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Abstract. Here, we study the selection problem for the vanishing dis-
count approximation of non-convex, first-order Hamilton–Jacobi equations.
While the selection problem is well understood for convex Hamiltonians, the
selection problem for non-convex Hamiltonians has thus far not been studied.

We begin our study by examining a generalized discounted Hamilton–Jacobi
equation. Next, using an exponential transformation, we apply our methods
to strictly quasi-convex and to some non-convex Hamilton–Jacobi equations.
Finally, we examine a non-convex Hamiltonian with flat parts to which our

results do not directly apply. In this case, we establish the convergence by a
direct approach.

1. Introduction.

Let Tn = Rn/Zn be the standard n-dimensional torus and fix a continuous Hamil-

tonian, H : Tn × Rd → R. Here, we require H to be coercive; that is,

lim
|p|→∞

H(x, p) = ∞, uniformly for x ∈ Tn.

We do not, however, assume convexity. The ergodic Hamilton–Jacobi equation is the

partial differential equation (PDE)

H(x,Du) = H in Tn, (E)

and, for ε > 0, the corresponding discounted problem is

εuε +H(x,Duε) = 0 in Tn. (Dε)

In (E), the unknown is a pair, (u,H) ∈ C(Tn) × R, whereas in (Dε), the unknown is

a function, uε ∈ C(Tn). In both (E) and (Dε), we consider solutions in the viscosity

sense. Here, we are interested in the vanishing discount limit, ε→ 0 in (Dε), and in the

characterization of the limit, u, of uε as a particular solution of (E).

The problem (Dε) arises in optimal control theory and zero-sum differential game

theory where ε is a discount factor. Moreover, (Dε) plays an essential role in the ho-

mogenization of first-order Hamilton–Jacobi equations. For example, in the study of
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homogenization in [20], the vanishing discount limit is used to construct solutions to

the ergodic problem. The ergodic problem is sometimes called the cell problem or the

additive eigenvalue problem. The PDE (Dε) is also called the discounted approximation

of the ergodic problem. Properties of the solutions of (E) are relevant in dynamical

systems, namely in weak Kolmogorov–Arnold–Moser (KAM) theory (see [11]), and they

have applications in the study of the long-time behavior of Hamilton–Jacobi equations

[12], [8].

In recent years, there was significant progress in the analysis of non-convex

Hamilton–Jacobi equations. Some remarkable results include the characterization of

the shock structure of the gradient of solutions [10], construction of invariant measures

in the spirit of weak KAM theory [7], and homogenization in random media [2], [3] (see

also [15]). A better grasp of the vanishing discount problem for non-convex Hamilto-

nians is essential to improving our understanding of the nature of viscosity solutions of

Hamilton–Jacobi equations.

Before we proceed, we recall some elementary properties of (E) and (Dε). First,

there exists a unique real constant, H, such that (E) has viscosity solutions [20]. This

constant is often called the ergodic constant or the effective Hamiltonian. However, in

general, (E) does not have a unique solution, not even up to additive constants. The lack

of uniqueness is a central issue in the study of the asymptotic behavior of uε as ε → 0.

As (Dε) is strictly monotone with respect to uε for ε > 0, Perron’s method gives the

existence of a unique viscosity solution, uε. By the coercivity of the Hamiltonian, we

have that

∥Duε∥L∞(Tn) ≤ C for some C > 0 independent of ε. (1.1)

We fix x0 ∈ Tn. The preceding estimate implies that

{uε( · )− uε(x0)}ε>0

is uniformly bounded and equi-Lipschitz continuous in Tn. Therefore, by the Arzelá-

Ascoli theorem, there exists a subsequence, {εj}j∈N, with εj → 0 as j → ∞, a constant

H ∈ R, and a function, u ∈ C(Tn), such that

εju
εj → −H, uεj − uεj (x0) → u ∈ C(Tn), (1.2)

uniformly in Tn as j → ∞. By a standard viscosity solution argument, we see that

(u,H) solves (E). However, the convergence in (1.2) and the function u may depend on

the choice of the subsequence {εj} in this argument. Thus, the limit as ε→ 0 of uε may

not exist.

Our primary goal is to study the selection problem for (Dε); that is, we wish to

understand whether or not the limit as ε → 0 of uε exists and, if it does, what the

characterization of this limit is. This problem was proposed in [20] (see also [4, Remark

1.2, page 400]). It remained unsolved for almost 30 years. Recently, there was sub-

stantial progress in the case of convex Hamiltonians. First, a partial characterization of

the possible limits was given in [16] in terms of the Mather measures (see, for example,

[11], [21], [22]). Then, the convergence to a unique limit and its characterization were
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established in [9] using weak KAM theory. Further selection problems including the case

of degenerate viscous Hamilton–Jacobi equations were addressed using the nonlinear ad-

joint method in [23]. Finally, an analogous convergence result for the case of Neumann

boundary conditions was examined in [1]. The selection problem for possibly degener-

ate, fully nonlinear Hamilton–Jacobi–Bellman equations was considered in [17], [18]. A

related selection problem was addressed in [5], [19] and selection questions motivated by

finite-difference schemes were examined in [24]. In all these papers, the convexity of the

Hamiltonian was essential and no extensions to non-convex Hamiltonians were offered.

Thus, the selection problem in the non-convex setting has yet to be studied.

Here, we develop methods to examine the selection problem for (Dε) for non-convex

Hamilton–Jacobi equations. Our main technical device is a selection theorem for a class

of nonlinearly discounted Hamilton–Jacobi equations, Theorem 2.1. Although this the-

orem is of independent interest, we focus here on two main applications: the case of

strictly quasiconvex Hamiltonians in Theorem 2.2 and the case of double-well problems

in Theorem 2.3. These results and the main assumptions are stated in the next section.

Next, in Section 3, we introduce a generalized discounted approximation, examine its

convergence, and prove Theorem 2.1. Our proof is based on the method introduced in

[23]. Then, in Section 4, we study strictly quasi-convex Hamiltonians and prove Theorem

2.2. Next, in Section 5, we consider the double-well Hamiltonian–Jacobi equation and

prove Theorem 2.3. Finally, in Section 6, we examine the convergence for a quasi-convex

Hamiltonian with flat parts. The results in this section do not follow from the general

theory developed in Section 4 and they require a distinct approach. In this final section,

we discuss maximal subsolutions and the Aubry set. In particular, we provide an answer

to Question 12 in the list of open problems [6] from the conference “New connections

between dynamical systems and PDEs” at the American Institute of Mathematics in

2003.

2. Assumptions and main results.

Here, we discuss the main assumptions used in the paper and present the main

results.

Let G ∈ C1(Tn × Rn) and f ∈ C2(Tn × R) satisfy

(A1) uniformly for x ∈ Tn,

lim
|p|→∞

(
1

2|p|
G(x, p)2 − |DxG(x, p)|

)
= +∞;

(A2) p 7→ G(x, p) is convex;

(A3) fr(x, r) > 0 for all (x, r) ∈ Tn×R and there existsM > 0 such that, for all x ∈ Tn,

f(x,−M) ≤ −G(x, 0) ≤ f(x,M).

We consider the following generalization of the discounted problem

f(x, εvε) +G(x,Dvε) = 0 in Tn. (GEε)
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Because of (A3), for ε > 0, the left-hand side of (GEε) is strictly monotone in vε.

Therefore, (GEε) has a comparison principle. Furthermore, the coercivity of G given by

(A1) implies that ∥Dvε∥L∞ < C for some constant, C, independent of ε (see Lemma 3.1

below). Thus, arguing as before, we see that there exists a constant, c ∈ R, such that

εvε → −c in C(Tn) as ε → 0. Accordingly, we consider the following ergodic problem

associated with (GEε):

f(x,−c) +G(x,Dv) = 0 in Tn. (GE)

Without loss of generality, by replacing f by fc(x, r) = f(x,−c+ r), if necessary, we can

assume that c = 0. As in (1.2), for x0 ∈ Tn fixed, we pick a subsequence εj → 0 such

that {vεj −vεj (x0)} converges to v uniformly in Tn. Clearly, v is a solution to (GE) with

v(x0) = 0 and ∥Dv∥L∞ < C. By (A3), v − ∥v∥L∞ and v + ∥v∥L∞ are a subsolution and

a supersolution of (GEε), respectively. Hence,

v − ∥v∥L∞ ≤ vε ≤ v + ∥v∥L∞ .

Theorem 2.1. Assume (A1)–(A3) hold and that c = 0 in (GE). Let vε be the

viscosity solution of (GEε). Let M be the set of probability measures given by (3.5). Let

E be the family of subsolutions w of (GE) that satisfy∫∫
Tn×Rn

fr(x, 0)w(x) dµ ≤ 0 for all µ ∈ M. (2.1)

Define

v0(x) = sup
w∈E

w(x).

Then, we have

vε(x) → v0(x), uniformly for x ∈ Tn as ε→ 0. (2.2)

A Hamiltonian, H ∈ C2(Tn×Rn), is strictly quasi-convex if it satisfies the following

assumption:

(A4) For any a ∈ R and x ∈ Tn, the set {p ∈ Rn : H(x, p) ≤ a} is convex, and there

exists a constant, λ0 > 0, such that

λ20DpH(x, p)⊗DpH(x, p) + λ0D
2
ppH(x, p) ≥ 0 for all (x, p) ∈ Tn × Rn.

If the preceding assumption holds, we have that G(x, p) := eλ0H(x,p) is a convex function

of p. In addition to (A4), it is useful to introduce the following growth assumption on G.

(A5) G(x, p) = eλ0H(x,p) satisfies (A1).

Theorem 2.2. Assume (A4) and (A5) hold. Let uε solve (Dε). Then, uε solves

(GEε) for f(x, r) = −e−λ0r for (x, r) ∈ Tn×R, and G as in Assumption (A5). Moreover,
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as ε → 0, uε converges uniformly to the function u0 determined by the conditions in

Theorem 2.1.

Remark 1. While assumption (A4) is somewhat technical, it holds if, for each

fixed x ∈ Tn and each s > minH(x, · ), the level set {p ∈ Rn : H(x, p) = s} is a closed

(n− 1)-dimensional manifold whose second fundamental form is strictly positive.

More precisely, the following assumption implies (A4):

(A4′) for each fixed x ∈ Tn, and each s > s0 = minH(x, · ), the level set Ms = {p ∈ Rn :

H(x, p) = s} is a closed manifold of dimension n − 1 and, for each p ∈ Ms, there

exists c = c(s) > 0 such that

(Bpv) · v ≥ c|v|2 for all v ∈ TpMs,

where TpMs is the tangent plane to Ms at p and Bp : TpMs × TpMs → R is the

second fundamental form of Ms at p. Furthermore, there exists α > 0 such that,

for each p ∈ ∂Ms0 = ∂{p ∈ Rn : H(x, p) = s0}, we have

D2
ppH(x, p) ≥ αIn,

where In is the identity matrix of size n

(see [7, Section 9.7] for details). The preceding condition is satisfied by a broad class of

quasi-convex Hamiltonians of which a typical example is

H(x, p) = K(|p|) + V (x),

where K : [0,∞) → R is of class C2 and satisfies

K ′(0) = 0, K ′′(0) > 0, and K ′(s) > 0 for s > 0.

In Section 5, we consider an alternative approach to the non-convex, double-well

Hamiltonian in one-dimensional space,

H(x, p) = (|p+ P |2 − 1)2 − V (x), (2.3)

where P ∈ R and V : T → R is a continuous function satisfying

min
T
V = 0 and max

T
V < 1. (2.4)

Although this Hamiltonian does not satisfy (A4), we prove the following convergence

result.

Theorem 2.3. Let H be given by (2.3). Let uε be the corresponding solution of

(Dε) for a fixed P ∈ R. Then, there exists a solution, u0 ∈ C(T), of

(|P +Du0|2 − 1)2 − V (x) = H(P ) in T (2.5)

such that
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lim
ε→0

(
uε +

H(P )

ε

)
= u0 in C(T).

Remark 2. In the proof of the preceding theorem, we also obtain a characteriza-

tion of limit u0 that depends on the value of P (see Section 5).

3. A generalization of the discounted approximation.

Here, we use the nonlinear adjoint method [10] (see also [25]) and the strategy

introduced in [23] for the study of (GEε) to investigate the limit ε→ 0.

3.1. A regularized problem and the construction of Mather measures.

To study (GEε), we introduce the following regularized problem. For each η > 0,

we consider

f(x, εvε,η) +G(x,Dvε,η) = η2∆vε,η in Tn. (Aη
ε)

Lemma 3.1. Suppose that (A1) and (A3) hold. Then, there exists a constant,

C > 0, independent of ε and η such that, for any solution vε,η of (Aη
ε), we have

∥Dvε,η∥L∞(Tn) ≤ C. (3.1)

Proof. Thanks to (A3), −ε−1M and ε−1M are a subsolution and a supersolution

of (Aη
ε), respectively. We use the comparison principle to get

−ε−1M ≤ vε,η ≤ ε−1M (3.2)

in Tn. In particular, |f(x, εvε,η)| ≤ C in Tn for C = maxx∈Tn, |r|≤M |f(x, r)|.
Now, we prove the Lipschitz bound using Bernstein’s method. First, we set ϕ :=

|Dvε,η|2/2. Differentiating (Aη
ε) in x and multiplying by Dvε,η, we get

εfr|Dvε,η|2 + (Dxf +DxG) ·Dvε,η +DpG ·Dϕ = η2(∆ϕ− |D2vε,η|2).

Next, we choose x0 ∈ Tn such that ϕ(x0) = maxTn ϕ. According to (A3), we obtain

(Dxf +DxG) ·Dvε,η + η2|D2vε,η|2 ≤ 0 at x0 ∈ Tn.

For η < n−1/2, we have

η2|D2vε,η|2 ≥ |η2∆vε,η|2 = |f(x, εvε,η) +G(x,Dvε,η)|2 ≥ 1

2
G(x0, Dv

ε,η)2 − C

for some C > 0. Therefore, we obtain

1

2
G(x0, Dv

ε,η)2 + (Dxf +DxG) ·Dvε,η ≤ C,

which, together with (A1), yields (3.1). □

Due to (3.2), for every ε fixed, ∥vε,η∥∞ is bounded. The Lipschitz bound (3.1) and
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the uniqueness of the solution of (GEε) give that vε,η → vε in C(Tn) as η → 0.

Fix x0 ∈ Tn and let δx0 denote the Dirac delta at x0. Next, we consider the

linearization of (Aη
ε) and introduce the corresponding adjoint equation

εfr(x, 0)θ
ε,η − div(DpG(x,Dv

ε,η)θε,η) = η2∆θε,η + εδx0 in Tn. (AJηε)

Integrating (AJηε) in Tn and using the maximum principle, we get the following

proposition.

Proposition 3.2. Let vε,η solve (Aη
ε) and let θε,η solve (AJηε). Then, we have

θε,η > 0 in Tn \ {x0} and

∫
Tn

fr(x, 0)θ
ε,η(x) dx = 1 for any ε, η > 0.

In light of Lemma 3.1 and of the Riesz representation theorem, there exists a non-

negative Radon measure, νε,η, on Tn × Rn such that∫
Tn

ψ(x,Dvε,η)θε,η(x) dx =

∫∫
Tn×Rn

ψ(x, p) dνε,η(x, p), ∀ψ ∈ Cc(Tn × Rn). (3.3)

Because fr(x, 0) > 0 for all x ∈ Tn and because of Proposition 3.2, we have

1

maxx∈Tn fr(x, 0)
≤
∫∫

Tn×Rn

dνε,η ≤ 1

minx∈Tn fr(x, 0)
.

Therefore, there are two subsequences, εj and ηk, with εj → 0 and ηk → 0 as j, k → ∞
and corresponding probability measures, νεj , ν ∈ P(Tn × Rn), also exist such that

νεj ,ηk ⇀ νεj as k → ∞,

νεj ⇀ ν as j → ∞,
(3.4)

weakly in the sense of measures. The limit ν depends on x0 and on the subsequences

{εj} and {ηk}. Thus, when we need to highlight this explicit dependence, we write it as

ν = ν(x0, {εj}, {ηk}). Next, we define the family of measures, M ⊂ P, as

M =
∪

x0∈Tn,{εj},{ηk}

ν(x0, {εj}, {ηk}). (3.5)

Proposition 3.3. Suppose that (A1) and (A3) hold. Then, for any ν ∈ M, we

have

(i)

∫∫
Tn×Rn

(
DpG(x, p) · p−G(x, p)

)
dν(x, p) =

∫∫
Tn×Rn

f(x, 0) dν(x, p),

(ii)

∫∫
Tn×Rn

DpG(x, p) ·Dφdν(x, p) = 0 for any φ ∈ C1(Tn).

Proof. We first prove (i). Note that (AJηε) can be rewritten as

f(x, εvε,η) +DpG(x,Dv
ε,η) ·Dvε,η − η2∆vε,η = DpG(x,Dv

ε,η) ·Dvε,η −G(x,Dvε,η).
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Let θε,η solve (AJηε). Multiplying the previous equation by θε,η, integrating on Tn, and

using integration by parts, we get∫
Tn

(DpG(x,Dv
ε,η) ·Dvε,η −G(x,Dvε,η))θε,η dx

=

∫
Tn

f(x, εvε,η)θε,η dx−
∫
Tn

(
div(DpGθ

ε,η) + η2∆θε,η
)
vε,η dx

=

∫
Tn

(f(x, εvε,η)− εfr(x, 0)v
ε,η)θε,η dx+ εvε,η(x0).

We use (3.3), set η = ηk, and let k → ∞. Finally, we set ε = εj and let j → ∞ to get (i).

Next, we multiply (AJηε) by φ ∈ C1(Tn). Then, we integrate on Tn, use integration

by parts, and set η = ηk and ε = εj . Finally, we take the limit k → ∞ and then j → ∞
to obtain (ii). □

3.2. Key estimates.

Next, we use the nonlinear adjoint method to establish estimates for the solutions

of (GEε). These estimates are essential ingredients of our convergence result for (GEε).

Lemma 3.4. Suppose that (A1)–(A3) hold. Let vε solve (GEε). Then, as ε→ 0,∫∫
Tn×Rn

fr(x, 0)v
ε(x) dν(x, p) ≤ o(1) for all ν ∈ M.

Proof. Let γ ∈ C∞
c (Rn) be a standard mollifier; that is, γ ≥ 0, supp γ ⊂ B(0, 1)

and ∥γ∥L1(Rn) = 1. For each η > 0, set γη(y) := η−nγ(η−1y) for y ∈ Rn and define

ψη(x) := vε ∗ γη(x) =
∫
Rn

vε(x− y)γη(y) dy.

Then

G(x,Dψη) = G(x,Dvε ∗ γη) = G

(
x,

∫
Rn

Dvε(x− y)γη(y) dy

)
≤
∫
Rn

G(x,Dvε(x− y))γη(y) dy ≤
∫
Rn

G(x− y,Dvε(x− y))γη(y) dy + Cη

= −
∫
Rn

f(x− y, εvε(x− y))γη(y) dy + Cη

≤ −
∫
Rn

f(x, εvε(x))γη(y) dy + C(η + εη) ≤ G(x,Dvε) + Cη for ε < 1.

(3.6)

We have used the fact that ∥Dvε∥L∞ is bounded uniformly in ε, and the Jensen inequality

in the above computation.

Besides, we use Taylor’s expansion to get

f(x, εvε) = f(x, 0) + εfr(x, 0)v
ε + o(ε) as ε→ 0. (3.7)
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Using (3.6), (3.7), and the convexity of G, we obtain

0 = f(x, εvε) +G(x,Dvε) ≥ f(x, 0) + εfr(x, 0)v
ε +G(x,Dψη)− Cη − o(ε)

≥ f(x, 0) + εfr(x, 0)v
ε +G(x, p) +DpG(x, p) · (Dψη − p)− Cη − o(ε)

for p ∈ Rn. Next, we integrate the preceding inequality with respect to dν(x, p) for

ν ∈ M and use properties (i) and (ii) of Proposition 3.3 to conclude that∫∫
Tn×Rn

fr(x, 0)v
ε(x) dν(x, p) ≤ Cη

ε
+ o(1).

Finally, we let η → 0 to achieve the desired result. □

Lemma 3.5. Suppose that (A1)–(A3) hold. Let w ∈ C(Tn) be a subsolution of

(GE). Then, we have

vε(x0) ≥ w(x0)−
∫∫

Tn×Rn

fr(x, 0)w(x) dν
ε(x, p) + o(1) as ε→ 0

for all x0 ∈ Tn, where νε is a weak limit in the sense of measures of a subsequence of

νε,η as η → 0.

Proof. For η > 0, let wη := w ∗ γη, where γη is a mollifier as in the proof of

Lemma 3.4. Because η2|∆wη| ≤ Cη, we use an argument similar to the one in (3.6) to

obtain

f(x, 0) +G(x,Dwη) ≤ η2∆wη + Cη in Tn. (3.8)

Now, using (3.7), we rewrite (Aη
ε) as

f(x, 0) + εfr(x, 0)v
ε,η + o(ε) +G(x,Dvε,η) = η2∆vε,η. (3.9)

Next, we subtract (3.8) from (3.9) to get

Cη + εfr(x, 0)v
ε,η + o(ε) ≥ G(x,Dwη)−G(x,Dvε,η)− η2∆(wη − vε,η)

≥ DpG(x,Dv
ε,η) ·D(wη − vε,η)− η2∆(wη − vε,η).

Multiplying the preceding inequality by a solution, θε,η, of (AJ)ηε , integrating on Tn, and

using integration by parts, we get∫
Tn

(Cη + εfr(x, 0)v
ε,η + o(ε))θε,η dx

≥ −
∫
Tn

(
div(DpGθ

ε,η) + η2∆θε,η
)
(wη − vε,η) dx

= ε

∫
Tn

(δx0 − fr(x, 0)θ
ε,η)(wη − vε,η) dx.

Next, we rearrange the previous estimate and get
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vε,η(x0) ≥ wη(x0)−
∫∫

Tn×Rn

fr(x, 0)w
η dνε,η(x, p)− Cη + o(ε)

ε

∫∫
Tn×Rn

dνε,η(x, p).

Finally, we set η = ηk → 0. Thus, νε,ηk ⇀ νε as measures. Taking the limit in the

preceding inequality ends the proof. □

3.3. Convergence.

Here, we prove the selection theorem for (GEε), Theorem 2.1. This theorem sub-

stantially extends the existing results for convex Hamiltonians and is the key technical

device in the study of quasi-convex and double-well Hamiltonians.

Proof of Theorem 2.1. Let {εj}j∈N be any subsequence converging to 0 such

that vεj converges uniformly to a solution of (GE) as j → ∞. In view of Lemma 3.4 and

the definition of v0, we have that

v0 ≥ lim
j→∞

vεj . (3.10)

Moreover, by Lemma 3.5, we get

lim
j→∞

vεj (x) ≥ w(x)−
∫∫

Tn×Rn

fr(x, 0)w(x) dν(x, p)

for any subsolution, w, of (GE). In particular, we take the supremum of all w ∈ E in the

above inequality to get that

lim
j→∞

vεj (x) ≥ sup
w∈E

w(x) = v0(x). (3.11)

Thus, we combine (3.10) and (3.11) to get the desired result. □

4. Strictly quasi-convex Hamiltonians.

Now, we use the results in the preceding section to investigate the selection problem

for strictly quasi-convex Hamilton–Jacobi equations and to prove Theorem 2.2. For

convenience, we assume that H = 0 in (E).

Lemma 4.1. A function, uε ∈ C(Tn), solves (Dε) if and only if uε solves (GEε)

for f(r) = −e−λ0r, r ∈ R, and G as in Assumption (A5).

Proof. Clearly, uε is a subsolution of (Dε) if and only if for any x ∈ Tn and any

p ∈ D+uε(x), we have

εuε(x) +H(x, p) ≤ 0. (4.1)

Moreover, (4.1) holds if any only if

−e−εuε(x) +G(x, p) ≤ 0 (4.2)

for any p ∈ D+uϵ and x ∈ Tn. Arguing in a similar way for the supersolution case gives

the result. □
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Theorem 2.2 is an immediate corollary of Theorem 2.1. The proof of Theorem 2.2

follows.

Proof of Theorem 2.2. By the preceding Lemma, uε solves (GEε). It is clear

that f,G satisfy (A1)–(A3). Thus, we apply Theorem 2.1 to obtain the last statement

of the theorem. □

5. One-dimensional, non-convex, double-well Hamiltonians.

For each P ∈ R, we consider the discounted Hamilton–Jacobi equation

εuε + (|P + uεx|2 − 1)2 − V (x) = 0 in T. (5.1)

As before, limε→0 εu
ε = −H(P ) ∈ R, where H(P ) is the unique constant for which

(|P + ux|2 − 1)2 − V (x) = H(P ) in T

has a viscosity solution.

Assumption (2.4) means that V has a small oscillation; that is, osc (V ) := maxT V −
minT V < 1. Because the wells of (|p|2 − 1)2 have depth 1, which is larger than osc (V ),

the effect of V on H(P ) is localized. Moreover, from the results in [2], the graph of H(P )

follows and is shown in Figure 5.1. As suggested by Figure 5.1, to prove Theorem 2.3,

we separately consider different cases according to the region where P lies. We have the

following a priori estimates that are essential in the proof of Theorem 2.3.

Figure 5.1. The shape of H(P ).

Proposition 5.1. Let uε solve (5.1). Consider the following three cases:

(a) |P | < 1, H(P ) > 0, (b) |P | > 1, H(P ) > 0, (c) H(P ) = 0. (5.2)

Then, in the viscosity sense, we have,

(i) In case (a), for ε > 0 sufficiently small, |P + uεx| ≤ 1 in T.

(ii) In case (b), if P > 1 then P + uεx ≥ 1 in T for sufficiently small ε > 0. If P < −1,

then P + uεx ≤ −1 in T for sufficiently small ε > 0.
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(iii) In case (c), if P > 0, then P + uεx ≥ 0 in T for sufficiently small ε > 0. If P < 0,

then P + uεx ≤ 0 in T for sufficiently small ε > 0.

Proof. First, we extend uε periodically to R.
To prove (i), we argue by contradiction. Suppose that there exists z ∈ R such that

uε is differentiable at z and |P + uεx(z)| > 1. Define f : R → R by

f(x) = uε(x) + Px+ |x− z|.

Because |P | < 1, there exists x0 ∈ R such that f(x0) = minx∈R f(x) (see Figure 5.2, case

(a)). Next, we prove that x0 ̸= z. Indeed, by setting q = P + uεx(z), we obtain

f(z − αq) = P (z − αq) + uε(z − αq) + α|q|
= P (z − αq) + uε(z)− αuεx(z)q + o(α) + α|q|

= f(z)− α

(
|q|(|q| − 1) +

o(α)

α

)
,

which implies f(z − αq) < f(z) for a small α > 0 since |q| > 1. Thus, x0 ̸= z.

Because uε is a viscosity supersolution of (5.1) at x = x0, we have

V (x0) ≤ εuε(x0) +

(∣∣∣∣P −
(
P +

x0 − z

|x0 − z|

)∣∣∣∣2 − 1

)2

= εuε(x0).

Since εuε(x0) → −H(P ) < 0, the above inequality yields V (x0) < 0. This contradicts

(2.4). Thus, (i) holds.

Next, we prove (ii). We consider only the case when P > 1 and argue by contradic-

tion. If P < −1, the argument is analogous. Suppose that there exists z ∈ R such that

uε is differentiable at z and P + uεx(z) < 1. Define the function f : R → R by

f(x) := uε(x) + Px− |x− z|.

Because P > 1, there exists x0 ∈ [z,∞) such that f(x0) = minx∈[z,∞) f(x) (see Figure

5.2, case (b)). First, we prove that x0 > z. We start by setting q = P + uεx(z). For

α > 0, we have

f(z + α) = P (z + α) + uε(z + α)− α

= P (z + α) + uε(z) + αuεx(z) + o(α)− α

= f(z) + α

(
q − 1 +

o(α)

α

)
.

Because q < 1, the preceding identity implies that f(z + α) < f(z) for a small α > 0.

Hence, x0 > z. Consequently, by the argument of the last part of the proof of (i), we get

a contradiction.

Finally, we prove (iii). We consider only the case when P > 0 and prove that

P + uεx ≥ 0 in T. The case when P < 0 is analogous.

The proof proceeds by contradiction. First, if P + uεx ≤ 0 for almost everywhere
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Case (a). Case (b).

Figure 5.2.

x ∈ T, then

0 = uε(1)− uε(0) =

∫ 1

0

uεx(x) dx ≤
∫ 1

0

(−P ) dx = −P < 0,

which is a contradiction. Therefore, we need to consider only the case when there exists

x1, x2 ∈ R with x1 ̸= x2 such that uε is differentiable at x1, x2 and

P + uεx(x1) > 0 > P + uεx(x2).

We can assume that x1 < x2 without loss of generality. Otherwise, by periodicity, we

replace x2 by x2 + k for some large enough k ∈ N.
In view of [3, Lemma 2.6], there exists x3 ∈ (x1, x2) such that 0 ∈ P +D+uε(x3).

By the definition of the viscosity subsolution, we have

εuε(x3) + |02 − 1|2 − V (x3) = εuε(x3) + 1− V (x3) ≤ 0,

which is a contradiction for sufficiently small ε > 0 as limε→0 εu
ε(x3) = 0 and maxV < 1.

□

Remark 3. By inspecting the proof of case (a) of the preceding proposition, we

see that the argument extends to arbitrary dimensions. In contrast, the proofs of the

other two cases are one dimensional in nature, and we do not know how to generalize

them for higher dimensions.

Finally, we present the proof of Theorem 2.3.

Proof of Theorem 2.3. First, we use Proposition 5.1 to transform (5.1) into

(GEε). Then, we proceed as follows. We set vε := uε + H(P )/ε. Thus, the ergodic

constant becomes 0.

In case (a), we use (i) of Proposition 5.1 to rewrite (5.1) as
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−
√
V (x) +H(P )− εvε − |P + vεx|2 + 1 = 0 in T.

Next, we set G(x, p) := −|P + p|2 + 1. Then, G is concave (not convex) in p. We set

wε = −vε to have that wε is the viscosity solution to√
V (x) +H(P ) + εwε + |P − wε

x|2 − 1 = 0 in T.

This new equation is convex. Thus, the convergence of wε (hence vε) is straightforward

by Theorem 2.1.

In case (b), we consider only the case when P > 1 as the case when P < −1 is

similar. In light of (ii) in Proposition 5.1, we rewrite (5.1) as

−
√
V (x) +H(P )− εvε + |P + vεx|2 − 1 = 0 in T.

Here, a direct application of Theorem 2.1 implies the convergence of vε as ε→ 0.

Finally, in case (c), we consider only the case when P > 0. Because P + uεx ≥ 0 in

T, only the positive branch (p ≥ 0) of the graph of (|p|2 − 1)2 plays a role here. Note

that this branch is quasi-convex and satisfies (A4). Therefore, Theorem 2.2 gives the

convergence of uε as ε→ 0. □

5.1. A further generalization in one dimension.

The argument in the proof of Theorem 2.3 can be adapted to handle the case when

the oscillation of the potential energy, V , is smaller than the depth of any well of the

kinetic energy, H. Thus, we have the convergence of the discounted approximation. We

can generalize this idea as follows. Consider a Hamiltonian of the form

H(x, p) = F (p)− V (x),

where F (p) is the kinetic energy and V (x) is the potential energy. Assume that −∞ =

p0 < p1 < p2 < · · · < p2L+1 < p2L+2 = +∞ exists for some L ∈ N such that

• lim|p|→∞ F (p) = +∞,

• F ′(pi) = 0 and F ′′(pi) ̸= 0 for 1 ≤ i ≤ 2L+ 1,

• F ′(p) > 0 for p ∈ (p2i+1, p2i+2) for 0 ≤ 1 ≤ L,

• F ′(p) < 0 for p ∈ (p2i, p2i+1) for 0 ≤ 1 ≤ L.

Set

m = min
1≤i≤2L

|F (pi)− F (pi+1)|.

Assume that

osc(V ) < m.

Under these assumptions, we can prove that the solution uε of (D)ε converges to a

solution of (E) for any P ∈ R, which generalizes Theorem 2.3.
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Remark 4. If the oscillation of V is larger than m, we cannot localize the con-

vergence argument. The qualitative behavior of H was examined in [3]. However, the

characterization of the convergence of the discounted approximation remains an open

problem. In this setting, for some values of P , we see that due to the non-convex nature

of the gradient jumps, the problem cannot be transformed into an equation of the form

(GEε).

6. An example: A quasi-convex Hamiltonian with flat parts.

In this last section, we study a selection problem for which the results in Sections 3

and 4 do not apply. We consider a continuous, piecewise C1, quasi-convex Hamiltonian

that has a level set with a flat part. Thus, (A4) does not hold and, therefore, we need

an alternative approach.

Assume that n = 1. For p ≥ 0, let

F (p) =


p for 0 ≤ p ≤ 1,

1 for 1 ≤ p ≤ 2,

p− 1 for p ≥ 2.

Consider the Hamiltonian

H(x, p) = F (|p|)− V (x), (6.1)

where V is as follows. First, we select a sufficiently small s > 0. Then, we set

V (x) =


x for 0 ≤ x ≤ s,

2s− x for s ≤ x ≤ 2s,

0 for 2s ≤ x ≤ 1.

(6.2)

To study the effect of the flat part of F , we fix P = 3/2. For this value of P , we

examine the maximal subsolutions of (2.5) and the discounted problem.

Image of F (|p|). Image of V (x).
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6.1. Maximal subsolutions and the Aubry set at P = 3/2.

First, we compute the effective Hamiltonian at 3/2; that is, the unique value H(P )

for which (2.5) has a viscosity solution.

Lemma 6.1. Assume that (6.1) and (6.2) hold. Then, H(3/2) = 1.

Proof. Choose a function v ∈ C(T) such that

vx =
1

2
+ V in (0, 2s),

vx ∈
[
−1

2
,
1

2

]
in (2s, 1),∫ 1

0

vx dx = 0.

Clearly, v is a viscosity solution to

F

(∣∣∣∣32 + vx

∣∣∣∣)− V (x) = 1 in T. (6.3)

Thus, H(3/2) = 1. □

Next, we define the corresponding maximal subsolutions. First, we fix a vertex y ∈ T
and set

S(x, y) = sup{w(x)− w(y) : w is a subsolution of (6.3)}. (6.4)

Clearly, S(y, y) = 0, x 7→ S(x, y) is a subsolution of (6.3) in the whole torus, T, and
it is a solution of (6.3) in T \ {y}. Because S(·, y) is the largest subsolution w of (6.3)

satisfying w(y) = 0, we call it the maximal subsolution with vertex y.

In the conference “New connections between dynamical systems and PDEs” at the

American Institute of Mathematics in 2003, Sergey Bolotin posed the following question

(see [6], question 12 in the list of open problems):

Question 1. Does there exist y ∈ T such that x 7→ S(x, y) is a solution of (6.3)

in T?

The answer to the preceding question was found to be yes if H is strictly quasiconvex

(see [14]). For the general nonconvex case, this question has remained open. Here, we

answer no to this question (see also [13, Example 12.7]). More precisely, we offer the

following proposition.

Proposition 6.2. For all y ∈ T, S( · , y) is not a solution of (6.3) in T.

Proof. Fix y ∈ T. Let w : T → R be a function such that w(y) = 0 and
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wx(x) =


−7

2
for x ∈

(
y − 1

8
, y

)
,

1

2
for x ∈

(
y, y +

7

8

)
.

(6.5)

It is straightforward that w is a subsolution of (6.3) in the almost everywhere sense.

Hence, it is a viscosity subsolution. Therefore, S(x, y) ≥ w(y) for all x ∈ T. In particular,

this implies that [
−7

2
,
1

2

]
⊂ D−S(y, y). (6.6)

Next, we select q = −3/2 ∈ D−S(y, y) and notice that

F

(∣∣∣∣32 + q

∣∣∣∣)− V (y) ≤ F (0) = 0 < 1.

Consequently, S( · , y) is not a supersolution of (6.3) at y. □

We observe that the maximal subsolution, S(x, y), can be computed explicitly. How-

ever, we do not need this computation here and, thus, omit it.

Remark 5. We recall that we can define the Aubry set for strictly quasiconvex

Hamilton–Jacobi equations as the set of all points, y, such that S( · , y) is a solution on

Tn (see [14] for the details). Proposition 6.2 implies that if we define the Aubry set

in the same way, it is empty. However, this does not contradict the results in [14] as

the Hamiltonian of the example in this section violates an assumption of the strictly

quasiconvexity. This fact indeed highlights a significant difference between convex and

non-convex cases. Therefore, if an analog of the Aubry set exists, it has to be defined in

a different way. In the general non-convex case, we can construct Mather measures [7]

using the nonlinear adjoint method. When the Hamiltonian is strictly quasiconvex, these

measures are invariant under the Hamiltonian flow. Moreover, the Mather measures are

supported in a subset of the Aubry set called the Mather set. This, of course, cannot

hold if the Aubry set is empty. Besides, in the general non-convex case, Mather measures

may not be invariant under the Hamiltonian flow, and the loss of invariance is encoded

in dissipation measures that record the gradient jump structure [7].

6.2. Discounted approximation at P = 3/2.

Finally, we consider the discounted approximation problem for P = 3/2.

εuε + F

(∣∣∣∣32 + uεx

∣∣∣∣)− V (x) = 0 in T. (6.7)

Proposition 6.3. There exists a solution of (6.3), u0 ∈ C(T), such that

lim
ε→0

(
uε +

1

ε

)
= u0 in C(T).
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Proof. Let vε = uε + 1/ε. Then, vε solves

εvε + F

(∣∣∣∣32 + vεx

∣∣∣∣) = 1 + V (x) in T. (6.8)

Next, we give an explicit construction for vε.

Step 1. Set

vε(x) = e−εx

∫ x

0

eεr
(
1

2
+ V (r)

)
dr for x ∈ (0, aε),

where aε is a number to be chosen such that aε ∈ (s, 2s) and vεx(a
ε−) = 1/2.

It is clear that

– vε(0) = 0 and vεx(0+) = 1/2.

– vε(x) ≤ x and

vεx(x) =
1

2
+ V (x)− εvε(x).

– In particular, for 0 < x < s, we have vεx(x) ≥ 1/2 and thus

εvε(x) + F

(∣∣∣∣32 + vεx

∣∣∣∣) = εvε(x) +

(
1

2
+ vεx

)
= 1 + V (x). (6.9)

– vε is increasing and always εvε = O(ε). We choose aε ∈ (s, 2s) such that εvε(aε) =

V (aε). Then, limε→0 a
ε = 2s and vεx(a

ε−) = 1/2. Clearly, (6.9) holds for all x ∈
(0, aε).

Step 2. Define

vε(x) = eε(a
ε−x)vε(aε) + e−εx

∫ x

aε

eεr
(
−1

2
+ V (r)

)
dr for x ∈ (aε, bε),

where bε > 2s is a number to be chosen later. We have that

– vεx(a
ε+) = −1/2.

– vε is decreasing in (aε, bε), and

vεx(x) = −1

2
+ V (x)− εvε(x).

– We argue that, for x ∈ (aε, 2s), we have εvε(x) ≥ V (x). This is correct as εvε(aε) =

V (aε) and εvεx(x) ≥ −1 = V ′(x) in (aε, 2s). Thus, vεx(x) ≤ −1/2 in (aε, 2s) and

also vε(2s) > 0.

– Pick bε > 2s to be the smallest number such that vε(bε) = 0. Then, vεx(b
ε−) =

−1/2, and, for x ∈ (aε, bε), we always have vεx(x) ≤ −1/2 and
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εvε(x) + F

(∣∣∣∣32 + vεx

∣∣∣∣) = εvε(x) +

(
3

2
+ vεx

)
= 1 + V (x).

Step 3. For x ∈ (bε, 1), we set vε(x) = 0. As V = 0 in (bε, 1), we have that, for

x ∈ (bε, 1),

εvε(x) + F

(∣∣∣∣32 + vεx

∣∣∣∣) = F

(
3

2

)
= 1 = 1 + V (x).

From the preceding three steps of the construction, vε is 1-periodic. To check that vε

solves (6.8), we only need to check the definition of viscosity solutions at the points

where there are gradient jumps. These points are x = 0, aε, bε. As we have F (p) = 1 for

p ∈ [1, 2], the verification at these three points is obvious.

Now, we are concerned with the convergence of vε as ε → 0. As discussed in Step

1, we have that limε→0 a
ε = 2s. Set b = limε→0 b

ε. We use the explicit formula of vε to

get that vε → u0, uniformly in T, where u0 satisfies

u0(0) = 0,

(u0)′(x) =
1

2
+ V (x) in (0, 2s),

(u0)′(x) = −1

2
in (2s, b),

u0 ≡ 0 on [b, 1].

Finally, we see that u0 solves (6.3). □
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