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Abstract. In this article, we present that the germ of a complex analytic
set at the origin in Cn is regular if and only if the related Ohsawa–Takegoshi
extension theorem holds. We also obtain a necessary condition of the L2

extension of bounded holomorphic sections from singular analytic sets.

1. Introduction.

Let M be a Stein manifold and X ⊂ M a closed complex subspace. Oka–Cartan

extension theorem says that any holomorphic function f on X can be extended to a

holomorphic function F on the Stein manifold M (see [4]). Then, it is natural to ask

that if the holomorphic function f has some special property, whether we can find an

extension F possessing the same property. In [10], Ohsawa and Takegoshi considered

the extension of L2 holomorphic functions. More precisely, they proved the following L2

extension theorem, the so-called Ohsawa–Takegoshi extension theorem:

Theorem 1.1 ([10]). Let Ω be a bounded pseudoconvex domain in Cn. Let φ be

a plurisubharmonic function on Ω. Let H be an m-dimensional complex plane in Cn.

Then for any holomorphic function on H∩Ω satisfying∫
H∩Ω

|f |2e−2φdλH < ∞,

there exists a holomorphic function F on Ω such that F |H∩Ω = f and∫
Ω

|F |2e−2φdλn ≤ CΩ ·
∫
H∩Ω

|f |2e−2φdλH ,

where dλH is the Lebesgue measure, and CΩ is a constant which only depends on the

diameter of Ω and m.

It is natural to ask:

Question. Let Ω ⊂ Cn be a domain and A ⊂ Ω an analytic set through the origin

o. If the above L2 extension theorem holds for any bounded pseudoconvex domain Ω̃ ∋ o

such that A ∩ Ω̃ is an analytic set in Ω̃, can one obtain that o is a regular point of A?
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In this article, we will present a positive answer, i.e.,

Theorem 1.2. Let Ω ⊂ Cn (n ≥ 2) be a domain, A ⊂ Ω an analytic set through

the origin o. Then, for small enough ball Br(0) ⊂ Ω, the L2 extension theorem holds for

(Br(0), A) if and only if o is a regular point of A.

The choice of f and φ can be referred to Remark 2.1.

We also present a necessary condition of the L2 extension of bounded holomorphic

sections from singular analytic sets as follows:

Theorem 1.3. Let Ω ⊂ Cn (n ≥ 2) be a domain and o ∈ Ω the origin. Let A ⊂ Ω

be an analytic set through o with dimo A = d (1 ≤ d ≤ n− 1). If the germ (A, o) of A at

o is reducible or ordIA,o := min{ordo(f)|f ∈ IA,o} ≥ d + 1, then there exists a small

enough ball Br0(0) ⊂ Ω, holomorphic functions f on Br0(0)∩A and plurisubharmonic

functions φ on Br0(0) with bounded |f |2e−2φ such that, for any r < r0, there are no

holomorphic extension F of f to Br(0) satisfying∫
Br(0)

|F |2e−2φdλn < ∞.

In particular, we can take A to be hypersurfaces with Brieskorn singularities in Cn,

i.e., A := {zα1
1 + zα2

2 + · · · + zαm
m = 0} ⊂ Cn, where 2 ≤ m ≤ n, αk ≥ n are positive

integers.

Remark 1.1. In [3], Diederich and Mazzilli gave an example with a surface A

defined by equation z21+zq2 = 0 in C3, where q > 3 is any fixed uneven integer. Moreover,

Ohsawa also presented an example with A = {z1z2 = 0} ⊂ C2 in [9].

2. Proof of main results.

For the convenience, firstly we recall the following notion of integral closure of ideals.

Definition 2.1 (see [7]). Let R be a commutative ring and let I be an ideal of

R. An element h ∈ R is said to be integrally dependent on I if it satisfies a relation

hd + a1h
d−1 + ...+ ad = 0 (ai ∈ Ii, 1 ≤ i ≤ d).

The set Ī consisting of all elements in R which are integrally dependent on I is called

the integral closure of I in R, which is an ideal of R. I is called integrally closed if I = Ī.

To prove main results, we need the following Skoda’s division theorem.

Theorem 2.1 (see [2], Chapter VIII, Theorem 9.10). Let Ω be a pseudoconvex

open subset of Cn, let φ be a plurisubharmonic function and g = (g1, ..., gr) be a r-tuple

of holomorphic functions on Ω. Set m = min{n, r − 1}. Then for every holomorphic

function f on Ω such that

I =

∫
Ω

|f |2|g|−2(m+1+ε)e−φdλn < ∞,
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there exist holomorphic functions (h1, ..., hr) on Ω such that f =
r∑

k=1

hkgk and

∫
Ω

|h|2|g|−2(m+ε)e−φdλn ≤ (1 +m/ε)I,

where |g|2 = |g1|2 + |g2|2 + · · ·+ |gr|2.

We also use the following strong openness property of multiplier ideal sheaves in our

proof of the main results.

Theorem 2.2 ([5], [6]). Let φ be a plurisubharmonic function on complex manifold

X and I+(φ) := ∪ε>0I ((1 + ε)φ). Then

I+(φ) = I (φ),

where I (φ) is the sheaf of germs of holomorphic functions f such that |f |2e−φ is locally

integrable.

The referee kindly points out that the above result is not necessary for the proof

of Theorem 1.2 if one generalizes a refined variant of L2 division theorem obtained by

Ohsawa [8].

Lemma 2.3. Let Ω ⊂ Cn (n ≥ 2) be a domain and A ⊂ Ω an analytic set with pure

dimension d through the origin o. Then, there exists a neighborhood U of o such that∫
U∩A

(|z1|2 + · · ·+ |zn|2)−(d−1)dVA < ∞,

where dVA = (ωd|Areg )/d!, ω =
√
−1/2

∑n
k=1 dzk∧dz̄k.

Proof. Note that the form ωd/d! can be written as ωd/d! =
∑′

#I=d dVI , where

I = (k1, ..., kd), dVI denotes the volume form
∏d

α=1(
√
−1/2)dzkα

∧dz̄kα
in the coordinate

plane CI and
∑′

#I=d represents the summation over the ordered multi-indices of length

d. Let w = Tz be a unitary transformation of coordinates satisfying, in the coordinates

w = (w1, ..., wn), there is a bounded neighborhood UI of o such that the projection

πI : UI∩A → U ′
I = UI∩CI is a branched covering with the number of sheets sI for every

I with #I = d (see [1], p.33, Lemma 2). Thus, we have∫
T (UI)∩Areg

|z|−2(d−1)dVz,I =

∫
UI∩T−1(Areg)

|w|−2(d−1)dVw,I

= sI

∫
U ′

I

|w|−2(d−1)dVw,I ≤ sI

∫
U ′

I

(|wk1
|2 + · · ·+ |wkd

|2)−(d−1)dVw,I < ∞.

Let U = T (∩UI). Then, we obtain∫
U∩A

(|z1|2 + · · ·+ |zn|2)−(d−1)dVA ≤
∑
#I=d

′
∫
UI∩T−1(Areg)

|w|−2(d−1)dVw,I < ∞. □
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We are now in a position to prove our main results.

Proof of Theorem 1.2. It is enough to prove the necessity.

Without loss of generality, we can assume 1 ≤ dimo A = d ≤ n − 1, and (A, o) is

irreducible by Remark 2.2.

Suppose that o is a singular point of A. It follows from the local parametriza-

tion theorem of analytic sets that there is a local coordinate system (z′; z′′) =

(z1, ..., zd; zd+1, ..., zn) near o such that for some constant C > 0, we have |z′′| ≤ C|z′|
for any z ∈ A near o.

Let I ⊂ OA,o be the ideal generated by germs of holomorphic functions z̄1, ..., z̄d ∈
OA,o, where OA = OΩ/IA

∣∣
A

and z̄k are the residue classes of zk in OA,o. Since o is a

singularity of A, the embedding dimension dimC mA,o/m
2
A,o of A at o is at least d + 1

(see [2], Chapter II, Proposition 4.32), which implies that there exists d + 1 ≤ k0 ≤ n

such that z̄k0 ̸∈ I.
It follows from |z′′| ≤ C|z′| for any z ∈ A near o that |zk0 |2 ≤ C2|z′|2 and |z|2/(1 +

C2) ≤ |z′|2 on U ∩ A for some neighborhood U of o. By Lemma 2.3, for some smaller

neighborhood U of o, we have∫
U∩A

|zk0 |2|z′|−2ddVA ≤ C2(1 + C2)d−1

∫
U∩A

|z|−2(d−1)dVA < ∞.

Take a small ball Br(0) ⊂ U . It follows from the L2 extension theorem that there exists

a holomorphic function F ∈ O(Br(0)) such that F |A = z̄k0
and∫

Br(0)

|F |2|z′|−2ddλn < ∞.

By Theorem 2.2, for sufficiently small ε > 0 and smaller Br(0) we have∫
Br(0)

|F |2|z′|−2(d+ε)dλn < ∞.

Then, we infer from Theorem 2.1 that there exist holomorphic functions fk ∈ O(Br(0))

such that F =
∑d

k=1 fk·zk, i.e., (F, o) ∈ (z1, ..., zd) · On. By restricting to A, we have

z̄k0 ∈ I, which contradicts to z̄k0 ̸∈ I. □

Remark 2.1. In fact, it follows from Theorem 2.1 that we can replace |z′|2 by

|ĝ|2 := |ĝ1|2 + · · ·+ |ĝd|2 in the proof of Theorem 1.2, where ĝk, 1 ≤ k ≤ d, is arbitrarily

holomorphic extension of z̄k to Br(0). Then, f = zk0 |A and φ = log |ĝ|2(d+ε)/2.

Remark 2.2. Ohsawa’s argument in [9] implies that if (A, o) is reducible, then,

for any small ball Br(0) ⊂ Ω, the L2 extension theorem does not hold for (Br(0), A). In

fact, if (A, o) = (A1, o) ∪ (A2, o) with (Ai, o) are irreducible. Take fi ∈ On such that

fi|Ai ≡ 0 and fi|Aj ̸≡ 0, i ̸= j. Let φ = log |f1−f2| and f = f1(f1−f2)/(f1+f2). Then,

f |A = f1|A and |f |2e−2φ is bounded on A near o. The holding of L2 extension theorem

implies that there exists a holomorphic function F ∈ On such that F = g(f1 − f2) for
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some g ∈ On and F |A = f , which implies gf2|A1 ≡ 0, gf1|A2 = f1. Then, we have

g|A1 ≡ 0 and g|A2 ≡ 1, which is impossible.

Proof of Theorem 1.3. By Remark 2.2, it is sufficient to prove the case that

(A, o) is irreducible and ordIA,o ≥ d + 1. It follows from dimo A = d and Proposition

4.8 of Chapter II in [2] that, in some local coordinates (z′; z′′) = (z1, ..., zd; zd+1, ..., zn)

near o, there exist Weierstrass polynomials

Pk = zmk

k + a1kz
mk−1
k + · · ·+ amkk ∈ Ok−1[zk] ∩ IA,o, k = d+ 1, ..., n. (∗)

with mk = ordoPk. Hence, we have

ajk(z1, ..., zk−1) ∈ mj
k−1, d+ 1 ≤ k ≤ n, 1 ≤ j ≤ mk. (∗∗)

Consider the ideal I in OA,o generated by germs of holomorphic functions z̄1, ..., z̄λ ∈
OA,o, where z̄k are the residue classes of zk in OA,o and d ≤ λ ≤ min{ordIA,o−1, n−1}.
Then, combining (∗) and (∗∗), we obtain that the integral closure I of I in OA,o is

mA,o = (z̄1, ..., z̄n) · OA,o, the maximal ideal of OA,o. Moreover, since ordIA,o ≥ λ + 1,

we have (z̄k)
λ ̸∈ I, λ+ 1 ≤ k ≤ n. In particular, (I)λ ̸⊂ I.

Let Br(0) ⊂ Ω be a small enough ball such that all Pk, z̄k are holomorphic on

A∩Br(0). Let ĝk, 1 ≤ k ≤ λ, be arbitrarily holomorphic extension of gk to Br(0) with

gk = z̄k and φ = (λ/2) log |ĝ|2. Since OA,o is reduced, for any (f, o) ∈ (I)λ, we have

|f | ≤ C · |g|λ for some constant C > 0 by Theorem 2.1 vi) in [7]. Hence, for some

small ball Br0(0), we can assume that on A∩Br0(0), f is holomorphic and |f |2 · e−2φ is

bounded.

Suppose that we have a L2 extension F ∈ O(Br(0)) with some r < r0 such that

F |A = f and ∫
Br(0)

|F |2|ĝ|−2λdλn < ∞.

It follows from Theorem 2.2 that for sufficiently small ε > 0 and smaller Br(0) we have∫
Br(0)

|F |2|ĝ|−2(λ+ε)dλn < ∞.

By Theorem 2.1, there exist holomorphic functions fk ∈ O(Br(0)) such that F =∑λ
k=1 fk·ĝk, which implies (F, o) ∈ (ĝ1, ..., ĝλ)·On. By restricting to A, we have (f, o) ∈ I.

As (f, o) is arbitrary, we obtain (I)λ ⊂ I, which contradicts to (I)λ ̸⊂ I. □
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