Yi,Ad(h)Y0⟩⟨Yj ,Ad(h)(Y0)⟩ dh. If dim(m̃) = 2

then Ad(H) can be identified with SO(2). In both cases, by Lemma 8.1, a11(Y0) = · · · =
add(Y0) and the cross terms disappear. □

Since ad(h) consists of skew symmetric matrices, with respect to the invariant Rie-

mannian metric on the homogeneous manifold G/H, H acts as a group of isometries. So

do the left actions by elements of H on π∗(m̃). Since π takes the identity to the coset H,

we may rule out translations and every element of Ad(h) is rotation on m̃. We identify

m̃ with Rd, where d is the dimension of m̃. Since H is connected, they are orientation

preserving rotations. Since H is compact, so is Ad(H) and Ad(H) can be identified with

a compact subgroup of SO(d).

It would be nice to classify subgroups of SO(d) that acts transitively and quasi

doubly transitively on the spheres. Sub-groups of SO(d) acting transitively on the spheres

are completely classified and coincide with the list of possible holonomy groups of simply

connected, see [4], non-symmetric irreducible complete Riemannian manifolds [65] by

Simons. See also Heintze and Ziller [29]. The large subgroups of SO(d) are reasonably

well understood, which is due to a theorem of Montgomery and Samelson [54] and also a

theorem of Obata [58]. There are however two exceptions: the non-simple group SO(4)

and also SO(8). The latter has two interesting subgroups: the 21 dimensional spin(7)

and the exceptional 14 dimensional compact simple Lie group G2, automorphism of the

Octonians. We end this discussion with the following remark.

Remark 8.3. Let d = dim(m̃) where m̃ is AdH -invariant. Suppose that

dim(Ad(H)|m̃) ≥ dim(SO(d − 1)); or suppose that m̃ has no two dimensional invariant

subspace with d ≥ 13 and suppose that dim(Ad(H)|m̃) ≥ dim(O(d−3))+dim(O(3))+1.

Then the identity component of Ad(H)m̃ is

1. SO(d) if d ̸= 4, 8;

2. SO(4) or S3 if d = 4;

3. SO(8) or spin(7), if d = 8.

Furthermore, AdH : H → L(m̃; m̃) acts transitively on the unit sphere of m̃, and acts

quasi doubly transitively on m̃ if d > 2.

Our aim is to prove that AdH acts transitively and quasi doubly transitively, using

properties of connected closed subgroups of the rotation groups, we are not concerned

with whether the image ofH under the representation, considered as subgroups of SO(d),

d = dim(ml), is connected. It is sufficient to prove its identity component has the required

property. The connected component of the compact matrix group Ad(H) is its normal

subgroup of the same dimension to which we apply the following facts to conclude the

lemma. For our purpose, the image of AdH acts faithfully on ml in the sense that if H0

is the group of identity transformations, acting on ml, then H/H0 has the same orbit as

H0 and both act transitively.
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We have already seen that no AdH -invariant subspace of m can be one dimensional.

By a theorem of Montgomery and Samelson [54, Lemma 3, 4], there is no proper closed

subgroup H ′ of SO(d) of dimension greater than the dimension of SO(d − 1). If H ′

is a connected closed sub-group of SO(d) of the dimension of SO(d − 1), then H is

continuously isomorphic to SO(d − 1) or to the double cover of SO(d − 1). If d ̸= 4, 8,

then H is conjugate with Q(d − 1), the sub-matrix of SO(d) leaving invariant the first

axis. Note that the identity component of Ad(H) has the dimension of Ad(H). Since m

has no one dimensional invariant subspace we conclude that Ad(H) = SO(d) for d = 4, 8.

In dimension 4, the subgroup S3 is not conjugate with Q(d− 1). The subgroup S3

acts on itself transiently, freely, and leaves no one dimensional sub-space invariant. It is

also doubly transitive.

If d = 8, the 21-dimensional sub-group spin(7) is embedded into SO(8) by the spin

representation, it acts transitively on S7 and its isotropy subgroup at a point is G2. We

learnt from Dmitriy Rumynin that G2 ∼ SU(4) ⊂ spin(7) and G2 act transitively on

unit spheres of S7 and transitive on any two pairs of orthogonal unit vectors. Finally we

quote a theorem from Obata [58] : if K is a Lie group of orthogonal d×d matrices where

d ≥ 13 and if dim(O(d)) > dim(K) ≥ dim(O(d−3))+dim(d(3))+1, then K is reducible

in the real vector space. Since ml is irreducible, the group Ad(H) must be SO(d) where

d = dim(ml), and so the analysis on SO(d) can be applied.

9. Laplacian like operators as effective limits.

Let {Yj} be an orthonormal basis of m̃. Denote ∆m̃ =
∑m

j=1 LY ∗
j
LY ∗

j
, this is the

‘round’ operator on m̃. For the left invariant connection ∇L, ∆m̃ = tracem̃ ∇Ld is a

‘generalised’ horizontal Laplacian and is independent of the choice of the basis. In the

special case where G is isomorphic to the Cartesian product of a compact group and an

additive vector group, there is a bi-invariant metric, ∇ is the Levi-Civita connection for

a bi-invariant metric, then ∇XX∗ = 0 and ∆m̃ = tracem̃ ∇d. In the irreducible case,

this operator ∆m is the horizontal Laplacian and we denote the operator by ∆hor. Its

corresponding diffusion is a horizontal Brownian motion. In the reducible case, we abuse

the notation and define a similar concept. Since the limit operator in Theorem 6.10 is

given by averaging the action of AdH , we expect that the size of the isotropy group H

is correlated with the ‘homogeneity’ of the diffusion operator, which we explore in the

remaining of the section.

Definition 9.1. A sample continuous Markov process is a (generalised) horizontal

Brownian motion if its Markov generator is (1/2)∆m̃; it is a (generalised) scaled horizontal

Brownian motion with scale c if its Markov generator is (1/2)c∆m̃ for some constant c ̸= 0.

We use the notation in Theorem 6.10. Let, α(Yj , Y0) = ⟨Yj ,Ad(h)(Y0)⟩ and

L̄ =
d∑

i,j=1

ai,j(Y0) LY ∗
i
LY ∗

j
, ai,j(Y0) = −

∫
H

α(Y0, Yi)L−1
0 (α(Y0, Yj))dh.

If the representation space of AdH were complex, then ⟨Y,Ad(h)Y0⟩ where Y, Y0 ∈ ml
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are known as trigonometric functions.

Theorem 9.1. Suppose that {A1, . . . , AN} generates h, L0 = (1/2)
∑N

k=1(Ak)
2,

and Y0 ∈ ml where l ̸= 0. If Y0 =
∑d

m=1 cmYm, then

L̄ =
d∑

m=1

(cm)2

λ(Ym)

1

dim(ml)
∆ml

.

If furthermore {A1, . . . , AN} is an o.n.b. of h, then L̄ = (|Y0|2/dim(ml)λl)∆ml
.

Proof. Set d = dim(ml). With respect to the AdH -invariant inner product on

g, ad2(Ak) is a self-adjoint linear map on ml. For an orthonormal basis {Y1, . . . , Yd}
of ml consisting of eigenvectors of (−1/2)

∑N
k=1 ad

2(Ak) with λ(Yj) the correspond-

ing eigenvalues. Then α(Yj , Y0) is an eigenfunction of L0 corresponding to the eigen-

value −λ(Y0), and −α(Yj , Y0)/λ(Y0) solves the Poisson equation with right hand side

α(Yj , Y0), see Lemma 7.2. Evidently λ(Yj) ̸= 0, for otherwise ⟨
∑

k ad
2(Ak)(Yj), Yj⟩ =

−
∑

k | ad(Ak)(Yj)|2 = 0 which means Yj is in the kernel of adH which is possible only if

l = 0.

Consequently,

ai,j(Y0) = −
∑
m,m′

cmcm′

∫
H

⟨Ad(h)(Ym′), Yi⟩L−1
0 ⟨Ad(h)(Ym), Yj⟩dh

=
∑
m,m′

cmcm′

λ(Ym)

∫
H

⟨Ad(h)(Ym′), Yi⟩⟨Ad(h)(Ym), Yj⟩dh.

By Peter–Weyl’s theorem, which states in particular that if V is an irreducible uni-

tary representation of a compact Lie group H and {Yi} an o.n.b. of V , then the collection

of functions {⟨Yi, ρ(·)Yk⟩}, where V ranges through all equivalent classes of irreducible

unitary representations ρ, is orthogonal with norm
√

dim(V ), and these functions deter-

mine L2(G). In particular∫
H

⟨Yi,Ad((h)Yk)⟩⟨Yj ,Ad(h)(Yl)⟩ dh =
1

d
δijδkl.

We are grateful to Dmitriy Rumynin for providing us with a version of this theorem,

valid for orthogonal representations, which is appended at the end of the paper. See also

Iwahori [37] on representations of real Lie algebras.

From this we see that ai,j = 0 for i ̸= j and

ai,i(Y0) =
d∑

m=1

(cm)2

dim(ml)λ(Ym)
, L̄ =

1

d

d∑
m=1

(cm)2

λ(Ym)

m∑
i=1

LYiLYi .

Then part (1) follows by setting

1

λ′(Y0)
=

d∑
m=1

(cm)2

λ(Ym)
.
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Note that
∑m

i=1 LYiLYi = trace∇Ld is independent of the choice of the basis vectors

{Yj} so is also L̄, as a Markov generator to (4.4), which means λ′(Y0) is independent of

the choice of the basis vectors. For the case {A1, . . . , AN} is an orthonormal basis of h,

we apply Lemma 7.1 to conclude. □

If Y0 belongs to a subspace of m̃, say Y0 ∈ ml⊕ml′ , then an analogous claim holds if

the representations AdH on ml and ml′ are not equivalent, especially if ml and ml′ have

different dimensions.

Let d = 2. Then
∑

k ad
2(Ak)|ml

= λl Id |ml
, for some number λl ̸= 0, if and

only if L̄ = (|Y0|2/2λl)∆ml
. Indeed, H is essentially SO(2). Let Y1, Y2 be a pair of

orthogonal unit length eigenvectors of the linear map (1/2)
∑

k ad
2(Ak), restricted to ml.

Let Y0 = c1Y1 + c2Y2. For j
′, j, k′, k = 1, 2, let

bk,k
′

j′,j (Y0) =
ckck′

λ(Yk′)

∫
S1

⟨Ad(ei2πθ)(Yk), Yj′⟩⟨Ad(ei2πθ)(Yk′), Yj⟩dθ.

By direct computation, it is easy to see that bk
′,k

j′,j = 0 unless j′ = j, k = k′ or j′ = k, j =

k′, In particular, we examine the cross term:

a1,2(Y0) =

2∑
k,l=1

bk,l1,2 = b2,11,2 + b1,21,2

=
c1c2
λ(Y2)

∫
S1

⟨Ad(ei2πθ)(Y1), Y1⟩⟨Ad(ei2πθ)(Y2), Y2⟩dθ

+
c1c2
λ(Y1)

∫
S1

⟨Ad(ei2πθ)(Y2), Y1⟩⟨Ad(ei2πθ)(Y1), Y2⟩dθ.

Direct computation shows that

a1,2(Y0) =
c1c2
λ(Y2)

∫
cos2(i2πθ)dθ − c1c2

λ(Y1)

∫
sin2(i2πθ)dθ

=
1

2

(
c1c2
λ(Y2)

− c1c2
λ(Y1)

)
.

Thus

L̄ =

(
c1c2
λ(Y2)

− c1c2
λ(Y1)

)
LY1LY2 +

1

2

(
c21

λ(Y1)
+

c22
λ(Y2)

)
∆ml

.

Thus a1,2(Y0) vanishes if and only if λl := λ(Y2) = λ(Y1), the latter allows us to conclude

that a1,1(Y0) = a2,2(Y0) = (|Y0|2/λl)/2 and (1/2)
∑

k ad
2(Ak) = λl Id.

We next work with semi-simple Lie groups. A Lie algebra is simple if it is not one

dimensional and if {0} and g are its only ideals; it is semi-simple if it is the direct sum of

simple algebras. Cartans criterion for semi-simplicity states that g is semi-simple if and

only if its killing form is non-degenerate. Another useful criterion is that a lie algebra

is semi-simple if and only if it has no solvable (i.e. Abelian) ideals. The special unitary

group SU(n) is semi-simple if n ≥ 2; SO(n) is semi-simple for n ≥ 3; SL(n,R) is a

non-compact semi-simple Lie group for n ≥ 2; so(p, q) is semi-simple for p+ q ≥ 3.
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Corollary 9.2. Let H be a maximal torus group of a semi-simple group G. Let

Y0 ∈ ml and suppose that A0 = 0 and {Ai} generates h. Then L̄ = (|Y0|2/2λl)∆ml
where

λl is determined by (1/2)
∑p

k=1 ad
2(Ak) = −λl Idml

.

Proof. If h is the Cartan sub-algebra of the semi-simple Lie algebra g the dimen-

sion of ml is 2 and Proposition 8.2 applies. It is clear that dim(ml) ≥ 2, for otherwise

it consists of invariant vectors. It is well known that g is semi-simple if and only if

gC = g ⊗ C is semi-simple. Denote the complexification of h by t, it is a Cartan sub-

algebra of g⊗ C. Let α ∈ t∗ be a weight for gC. Take Y = Y1 + iY2 from the root space

gα corresponding to α. Let X ∈ h, and write α = α1 + iα2. Then

[X,Y ] = [X,Y1] + i[X,Y2] = (α1(X) + iα2(X))(Y1 + iY2),

and Y1 and Y2 generate an invariant subspace for adH following from:

[X,Y1] = α1(X)Y1 − α2(X)Y2; [X,Y2] = α1(X)Y1 + α2(X)Y2.

Restricted on each vector space gα only one specific Ak in the sum
∑p

k=1 ad
2(Ak) makes

non-trivial contribution to the corresponding linear operation. Thus we can restrict to

the one dimensional torus sub-group of H, which acts faithfully on gα. By the earlier

discussion, L̄ = (|Y0|2/λl dim(ml))∆ml
= (1/2λl)|Y0|2∆ml

. □

Example 9.3. Let G0(k, n) = SO(n)/SO(k)× SO(n− k) be the oriented Grass-

mannian manifold of k oriented planes in n dimensions. It is a connected manifold of

dimension k(n−k). The Lie group SO(n) act on it transitively. Let o be k-planes spanned

by the first k vectors of the standard basis in Rn. Then SO(k)×O(n−k) keeps Rk fixed

and as well as keeps the orientation of the first k-frame. Let π : SO(n) → G(k, n), then

πO = {O1, . . . , Ok}, the first k columns of the matrix O. Let σ(A) = SAS−1, where S

is the diagonal block matrix with −Ik and In−k as entries, be the symmetry map on G.

The Lie algebra has the symmetric decomposition so(n) = h⊕m:

h =

{(
so(k) 0

0 so(n− k)

)}
, m =

{
YM :=

(
0 M

−MT 0

)
,M ∈ Mk,n−k

}
.

The adjoint action on m is given by

Ad(h)(YM ) =

(
0 RMQT

−(RMQT )T 0

)
,

for h =
(
R 0
0 Q

)
, R ∈ SO(k) and Q ∈ SO(n − k). We identify m with ToG0(k, n). The

isotropy action on ToG0(k, n) is now identified with the map
((

R 0
0 Q

)
,M
)
→ RMQT .

Let M1 = (e1, 0, . . . , 0). Then RM1Q
T = R1Q

T
1 where R1 and Q1 are the first columns

of R and Q respectively. The orbit of M1 by the Adjoint action generates a basis of

Mk,n−k and M is isotropy irreducible. Let M2 = (0, e2, 0, . . . , 0), dR and dQ the Haar

measure on SO(k) and SO(n− k) respectively. Then if R = (rij) and Q = (qij). Then
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⟨Ad(h)M1,M1⟩⟨Ad(h)(M1),M2⟩dRdQ =

∫
H

(r11)
2q11q12dQdR = 0.

Hence L̄ is proportional to ∆hor. It is easy to see that L̄ satisfies the one step Hörmander

condition and is hypoelliptic on G. Given M,N ∈ Mk×(n−k) whose corresponding ele-

ments in m denoted by M̃, Ñ . Then [M̃, Ñ ] = NTM −MNT . There is a basis of h in

this form. If {ei} is the standard basis of Rk, Eij = eie
T
j , {Eij − Eji, i < j} is a basis

of so(k).

10. Classification of limits on Riemannian homogeneous manifolds.

Let M be a smooth manifold with a transitive action by a Lie group G. A Riemann-

ian metric on M is G-invariant if L̄a for all a ∈ G, are isometries, in which case M is a

Riemannian homogeneous space and G is a subgroup of Iso(M). We identify G with the

group of actions and M with G/H where H = Go, the subgroup fixing a point o. By

declaring dπ at the identity an isometry, an Ad(H)-invariant inner product on m induces

a G invariant inner product on ToM and vice versa. This extends to a G invariant Rie-

mannian metric by defining: ⟨(dL̄g)oπ∗Y1, (dL̄g)oπ∗Y2⟩go = ⟨π∗Y1, π∗Y2⟩o. Furthermore,

G-invariant metrics on M are in one to one correspondence with AdH -invariant metrics

on m. We should mention that, by a theorem of Myers and Steenrod [55], the set of

all isometries of a Riemannian manifold M is a Lie group under composition of maps,

and furthermore the isotropy subgroup Isoo(M) is compact. See also Kobayashi and

Nomizu [40]. If a subgroup G of Iso(M) acts on M transitively, G/H is a Riemannian

homogeneous space, in the sense that G acts effectively on M .

A connected Lie group admits an Ad-invariant metric if and only if G is of compact

type, i.e. G is isomorphic to the Cartesian product of a compact group and an additive

vector group [53, Lemma 7.5], in which case we choose to use the bi-invariant metric for

simplicity. The existence of an AdH -invariant metric is less restrictive. IfH is compact by

averaging we can construct an AdH invariant inner product in each irreducible invariant

subspace of m. If m = m0 ⊕
⊕r

i=1 mi is an irreducible invariant decomposition of m,

AdH -invariant inner products on m are precisely of the form g0 +
∑r

i=1 aigi where g0
is any inner product on m0, ai are positive numbers and gi are AdH invariant inner

products on mi. In particular an irreducible homogeneous space with compact H admits

a G-invariant Riemannian metric, unique up to homotheties. See Wolf [69] and Besse

[7, Theorem 7.44].

In the remaining of the section we assume that G is given a left invariant Riemannian

metric which induces a G-invariant Riemannian metric on M as constructed. We ask

the question whether the projection of the limiting stochastic process in Theorem 7.3 is

a Brownian motion like process. Firstly, we note that the projections of ‘exponentials’,

g exp(tX), are not necessarily Riemannian geodesics on M . They are not necessarily

Riemannian exponential maps on G. Also, given an orthonormal basis {Yi, 1 ≤ i ≤ n}
of g,

∑n
i=1 LY ∗

i
LY ∗

i
is not necessarily the Laplace–Beltrami operator.

A connected Lie group G admits a bi-invariant Riemannian metric if and only if its

Lie algebra admits an AdG invariant inner product, the latter is equivalent to ad(X) is

skew symmetric for every X ∈ g. It is also equivalent to that G is the Cartesian product
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of a compact group and an additive vector space. For X,Y, Z ∈ g, Koszul’s formula for

the Levi-Civita connection of the left-invariant metric on G gives:

⟨2∇XY,Z⟩ = ⟨[X,Y ], Z⟩+ ⟨[Z, Y ], X⟩+ ⟨[Z,X], Y ⟩.

By polarisation, ∇XX = 0 for all X if and only if

⟨[Z, Y ], X⟩+ ⟨[Z,X], Y ⟩ = 0, ∀X,Y, Z, (10.1)

in which case ∇XY = (1/2)[X,Y ]. In another word, (10.1) holds if and only if ∇L and ∇
have the same set of geodesics, they are translates of the one parameter subgroups. If the

Riemannian metric on G is bi-invariant then translates of the one parameter subgroups

are indeed geodesics for the Levi-Civita connection and for the family of connections

interpolating left and right invariant connections. A connection is torsion skew symmetric

if its torsion T satisfies: ⟨T (u, v), w⟩+ ⟨T (u,w), v⟩ = 0 for all u, v, w ∈ TxM and x ∈ M .

Denote by TL(X,Y ) the torsion for the flat connection ∇L. Since TL(X,Y ) = −[X,Y ],

(10.1) is equivalent to ∇L being torsion skew symmetric. By Milnor, if a connected Lie

group has a left invariant connection whose Ricci curvatures is non-negative then G is

unimodular. We expand this in the following lemma, the unimodular case is essentially

Lemma 6.3 in Milnor [53].

Lemma 10.1. Let G be a connected Lie group with a left invariant metric. Then∑n
i=1 LY ∗

i
LY ∗

i
= ∆ if and only if G is unimodular. If ml is a subspace of g, then

traceml
ad(X) = 0 for all X ∈ g if and only if traceml

∇d = traceml
∇Ld.

Proof. A Lie group G is unimodular if its left invariant Haar measure is also right

invariant. By Helgson [30], a Lie group is unimodular if and only if the absolute value of

the determinant of Ad(g) : G → G is 1 for every g ∈ G. Equivalently ad(X) has zero trace

for everyX ∈ g, see [53, Lemma 6.3]. On the other hand
∑n

i=1 LY ∗
i
LY ∗

i
= ∆ if and only if∑n

i=1 ∇Y ∗
i
Y ∗
i = 0. The latter condition is equivalent to trace ad(X) =

∑
i⟨[X,Yi], Yi⟩ = 0

for all X ∈ g. Similarly if {Yi} is an orthonormal basis of ml, then

dim(ml)∑
i=1

LY ∗
i
LY ∗

i
=

dim(ml)∑
i=1

∇d+

dim(ml)∑
i=1

∇Y ∗
i
Y ∗
i .

The second statement follows from the identity:⟨
dim(ml)∑

i=1

∇Y ∗
i
Y ∗
i , X

∗

⟩
=

dim(ml)∑
i=1

⟨[X,Yi], Yi⟩. □

We discuss the relation between the Levi-Civita connection and the canonical con-

nection on the Riemannian homogeneous manifold. A connection is G invariant if

{L̄a, a ∈ G} are affine maps for the connection, so they preserve parallel vector fields. For

X ∈ g, define the derivation AX = LX − ∇X . A G-invariant connection is determined

by a linear map (AX)o ∈ L(ToM ;ToM). Each AX is in correspondence with an en-

domorphism Λm(X) on Rn, satisfying the condition that for all X ∈ m and h ∈ H,
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Λm(ad(h)X) = Ad(λ(h))Λm(X) where λ(h) is the isotropy representation of h, see

Kobayashi and Nomizu [40]. Then

∇̃XY := LXY − u0Λm(X)u−1
0 Y

defines a connection. We identified ToM with Rn by a frame u0. If Λm = 0 this defines

the canonical connection ∇c whose parallel translation along a curve is left translation.

Denote by Dc/dt the corresponding covariant differentiation. Parallel translations

along α(t) are given by dL̄γ(t). This is due to the fact that left translations and π

commute. If X ∈ m, let γt = γ0 exp(tX) and α(t) = γ0 exp(tX)o. Then γ is the

horizontal lift of α and α(t) is a ∇c geodesic,

Dc

dt
α̇ =

Dc

dt
π∗TLγ(t)(X) =

Dc

dt
T L̄γ(t)π∗(X) = 0.

For x ∈ g, denote by Xm and Xh the component of X in m and in h respectively.

Definition 10.1. A reductive Riemannian homogeneous space is naturally reduc-

tive, if

⟨[X,Y ]m, Z⟩ = −⟨Y, [X,Z]m⟩, for all X,Y, Z ∈ m. (10.2)

If G is of compact type, then G/H is reductive with reductive structure m = h⊥

and is naturally reductive, with respect to the bi-invariant metric.

It is clear that (10.1) implies (10.2) and M is naturally reductive if ∇ and ∇L have

the same set of geodesics. In particular, if G admits an adG invariant inner product

and m = h⊥, then G/H is naturally reductive with respect to the induced Riemannian

metric. A special reductive homogeneous space is a symmetric space with symmetry σ

and the canonical decomposition g = h ⊕ m. For it, [h,m] ⊂ m and [m,m] ⊂ h. If the

symmetric decomposition is orthogonal, it is naturally reductive.

We collect in the lemma below useful information for the computations of the Markov

generators whose proof is included for the convenience of the reader.

Lemma 10.2. 1. ∇c is torsion skew symmetric precisely if M is naturally re-

ductive.

2. The projections of the translates of one parameter family of subgroups of G are

geodesics for the Levi-Civita connection if and only if M is naturally reductive.

3. Let U : m×m → m be defined by

2⟨U(X,Y ), Z⟩ = ⟨X, [Z, Y ]m⟩+ ⟨[Z,X]m, Y ⟩. (10.3)

Then traceml
∇cdf = traceml

∇df if and only if traceml
U = 0. In other words, for

any Z ∈ m, traceml
ad(Z) = 0. In particular traceml

∇cdf = traceml
∇df , if M is

naturally reductive.

4. ∇cdπ = 0.
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Proof. (1) Let Y ∗ denote the action field generated by Y ∈ m, identified with

π∗(Y ) ∈ ToM , and Y ∗(uo) = (d/dt)|t=0L̄exp(tY )uo = (d/dt)
∣∣
t=0

π(exp(tY )u). If p = uo,

∇c
XY ∗(o) = [X∗, Y ∗](o) = −[X,Y ]m. The torsion tensor for ∇c is left invariant, its value

at o is

T c
o (X,Y ) = (∇c

XY ∗)o − (∇c
Y X

∗)o − [X∗, Y ∗]o = −[X,Y ]m.

We see that T c is skew symmetric if and only if (10.2) holds.

(2) A G-invariant connection on M has the same set of geodesics as ∇c if and only

if Λm(X)(X) = 0, c.f. Kobayashi and Nomizu [40]. It is well known that the function

Λm(X)(Y ) =
1

2
[X,Y ]m + U(X,Y )

defines the Levi-Civita connection. In fact it is clear that (1/2)[X,Y ] − U(X,Y ) has

vanishing torsion and ⟨Λ(X,Y ), Z⟩+ ⟨Y,Λ(X,Z)⟩ = 0, which together with the fact ∇c

is metric implies that it is a Riemannian connection. The Levi-Civita connection ∇ and

∇c have the same set of geodesics if and only if U(X,X) = 0. By polarisation, this is

equivalent to M being naturally reductive.

(3) For any X,Y ∈ m,

(∇XY ∗)o = ∇c
XY ∗ +

1

2
[X,Y ]m + U(X,Y ).

If f : M → R is a smooth function,

⟨∇X∇f, Y ⟩ = LY (df(Y ∗))− ⟨∇f,∇XY ∗⟩
= ⟨∇c

X∇f, Y ⟩+ ⟨∇f,∇c
XY ∗ −∇XY ∗⟩.

Summing over the basis of ml we see that

traceml
∇df − traceml

∇cdf =
⟨
∇f,

∑
i

U(Yi, Yi)
⟩
,

which vanishes for all smooth f if and only if
∑

i U(Yi, Yi) vanishes. If G is of compact

type, it has an AdG-invariant metric for which (10.1) holds. This completes the proof.

(4) We differentiate the map dπ : G 7→ L(TG;TM) with respect to the connection

∇c. Let γ(t) be a curve in G with γ(0) = u and γ̇(0) = w. Then for X ∈ g,

(∇c
wdπ) (X) = //ct (π ◦ γ) d

dt
(//ct (π ◦ γ))−1dπ

(
//Lt (γ)X

)
,

where //ct (π ◦ γ) and //Lt (γ) denote respectively parallel translations along π ◦ γ and γ

with respect to ∇c and ∇L. Since //ct (π ◦γ) = dL̄π◦γ(t) and //Lt (γ) = dLγ(t) the covariant

derivative vanishes. Indeed π and left translation commutes, (dπ)udLu = (dL̄u)o(dπ)1,

∇c
wdπ = //ct (π ◦ γ) d

dt

∣∣
t=0

(dπ)1
(
dLγ(−t)//

L
t (γ)

)
= 0. □

In the propositions below we keep the notation in Theorem 6.10, Theorem 7.3 and
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Proposition 8.2. We identify ml with its projection to ToM . Let x̄t := limϵ→0 x
ϵ
t/ϵ.

Proposition 10.3. Suppose that L̄ = |Y0|2/λ(Y0) dim(ml)∆ml
. If traceml

U = 0,

equivalently traceml
ad(Z) = 0 for all Z ∈ m, then (x̄t) is a Markov process with generator

|Y0|2

λ(Y0) dim(ml)
traceml

∇d.

If M is furthermore isotropy irreducible, (x̄t) is a scaled Brownian motion.

Proof. Let {Ỹi, 1 ≤ i ≤ ml} be an orthonormal basis of ml and let (1/2)a2 =

|Y0|2/dim(ml)λl. Let Yi = aỸi. Let (ut) be a Markov process with generator

(1/2)
∑dim(ml)

k=1 LY ∗
k
LY ∗

k
, and represented by a solution of the left invariant SDE: dut =∑ml

k=1 Y
∗
k (ut)◦dBk

t where {Bk
t } are independent one dimensional Brownian motions. Let

yt = π(ut). Denote by ϕk
t the integral flow of Yk, ϕ

i
t(g) = g exp(tYi). If f ∈ C2

K(M ;R),

f ◦ π(ut) = f ◦ π(u0) +

ml∑
i=1

∫ t

0

d

dt
f ◦ π (ur exp(tYi))

∣∣
t=0

dBi
r

+
1

2

ml∑
i=1

∫ t

0

d2

dt2
f ◦ π (ur exp(tYi))

∣∣
t=0

dr.

We compute the last term beginning with the first order derivative,

d

dt
f ◦ (ur exp(tXi)) |t=0 = df(π∗(Lur exp(tYi)Yi))|t=0 = df((L̄ur )∗Xi).

Let D/dt denote covariant differentiation along the curve (xt) with respect to the

Levi-Civita connection.

ml∑
i=1

d2

dt2
f ◦ π (ur exp(tYi)) |t=0

=

ml∑
i=1

d

dt
df
(
(L̄ur exp(tYi))∗(π∗(Yi))

)
|t=0

=

ml∑
i=1

∇df
(
(L̄ur )∗(π∗(Yi)), (L̄ur )∗(π∗(Yi))

)
+

ml∑
i=1

df

(
D

dt
(L̄ur exp(tYi))∗(π∗(Yi))|t=0

)
.

Since left translations are isometries, for each u ∈ G, {(L̄u)∗(π∗(Yi))} is an orthonor-

mal basis of π∗(uml) ⊂ Tπ(u)M . Thus

ml∑
i=1

d2

dt2
f ◦ π (ur exp(tYi)) |t=0 = a2traceml

∇cdf +

ml∑
i=1

df

(
Dc

dt
(L̄ur exp(tYi))∗Y

∗
i |t=0

)
.

If traceml
U = 0, traceml

∇cdf = traceml
∇df by Lemma 10.2. We have seen that the

term involving Dc/dt vanishes. This gives:
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ml∑
i=1

d2

dt2
f ◦ π (ur exp(tYi)) |t=0 = a2traceml

∇df.

Put everything together we see that

Ef ◦ π(ut) = f ◦ π(u0) +
1

2
a2
∫ t

0

E(trace)ml
∇df(π(ur))dr.

For x = π(y) we define Qtf(x) = Pt(f ◦ π)(y), so Pt(f ◦ π) = (Qtf) ◦ π. We apply

Dynkin’s criterion for functions of a Markov process to see that (x̄t) is Markovian. The

infinitesimal generator associated to Qt is (1/2)a2(trace)ml
∇df . If M is an irreducible

Riemannian symmetric space, m is irreducible, dπ(m) = ToM and the Markov process

(x̄t) is a scaled Brownian motion. This concludes the Proposition. □

If M is naturally reductive, the proof is even simpler. In this case, σi(t) =

π (u exp(tYi)) is a geodesic with initial velocity Yi and σ̇(t) = (d/dt)π∗ (u exp(tYi)). Con-

sequently, the following also vanishes:

D

dt
(L̄ur exp(tYi))∗(Y

∗
i )|t=0 = 0.

11. Examples.

Corollary 9.2 applies to the example in Section 2.1, where G = SU(2), H = U(1)

and the AdH -invariant space m = ⟨X2, X3⟩ is irreducible. For any Y ∈ m, ad2(X1)(Y ) =

−4Y . Note that 4 is the second non-zero eigenvalue of ∆S1 , also the killing form of

SU(2) is K(X,Y ) = 4 trace(XY ) and Badh,m(X1, X1) = K(X1, X1) = −8.

Example 11.1. Let (bt) be a one dimensional Brownian motion, g0 ∈ SU(2),

Y0 ∈ ⟨X2, X3⟩ non-zero. Let (gϵt , hϵ
t) be the solution to the following SDE on SU(2)×U(1),

dgϵt = gϵtY0dt+
1√
ϵ
gϵtX1dbt, (11.1)

with gϵ0 = g0. Let π(z, w) = ((|w|2 − |z|2)/2, zw̄) and xϵ
t = π(gϵt). Let (x̃ϵ

t) be the

horizontal lift of (xϵ
t). Then (x̃ϵ

t/ϵ) converges weakly to the hypoelliptic diffusion with

generator L̄ = (|Y0|2/4)∆hor. Furthermore, xϵ
t/ϵ converges in law to the Brownian motion

on S2(1/2) scaled by |Y0|2/2.

The first part of the theorem follows from Theorem 6.10 and Corollary 9.2. The

scaling 1/2 indicates the extra time needed for producing the extra direction [X1, Y0].

For the second part we use the fact that G is compact, so ⟨[X,Y ], [Z]⟩ = −⟨Y, [X,Z]⟩ for
any X,Y, Z ∈ m, and Proposition 10.3 applies. Incidentally, a similar argument can be

made for an analogous equation on G = SU(n) and H the torus group of G.

Example 11.2. Let G = SO(4), H = SO(3), Ei,j the elementary 4× 4 matrices,

and Ai,j = (Eij −Eji)/
√
2. Then h = {A1,2, A1,3, A2,3}, its orthogonal complement m is

irreducible w.r.t. AdH . For k = 1, 2, and 3, let Yk = Ak4. Let us consider the equations,
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dgϵt =
1√
ϵ
A1,2(g

ϵ
t ) ◦ db1t +

1√
ϵ
A1,3(g

ϵ
t ) ◦ db2t + Yk(g

ϵ
t )dt.

Observe that {A1,2, A1,3} is a set of generators, in fact [A1,2, A1,3] = (−1/
√
2)A2,3, and

L0 = (A1,2)
2/2 + (A1,3)

2/2 satisfies strong Hörmander’s conditions. It is easy to check

that,

1

2
ad2(A1,2)(Yk) +

1

2
ad2(A1,3)(Yk) = −1

4
(2δ1,k + δ2,k + δ3,k)Yk.

For any Y ∈ m, ⟨Y,Ad(h)Yk⟩ is an eigenfunction of L0 corresponding to the eigenvalue

−λ(Yk), where

λ(Y1) =
1

2
, λ(Y2) =

1

4
, λ(Y3) =

1

4
.

Define π : g ∈ SO(4) → S4 to be the map projecting g to its last column. Set xϵ
t = π(gϵt)

whose horizontal lift through u0 will be denoted by x̃ϵ
t. Then

ai,j(Yk) :=
1

λ(Yk)

∫
H

⟨Yi,Ad(h)Yk⟩L−1
0 (⟨Yj ,Ad(h)(Yk)⟩)dh.

For i ̸= j, ai,j(Yk) = 0 and ai,i(Yk) := 1/3λ(Yk). In Theorem 6.10 take Y0 = Yk to see

L̄ =
1

λ(Yk)

∫
SO(3)

∇Ldf((Ad(h)(Yk))
∗, (Ad(h)(Yk))

∗)dh =
1

3λ(Yk)

3∑
i=1

∇Ldf(Yi, Yi).

On the other hand, the effective diffusion for the equations

dgϵt =
1√
ϵ
A1,2(g

ϵ
t ) ◦ db1t +

1√
ϵ
A1,3(g

ϵ
t ) ◦ db2t +

1√
ϵ
A2,3(g

ϵ
t ) ◦ db3t + Yk(g

ϵ
t)dt

is the same for all Yk. It is easy to see that L̄ = (2/3)
∑3

i=1 ∇Ldf(Yi, Yi).

Further symmetries can, of course, be explored.

Example 11.3. Let Y0 =
∑3

k=1 ckYk be a mixed vector. Then,

αiβj =
3∑

k,l=1

ckclαi(Yk)βj(Yl) =
3∑

k,l=1

ckcl
1

λl
αi(Yk)αj(Yl).

If c1 = 0 and c2 = c3, αiβj = 4(c2)
2
∑3

k,l=2 αi(Yk)αj(Yl). By symmetry, αi(Yk)αj(Yl)

vanishes for i ̸= j.

Example 11.4. Let n ≥ 2, G = SO(n + 1), H = {(R 0
0 1 ) , R ∈ SO(n)}, and

Sn = SO(n + 1)/SO(n). Then H fixes the point o = (0, . . . , 0, 1)T . The homogeneous

space Sn has the reductive decomposition:
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h =

{(
S 0

0 0

)
, S ∈ so(n)

}
, m =

{
YC =

(
0 C

−CT 0

)
, C ∈ Rn

}
.

Let σ(A) = S0AS−1
0 and S0 =

(
I 0
0 −1

)
. Then g = h ⊕ m is the symmetric space decom-

position for σ. We identify YC with the vector C, and compute:

Ad

((
R 0

0 1

)
YC

)
=

(
0 RC

−(RC)T 0

)
.

This action is transitive on the unit tangent sphere and is irreducible. There is a matrix

R ∈ SO(n) that sends C to −C. Then Ȳ0 = 0 for every Y0 ∈ m and the conditions of

Proposition 8.2 are satisfied.

Let Ai,j = (1/
√
2)(Eij − Eji), where i < j, and Eij is the elementary matrix with

the nonzero entry at the (i, j)-th position. Let Y0 ∈ m be a non-trivial vector. Consider

the equation,

dgϵt =
1√
ϵ

∑
1≤i<j≤n

A∗
i,j(g

ϵ
t ) ◦ db

i,j
t + Y ∗

0 (g
ϵ
t )dt.

We define λ = (n− 1)/4. By a symmetry argument it is easy to see that,∑
1≤i<j≤n

ad2(Aij) = −1

2
(n− 1)I.

For 1 ≤ i, j, k ≤ n, [Ai,j , Ak,n+1] = (−1/
√
2)δk,iAj,n+1+(1/

√
2)δj,kAi,n+1, which follows

from EijEkl = δjkEil. Hence for i ̸= j,

2 ad2(Ai,j)(Ak,n+1) = −(δi,k + δj,k)Ak,n+1. (11.2)

Let xϵ
t/ϵ = gϵt/ϵo and (x̃ϵ

t/ϵ) the horizontal lift of (x
ϵ
t/ϵ) through g0. By Theorem 6.10,

converges to a Markov process whose limiting Markov generator is, by symmetry,

L̄ =
|Y0|2

λdim(m)
∆hor =

4|Y0|2

n(n− 1)
∆hor.

The upper bound for the rate of convergence from Theorem 6.5 holds. By Theorem 6.10

and Proposition 10.3 the stochastic processes (xϵ
t/ϵ) converge to the Brownian motion on

Sn with scale 8|Y0|2/n(n− 1). By (11.2), for any 1 ≤ i, j, k ≤ n, Ak,n+1 are eigenvectors

for ad2(Ai,j). Furthermore, for 1 ≤ i < j ≤ n,

[Ai,n+1, Aj,n+1] = − 1√
2
Ai,j ,

and ∆hor satisfies the one step Hörmander condition.

Example 11.5. We keep the notation in the example above. Let Y0 be a unit

vector from m and let (gϵt ) be the solutions of the following equation:
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dgϵt =
1√
ϵ

∑
1≤i<j≤n

A∗
i,j(g

ϵ
t ) ◦ db

i,j
t +

n(n− 1)

8
Y ∗
0 (g

ϵ
t )dt. (11.3)

Then as ϵ → 0, π(gϵt/ϵ) converges to a Brownian motion on Sn.

We finally provide an example in which the group G is not compact.

Example 11.6. Let n ≥ 3. Let F (x, y) = −x0y0 +
∑n

k=1 xkyk be a bilinear form

on Rn+1. Let O(1, n) be the set of (n + 1) × (n + 1) matrices preserving the indefinite

form

O(1, n) =

{
A ∈ GL(n+ 1) : ATSA = S, S =

(
−1 0

0 In

)}
.

Let G denote the identity component of O(1, n), consisting of A ∈ O(1, n) with det(A) =

1 and a00 ≥ 1. This is an n(n + 1)/2 dimensional manifold, X ∈ g if and only if

XTS + SX = 0. So

g =

{(
0 ξT

ξ S

)
, ξ ∈ Rn, S ∈ so(n)

}
.

The map σ(A) = SAS−1 defines an evolution on G and

M = {x = (x0, x1, . . . , xn) : F (x, x) = −1, x0 ≥ 1}

is a symmetric space. Its isometry group at e0 = (1, 0, . . . , 0)T is H = {( 1 0
0 B )} where

B ∈ SO(n). The −1 eigenspace of the Lie algebra involution is:

m =

{(
0 ξT

ξ 0

)}
.

Let us take Y0 ∈ m and consider the equation,

dgϵt =
1√
ϵ

∑
1≤i<j≤n

A∗
i,j(g

ϵ
t ) ◦ db

i,j
t + Y ∗

0 (g
ϵ
t )dt.

It is clear that Theorems 6.10 and 7.3 apply. The isotropy representation of H is irre-

ducible. The action of AdH on m is essentially the action of SO(n) on Rn:

Ad

((
1 0

0 B

))(
0 ξT

ξ 0

)
=

(
0 (Bξ)T

Bξ 0

)
.

The conclusion of Theorems hold. The symmetric space M is naturally reductive and so

Proposition 10.3 applies. Note that[(
0 ξT

ξ 0

)
,

(
0 ηT

η 0

)]
=

(
0 0

0 ξηT − ηξT

)
.

Since eie
T
j = Eij , [m,m] generates a basis of h. The effective process arising from the
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family of stochastic differential equations (1.1) is a scaled horizontal Brownian motion.

Observe that the latter satisfies the one step Hörmander condition. The limit of π(gϵt/ϵ)

is a scaled hyperbolic Brownian motion. The rate of convergence stated in Theorem 6.5

is valid here, the scale is 8/n(n− 1).

12. Further discussions and open questions.

The study of scaling limits should generalise to principal bundles and to foliated

manifolds. Let π : P → M be a principal bundle with group action H whose Lie

algebra h is given a suitable inner product. For A ∈ h denote by A∗ the corresponding

fundamental vertical vector field: A∗(u) = (d/dt)|t=0u exp(tA). Let us fix an orthonormal

basis {A1, . . . , Ap} of h. Let {σj , j = p+1, . . . , n} be smooth horizontal sections of TP , f0
a vertical vector field, {w1

t , . . . , w
N1
t , b1t , . . . , b

N2
t } independent one dimensional Brownian

motions. Let {akj , cli} be a family of smooth functions on P . For example, a computation

analogous to that in Lemma 4.1, should lead to a system of SDEs of Markovian type,

whose solutions are slow and fast motions, and the following proposition.

Proposition 12.1. Let ut ≡ ϕt(u0) be a solution to

dut = (σ0 + f0)(ut)dt+

N1∑
k=1

n∑
j=p+1

(cjkσj)(ut) ◦ dwk
t +

N2∑
l=1

p∑
j=1

(
ajlA

∗
j

)
(ut) ◦ dblt. (12.1)

Set xt = π(ut) and denote by (x̃t) its horizontal lift. Then ut = x̃tat where

dx̃t = (Ra−1
t
)∗σ0(x̃t)dt+

N2∑
k=1

n∑
j=p+1

cjk(x̃tat)(Ra−1
t
)∗(σj)(x̃t) ◦ dwk

t

dat = TRat (ϖx̃t(f0)) dt+

N1∑
l=1

p∑
j=1

ajl (x̃tat)A
∗
j (at) ◦ dblt.

If each cjk vanishes identically the problem is easier in which case we are led naturally

to random ODEs of the following type

ẏϵt =

m∑
k=1

Yk(y
ϵ
t )αk(z

ϵ
t (ω), y

ϵ
t )

yϵ0 = y0.

We may assume that the stochastic processes (zϵt ) are hypoelliptic diffusions or Lévy

processes satisfying a Birkhoff’s ergodic theorem, and αk : G × M → R are smooth

functions. The vector fields {Yk} are, for example, given by Yk(·) = Y (·)(ek) where for

each y ∈ P , Y (y) : Rm → TyP is isometric and {ek} is an orthonormal basis of Rm.

Letting ϵ approaches zero, we expect an averaging principle and an effective ODE in

the limit, c.f. [45]. For the next step, the challenging problem is to find geometrically

meaningful conditions on the coefficients so that the effective ODE is trivial, in which

case one may proceed to obtain an effective diffusion on a larger time scale. We observe
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that the limit theorems in [47] do not cover this.
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Appendix: Real Peter–Weyl

by Dmitriy Rumynin

Abstract. We explain how unitary representations of compact groups

split into three types. We summarise their properties. As an application
we state and prove Peter–Weyl Theorem for real representations of compact
groups.

Let G be a compact topological group. We refer the reader to textbooks [70], [71] for

standard properties of G and its representations. The group G has a unique biinvariant

Haar measure µ such that µ(G) = 1. We utilise the corresponding integral
∫
G
Φ(x)µ(dx).

We study unitary representations of G. It is a representation of G on a real (or

complex) Hilbert space V (or V – we use calligraphic letters for complex Hilbert spaces)

such that the action map G×V → V is continuous and each g ∈ G acts by an orthogonal

(unitary) operator. A key example is the real regular representation L2(G), that is, the

space of all R-valued L2-functions with the action [x · Φ](y) = Φ(yx). By L2(G) we

denote the complex regular representation, the space of all C-valued L2-functions with

the same action.

Each unitary representation is a direct sum of irreducible unitary representations.

Each irreducible unitary representation is finite dimensional. Let IrrR G be the set of

isomorphism classes of irreducible unitary representations (correspondingly IrrC G for

complex ones). The character of V ∈ IrrR G is the function χV ∈ L2(G) given by

χV (x) = TrV (x). The Frobenius–Schur indicator of V ∈ IrrC G (or V ∈ IrrR G) is

FS(V) =
∫
G

χV(x
2)µ(dx)

(
or FS(V ) =

∫
G

χV (x
2)µ(dx)

)
.

A complex unitary representation (V, ⟨|⟩) can be considered as a real vector space VR.

It is a real unitary representation with a form Re⟨|⟩. In the opposite direction, V ⊗R C
is a complexification of (V, ⟨|⟩) with a natural unitary form ⟨x ⊗ α|y ⊗ β⟩ = αβ⟨x|y⟩.
Notice that (V ⊗R C)R = V ⊗ 1⊕ V ⊗ i ∼= 2V as real representations of G. This defines

a correspondence

IrrR G ↔ IrrC G.

The representations V and V are in correspondence if V is a direct summand of V ⊗R C.
By Frobenius reciprocity, this is equivalent to V being a direct summand of VR. The

properties of this correspondence depend on the endomorphism algebra F = EndG(V ).

Recall that F consists of all R-linear operators on V that commute with all elements of G.
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The algebra F is a division algebra (Schur lemma), hence, it must be either real numbers

R, or complex numbers C, or quaternions H (Frobenius Theorem). Depending on what

F is, we call each of the representations in correspondence V ↔ V a representation of

real, complex or quaternionic type correspondingly.

Useful properties of representations of each type are summarised in Table 1. The

last two rows show that the type can be determined by computing the Frobenius–Schur

indicator: it is particularly useful for a finite group G.

Table 1. Properties of V ↔ V depending on F.

F = EndG(V ) R C H
VC ∼= V Yes No No

VC V V ⊕ V∗ 2V
IrrR G to IrrC G correspondence is 1:1 1:2 1:1

VR 2V V V

χV takes values in R C R
relation between characters χV = χV χV = 2 · Re(χV) χV = 2 · χV

V ∼= V∗ Yes No Yes

G-invariant form on V symmetric only zero skew-symmetric

FS(V) is equal to 1 0 −1

FS(V ) is equal to 1 0 −2

The third and fourth rows from the bottom are useful for a simple compact Lie

group G. An irreducible representation V of G is parametrised by its highest weight ϖ:

we write V = L(ϖ), if V is an irreducible representation with a highest weight vector of

weight ϖ. It is known that L(ϖ)∗ = L(−w · ϖ) where w is the longest element of the

Weyl group. The fourth row immediately tells you whether V ↔ V is of complex type or

not: it is easy to verify whether ϖ = −w ·ϖ or not in each particular case. For instance,

the vector representation of SU n(C) is L(ϖ1) where ϖ1 is the first fundamental weight.

Then L(ϖ1)
∗ = L(−w ·ϖ1) = L(ϖn−1) so that L(ϖ1) is of complex type if n > 2.

Look at SU 2(C). Its irreducible representations are L(mϖ1) for natural m and

L(mϖ1)
∗ = L(−w ·mϖ1) = L(mϖ). No representation of SU 2(C) is of complex type.

The vector representation L(ϖ1) admits a symplectic form preserved by SU 2(C). The

representation L(mϖ1) is isomorphic to Sm(L(ϖ1)), its m-th symmetric power, that gets

an induced SU 2(C)-invariant form, symmetric if m is even, skew-symmetric if m is odd.

Thus, L(mϖ1) is of real type if m is even and is of quaternionic type if m is odd.

The first row helps to determine the type of the adjoint representation g of a compact

simple Lie group G. Its complexification g⊗R C is a simple complex Lie algebra. So it is

of real type. Alternatively one can use its Killing form or the fact that g⊗R C = L(α0)

where α0 is the highest root.

The field F is a “natural” field for V . We will write elements of F acting on vectors

from the right (it is essential since H is non-commutative).
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Lemma 1 (Real Artin–Wedderburn Formula). L2(G) ∼=
⊕

V ∈IrrR G dimF(V )V .

Proof. Notice that L2(G)⊗R C ∼= L2(G) ∼=
⊕

V∈IrrC G dimC(V)V. Thus, we need

to prove that dimF(V )V ⊗R C is isomorphic to
⊕

V↔V dimC(V)V. This is easily checked

case by case for each column in Table 1. □

We fix standard imaginary units i, j,k ∈ H and i ∈ C. The complex conjugation on

F is given by the formula α+ βi+ γj + δk = α− βi− γj − δk. Note that it is identity

if F = R. Given an F-valued function Φ, we want to fix its one, two or four (depending

on F) components, the R-valued functions Φ• such that

Φ = Φ11 + Φii+Φjj +Φkk.

Now we are ready to exhibit an explicit orthonormal basis of L2(G), e.g. state

Peter–Weyl Theorem. Let (V, ⟨|⟩) ∈ IrrR G, d = dimF(V ). Consider V as a right vector

space over F. Choose a vector space isomorphism with the space of columns

V → Fd, a 7→ a.

This gives a G-invariant positive definite unitary F-form on V :

[a|b] =
∫
G

(x · a)∗x · b µ(dx)

where (x · a)∗ is the conjugate-transpose row of the column x · a. Observe that [aq|br] =
q[a|b]r for all q, r ∈ F.

Lemma 2 (Real Schur Lemma). Let {|} be a G-invariant unitary F-form on V .

Then there exists r ∈ Z(F) (the centre of F) such that

{a|b} = r[a|b] for all a, b ∈ V.

Let {|}♯ be a G-invariant bilinear R-form on V . Then there exists q ∈ F such that

{a|b}♯ = ⟨a|bq⟩ for all a, b ∈ V.

Finally let {|}♭ be a G-invariant symmetric bilinear R-form on V . Then there exists

r ∈ R such that

{a|b}♭ = r⟨a|b⟩ for all a, b ∈ V.

Proof. The linear operator θ : V → V defined by the equation

{a|b} = [a|θ(b)] for all a, b ∈ V

is a G-module endomorphism since both form are G-invariant. Thus, θ(a) = ar for some

r ∈ F and {a|b} = [a|b]r. The unitarity of {|} ensures that r is in the centre.

A proof for {|}♭ is similar.
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Using the second statement we can find q ∈ F such that {a|b}♭ = ⟨a|bq⟩ for all a, b.
Since {a|b}♭ is symmetric, q is self-adjoint:

⟨a|bq⟩ = {a|b}♭ = {b|a}♭ = ⟨b|aq⟩ = ⟨aq|b⟩.

It remains to notice that the adjoint of q is q. This proves that q = q and q ∈ R. □

Notice that the component [|]1 is a G-invariant positive definite symmetric bilinear

R-form. Lemma 2 implies that [|]1 = ⟨|⟩r for some positive r ∈ R>0. Replacing [|] with
[|]r−1, we get useful properties connecting the two forms.

Lemma 3. If the relevant elements of F exist, then the following identities hold for

all a, b ∈ V :

⟨a|b⟩ = [a|b]1 = ⟨ai|bi⟩ = ⟨aj|bj⟩ = ⟨ak|bk⟩,

⟨ai|b⟩ = [a|b]i = −⟨a|bi⟩ = −⟨aj|bk⟩ = ⟨ak|bj⟩,

−⟨a|bj⟩ = [a|b]j = ⟨ai|bk⟩ = −⟨ak|bi⟩ = ⟨aj|b⟩,

−⟨a|bk⟩ = [a|b]k = −⟨ai|bj⟩ = ⟨aj|bi⟩ = ⟨ak|b⟩.

Proof. The first identity in the first row is a result of our assumptions. Now

[ai|b] = [ai|b]11 + [ai|b]ii+ [ai|b]jj + [ai|b]kk, while at the same time [ai|b] = −i[a|b] =
[a|b]i1− [a|b]1i+ [a|b]kj − [a|b]jk. This proves the first identity in the second row. The

remaining proofs are similar using properties such as [aj|bk] = −j[a|b]k. □

Let X1, X2, . . . , Xm be an orthonormal (with respect to [|]) F-basis of V . The scaled

coordinate functions in this basis are F-valued functions on G

V Φn,l =
V Φ1

n,l1 +
V Φi

n,li+
V Φj

n,lj + V Φk
n,lk,

V Φn,l(g) =
√
dimR(V )[Xn|g ·Xl].

Theorem 1 (Peter–Weyl Theorem). The components of the scaled coordinate func-

tions { V Φ•
n,l | V ∈ IrrR G} form an orthonormal basis of L2(G).

Proof. We deduce this theorem from the usual (complex) Peter–Weyl Theorem.

This states that by equipping each V ∈ IrrC G with an orthonormal basis Y1, Y2, . . . we

obtain an orthonormal basis of L2(G) consisting of scaled coordinate functions

{ VΨn,l | V ∈ IrrC G} where VΨn,l(g) =
√

dimC(V)⟨Yn|g · Yk⟩.

If we fix V, the functions VΨn,l form an orthonormal basis of dimC(V)V, a direct sum-

mand of L2(G). It follows that V Φ•
n,l and WΦ•

n,l for non-isomorphic V and W are

orthogonal to each other. It remains to observe that V Φ•
n,l form an orthonormal basis

of dimF(V )V . Let d = dimR(V ).

If F = R, we can choose Yn = Xn ⊗ 1 as an orthonormal basis of V = V ⊗R C. Since
d = dimC(V), V Φ1

n,l =
VΨn,l form an orthonormal basis.

If F = C, we have two complex representations V+ and V− ∼= V∗
+ that we can

explicitly pinpoint, writing the two idempotents of EndG(V ⊗R C) = F⊗R C ∼= C2:
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V ⊗R C = V− ⊕ V+ where V± = (V ⊗R C)e±, e± =
1

2
(1⊗ 1± i⊗ i).

Now we choose Y ±
n =

√
2Xne± as an orthonormal basis of V±. It is clear that ⟨Y +

n |Y −
l ⟩ =

0, while inside V±

⟨Y ±
n |Y ±

k ⟩ = 1

2
⟨Xn ⊗ 1±Xni⊗ i|Xl ⊗ 1±Xli⊗ i⟩

=
1

2
⟨Xn|Xl⟩ ∓

i

2
⟨Xni|Xl⟩ ±

i

2
⟨Xn|Xli⟩+

1

2
⟨Xni|Xli⟩

=
1

2
[Xn|Xl]

1 ∓ i

2
[Xn|Xl]

i ∓ i

2
[Xn|Xl]

i +
1

2
[Xn|Xl]

1

= [Xn|Xl]
1 ∓ i[Xn|Xl]

i = [Xn|Xl] ( or [Xn|Xl]) = δn,l.

In this case d = 2dimC V±. We express the functions now:

V±Ψn,l(g) =
√

dimC(V±)⟨Y ±
n |g · Y ±

k ⟩

=

√
d

2
√
2
⟨Xn ⊗ 1±Xni⊗ i|g ·Xl ⊗ 1± g ·Xli⊗ i⟩

=

√
d

2
√
2
⟨Xn|g ·Xl⟩ ∓

i
√
d

2
√
2
⟨Xni|g ·Xl⟩ ±

i
√
d

2
√
2
⟨Xn|g ·Xli⟩+

√
d

2
√
2
⟨Xni|g ·Xli⟩

=

√
d

2
√
2
[Xn|g ·Xl]

1 ∓ i
√
d

2
√
2
[Xn|g ·Xl]

i ∓ i
√
d

2
√
2
[Xn|g ·Xl]

i +

√
d

2
√
2
[Xn|g ·Xl]

1

=
1√
2

V Φ1
n,l(g)∓

i√
2

V Φi
n,l(g).

Orthonormality of V Φ•
n,l follows from explicit formulas:

V Φ1
n,l =

1√
2

V+Ψn,l +
1√
2

V−Ψn,l,
V Φi

n,l =
i√
2

V+Ψn,l −
i√
2

V−Ψn,l.

If F = H, choose a rank 1 idempotent in EndG(V ⊗R C) = F⊗R C ∼= M2(C):

V ⊗R C = V ⊕ V⊥ where V⊥ ∼= V, V = (V ⊗R C)e, e =
1

2
(1⊗ 1 + i⊗ i).

Now we choose Y +
n =

√
2Xne, Y −

n =
√
2Xnj e, as an orthonormal basis of V. The

calculation in the case of F = C makes it clear that ⟨Y +
n |Y +

n ⟩ = 1 and ⟨Y ±
n |Y •

k ⟩ = 0 if

n ̸= k. Let us do the remaining calculations:

⟨Y −
n |Y −

n ⟩ = 1

2
⟨Xnj ⊗ 1−Xnk ⊗ i|Xnj ⊗ 1−Xnk ⊗ i⟩

=
1

2
⟨Xnj|Xnj⟩ −

i

2
⟨Xnj|Xnk⟩+

i

2
⟨Xnk|Xnj⟩+

1

2
⟨Xnk|Xnk⟩

= [Xn|Xn]
1 + i[Xn|Xn]

i = 1,

⟨Y +
n |Y −

n ⟩ = 1

2
⟨Xn ⊗ 1 +Xni⊗ i|Xnj ⊗ 1−Xnk ⊗ i⟩
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=
1

2
⟨Xn|Xnj⟩ −

i

2
⟨Xn|Xnk⟩ −

i

2
⟨Xni|Xnj⟩ −

1

2
⟨Xni|Xnk⟩

= −[Xn|Xn]
j + i[Xn|Xn]

k = 0.

Let us optimise the notation by Ψ±?
n,l =

VΨn±,l? . The calculation

Ψ++
n,l =

1√
2

V Φ1
n,l(g)−

i√
2

V Φi
n,l(g)

is as in the complex case. Again d = 2dimC V. Let us calculate the remaining functions.

Ψ−−
n,l (g) =

√
d

2
√
2
⟨Xnj ⊗ 1−Xnk ⊗ i|g ·Xlj ⊗ 1− g ·Xlk ⊗ i⟩

=

√
d

2
√
2
⟨Xnj|g ·Xlj⟩ −

i
√
d

2
√
2
⟨Xnj|g ·Xlk⟩+

i
√
d

2
√
2
⟨Xnk|g ·Xlj⟩

+

√
d

2
√
2
⟨Xnk|g ·Xlk⟩

=
1√
2

V Φ1
n,l(g) +

i√
2

V Φi
n,l(g),

Ψ+−
n,l (g) =

√
d

2
√
2
⟨Xn ⊗ 1 +Xni⊗ i|g ·Xlj ⊗ 1− g ·Xlk ⊗ i⟩

=

√
d

2
√
2
⟨Xn|g ·Xlj⟩ −

i
√
d

2
√
2
⟨Xn|g ·Xlk⟩ −

i
√
d

2
√
2
⟨Xni|g ·Xlj⟩

−
√
d

2
√
2
⟨Xni|g ·Xlk⟩

=
−1√
2

V Φj
n,l(g) +

i√
2

V Φk
n,l(g),

Ψ−+
n,l (g) =

√
d

2
√
2
⟨Xnj ⊗ 1−Xnk ⊗ i|g ·Xl ⊗ 1 + g ·Xli⊗ i⟩

=

√
d

2
√
2
⟨Xnj|g ·Xl⟩+

i
√
d

2
√
2
⟨Xnj|g ·Xli⟩+

i
√
d

2
√
2
⟨Xnk|g ·Xl⟩

−
√
d

2
√
2
⟨Xnk|g ·Xli⟩

=
1√
2

V Φj
n,l(g) +

i√
2

V Φk
n,l(g).

Orthonormality of V Φ•
n,l follows from explicit formulas:

V Φ1
n,l =

1√
2
Ψ++

n,l +
1√
2
Ψ−−

n,l ,
V Φi

n,l =
i√
2
Ψ++

n,l − i√
2
Ψ−−

n,l ,

V Φj
n,l =

1√
2
Ψ−+

n,l − 1√
2
Ψ+−

n,l ,
V Φk

n,l = − i√
2
Ψ−+

n,l − i√
2
Ψ+−

n,l . □
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179–185.

[68] H. Urakawa, The first eigenvalue of the Laplacian for a positively curved homogeneous Riemannian

manifold, Compositio Math., 59 (1986), 57–71.

[69] J. A. Wolf, The geometry and structure of isotropy irreducible homogeneous spaces, Acta Math.,

120 (1968), 59–148.

[70] A. Barut and R. Raczka, Theory of group representations and applications, PWN—Polish Scien-

tific Publishers, Warsaw, 1977.

[71] E. Hewitt and K. Ross, Abstract harmonic analysis, volumes I and II, Springer-Verlag, Berlin-New

York, 1979.

Xue-Mei Li

Department of Mathematics

Imperial College London

London SW7 2AZ, UK

E-mail: xue-mei.li@imperial.ac.uk

Dmitriy Rumynin

Department of Mathematics

University of Warwick

Coventry, CV4 7AL, UK

E-mail: D.Rumynin@warwick.ac.uk

https://doi.org/10.2307/1968928
https://doi.org/10.2307/1968928
https://doi.org/10.2307/2372398
https://doi.org/10.2307/2372398
https://doi.org/10.1090/S0002-9947-1958-0095205-6 
https://doi.org/10.1215/kjm/1250518605
https://doi.org/10.1215/kjm/1250518605
https://doi.org/10.1002/cpa.3160270503
https://doi.org/10.1002/cpa.3160260405
https://doi.org/10.1002/cpa.3160260405
https://doi.org/10.1007/978-3-642-65238-7
https://doi.org/10.1007/978-3-642-65238-7
https://doi.org/10.2307/1970273
https://doi.org/10.2748/tmj/1178229837
https://doi.org/10.2748/tmj/1178229837
https://doi.org/10.1007/BF02394607
https://doi.org/10.1007/BF02394607
https://doi.org/10.1007/978-1-4419-8638-2
https://doi.org/10.1007/978-1-4419-8638-2

