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Abstract. The invariant I(A, ξ, γ) was first introduced by E. Artal,

V. Florens and the author. Inspired by the idea of G. Rybnikov, we obtain a
multiplicativity theorem of this invariant under the gluing of two arrangements
along a triangle. An application of this theorem is to prove that the extended

Rybnikov arrangements form an ordered Zariski pair (i.e. two arrangements
with the same combinatorial information and different ordered topologies).
Finally, we extend this method to a family of arrangements and thus we obtain
a method to construct new examples of Zariski pairs.

Introduction.

An important question in the study of an algebraic curve C ⊂ CP2 is to understand

the relation between the combinatorial information of a curve and its topology (i.e. the

topological type of the pair (CP2,C )). The first results are due to Zariski in [13], [14],

where he proves that the topology is not determined by the combinatorial information.

Indeed, he constructs two sextics with the same combinatorial data and such that the

fundamental groups of their complements are not isomorphic.

A specific case of algebraic plane curves is line arrangements. They are curves of

which all irreducible components are of degree one. Orlik and Solomon prove in [8], that

the cohomology ring of an arrangement is determined by its combinatorial information.

This suggests that, in the case of line arrangements, the combinatorics determines the

topology. But in [9], [10], Rybnikov explicitly constructs an example like Zariski’s one,

in the case of arrangements. In this way, Artal proposes, in [1], to call Zariski pairs

such examples (i.e. two curves with the same combinatorial information and different

topologies).

As far as we know, only two other examples of Zariski pairs of line arrangements

are already known. The second one is due to Artal, Carmona, Cogolludo and Marco

in [2]. Furthermore, this example is the only one which is formed by two complexified

real arrangements (i.e. arrangements where the lines are defined by real equation). The

third known example is obtained by the author in [6]. The topologies of this example

were distinguished using the invariant I(A, ξ, γ) (also called the I-invariant). The last

two examples are arithmetic Zariski pairs: arrangements with equations conjugated in a

number field.
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216 B. Guerville-ballé

The I-invariant was introduced in [4] (see also [5]). It can be viewed as an adapta-

tion, in the case of line arrangements, of the linking number of the link theory. Inspired

by the idea of Rybnikov developed in [9], [10], we prove, in this paper, a theorem of

multiplicativity of the invariant I(A, ξ, γ) under the gluing of two arrangements along

a triangle (supporting γ). As an illustration of this result we show that the extended

Rybnikov arrangements form an ordered Zariski pair. Then, we generalize this construc-

tion to a family of arrangements. This provides a method to construct new examples of

non-arithmetic Zariski pairs.

In Section 1, we recall the construction of the invariant I(A, ξ, γ), define the extended
MacLane arrangements and use them to illustrate the definitions previously given. After

having defined the notion of the gluing of two arrangements, the multiplicativity the-

orem is stated and proved in Section 2. In the first part of Section 3, we define the

extended Rybnikov arrangements from the extended MacLane arrangements studied in

Section 1; in the second part, we use the multiplicativity theorem to prove that the ex-

tended Rybnikov arrangements form an ordered Zariski pair. To finish this section, we

extend the method, developed for the extended Rybnikov arrangements, to the family of

arrangements for which the I-invariant is not real.

1. The I-invariant.

In this first section, we give the notion of inner-cyclic combinatorics and of inner-

cyclic arrangements. Then, we recall the construction of the I-invariant developed in [4].

To finish, we construct the extended MacLane arrangements and use it to illustrate the

previous notions.

1.1. Inner-cyclic combinatorics.

Definition 1.1. A combinatorics is a couple C = (L,P), where L is a finite set

and P a subset of the power set of L, satisfying that:

1. For all P ∈ P, #P ≥ 2;

2. For any L1, L2 ∈ L, L1 ̸= L2, ∃!P ∈ P such that L1, L2 ∈ P .

The combinatorics is ordered, if the set L is ordered.

Notation. To simplify the notation, an element {Li, · · · , Lj} in P is sometimes

denoted by Pi,··· ,j .

The incidence graph ΓC of a combinatorics C = (L,P) is a way to encode it into a

graph. It is defined as a non-oriented bi-partite graph where the set of vertices V (C) is
decomposed into two sets:

VP(C) = {vP | P ∈ P} and VL(C) = {vL | L ∈ L} ,

and an edge of ΓC joins vL ∈ VL(C) to vP ∈ VP(C) if and only of L ∈ P .

A character on a combinatorics C is an application ξ from L to C∗ such that∏
L∈L ξ(L) = 1. It can be extended into an application ξ∗ on V (C) by associating

to any vP ∈ VP(C) the product
∏

L∈P ξ(vL).
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Definition 1.2. A character ξ on a combinatorics C is inner-cyclic if there exists

a non trivial cycle γ ∈ H1(ΓC) such that:

∀v ∈ V (C), d(v, γ) ≤ 1 =⇒ ξ∗(v) = 1,

where d is the usual distance on a graph.

Remark 1.3. Definition 1.2 of an inner-cyclic character previously given is equiv-

alent to the following points:

1. For all vL ∈ γ, ξ(L) = 1,

2. For all vP ∈ γ, if L ∈ P then ξ(L) = 1,

3. For all P ∋ L such that vL ∈ γ,
∏

Li∈P ξ(Li) = 1.

1.2. Realisations and invariant.

The combinatorics of A is the data of the set of lines, the set of singular points

of A and the relation between these two sets. It can be defined as the poset of all the

intersections of the elements of A, with respect to the reverse inclusion. Let C be a

combinatorics, a complex line arrangement A = {L1, · · · , Ln} of CP2 is a realisation of

C if its combinatorics agrees with C. An ordered realisation of an ordered combinatorics

is defined accordingly. The incidence graph of the combinatorics of an arrangement A is

denoted by ΓA.

Definition 1.4. Let A = {L1, · · · , Ln} and A′ = {L′
1, · · · , L′

n} be two ordered

realisations of the same combinatorics. A homeomorphism ϕ of CP2, such that ϕ(A) = A′

preserves the ordered if ϕ(Li) = L′
i for all i ∈ {1, · · · , n}; it preserves the orientation if

ϕ respects the global orientation of CP2 and the local orientation around the lines (i.e.

it sends meridians on meridians with respect of their orientations).

Let A be a realisation of a combinatorics C. A character ξ on C naturally defines a

character (also denoted ξ) on the first homology group of the complement EA=CP2\A, by:

ξ :

{
H1(EA)−→ C∗

mi 7−→ ξ(Li)
,

where mi is the meridian associated with the line Li.

Definition 1.5. An inner-cyclic arrangement is the data of a triplet (A, ξ, γ),
where A is an arrangement, ξ an inner-cyclic character on the combinatorics CA of A
and γ ∈ H1(ΓA) the associated cycle. The support of γ is the set {L ∈ A | vL ∈ γ}. If γ
is supported by 3 lines, then (A, ξ, γ) is a triangular inner-cyclic arrangement.

Notation. If an arrangement is triangular inner-cyclic, then we assume, in all the

following, that the cycle γ is supported by the three first lines of A.

Let BA be the boundary manifold of an arrangement A. It can be defined as the

boundary of a regular neighbourhood of A; let us remark that BA ⊂ EA. By [11], it is

a graph manifold over the incidence graph. Then, BA can be decomposed into:
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218 B. Guerville-ballé

BA =
∪
L∈L

NL ∪
∪
P∈P

BP ,

where NL is a S1-bundle over L \
∪

P∈LDP (with DP an open disc of L centered in P );

and BP is the boundary of a 4-ball centered in P without an open tubular neighbourhood

of A. There is projection ρ from H1(BA) into H1(ΓA), well defined up to homotopy.

Let γ be a cycle of H1(ΓA). A nearby cycle γ̃ associated with γ is an embedded S1

in BA such that:

1. γ̃ ⊂ BA \
(
(
∪

vP /∈γ BP ) ∪ (
∪

vL /∈γ NL)
)
,

2. ρ([γ̃]) = γ, where [γ̃] is the class of γ̃ in H1(BA).

Let i∗ : H1(BA) → H1(EA) be the application induced by the inclusion of BA in EA. If

(A, ξ, γ) is an inner-cyclic arrangement. We define I(A, ξ, γ) by:

I(A, ξ, γ) = ξ ◦ i∗([γ̃]),

where γ̃ is a nearby cycle in BA associated with γ. By [4, Lemma 2.2], I(A, ξ, γ) does

not depend of the choice of γ̃.

Theorem 1.6 ([4]). Let A and A′ be two ordered realisations of the same ordered

combinatorics. If (A, ξ, γ) and (A′, ξ, γ) are two inner-cyclic arrangements with the same

oriented and ordered topological type then:

I(A, ξ, γ) = I(A′, ξ, γ).

1.3. Extended MacLane arrangements.

To illustrate the notions defined in these two previous subsections, and in prevision

of the application of Theorem 2.4, let us introduce the extended MacLane arrangements.

These arrangements were first introduced in [4], [5], as the first example of inner-cyclic

arrangements distinguished by the invariant I(A, ξ, γ). They can be defined as the usual

MacLane arrangements, see [7], [12], with an additional line passing through two triple

points.

The combinatorics of the extended MacLane arrangement can be constructed as

follows. Let PF2
3 be the 2-dimension projective space on F3, the fields of three elements,

and consider the line I = {[x : y : 0] | x, y ∈ F3} of PF3 as the line at infinity. We define

LM by the set PF2
3 \ {[0 : 0 : 1], I} ∪Q, where Q is a point on I; and PM is constructed

as follows: The elements of PM of cardinality greater (or equal) than 3 are the lines of

PF2
3 which do not pass through the point [0 : 0 : 1] (for example {1, 2, 3} /∈ PM but

{2, 5, 8} ∈ PM), and the elements of cardinality equal to 2 are such that the point (2) of

Definition 1.1 is verified.

This provides a combinatorics CM = (LM,PM) where the relation ⋐ between LM
and PM is given by: for all ℓ ∈ LM, P ∈ PM such that #P ≥ 3, we have P ⋐ ℓ ⇔
(ℓ ∈ P , in PF2

3), and we complete the relation ⋐ with the elements P ∈ PM such that

#P = 2. Figure 1 pictures the ordered extended MacLane combinatorics viewed in PF2
3.
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Figure 1. The ordered extended MacLane combinatorics viewed in PF2
3.

Remark 1.7. In order to obtain the MacLane arrangements, we delete the line L1

of the extended MacLane arrangements, then double points are the lines passing through

the “origin” [0 : 0 : 1].

With the notation of Definition 1.1, we can define the extended MacLane combina-

torics by LM = {L1, · · · , L9} and

PM = {{L1, L2} , {L1, L3} , {L1, L4, L5, L6} , {L1, L7, L8, L9} ,
{L2, L3} , {L2, L4, L9} , {L2, L5, L8} , {L2, L6, L7} , {L3, L4, L7} ,

{L3, L5, L9} , {L3, L6, L8} , {L4, L8} , {L5, L7} , {L6, L9}} .

The line L1 is the only one line of CM containing two points of multiplicity 4, thus it is

fixed by all automorphisms of the combinatorics. This implies that the automorphism

group of CM is a subgroup of the one of the MacLane combinatorics, which is GL2(F3).

Furthermore, the invariance of L1 by automorphism implies that L2 and L3 are fixed or

exchanged. The matrices realizing such condition are exactly ( a 0
b c ) ∈ GL2(F3), and all

such matrices respect the combinatorics. Thus, we have that Aut(CM) ≃ D6 ≃ Σ3 ×Z2.

Note that the Z2 part determines if L2 and L3 are fixed or exchanged; indeed this part

corresponds to the value 1 or −1 of the coefficient a in the previous matrix.

As previously said, this combinatorics is inner-cylic. Let us consider the character

ξM on CM defined by:

ξM : (L1, · · · , L9) 7−→ (1, 1, 1, ζ, ζ, ζ, ζ2, ζ2, ζ2),

where ζ is a primitive 3-root of the unity. The character ξM is a triangular inner-cyclic

character on CM for the cycle γ(1,2,3) ∈ H1(ΓCM) defined by:

vL1
vP1,2 vL2

vP2,3 vL3
vP1,3

This combinatorics CM admits two complex realisations defined by:

L1 : z = 0, L2 : x− āy = 0, L3 : x− ay = 0, L4 : y − āz = 0, L5 : y − z = 0,
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L6 : y − az = 0, L7 : x− z = 0, L8 : x− āz = 0, L9 : x− az = 0,

where a = ζ or a = ζ2 (with ζ a primitive cubic root of unity). These arrangements are

denoted by M+ and M−, and are called the positive and negatively extended MacLane

arrangements. Let ϕ ∈ Aut(CM) and let ϕ∗ : CP2 → CP2 be an application realizing ϕ.

If det(ϕ) = −1 then ϕ∗ sent M+ on M− and conversely; and if det(ϕ) = 1 then ϕ∗ fixes

as a whole M+ and M− , see [3] for details.

The details of the computation of the I-invariant for these arrangements are done

in [4, Section 5]. With the labelling of this article, we have that:

I(M+, ξM, γ(1,2,3)) = ξM
(
−m7−m9

)
= ζ2 and I(M−, ξM, γ(1,2,3)) = ξM

(
−m9

)
= ζ.

2. Multiplicativity theorem.

Inspired by the idea of G. Rybnikov in [9], we first explain how to glue two arrange-

ments along a triangle. Then, we prove that such a gluing implies the multiplicativity of

the invariant I(A, ξ, γ).
Let A = {L1, · · · , Ln} and A′ = {L′

1, · · · , L′
k} be two ordered (by the indices) line

arrangements such that L1, L2 and L3 (resp. L′
1, L

′
2 and L′

3) are in generic position

(i.e. L1 ∩ L2 ∩ L3 = ∅).

Definition 2.1. A gluing of A and A′ (in this order) is a projective transformation

ϕ preserving the orientation and such that:

1. For i ∈ {1, · · · , l}, ϕ(L′
i) = Li, and l ≥ 3.

2. For all l < i ≤ k, ϕ(L′
i) ̸= Lj for any j ∈ {l + 1, · · · , n}.

The gluing ϕ is generic if:

1. Excepted L′
1, L

′
2 and L′

3 no line of A′ is sent by ϕ on a line of A (i.e. l = 3),

2. No singular point of A′ is sent by ϕ on a singular point of A excepted that ϕ(L′
1 ∩

L′
2) = L1 ∩ L2, ϕ(L

′
2 ∩ L′

3) = L2 ∩ L3 and ϕ(L′
1 ∩ L′

3) = L1 ∩ L3.

We define also the glued arrangement, denoted by A ▷◁ϕ A′, as the ordered arrangement:{
L1, · · · , Ln, ϕ(L

′
l+1), · · · , ϕ(L′

k)
}
.

Remark 2.2.

1. The gluing is not an abelian operator for ordered line arrangements, but it is

commutative if we omit the order hypothesis.

2. Let A and A′ be two arrangements. It always exists a generic gluing ϕ of A and

A′, since the subgroup of automorphism fixing the triangle is of dimension 2.

There is on ϕ(A′) a natural order induced, from the order onA′, by the application ϕ.

With this order, ϕ is an homeomorphism preserving both orientation and order between

A′ and ϕ(A′). Thus we sometimes will use A′ instead of ϕ(A′).
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Multiplicativity of the I-invariant and topology of glued arrangements 221

Notation. The lines of A ▷◁ϕ A′ are denoted by D1, · · · , Dd, with d = n+ k − l,

and their meridians by m1, · · · ,md.

Let ξ (resp. ξ′) be a character on H1(EA) (resp. H1(EA′)) and let ϕ be a gluing of

A and A′. We define on H1(EA▷◁ϕA′) the glued character ξ ▷◁ϕ ξ
′ by:

ξ ▷◁ϕ ξ
′ :


H1(EA▷◁ϕA′)−→ C∗

mi 7−→ ξ(mi)ξ(m
′
i), for i ∈ {1, · · · , l}

mi 7−→ ξ(mi), for i ∈ {l + 1, · · · , n}
mi 7−→ ξ′(m′

i−n+l), for i ∈ {n+ 1, · · · , d}

,

where mi ∈ H1(EA) (resp. m′
i ∈ H1(EA′)) is the meridian of Li (resp. L′

i). If there is

no ambiguity, we denote by Aϕ the glued arrangement A ▷◁ϕ A′, and by Xϕ the glued

character ξ ▷◁ϕ ξ
′. Let µ be the cycle of H1(ΓAϕ

) supported by the line D1, D2 and D3.

Proposition 2.3. Let (A, ξ, γ) and (A′, ξ′, γ′) be two triangular inner-cyclic ar-

rangements; let ϕ be a gluing of A and A′, then (Aϕ,Xϕ, µ) is a triangular inner-cyclic

arrangement.

Proof. The cycle µ is defined by:

vD1
vP1,2 vD2

vP2,3 vD3
vP1,3

To prove that (Aϕ,Xϕ, µ) is an inner-cyclic arrangement, we show that the combinatorics

of Aϕ satisfies the three conditions of Remark 1.3.

1. The cycle µ is supported by the lines D1, D2 and D3. Their associated meridians

m1, m2 and m3 are sent by Xϕ on ξ(m1)ξ
′(m′

1), ξ(m2)ξ
′(m′

2) and ξ(m3)ξ
′(m′

3),

respectively. Since (A, ξ, γ) and (A′, ξ′, γ′) are triangular inner-cyclic arrangements

then ξ(mi) = 1 and ξ′(m′
i) = 1, for i = 1, 2, 3. This implies that the three products

are sent on 1 by the character Xϕ.

2. Let vP ∈ µ, then P = Di ∩Dj with i ̸= j ∈ {1, 2, 3}. If Dq is a line of Aϕ such that

q /∈ {1, 2, 3} and P ∈ Dq, then three cases appear:

a) q ∈ {n+ l + 1, · · · , d}, then Dq comes from a line of L′
r ∈ A′ (in fact

r = q − n + l). This line intersects L′
i ∩ L′

j and since (A′, ξ′, γ′) is an inner-cyclic

arrangement then ξ′(m′
r) = 1. Finally, Xϕ(mq) = ξ′(m′

r) = 1.

b) q ∈ {l + 1, · · · , n}, then Dq comes from the line Lq of A. The same argu-

ments as previously work.

c) q ∈ {4, · · · , l}, then Dq comes from the line L′
q ∈ A′ and the line Lq ∈

A. This implies that Xϕ(mq) = ξ(mq)ξ
′(m′

q). But (A, ξ, γ) is an inner-cyclic

arrangement, then ξ(mq) = 1, since Lq passes through Li ∩ Lj . In the same way,

ξ′(m′
q) = 1; and then Xϕ(mq) = ξ(mq) · ξ′(m′

q) = 1.

3. Let P ∈ Di, with i ∈ {1, 2, 3}; and let DP be the set {D ∈ Aϕ | P ∈ D}. It can be

decomposed in three subsets DP (A), DP (A′) and DP (A,A′) composed respectively
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of the line of Aϕ coming from a line in A, a line in A′ and a line in both A and A′.

From this decomposition of DP , we obtain:∏
Di∈DP

Xϕ(mi) =
( ∏

Di∈DP (A)

Xϕ(mi)
)
·
( ∏

Di∈DP (A′)

Xϕ(mi)
)
·
( ∏

Di∈DP (A,A′)

Xϕ(mi)
)
,

=
( ∏

Di∈DP (A)

ξ(mi)
)
·
( ∏

Di∈DP (A′)

ξ′(m′
i−n+l)

)
·
( ∏

Di∈DP (A,A′)

ξ(mi)ξ
′(m′

i−n+l)
)
.

Since (A, ξ, γ) is an inner-cyclic arrangement, and since DP (A) and DP (A,A′)

cover all the indices of the lines of A passing through P , then:( ∏
Di∈DP (A)

ξ(mi)
)
·
( ∏

Di∈DP (A,A′)

ξ(mi)
)
=

∏
Li∋P

ξ(mi),

= 1.

In the same manner,
( ∏

Di∈DP (A′)

ξ′(m′
i−n+l)

)
·
( ∏

Di∈DP (A,A′)

ξ′(m′
i−n+l)

)
= 1. Fi-

nally, we have: ∏
Di∈DP

Xϕ(mi) = 1. □

Theorem 2.4. Let (A, ξ, γ) and (A′, ξ′, γ′) be two triangular inner-cyclic arrange-

ments, and let ϕ be a gluing of A and A′, then:

I(Aϕ,Xϕ, µ) = I(A, ξ, γ) · I(A′, ξ′, γ′)

where µ ∈ H1(ΓAϕ
) is supported by D1, D2 and D3.

Proof. Let µ̃ be a nearby cycle associated with µ in BAϕ
. Exceptionally, we

denote by mℓ, mℓ and m′
ℓ the meridian of ℓ in EAϕ

, EA and EA′ respectively (if this

makes sense), and also their homology classes. Recall that i∗ : H1(BAϕ
) → H1(EAϕ

) is

the map induced by the inclusion BAϕ
⊂ EAϕ

, then we have:

i∗([µ̃]) =
∑
ℓ∈Aϕ

αℓ.mℓ,

where the αℓ are integers depending on the choice of the nearby cycle µ̃. The class of

µ̃ in H1(EA) is
∑

ℓ∈A αℓ.mℓ, furthermore µ̃ is a nearby cycle associated with γ in EA.

Similarly, its class in H1(EA′) is
∑

ℓ∈A′ αℓ.m
′
ℓ, and µ̃ is a nearby cycle associated with

γ′ in EA′ . From this, we obtain that:

I(Aϕ,Xϕ, µ) = Xϕ ◦ i∗([µ̃]),

= Xϕ

( ∑
ℓ∈Aϕ

αℓ.mℓ

)
,
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=
∏
ℓ∈Aϕ

Xϕ(mℓ)
αℓ ,

=
∏
ℓ∈A

ξ(mℓ)
αℓ ·

∏
ℓ∈A′

ξ′(m′
ℓ)

αℓ ,

= I(A, ξ, γ) · I(A′, ξ′, γ′). □

3. Extended Rybnikov arrangements and construction of Zariski pairs.

To illustrate the multiplicativity theorem previously obtained, we prove that ex-

tended Rybnikov arrangements form an ordered Zariski pair. Then we extend this

method to the family of arrangements with a non real I-invariant.

3.1. The extended Rybnikov arrangements.

In [9], [10], G. Rybnikov constructs two arrangements by gluing (along three con-

current lines) two positive MacLane arrangements for the former; and one positive and

one negative MacLane arrangements for the latter. Proving that the fundamental groups

of these arrangements are not isomorphic, he proves that their topologies are different.

In this section, we obtain a similar result, not with the MacLane arrangements, but with

the extended MacLane arrangements to deal with inner-cyclic arrangements.

Let ϕ+ be a generic gluing of M+ and M+, and let ϕ− be a generic gluing of M+

and M−.

Definition 3.1. The extended Rybnikov arrangements are defined by R+ =

M+ ▷◁ϕ+ M+ and R− = M+ ▷◁ϕ− M−.

Remark 3.2. The extended Rybnikov arrangements are not the Rybnikov ar-

rangements with two additional lines. Indeed, in [9] G. Rybnikov glues two MacLane

arrangements along concurrent lines.

Proposition 3.3. The extended Rybnikov arrangements have the same combina-

torics.

This comes from the fact that the gluings ϕ+ and ϕ− considered are generic, and

we have CR = (LR,PR), with LR = {D1, · · · , D15} and PR is composed of:

• the first copy of CM:

{{D1, D2} , {D1, D3} , {D1, D4, D5, D6} , {D1, D7, D8, D9} , {D2, D3} ,
{D2, D4, D9} , {D2, D5, D8} , {D2, D6, D7} , {D3, D4, D7} ,

{D3, D5, D9} , {D3, D6, D8} , {D4, D8} , {D7, D5} , {D6, D9}} ,

• the second copy of CM (without the intersection of D1, D2 and D3):

{{D1, D10, D11, D12}, {D1, D13, D14, D15}, {D2, D10, D15}, {D2, D12, D13}, {D3, D10, D13},
{D2, D11, D14}, {D3, D11, D15}, {D3, D12, D14}, {D10, D14}, {D13, D11}, {D12, D15}},

• the double points between the two copies of CM (due to the genericity of the gluing):
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{{D4, D10}, {D4, D11}, {D4, D12}, {D4, D13}, {D4, D14}, {D4, D15}, {D5, D10},
{D5, D11}, {D5, D12}, {D5, D13}, {D5, D14}, {D5, D15}, {D6, D10}, {D6, D11},
{D6, D12}, {D6, D13}, {D6, D14}, {D6, D15}, {D7, D10}, {D7, D11}, {D7, D12},
{D7, D13}, {D7, D14}, {D7, D15}, {D8, D10}, {D8, D11}, {D8, D12}, {D8, D13},

{D8, D14}, {D8, D15}, {D9, D10}, {D9, D11}, {D9, D12}, {D9, D13}, {D9, D14}, {D9, D15}}.

Let ϕ ∈ Aut(CR) be an automorphism of the extended Rybnikov combinatorics.

Since the line D1 is the only one containing four points of multiplicity 4, then it is

fixed by ϕ. In the same way, the lines D2 and D3 are fixed or exchanged by ϕ. The

twelve remaining lines can be combinatorially decomposed in two sets corresponding to

the two copies of the extended MacLane combinatorics. Thus we have that Aut(CR)

is a subgroup of
(
Aut(CM) × Aut(CM)

)
⋊ Z2. Here the Z2 part determines if the two

previous sets are fixed or exchanged. Furthermore, the automorphism of the first copy

of the extended Maclane, determines only the action on D2 and D3 in the second copy.

By similar arguments than in Section 1.3, we can represent the automorphism of CR as

matrices of GL3(F3) of the following types:±1 0 0

a ±1 0

b 0 ±1

 or

±1 0 0

a 0 ±1

b ±1 0

 ,

where a, b are in F3. Then we can check that Aut(CR) ≃
(
(Σ3)

2 ⋊ Z2

)
× Z2, where

the semi-product by Z2 determines if the two copies are exchanged or not, while the

direct-product by Z2 determines if D2 and D3 are exchanged or not.

3.2. Ordered topology of extended Rybnikov arrangements.

As an illustration of the Theorem 2.4, we prove that the extended Rybnikov arrange-

ments form an ordered Zariski pair. After that, we give a way to remove the ordered

hypothesis. Even if this result is not a consequence of the result of G. Rybnikov, it is

very close to it. The fact that Rybnikov arrangements satisfy this property is proved

in [9], [10], [3], but the techniques used in this paper are new.

Theorem 3.4. There is no ordered-preserving homeomorphism between (CP2,R+)

and (CP2,R−).

Before proving this theorem, we have to state the following lemma.

Lemma 3.5. Let A1 and A2 be two arrangements with the same combinatorics

and such that there is no homeomorphism preserving both orientation and order between

(CP2,A1) and (CP2,A2). If there is no orientation-preserving homeomorphism between

A2 and the complex conjugate of A1 then there is no order-preserving homeomorphism

between (CP2,A1) and (CP2,A2).

It is a consequence of [2, Theorem 4.19] (see also [5, Theorem 6.4.8] for a complete

proof).
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Proof of Theorem 3.4. We have shown, in Section 1, that both

(M+, ξM, γ(1,2,3)) and (M−, ξM, γ(1,2,3)) are triangular inner-cyclic arrangements,

where ξM is defined by:

ξM : (m1, · · · ,m9) 7−→ (1, 1, 1, ζ, ζ, ζ, ζ2, ζ2, ζ2),

with ζ a 3-root of the unity and γ(1,2,3) the cycle supported by the line L1, L2 and

L3. Since M+ and M− have the same combinatorics then ξM can be considered as a

character on H1(EM+) or on H1(EM−). Then, we define, on H1(ER+) and on H1(ER−),

the same character X by ξM ▷◁ϕ+ ξM and ξM ▷◁ϕ− ξM. Explicitly, we have:

X : (m1, · · · ,m15) 7−→ (1, 1, 1, ζ, ζ, ζ, ζ2, ζ2, ζ2, ζ, ζ, ζ, ζ2, ζ2, ζ2).

By Section 1 (see also [4]), we know that (M+, ξM, γ(1,2,3)) and (M−, ξM, γ(1,2,3))

are triangular inner-cyclic arrangements. By Proposition 2.3, we know that (R+,X, µ)

and (R−,X, µ) are triangular inner-cyclic arrangements, where the cycle µ of ΓR+ = ΓR−

is supported by D1, D2 and D3. Thus, it makes sense to consider I(R+,X, µ) and

I(R−,X, µ).

By the computations done in Section 1, we have known that:

I(M+, ξM, γ(1,2,3)) = ζ2 and I(M−, ξM, γ(1,2,3)) = ζ.

Then, by Theorem 2.4:

I(R+,X, µ) = I(M+, ξM, γ(1,2,3)) · I(M+, ξM, γ(1,2,3)) = ζ2 · ζ2 = ζ

and,

I(R−,X, µ) = I(M+, ξM, γ(1,2,3)) · I(M−, ξM, γ(1,2,3)) = ζ2 · ζ = 1.

Theorem 1.6 implies that there is no homeomorphism preserving both orientation and

order between (CP2,R+) and (CP2,R−). Since the I-invariant commutes with the com-

plex conjugacy (see [4, Proposition 2.5]), we have that I(R+,X, γ) = ζ = ζ2. Then

by Theorem 1.6, there is no homeomorphism preserving orientation and order between

(CP2,R+) and (CP2,R−). Applying Lemma 3.5, we obtain the result. □

Unfortunately, we cannot obtain a better result on R+ and R− (that is: we cannot

remove the ordered hypothesis). Indeed, we have seen that Aut(CR) ≃
(
(Σ3)

2⋊Z2

)
×Z2.

This implies that we can take on the first copy an automorphism with determinant 1,

and on the second copy an automorphism with determinant −1. The discussion of Sub-

section 1.3 implies that such an automorphism will transform R+ into R−. Nevertheless,

it is possible to solve this problem by adding some lines in such a way that the automor-

phisms of each copy are determined by the action on D2 and D3 (for example by adding

an additional line in each copies of the extended MacLane passing through a triple point

and a double point not in the triangle formed by D1, D2 and D3). With these two

additional lines, we can remove the ordered hypothesis in the previous theorem and then

obtain a Zariski pair.
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3.3. Construction of Zarski pairs.

All the construction previously done for the extended Rybnikov arrangements can be

adapted to any inner-cyclic arrangements with a non real I-invariant. Then the following

theorem gives a method to construct new examples of Zariski pairs.

If (A, ξ, γ) is a triangular inner-cyclic arrangement, and if ϕ+ (resp. ϕ−) is a generic

gluing of two copies of A (resp. of a copy of A and a copy of A, the complex conjugate of

A), then we denote by A+ (resp. A−) the glued arrangement associated to ϕ+ (resp. ϕ−).

Theorem 3.6. If (A, ξ, γ) is a triangular inner-cyclic arrangement such that

I(A, ξ, γ) is not real, then there is no order-preserving homeomorphism between

(CP2,A+) and (CP2,A−).

Proof. The proof is similar to Theorem 3.4. Since ϕ+ and ϕ− are generic gluings,

then A+ and A− have the same order combinatorics. Thus, we define on H1(EA+) and

H1(EA+) the same character X by the glued characters ξ ▷◁ϕ+ ξ and ξ ▷◁ϕ− ξ.

By Proposition 2.3, (A+,X, µ) and (A−,X, µ) are inner-cyclic arrangements, where

µ is supported by D1, D2 and D3. Then Theorem 2.4 implies that:

I(A+,X, µ) = I(A, ξ, γ) · I(A, ξ, γ) /∈ R∗
>0,

and with [4, Proposition 2.5],

I(A−,X, µ) = I(A, ξ, γ) · I(A, ξ, γ) = 1.

Then, by Theorem 1.6, there is no homeomorphism preserving both ordered and orien-

tation between (CP2,A+) and (CP2,A−). We conclude using [4, Proposition 2.5] and

Lemma 3.5 as in the proof of Theorem 3.4. □

Corollary 3.7. If the automorphism group of the combinatorics of A is trivial,

then we can remove the hypothesis “order-preserving” in Theorem 3.6.

Proof. Let us assume that there is a homeomorphism ψ between (CP2,A+) and

(CP2,A−). Then ψ induces an automorphism σ of the combinatorics CA. By hypothesis,

σ acts trivially on the combinatorics of A or exchanges the copies of the combinatorics

A. If we change the order on A+ by exchanging the order of the two copies of A+ then

ψ becomes an order-preserving homeomorphism. But this change of order is compatible

with the arguments of Theorem 3.6 proof, which implies a contradiction with the existence

of such a homeomorphism. □

Remark 3.8. The Zariski pairs then obtained are non-arithmetic Zariski pairs

(i.e. their equations are not conjugated in a field number).
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Benôıt Guerville-ballé
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