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Abstract. The homogeneous affine surfaces have been classified by
Opozda. They may be grouped into 3 families, which are not disjoint. The

connections which arise as the Levi-Civita connection of a surface with a met-
ric of constant Gauss curvature form one family; there are, however, two other
families. For a surface in one of these other two families, we examine the Lie
algebra of affine Killing vector fields and we give a complete classification of

the homogeneous affine gradient Ricci solitons. The rank of the Ricci tensor
plays a central role in our analysis.

1. Introduction.

1.1. Homogeneity.

The notion of homogeneity is central in geometry. In order to make precise the level

of homogeneity one usually refers to the underlying structure. In pseudo-Riemannian ge-

ometry, local homogeneity means that for any two points there is a local isometry sending

one point to the other. If an additional structure (Kähler, contact, etc.) is considered

on the manifold, then one further assumes that this structure is preserved by the local

isometries. In the affine setting, homogeneity means that for any two points there is an

affine transformation sending one point into the other. There is an intermediate level

of homogeneity which was explored in [8], [13]. A pseudo-Riemannian manifold may be

locally affine homogeneous but not locally homogeneous, i.e., for any two points there

exists a (not necessarily isometric) transformation sending one point to the other which

preserves the Levi-Civita connection.

Homogeneous affine surfaces were studied from a local point of view by several

authors. A complete description was first given in [12] for the special case when the

Ricci tensor is skew-symmetric. The general situation was later addressed in [15], where

Opozda obtained the local form of the connection of any locally homogeneous affine

surface. More recently, Opozda’s result was generalized in [2] to the more general case

of connections with torsion. The above classification results have been extensively used

both in the affine and the pseudo-Riemannian setting, where one uses the Riemannian

extension to relate affine and pseudo-Riemannian geometry.
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1.2. Notational conventions.

An affine manifold is a pair M = (M,∇) where ∇ is a torsion free connection on

the tangent bundle of a smooth manifold M of dimension m. Let x⃗ = (x1, . . . , xm) be

a system of local coordinates on M . We adopt the Einstein convention and sum over

repeated indices to expand:

∇∂xi∂xj = Γij
k∂xk

in terms of the Christoffel symbols Γ = Γ∇ := (Γij
k); the condition that ∇ is torsion free

is then equivalent to the symmetry Γij
k = Γji

k. The curvature operator R, the Ricci

tensor ρ, and the symmetric Ricci tensor ρs are given, respectively, by setting

R(ξ1, ξ2) := ∇ξ1∇ξ2 −∇ξ2∇ξ1 −∇[ξ1,ξ2],

ρ(ξ1, ξ2) := Tr{ξ3 → R(ξ3, ξ1)ξ2}, and ρs(ξ1, ξ2) :=
1

2
(ρ(ξ1, ξ2) + ρ(ξ2, ξ1)) .

1.3. Locally homogeneous affine surfaces.

Let M = (M,∇) be an affine surface. We say that M is locally homogeneous if

given any two points of M , there is the germ of a diffeomorphism Φ taking one point to

another with Φ∗∇ = ∇. One has the following classification result due to Opozda [15]:

Theorem 1.1. Let M = (M,∇) be a locally homogeneous affine surface. Then at

least one of the following three possibilities holds which describe the local geometry :

1. There exist local coordinates (x1, x2) so that Γij
k = Γji

k is constant.

2. There exist local coordinates (x1, x2) so that Γij
k = (x1)−1Cij

k where Cij
k = Cji

k

is constant.

3. ∇ is the Levi-Civita connection of a metric of constant sectional curvature.

Definition 1.2. An affine surface M is said to be Type A (resp. Type B or Type C)
if M is locally homogeneous, if M is not flat, and if Assertion 1 (resp. Assertion 2 or

Assertion 3) of Theorem 1.1 holds. Let

FA := {M = (R2,∇) : Γ∇ constant and ∇ not flat},
FB := {M = (R+ × R,∇) : Γ∇ = (x1)−1C for C constant and ∇ not flat} .

Let M ∈ FA. We will show in Lemma 2.2 that ρ is symmetric. Since M is not flat,

Rank{ρ} ̸= 0. We therefore may decompose FA = FA
1 ∪ FA

2 where

FA
ν := {M ∈ FA : Rank{ρ} = ν} .

The affine surfaces in the family FA (resp. FB) form natural models for the Type A
(resp. Type B) surfaces and we will often work in this context.

Surfaces of Type A and Type B can have quite different geometric properties. The

Ricci tensor of any Type A surface is symmetric; this can fail for a Type B surface.

Thus the geometry of a Type B surface is not as rigid as that of a Type A surface; this
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is closely related to the existence of non-flat affine Osserman structures [7], [9]. Any

Type A surface is projectively flat; this can fail for a Type B surface. The local geometry

of any Type A surface can be realized on a compact torus [10], [16]; this can also fail

for a Type B geometry.

Remark 1.3. If M = R2 and if the Christoffel symbols Γ of ∇ are constant, then

R2 acts transitively on M by translations and this group action preserves ∇. Thus every

element of FA is affine homogeneous. If M = R+ × R and if the Christoffel symbols of

∇ have the form Γ = (x1)−1C for C constant, then the ax + b group acts transitively

on M by (a, b) : (x1, x2) → (ax1, ax2 + b) for a > 0 and this group action preserves ∇.

Thus every element of FB is affine homogeneous. These two structure groups (which up

to isomorphism are the only two simply connected 2-dimensional Lie groups) will play

an important role in our analysis.

Remark 1.4. The three possibilities of Theorem 1.1 are not exclusive as we shall

see presently. In Theorem 3.11, we will identify the local geometries which are both

Type A and Type B and also the local geometries which are both Type B and Type C.
There are no surfaces which are both Type A and Type C.

1.4. Outline of the paper.

In Section 2, we use the action of the natural structure groups on the families FA

and FB to partially normalize the Christoffel symbols. Let M be a Type A surface with

Rank(ρ) = 1. In Lemma 2.5, we will define α(M) and show it is an affine invariant in

this setting. Subsequently, in Theorem 3.8, we will show that α identifies the moduli

space of such surfaces with ρ ≥ 0 with [0,∞) and with ρ ≤ 0 with (−∞, 0].

Similarly, we may partially normalize the Christoffel symbols for Type B geometries

in Lemma 2.8. Lemma 2.10 provides a complete characterization of the elements of FB

where ρ is symmetric, recurrent, and of rank 1, and where ∇ρ is symmetric. This will

play a central role in our identification of the affine surfaces which are both Type A and

Type B.
Section 3 is devoted to the study of the Lie algebra K(M) of affine Killing vector

fields. Let M be an affine surface. In Lemma 3.1, we will show that if M is homogeneous,

then 2 ≤ dim{K(M)} ≤ 6; the extremal case where dim{K(M)} = 6 occurs only if M is

flat. We shall exclude the flat setting from consideration henceforth.

Let M ∈ FA. To simplify the notation, we set ∂1 := ∂x1 and ∂2 := ∂x2 . Let

KA
0 := Span{∂1, ∂2} be the Lie algebra of the translation group R2. By Remark 1.3,

KA
0 ⊂ K(M). In Theorem 3.4, we show dim{K(M)} > 2 if and only if ρ has rank

1 and that dim{K(M)} = 4 in this setting. In Theorem 3.8, we exhibit invariants

which completely detect the local isomorphism class of a Type A affine surface with

Rank{ρ} = 1, we also determine which Type A surfaces are also of Type B, and we

give the abstract structure of the (local) Lie algebras involved using the classification of

Patera et al. [17]; representatives of these classes are given in Lemma 3.6.

Let M ∈ FB. We will show that dim{K(M)} ∈ {2, 3, 4} in Section 3.2; M is also

of Type A if and only if dim{K(M)} = 4. This characterizes the local geometries which

are the intersection of Type A and Type B. The geometries which are of both Type B
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and of Type C form a proper subset of those surfaces where dim{K(M)} = 3.

The Hessian H∇
f of f ∈ C∞(M) is the symmetric 2-tensor

H∇
f := ∇(df) = f;ijdx

i ◦ dxj .

If g is a pseudo-Riemannian metric on M , let Hg
f := H∇g

f be the Hessian which is defined

by the Levi-Civita connection ∇g and let ρg be the associated Ricci tensor.

Definition 1.5. Let M be a smooth manifold, let ∇ be a torsion free connection

on M , let g be a pseudo-Riemannian metric on M , let τ be the scalar curvature of g,

and let f ∈ C∞(M) be a smooth function on M . We say that

1. (M,∇, f) is an affine gradient Yamabe soliton if H∇
f = 0. Let Y(M) be the

space of functions on M so that (M,∇, f) is an affine gradient Yamabe soliton;

Y(M) = ker(H∇).

2. (M,∇, f) is an affine gradient Ricci soliton if H∇
f +ρs = 0. Let A(M) be the space

of functions on M so that (M,∇, f) is an affine gradient Ricci soliton. If A(M) is

non-empty, then A(M) = f0 + Y(M) for any f0 ∈ A(M).

3. (M, g, f) is a gradient Yamabe soliton if there exists λ ∈ R so Hg
f = (τ − λ)g.

4. (M, g, f) is a gradient Ricci soliton if there exists λ ∈ R so Hg
f + ρg = λg. If λ = 0,

then the soliton is said to be steady.

5. A soliton is said to be trivial if the potential function f is constant.

There is a close connection between affine geometry and neutral signature geometry.

Let M = (M,∇) be an affine manifold and let (x1, . . . , xm) be local coordinates on M .

Express ω = yidx
i to introduce the dual fiber coordinates (y1, . . . , ym) on the cotangent

bundle T ∗M . Let ϕ = ϕij be a symmetric 2-tensor on M . The deformed Riemannian

extension g∇,ϕ is the metric of neutral signature (m,m) on T ∗M given by

g∇,ϕ = dxi ⊗ dyi + dyi ⊗ dxi + (ϕij − 2ykΓij
k)dxi ⊗ dxj .

It is invariantly defined, i.e. it is independent of the particular coordinate system chosen.

The following result [1], [3] provided our initial motivation for examining affine gradient

Ricci solitons in the 2-dimensional setting; we state the results for gradient Ricci solitons

and Yamabe solitons in parallel to simplify the exposition:

Theorem 1.6. Let (N, g, F ) be a non-trivial self-dual gradient Ricci (resp.

Yamabe) soliton of neutral signature (2, 2).

1. If ∥dF∥ ≠ 0 at a point P ∈ N , then (N, g) is locally isometric to a warped product

I ×ψ N1 where N1 is a 3-dimensional pseudo-Riemannian manifold of constant

sectional curvature (resp. scalar curvature).

2. If ∥dF∥ = 0 on N , then (N, g) is locally isometric to the cotangent bundle T ∗M of

an affine surface (M,∇) equipped with the deformed Riemannian extension g∇,ϕ.
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Furthermore, the potential function of the soliton is of the form F = f ◦π, for some

function f on M so that (M,∇, (1/2)f) is an affine gradient Ricci (resp. Yamabe)

soliton.

In Section 4, we examine affine gradient Ricci solitons if M is Type A and/or

Type B. Let f be the potential function of an affine gradient Ricci soliton and let

X ∈ K(M). In Lemma 4.1, we show that X(f) is the potential function of an affine

gradient Yamabe soliton. Thus affine gradient Ricci solitons and Yamabe solitons are

closely linked concepts. Using this fact, we analyze the existence of affine gradient Ricci

and Yamabe solitons on homogeneous affine surfaces. Not unexpectedly, Type A and

Type B affine connections behave differently.

Let M ∈ FA. In Theorem 4.3, we show M is a gradient Ricci soliton if and only

if Rank{ρ} = 1 or, equivalently in view of the results of Section 3, dim{K(M)} > 2.

There are elements of FB which have skew-symmetric Ricci tensor or, equivalently, so

that (T ∗M, g∇,ϕ) is Ricci flat and hence are trivial Ricci solitons. In Theorem 4.9 and

Theorem 4.10, we give elements of FB which are non-trivial affine gradient Ricci solitons

and which are not of Type A. Finally, Theorem 4.12 gives a complete classification,

up to affine equivalence, of homogeneous affine gradient Ricci solitons. The associated

deformed Riemannian extensions then form a large family of non-conformally flat self-

dual gradient Ricci and Yamabe solitons.

1.5. Local versus global geometry.

There is always a question of the local versus the global geometry of an object in

differential geometry. Let M be a locally homogeneous affine surface. The dimension

of the space of germs of affine Killing vector fields (resp. affine gradient Ricci solitons)

is constant on M. Let Xi (resp. fi) be affine Killing vector fields (resp. define affine

gradient Ricci solitons) which are defined on a connected open subset O of M. If there is

a non-empty subset O1 ⊂ M with X1 = X2 (resp. f1 = f2) on O1, then X1 = X2 (resp.

f1 = f2) on O. Thus questions of passing from the local to the global for either affine

Killing vector fields or affine gradient Ricci solitons involve the holonomy action of the

fundamental group; there is no obstruction if M is assumed simply connected. We shall

not belabor the point and ignore the question of passing from local to global henceforth.

1.6. Moduli spaces.

The moduli space ZA of isomorphism classes of germs of Type A structures is 2-

dimensional [14]. The strata of ZA where Rank{ρ} = 1 is handled by Theorem 3.8; it

contains two components isomorphic to [0,∞) and (−∞, 0]. In a subsequent paper [4],

we will discuss the strata of ZA where ρ is non-degenerate of signature (p, q); these may

be identified with closed simply connected subsets of R2. Let ZB be the moduli space of

Type B structures. The strata of ZB where dim{K(M)} = 4 is handled by Theorem 3.8

since all these surfaces are also of Type A. We will also show in [4] that the strata of ZB
where 2 ≤ dim{K(M)} ≤ 3 is a real analytic manifold with non-trivial topology.
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2. Homogeneous affine surfaces.

In this section, we use the structure groups described above acting on the families

FA and FB to perform certain normalizations. Recall that a k-tensor T is said to be

symmetric if T (v1, . . . , vk) = T (vσ(1), . . . , vσ(k)) for every permutation σ, and that T is

said to be recurrent if ∇T = ω ⊗ T for some 1-form ω.

2.1. Rank 2 symmetric Ricci tensor.

We will show presently that ρ = ρs if M is Type A. However, ρ need not be

symmetric if M is Type B.

Lemma 2.1.

1. Let M ∈ FA satisfy Rank{ρ} = 2. Then ρ determines a flat pseudo-Riemannian

metric on M.

2. Let M ∈ FB satisfy Rank{ρs} = 2.

(a) ρs defines a pseudo-Riemannian metric of constant Gauss curvature κ.

(b) κ = 0 if and only if ρ22 = 0.

(c) If ∇ is projectively flat, then the metric defined by ρs has κ ̸= 0.

Proof. If M is Type A, then ρ is symmetric. If Rank{ρs} = 2, then ρs defines a

pseudo-Riemannian metric. If M ∈ FA, then ρs is invariant under the translation group

(a, b) : (x1, x2) → (x1 + a, x2 + b). This group acts transitively on R2 and hence the

components of ρ are constant. This implies ρ is flat. If M ∈ FB, then ρs is invariant

under the ax+ b group (a, b) : (x1, x2) → (ax1, ax2+ b). This non-Abelian 2-dimensional

Lie group acts transitively on R+×R and hence ρs has constant Gauss curvature κ. This

proves Assertion 1 and Assertion 2a. The proof of the remaining assertions follows as in

[5]. □

2.2. Type A homogeneous affine surfaces.

We omit the proof of the following result as it is a direct computation (see also [5]):

Lemma 2.2. Let M ∈ FA. Then

1. The Ricci tensor of M is symmetric (ρ12 = ρ21) and one has:

ρ11 = (Γ11
1 − Γ12

2)Γ12
2 + Γ11

2(Γ22
2 − Γ12

1),

ρ12 = Γ12
1Γ12

2 − Γ11
2Γ22

1,

ρ22 = −(Γ12
1)2 + Γ22

2Γ12
1 + (Γ11

1 − Γ12
2)Γ22

1.

2. ∇ρ is symmetric (ρ12;1 = ρ21;1 = ρ11;2, ρ12;2 = ρ21;2 = ρ22;1) and one has:

ρ11;1 = 2{−(Γ11
1)2Γ12

2 + Γ11
1(Γ11

2(Γ12
1 − Γ22

2) + (Γ12
2)2)

+Γ11
2(Γ11

2Γ22
1 − Γ12

1Γ12
2)},

ρ12;1 = 2
(
Γ11

2
(
(Γ12

1)2 − Γ12
1Γ22

2 + Γ12
2Γ22

1
)
− Γ11

1Γ12
1Γ12

2
)
,
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ρ12;2 = 2
(
Γ12

2(−Γ11
1Γ22

1 − Γ12
1Γ22

2 + Γ12
2Γ22

1) + Γ11
2Γ12

1Γ22
1
)
,

ρ22;2 = 2{Γ22
1(Γ22

2(Γ12
2 − Γ11

1) + Γ11
2Γ22

1) + (Γ12
1)2Γ22

2

−Γ12
1(Γ12

2Γ22
1 + (Γ22

2)2)}.

If M ∈ FA
1 , then we can always make a linear change of coordinates to replace M

by an isomorphic surface where ρ = ρ22dx
2⊗dx2, i.e. ρ11 = ρ12 = ρ21 = 0. The following

is a useful technical result:

Lemma 2.3. Let M ∈ FA. The following conditions are equivalent :

1. ρ(M) = ρ22dx
2 ⊗ dx2.

2. Γ11
2 = 0 and Γ12

2 = 0.

3. ρ = {Γ12
1(Γ22

2 − Γ12
1) + Γ11

1Γ22
1}dx2 ⊗ dx2.

Proof. We assume Assertion 1 holds and apply Lemma 2.2.

1. Suppose first Γ22
1 is non-zero. By rescaling, we may suppose Γ22

1 = 1. To ensure

ρ12 = 0, we set Γ11
2 = Γ12

1Γ12
2 and obtain ρ11 = Γ12

2ρ22. Since ρ22 ̸= 0, Γ12
2 = 0

and hence Γ11
2 = 0 as well.

2. Suppose next that Γ22
1 = 0. Setting ρ12 = 0 yields Γ12

1Γ12
2 = 0. Since ρ22 =

Γ12
1(Γ22

2 − Γ12
1), Γ12

1 ̸= 0. Thus Γ12
2 = 0. We now compute that ρ11 =

Γ11
2(Γ22

2 − Γ12
1) and ρ22 = Γ12

1(Γ22
2 − Γ12

1). Consequently, Γ11
2 = 0.

Thus in either eventuality we obtain Γ11
2 = 0 and Γ12

2 = 0 so Assertion 1 implies

Assertion 2. The proof that Assertion 2 implies Assertion 3 is a direct computation. The

proof that Assertion 3 implies Assertion 1 is immediate. □

Definition 2.4. Let M ∈ FA
1 . Choose X ∈ TPM so ρ(X,X) ̸= 0 and set

αX(M) := ∇ρ(X,X;X)2 · ρ(X,X)−3 and ϵX(M) := Sign{ρ(X,X)} = ±1 .

Lemma 2.5. Let M ∈ FA
1 .

1. There exists a 1-form ω so ∇kρ = (k + 1)!ωk ⊗ ρ for any k.

2. ρ is recurrent.

3. Ker{ρ} is a parallel distribution.

4. αX(M) and ϵX(M) are independent of the choice of X and determine invariants

we will denote by α(M) and ϵ(M).

Proof. Choose coordinates on R2 so that ρ = ρ22dx
2 ⊗ dx2. Assertion 1 then

follows from Lemma 2.2 and Lemma 2.3, and Assertion 2 then follows from Assertion 1.

We have ker(ρ) = Span{∂1}. Lemma 2.3 then shows Span{∂1} is a parallel distribution

as desired. Use Assertion 1 to express ρ = c0ω ⊗ ω and ∇ρ = c1ω ⊗ ω ⊗ ω. One verifies

αX(M) = (ω(X)3c1)
2(ω(X)2c0)

−3 and ϵX(M) = Sign{ω(X)2c0} are independent of X.

□
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Remark 2.6. Clearly α(M) = 0 if and only if M is symmetric. Furthermore, if

α(M) ̸= 0, then ϵ(M) = Sign(α(M)) so ϵ is determined by α except in the symmetric

setting. We will show subsequently in Theorem 3.8 that α and ϵ determine the local

isomorphism class of a Type A surface with Rank{ρ} = 1.

2.3. Type B homogeneous affine surfaces.

We begin by extending Lemma 2.2 to this setting. We omit the proof of the following

result as it is a direct computation (see [5]).

Lemma 2.7. Let M ∈ FB so Γ = (x1)−1C.

1. ρ11 = (x1)−2{C12
2(C11

1 − C12
2 + 1) + C11

2(C22
2 − C12

1)}.

2. ρ12 = (x1)−2{−C11
2C22

1 + C12
1C12

2 + C22
2}.

3. ρ21 = (x1)−2{−C11
2C22

1 + C12
1C12

2 − C12
1}.

4. ρ22 = (x1)−2{C11
1C22

1 − (C12
1)2 + C12

1C22
2 − C12

2C22
1 − C22

1}.

We use the coordinate transformation (x1, x2) → (x1, εx1+x2) to partially normalize

the Christoffel symbols. The following result will be used in the proof of Lemma 3.15

subsequently.

Lemma 2.8. Let M ∈ FB.

1. If C22
1 ̸= 0, then by replacing x2 by x2 − εx1, we may assume that C12

1 = 0.

2. If C12
1 = 0, C22

1 = 0, C22
2 = 0, and C11

1 − 2C12
2 ̸= 0, then by replacing x2

by x2 − εx1, we may assume that C11
2 = 0 without changing the other Christoffel

symbols.

Proof. Let (u1, u2) := (x1, εx1 + x2). We then have:

du1 = dx1, du2 = εdx1 + dx2, ∂u1 = ∂x1 − ε∂x2 , ∂u2 = ∂x2 ,

∇∂u
1
∂u2 = ∇∂x

1−ε∂x
2
∂x2 = (xΓ12

1 − xΓ22
1ε)∂x1 + ⋆∂x2

= (xΓ12
1 − xΓ22

1ε)∂u1 + ⋆∂u2 ,
uC12

1 = xC12
1 − ε · xC22

1 .

We prove Assertion 1 by taking ε = xC12
1(xC22

1)−1.

Assume C12
1 = 0, C22

1 = 0, C22
2 = 0, and C11

1 − 2C12
2 ̸= 0. We compute

∇∂u
1
∂u1 = xΓ11

1∂x1 + xΓ11
2∂2 − 2ϵ · xΓ12

1∂x1 − 2ϵ · xΓ12
2∂x2

+ϵ2 · xΓ22
1∂x1 + ϵ2 · xΓ22

2∂x2

= xΓ11
1∂x1 + xΓ11

2∂x2 − 2ϵ · xΓ12
2∂x2

= xΓ11
1(∂x1 − ϵ∂x2 ) + (xΓ11

2 + ϵ{xΓ11
1 − 2 · xΓ12

2})∂x2 ,

∇∂u
1
∂u2 = xΓ12

1∂x1 + xΓ12
2∂x2 − ϵ · xΓ22

1∂x1 − ϵ · xΓ22
2∂x2

= xΓ12
2∂x2 ,
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∇∂u
2
∂u2 = xΓ22

1∂x1 + xΓ22
2∂x2 = 0,

uΓ11
1 = xΓ11

1, uΓ11
2 = xΓ11

2 + ϵ(xΓ11
1 − 2 · xΓ12

2), uΓ12
1 = 0,

uΓ12
2 = xΓ12

2, uΓ22
1 = 0, uΓ22

2 = 0.

We set ϵ = −(xΓ11
1 − 2xΓ12

2)−1 · xΓ11
2 to establish Assertion 2. □

Remark 2.9. We apply Lemma 2.8 to simplify the expressions of the Ricci tensor:

1. If C22
1 ̸= 0 we may assume that C12

1 = 0 and express

ρ11 = (x1)−2{C12
2(C11

1 − C12
2 + 1) + C11

2C22
2},

ρ12 = (x1)−2{−C11
2C22

1 + C22
2}, ρ21 = (x1)−2{−C11

2C22
1},

ρ22 = (x1)−2{(C11
1 − C12

2 − 1)C22
1}.

2. If C12
1 = 0, C22

1 = 0, C22
2 = 0, and C11

1 − 2C12
2 ̸= 0, we may assume that

C11
2 = 0 and express:

ρ11 = (x1)−2{C12
2(C11

1 − C12
2 + 1)}, ρ12 = 0, ρ21 = 0, ρ22 = 0.

The Ricci tensor of a Type B surface is not symmetric in general. Indeed, it is

symmetric if and only if Γ22
2 = −Γ12

1. Consequently, this family of surfaces is not

projectively flat in general, in contrast to Type A surfaces. We decompose the Ricci

tensor into its symmetric and its alternating parts in the form ρ = ρs+ρa. If Rank{ρs} =

0, then ρ = ρa (i.e., ρij = −ρji for all 1 ≤ i, j ≤ 2). That case will be examined in detail

in Lemma 4.6; we postpone the analysis until Section 4 since it will be crucial to our

discussion of affine gradient Ricci solitons on Type B surfaces and it is appropriate to

introduce the necessary notation then. We now examine the case that ρ is symmetric,

∇ρ is symmetric, and Rank{ρs} = 1.

Lemma 2.10. Let M ∈ FB. The following conditions are equivalent:

1. We have that C12
1 = 0, C22

1 = 0, and C22
2 = 0.

2. We have that

(a) ρ = (x1)−2(1 + C11
1 − C12

2)C12
2dx1 ⊗ dx1.

(b) ∇ρ = (x1)−3(−2(1 + C11
1)(1 + C11

1 − C12
2)C12

2)dx1 ⊗ dx1 ⊗ dx1.

(c) α(M) := ρ211;1/ρ
3
11 = 4(1 + C11

1)2/{(1 + C11
1 − C12

2)C12
2}.

3. ρ is symmetric, recurrent, and of rank 1 and ∇ρ is symmetric.

Proof. A direct computation shows that Assertion 1 implies Assertion 2. It

is immediate that Assertion 2 implies Assertion 3. Assume Assertion 3 holds so ρ is

symmetric. This implies C12
1 +C22

2 = 0. Since ρ is symmetric and has rank 1, we may

express

ρ = (x1)−2ε(a1dx
1 + a2dx

2)⊗ (a1dx
1 + a2dx

2)

where ε = ±1. There are two possibilities.
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Case 1: a2 ̸= 0. By making the linear change of coordinates x̃2 = a1x
1 + a2x

2, we

obtain a new Type B surface with ρ = (x1)−2εdx2 ⊗ dx2. Since ∇ρ is recurrent, we

have ∇ρ = (x1)−2ω ⊗ dx2 ⊗ dx2. Since ∇ρ is symmetric, we have ω = c⊗ dx2 for some

constant c. Thus the only non-zero component of ∇ρ is ρ22;2. We compute

∇∂1ρ = −(x1)−3ε{2(1 + C12
2)dx2 ⊗ dx2 + C11

2dx1 ⊗ dx2 + C11
2dx2 ⊗ dx1},

∇∂2ρ = −(x1)−3ε{2C22
2dx2 ⊗ dx2 + C12

2dx1 ⊗ dx2 + C12
2dx2 ⊗ dx1}.

This implies C12
2 = −1 and C12

2 = 0 which is not possible.

Case 2: a2 = 0. We have ρ = (x1)−2ϱdx1 ⊗ dx1 for ϱ ̸= 0. Then

∇∂1ρ = ⋆dx1 ⊗ dx1 − ϱ(x1)−3C12
1(dx2 ⊗ dx1 + dx1 ⊗ dx2)},

∇∂2ρ = −ϱ(x1)−3{2C12
1dx1 ⊗ dx1 + C22

1(dx1 ⊗ dx2 + dx2 ⊗ dx1)} .

Since ρ is recurrent, C12
1 = 0 and C22

1 = 0. As ρ is symmetric, C22
2 = −C12

1 = 0.

Thus we obtain the relations of Assertion 1. □

If ρ = ρ11dx
1 ⊗ dx1, then ker(ρ) = Span{∂2}. If, moreover, C12

1 = 0, C22
1 = 0, and

C22
2 = 0, then ker(ρ) is a parallel distribution which is totally geodesic.

3. Affine Killing vector fields.

If X is a smooth vector field on M , let ΦXt be the local flow defined by X. We refer

to Kobayashi–Nomizu [11, Chapter VI] for the proof of the following result.

Lemma 3.1. Let M = (M,∇) be an affine surface.

1. The following 3 conditions are equivalent and if any is satisfied, X is said to be an

affine Killing vector field:

(a) (ΦXt )∗ ◦ ∇ = ∇ ◦ (ΦXt )∗ on the appropriate domain.

(b) The Lie derivative LX(∇) of ∇ vanishes.

(c) [X,∇Y Z]−∇Y [X,Z]−∇[X,Y ]Z = 0 for all Y,Z ∈ C∞(TM).

2. Let K(M) be the set of affine Killing vector fields. The Lie bracket gives K(M) the

structure of a real Lie algebra. Furthermore, if X ∈ K(M), if X(P ) = 0, and if

∇X(P ) = 0, then X ≡ 0.

3. If M is an affine surface, then dim{K(M)} ≤ 6; equality holds if and only if M is

flat.

The relations of Assertion 1c will be called Killing equations. The following result

characterizes Types A and B homogeneous affine surfaces by means of the Lie Algebra

structure of their affine Killing vector fields. It is a restatement of Arias-Marco and

Kowalski [2, Lemma 1 and Lemma 2].

Lemma 3.2. Let M = (M,∇) be a homogeneous affine surface.
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1. M is of Type A if and only if there exists an Abelian sub-algebra g of K(M) of

rank 2, i.e. there exist X,Y ∈ K(M) which are linearly independent at some point

P of M so that [X,Y ] = 0.

2. M is of Type B if and only if there exists a non-Abelian sub-algebra g of K(M) of

rank 2, i.e there exist X,Y ∈ K(M) which are linearly independent at some point

P of M so that [X,Y ] = Y .

If P is a point of a locally homogeneous surface M, let KP (M) be the Lie algebra of

germs of affine Killing vector fields at P . If M is both Type A and Type B, then there

is a 2-dimensional Abelian Lie sub-algebra of KP (M) and there is also a 2-dimensional

non-Abelian Lie sub-algebra of KP (M). Consequently dim{KP (M)} > 2 in this instance.

3.1. Affine Killing vector fields on Type A surfaces.

We begin by establishing some technical results. Let ℜ(·) and ℑ(·) denote the real

and imaginary parts of a complex valued function. Let

KA
0 := Span{∂1, ∂2} .

If M ∈ FA, then Remark 1.3 shows KA
0 ⊂ K(M). The adjoint action of KA

0 makes K(M)

into a KA
0 module. This module action will play an important role in the proof of the

following result.

Lemma 3.3. Let M ∈ FA. Suppose that dim{K(M)} > 2. There exists a linear

change of coordinates so that M has the following properties:

1. There exists X ∈ K(M) so that one of the following possibilities holds:

(a) X = ℜ{ea1x1+a2x
2}∂1 for 0 ̸= (a1, a2) ∈ C2.

(b) X = (a1x
1 + a2x

2)∂1 for 0 ̸= (a1, a2) ∈ R2.

2. ρ = ρ22dx
2 ⊗ dx2.

3. If X ∈ K(M), then X = ζ(x1, x2)∂1 + c2∂2 for c2 ∈ R.

Proof. We proceed seriatim.

Step 1: the proof of Assertion 1. We complexify to set

L := K(M)⊗R C and LA
0 := KA

0 ⊗R C .

Since dim{K(M)} > 2, we may choose X ∈ L− L0. By Lemma 3.1, dim{L} ≤ 5. Since

∂iX = [∂i, X] ∈ L for i = 1, 2, there must be minimal non-trivial dependence relations:

∂r1X + cr−1∂
r−1
1 X + · · ·+ c0X = 0 with r > 0,

∂s2X + c̃s−1∂
s−1
2 X + · · ·+ c̃0X = 0 with s > 0

for some suitably chosen constants ci and c̃i. We factor the associated characteristic

polynomials to express these dependence relation in the form:
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u∏
t=1

(∂1 − λt)
µtX = 0 for λt ∈ C distinct and µt ≥ 1 , (3.a)

w∏
v=1

(∂2 − ηv)
νvX = 0 for ηv ∈ C distinct and νv ≥ 1 . (3.b)

Case 1. Suppose that some λt is non-zero (if all λt are zero and some ηv is non-zero the

analysis is analogous). By reordering the roots, we may assume λ1 ̸= 0. Since we have

chosen a minimal dependence relation, we have

0 ̸= Y := (∂1 − λ1)
µ1−1 . . . (∂1 − λu)

µuX ∈ L .

By replacing X by Y , we may assume the dependence relation of Equation (3.a) is

(∂1 − λ1)X = 0. This implies

X = eλ1x
1

(ξ1(x2)∂1 + ξ2(x2)∂2) ∈ L where λ1 ̸= 0 .

A similar argument shows we may assume that Equation (3.b) takes the form (∂2−η1)X =

0 for some η1 (possibly 0). We then conclude

X = eλ1x
1+η1x

2

X0 ∈ L for 0 ̸= X0 ∈ LA
0 and 0 ̸= λ1 .

If ℜ(X0) and ℑ(X0) are linearly dependent over R, then we can multiply X0 by an

appropriate non-zero complex number to assume 0 ̸= X0 ∈ KA
0 is real. This implies

ℜ(X) = ℜ{eλ1x
1+η1x

2}X0 has the form given in Assertion 1a. We therefore suppose that

ℜ(X0) and ℑ(X0) are linearly independent. We can make a linear change of coordinates

to assume X0 = (∂1 −
√
−1∂2)/2 = ∂z where z = x1 +

√
−1x2. Thus Z = eϕ∂z ∈ L for

some suitably chosen non-trivial linear function ϕ.

Case 1a. Suppose ϕ is purely imaginary. This implies ϕ =
√
−1(a1x1 + a2x2) for

0 ̸= (a1, a2) ∈ R2. We can rotate R2 and then rescale to suppose that ϕ =
√
−1x1. We

then have X = {cos(x1) +
√
−1 sin(x1)}(∂1 −

√
−1∂2)/2 and thus

ℜ{X} =
1

2
(cos(x1)∂1 + sin(x1)∂2) ∈ K(M) .

We have Killing equations:

(1− 2Γ12
1) cos(x1) + Γ11

1 sin(x1) = 0,

(Γ11
1 − 2Γ12

2) cos(x1) + (1 + 2Γ11
2) sin(x1) = 0,

Γ22
1 cos(x1) = 0,

(Γ12
1 − Γ22

2) cos(x1) + Γ12
2 sin(x1) = 0.

We solve these relations to see

Γ11
1 = 0, Γ11

2 = −1

2
, Γ12

1 =
1

2
, Γ12

2 = 0, Γ22
1 = 0, Γ22

2 =
1

2
.

The Ricci tensor of this structure is zero; this is false as M is assumed non-flat.
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Case 1b. Suppose ϕ is holomorphic. We can then rotate and rescale to ensure that

ϕ(z) = z so

ℜ(X) = ℜ
{
ex

1+
√
−1x2

(∂1 −
√
−1∂2)

2

}
=

ex
1

(cos(x2)∂1 + sin(x2)∂2)

2
.

We have Killing equations:

(1 + Γ11
1) cos(x2) + (Γ11

2 + 2Γ12
1) sin(x2) = 0,

Γ11
2 cos(x2) + (1− Γ11

1 + 2Γ12
2) sin(x2) = 0,

Γ22
2 cos(x2)− (1 + 2Γ12

2 + Γ22
1) sin(x2) = 0.

We solve these equations to see

Γ11
1 = −1, Γ11

2 = 0, Γ12
1 = 0, Γ12

2 = −1, Γ22
1 = 1, Γ22

2 = 0.

The Ricci tensor of this structure is zero; this is false as M is assumed non-flat.

Case 1c. Assume that ϕ is not purely imaginary and that ϕ is not holomorphic. Since

X̄ ∈ L,

[X, X̄] = eϕ+ϕ̄{∂zϕ̄ · ∂z̄ − ∂z̄ϕ · ∂z} = 2
√
−1eϕ+ϕ̄ℑ{∂zϕ̄ · ∂z̄} ∈ L .

Since ϕ is not purely imaginary, the exponent ϕ + ϕ̄ = a1x
1 + a2x

2 is non-trivial and

real. Since ϕ is not holomorphic, 0 ̸= ξ := ℑ{∂zϕ̄ · ∂z̄} ∈ KA
0 . We can change coordinates

to assume ξ = ∂1. We then have −
√
−1[Z, Z̄] = eã1x

1+ã2x
2

∂1 satisfies the hypotheses of

Assertion 1a. This completes the analysis of Case 1.

Case 2. Neither dependence relation involves a complex root of the characteristic poly-

nomials, i.e. we have ∂r1X = ∂s2X = 0. Since X /∈ KA
0 , (r, s) ̸= (1, 1). If r > 2, we replace

X by ∂r−2
1 X to ensure r ≤ 2. We then argue similarly to choose X so s ≤ 2 as well.

This implies

X =
1∑
i=0

1∑
j=0

(x1)i(x2)jXij for Xij ∈ KA
0 .

If X11 is non-zero, we can apply ∂1 to reduce the order and after subtracting the constant

term obtain an element with the form given in Assertion 1b. Otherwise, we may simply

subtract X00 to see that there exists X ∈ K(M) so that

X = ajix
i∂j ∈ K(M) for (aji ) ̸= 0 .

If Rank{(aji )} = 1, then we can change coordinates to assume X has the form given

in Assertion 1b. We therefore assume Rank{(aji )} = 2 and argue, at length, for a

contradiction. Only the Jordan normal form of the coefficient matrix (aji ) is relevant

since we are working modulo linear changes of coordinates. Furthermore, we can always

rescale X as needed.

Case 2a. A is diagonalizable. We may suppose X = x1∂1 + ax2∂2 for a ̸= 0. We obtain
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the equations:

Γ11
1 = 0, (a− 2)Γ11

2 = 0, aΓ12
1 = 0,

Γ12
2 = 0, (−1 + 2a)Γ22

1 = 0, aΓ22
2 = 0.

Thus the only possibly non-zero Christoffel symbols are Γ11
2 and Γ22

1. Since it is not

possible that (a− 2) = 0 and (−1 + 2a) = 0 simultaneously, we also have Γ11
2Γ22

2 = 0.

This implies ρ = 0 so this case is ruled out.

Case 2b. A has two equal non-zero eigenvalues and non trivial Jordan normal form.

We may suppose that X = (x1 + x2)∂1 + x2∂2 and obtain Killing equations:

Γ11
1 − Γ11

2 = 0, Γ11
2 = 0, Γ11

1 + Γ12
1 − Γ12

2 = 0,

Γ11
2 + Γ12

2 = 0, 2Γ12
1 + Γ22

1 − Γ22
2 = 0, 2Γ12

2 + Γ22
2 = 0.

We solve these equations to see Γ = 0 and hence ρ = 0 so this case is ruled out.

Case 2c. The matrix A has two complex eigenvalues with non-zero imaginary part. We

may assume X = (ax1 + x2)∂1 + (−x1 + ax2)∂2 is an affine Killing vector field for some

a ∈ R. We use the Killing equations to eliminate variables recursively. We set Γ12
2 = 2s

and Γ22
2 = 2t. At each stage we simplify the resulting Killing equations based on the

previous computations:

1. The Killing equation 4s+ 2at+ Γ22
1 = 0 yields Γ22

1 = −4s− 2at.

2. The Killing equation 2as+ t+ a2t− Γ12
1 = 0 yields Γ12

1 = 2as+ t+ a2t.

3. The Killing equation 4as− t+ a2t+ Γ11
2 = 0 yields Γ11

2 = −4as+ t− a2t.

4. The Killing equation 2(1 + a2)s+ 3at+ a3t+ Γ11
1 = 0 yields

Γ11
1 = −2(1 + a2)s− 3at− a3t.

We now obtain Killing equations in the parameters (s, t) which imply 3s + at = 0 and

2as + t(3 + a2) = 0. We set s = −at/3 to obtain the equation 3t + a2t/3 = 0. This

implies t = 0 so s = 0 and Γ = 0. Thus this case is ruled out. This completes the proof

of Assertion 1.

Step 2: the proof of Assertion 2. By Assertion 1, X = f(x1, x2)∂1 ∈ K(M) for

some non-constant function f . Choose P ∈ R2 so df(P ) ̸= 0. Let Y = c1∂1 + c2∂2 for

(c1, c2) ̸= (0, 0). Then

0 = {LX(ρ)}(Y, Y ) = X(ρ(Y, Y ))− 2ρ([X,Y ], Y ) .

Because ρ(Y, Y ) is constant, X(ρ(Y, Y )) = 0. For generic (c1, c2),

[X,Y ](P ) = {Y (f)(P )}∂1 ̸= 0 so ρ(∂1, Y ) = 0 .

This implies ρ11 = ρ12 = 0 so ρ = ρ22dx
2 ⊗ dx2.

Step 3: the proof of Assertion 3. Let X = ξ1(x1, x2)∂1 + ξ2(x1, x2)∂2 ∈ K(M). Let

Y = c1∂1+c2∂2. We argue as above to see that ρ([X,Y ], Y ) = 0. Since ρ = ρ22dx
2⊗dx2,

this implies
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c2ρ22(c1∂1ξ
2 + c2∂2ξ

2) = 0 for all (c1, c2) ∈ R2 .

This implies ξ2 is constant which establishes Assertion 3 and completes the proof of the

Lemma. □

Lemma 3.3 focuses attention on the case that Rank{ρ} = 1. The following result

relates the rank of the Ricci tensor with the dimension of the space of affine Killing vector

fields.

Theorem 3.4. Let M ∈ FA.

1. Suppose ρ = ρ22dx
2 ⊗ dx2.

(a) If Γ11
1 ̸= 0, then X ∈ K(M) if and only if X = e−Γ11

1x1

ξ(x2)∂1 + X0 for

X0 ∈ KA
0 where ξ satisfies ξ′′ + (2Γ12

1 − Γ22
2)ξ′ + Γ11

1Γ22
1ξ = 0.

(b) If Γ11
1 = 0, then X ∈ K(M) if and only if X = (ξ(x2) + c1x

1)∂1 + X0 for

X0 ∈ KA
0 where ξ satisfies ξ′′ + (2Γ12

1 − Γ22
2)ξ′ − c1Γ22

1 = 0.

2. The following assertions are equivalent.

(a) dim{K(M)} = 4.

(b) dim{K(M)} > 2.

(c) Rank{ρ} = 1.

3. The following assertions are equivalent :

(a) dim{K(M)} = 2.

(b) Rank{ρ} = 2.

Proof. We use Lemma 2.3 to impose the conditions Γ11
2 = 0 and Γ12

2 = 0 and

Lemma 3.3 to write X = ζ(x1, x2)∂1 + c2∂2. The Killing equations now become

ζ(2,0) + Γ11
1ζ(1,0) = 0,

ζ(1,1) + Γ11
1ζ(0,1) = 0,

ζ(0,2) − Γ22
1ζ(1,0) + (2Γ12

1 − Γ22
2)ζ(0,1) = 0.

We establish Assertion 1 by examining cases.

1. Suppose that Γ11
1 ̸= 0. We have ζ(x1, x2) = u0(x

2) + u1(x
2)e−Γ11

1x1

. A Killing

equation is Γ11
1u′

0 = 0. Thus we may take u0 constant and delete it from further

consideration. The remaining Killing equation is the condition of Assertion 1a.

2. Suppose Γ11
1 = 0. We have ζ(x1, x2) = u0(x

2) + u1(x
2)x1. A Killing equation is

u′
1 = 0 and hence u1(x

2) = c1 is constant. The remaining Killing equation is the

condition of Assertion 1b.

Clearly Assertion 2a implies Assertion 2b. We use Lemma 3.3 to see that Asser-

tion 2b implies Assertion 2c. We will apply Assertion 1 to see Assertion 2c implies
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Assertion 2a. We argue as follows. Suppose first Γ11
1 ̸= 0. Let {ξ1, ξ2} be a basis for the

space of solutions to the Equation of Assertion 1a. Then

K(M) = SpanR{ξ1(x2)e−Γ11
1x1

∂1, ξ2(x
2)e−Γ11

1x1

∂1, ∂1, ∂2}

and hence dim{K(M)} = 4. Suppose on the other hand that Γ11
1 = 0. Choose a solution

ξ0(x
2) to the Equation of Assertion 1b with c1 = 1, i.e. we have

ζ(x1, x2) = x1 + ξ0(x
2) where ξ′′0 + (2Γ12

1 − Γ22
2)ξ′0 − Γ22

1 = 0 .

Let {ξ1, ξ2} be a basis for the space of solutions to the homogeneous equation ξ′′ +

(2Γ12
1 − Γ22

1)ξ′ = 0. Then

K(M) = SpanR{ξ0∂1, ξ1∂1, ξ2∂1, ∂1, ∂2} .

Since we may take ξ1 = 1, ξ1∂1 = ∂1 and we see that dim{K(M)} = 4. This completes

the proof of Assertion 2; the final Assertion is now immediate. □

There are several Lie algebras which will play an important role in our analysis.

Let A2 := SpanR{e1, e2} with Lie bracket [e1, e2] = e2; up to isomorphism, A2 is the

only non-trivial real Lie algebra of dimension two; it is the Lie algebra of the “ax + b”

group. We adopt the notation of Patera et al. [17] to define several other Lie algebras.

Let {e1, e2, e3, e4} be a basis of R4. We define the following solvable Lie algebras by

specifying their bracket relations.

• A2 ⊕A2: the relations of the bracket are given by

[e1, e2] = e2, [e3, e4] = e4 .

• Ab4,9: the relations of the bracket for −1 ≤ b ≤ 1 are given by

[e2, e3] = e1, [e1, e4] = (1 + b)e1, [e2, e4] = e2, [e3, e4] = be3 .

• A4,12: the relations of the bracket are given by

[e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1 .

Definition 3.5. Let M⋆
⋆ be the affine surface defined by the structures:

M1: Γ11
1 = −1, Γ11

2 = 0, Γ12
1 = 1, Γ12

2 = 0, Γ22
1 = 0, Γ22

2 = 2.

Mc
2: Γ11

1 = −1, Γ11
2 = 0, Γ12

1 = c, Γ12
2 = 0, Γ22

1 = 0, Γ22
2 = 1 + 2c,

where c2 + c ̸= 0.

Mc
3: Γ11

1 = 0, Γ11
2 = 0, Γ12

1 = c, Γ12
2 = 0, Γ22

1 = 0, Γ22
2 = 1 + 2c,

where c2 + c ̸= 0.

Mc
4: Γ11

1 = 0, Γ11
2 = 0, Γ12

1 = 1, Γ12
2 = 0, Γ22

1 = c, Γ22
2 = 2.

Mc
5 : Γ11

1 = −1, Γ11
2 = 0, Γ12

1 = c, Γ12
2 = 0, Γ22

1 = −1, Γ22
2 = 2c.
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We use Lemma 2.3 to see ρ(M⋆
⋆) = ρ22dx

2 ⊗ dx2 ̸= 0 for ρ22 ̸= 0 so none of these

examples is flat. We compute ρ22 and α:

ρ22(M1) = 1, α(M1) = 16,

ρ22(Mc
2) = c2 + c, α(Mc

2) =
4(1 + 2c)2

c2 + c
∈ (−∞, 0] ∪ (16,∞),

ρ22(Mc
3) = c2 + c, α(Mc

3) =
4(1 + 2c)2

c2 + c
∈ (−∞, 0] ∪ (16,∞),

ρ22(Mc
4) = 1, α(Mc

4) = 16,

ρ22(Mc
5) = 1 + c2, α(Mc

5) =
16c2

1 + c2
∈ [0, 16).

The general linear group GL(2,R) acts on the space of Christoffel symbols by pull-

back; we say that Γ1 and Γ2 are linearly equivalent if there exists T ∈ GL(2,R) so that

T ∗(∇Γ1) = ∇Γ2 . We have the following classification result.

Lemma 3.6.

1. If M ∈ FA and Rank(ρ) = 1, then M is linearly equivalent to M1, Mc
2, Mc

3, Mc
4,

or Mc
5.

2. K(M1) = SpanR{ex
1

∂1, x
2ex

1

∂1} ⊕ KA
0 ≈ A0

4,9.

3. K(Mc
2) = SpanR{ex

1

∂1, e
x1+x2

∂1} ⊕ KA
0 ≈ A2 ⊕A2.

4. K(Mc
3) = Span{ex2

∂1, x
1∂1} ⊕ KA

0 ≈ A2 ⊕A2.

5. K(Mc
4) = Span{x2∂1, (c · (x2)2 + 2x1)∂1} ⊕ KA

0 ≈ A0
4,9.

6. K(Mc
5) = SpanR{ex

1

cos(x2)∂1, e
x1

sin(x2)∂1} ⊕ KA
0 ≈ A4,12.

7. M1, Mc
2, Mc

3, and Mc
4 are also Type B; Mc

5 is not Type B.

Proof. Assume ρ has rank 1 and make a linear change of coordinates to assume

ρ = ρ22dx
2 ⊗ dx2. By Theorem 3.4, there exists X ∈ K(M)−KA

0 of the form ζ(x1, x2)∂1
where ζ is non-constant. Lemma 3.3 then shows either ζ = ea1x

1+a2x
2

for (0, 0) ̸=
(a1, a2) ∈ R2 (Case 1 and Case 2 below), or ζ = a1x

1 + a2x
2 for (0, 0) ̸= (a1, a2) ∈ R2

(Case 3 below), or ζ = ℜ{ea1x1+a2x
2} for (a1, a2) ∈ C2−R2 (Case 4 below). We examine

these possibilities seriatim.

Case 1. Assume ea1x
1+a2x

2

∂1 ∈ K(M) for a1 ̸= 0. Let

(u1, u2) := (a1x
1 + a2x

2, x2) so eu
1

∂u1 = (a1)
−1ea1x

1+a2x
2

∂1 ∈ K(M) .

Thus we may assume that ex
1

∂1 ∈ K(M). Let X1 := ∂1 + ∂2 and X2 := ex
1

∂1, then

{X1(P ), X2(P )} are linearly independent for any point P ∈ R2. By Lemma 3.2, M is

also Type B since [X1, X2] = X2. A direct computation shows X = ex
1

∂1 is an affine

Killing vector field if and only if
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Γ11
1 = −1, Γ11

2 = 0, Γ12
2 = 0, Γ22

1 = 0 .

We impose these relations and obtain ρ22 = Γ12
1(Γ22

2 − Γ12
1) ̸= 0. Two sub-cases

present themselves when we search for another affine Killing vector field:

Case 1a. Assume Γ22
2 = 2Γ12

1. We set Y = x2ex
1

∂1 and verify Y is an affine Killing

vector field. By Theorem 3.4, dim{K(M)} = 4. Thus

K(M) = SpanR{ex
1

∂1, x
2ex

1

∂1} ⊕ KA
0 .

Since ρ22 ̸= 0, Γ12
1 ̸= 0. By rescaling x2, we may assume that Γ12

1 = 1; this yields the

surface M1. Set e1 := ex
1

∂1, e2 := x2ex
1

∂1, e3 := −∂2, e4 := −∂1. We then have the

bracket relations of the Lie algebra A0
4,9:

[e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2 .

Case 1b. Assume Γ22
2 − 2Γ12

1 ̸= 0. Then Y = ex
1+(Γ22

2−2Γ12
1)x2

∂1 is an affine Killing

vector field distinct from ex
1

∂1. By replacing x2 by (Γ22
2 − 2Γ12

1)−1x2, we may assume

Y = ex
1+x2

∂1; the Killing equations then yield Γ22
2 = 2Γ12

1 + 1 and thus

K(M) = SpanR{ex
1

∂1, e
x1+x2

∂1} ⊕ KA
0 .

We set e1 := ∂2, e2 := ex
1+x2

∂1, e3 := ∂1 − ∂2, e4 := ex
1

∂1. This yields the surface Mc
2.

We then have the bracket relations of the Lie algebra A2 ⊕A2:

[e1, e2] = e2, [e3, e4] = e4 .

Case 2. Assume ea1x
1+a2x

2

∂1 ∈ K(M) for a1 = 0. Hence ea2x
2

∂1 ∈ K(M) for a2 ̸= 0.

We may rescale x2 to assume a2 = 1. A direct computation shows ex
2

∂1 is an affine

Killing vector field if and only if

Γ11
1 = 0, Γ11

2 = 0, Γ12
2 = 0, Γ22

2 = 1 + 2Γ12
1 .

If we set Y = (x1 −Γ22
1x2)∂1, then this is an affine Killing vector field. We may make a

linear change of variables to replace x1 by x1 −Γ22
1x2 to obtain x1∂1 is an affine Killing

vector field; this implies Γ22
1 = 0. This yields the surface Mc

3. We then have

K(M) = Span{ex
2

∂1, x
1∂1} ⊕ KA

0 .

We set X1 = ∂2 and X2 = ex
2

∂1. Since [X1, X2] = X2 and {X1(P ), X2(P )} are linearly

independent for any P ∈ R2, Lemma 3.2 implies M is Type B as well. We set e1 :=

−x1∂1 − ∂2, e2 := −∂1, e3 := ∂2, and e4 := ex
2

∂1. We then have the bracket relations

of the Lie algebra A2 ⊕A2:

[e1, e2] = e2, [e3, e4] = e4 .

Case 3. Assume (a1x
1 + a2x

2)∂1 ∈ K(M) for (a1, a2) ̸= (0, 0). This gives rise to

several cases; we can rescale x1 and x2 to replace ai by λiai. Thus we need only consider
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(a1, a2) ∈ {(1, 0), (1, 1), (0, 1)}.
Case 3a. Suppose (a1, a2) = (0, 1) so x2∂1 ∈ K(M). A direct computation shows x2∂1
is an affine Killing vector field if and only if

Γ11
1 = 0, Γ11

2 = 0, Γ12
2 = 0, Γ22

2 = 2Γ12
1 .

We then have ρ22 = (Γ12
1)2. By rescaling x2, we may assume Γ12

1 = 1 and hence

Γ22
2 = 2. We obtain the surface Mc

4. We set Y = (2x1 + c · (x2)2)∂1 and verify that Y

is an affine Killing vector field. Thus

K(M) = SpanR{x2∂1, (2x
1 + c · (x2)2)∂1} ⊕ KA

0 .

We set X1 = ∂1 and X2 = ∂2 + (x1 + c · (x2)2/2)∂1. Then {X1(P ), X2(P )} are linearly

independent for any point P ∈ R2. Set e1 := ∂1, e2 := x2∂1, e3 := −∂2 + cx2∂1,

e4 := (c · (x2)2/2 + x1)∂1. We obtain the bracket relations of the Lie algebra A0
4,9:

[e2, e3] = e1, [e1, e4] = e1, [e2, e4] = e2 .

Case 3b. Suppose (a1, a2) = (1, 0) so x1∂1 ∈ K(M). The Killing equations yield the

relations:

Γ11
1 = 0, Γ11

2 = 0, Γ12
2 = 0, Γ22

1 = 0 .

Suppose first 2Γ12
1 ̸= Γ22

2. Set Y = e(Γ22
2−2Γ12

1)x2

∂1. We then verify that Y is an

affine Killing vector field. Thus this is subsumed in Case 2. We may therefore suppose

2Γ12
1 = Γ22

2 and we obtain that x2∂1 also is an affine Killing vector field. This is

subsumed in Case 3a.

Case 3c. Suppose (a1, a2) = (1, 1) so (x1 + x2)∂1 ∈ K(M). By replacing x1 by x1 + x2,

we obtain x1∂1 ∈ K(M). This is subsumed in Case 3b.

Case 4. Assume (eα1x
1+α2x

2

)∂1 is a complex affine Killing vector field where we have

(α1, α2) ∈ C2 −R2. Set α1 = a1 +
√
−1a2 and α2 = b1 +

√
−1b2. Then the following two

vector fields are affine Killing vector fields:

X := ea1x
1+b1x

2

cos(a2x
1 + b2x

2)∂1,

Y := ea1x
1+b1x

2

sin(a2x
1 + b2x

2)∂1 .

Consequently K(M) = SpanR{X,Y } ⊕ KA
0 .

Case 4a. Suppose a2 ̸= 0. We can then make a linear change of coordinates to assume

X = ea1x
1+b1x

2

cos(x1)∂1. The Killing equations yield:

0 = (−1 + a21 + a1Γ11
1 − b1Γ11

2) cos(x1)− (2a1 + Γ11
1) sin(x1),

0 = 2Γ11
2(a1 cos(x

1)− sin(x1)) .

This implies:

Γ11
2 = 0, (a1)

2 + a1Γ11
1 − 1 = 0, 2a1 + Γ11

1 = 0 .
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Thus Γ11
1 = −2a1. We show this case does not occur by deriving the contradiction:

0 = (a1)
2 + a1Γ11

1 − 1 = −1− a21 .

Case 4b. Suppose a2 = 0 and normalize x2 so that b2 = 1 and

X = ea1x
1+b1x

2

cos(x2)∂1 .

Suppose a1 = 0 so X = eb1x
2

cos(x2)∂1. We obtain two relations:

b21 + 2b1Γ12
1 − b1Γ22

2 − 1 = 0 and −2b1 − 2Γ12
1 + Γ22

2 = 0.

This implies b1 = (Γ22
2 − 2Γ12

1)/2. We derive a contradiction and show this case can

not occur by computing:

b21 + 2b1Γ12
1 − b1Γ22

2 − 1

= −4 + 4(Γ12
1)2 − 4Γ12

1Γ22
2 + (Γ22

2)2

4

= −4 + (2Γ12
1 − Γ22

2)2

4
= 0 .

Thus a1 ̸= 0 so we can renormalize the coordinates to ensure X = ex
1

cos(x2)∂1. The

bracket with ∂2 then yields X̃ = ex
1

sin(x2)∂1 also is an affine Killing vector field. This

generates the 4-dimensional Lie algebra K(M). Let

e1 := ex
1

cos(x2)∂1, e2 := ex
1

sin(x2)∂1, e3 := −∂1, e4 := −∂2.

We then have the bracket relations of A4,12:

[e1, e3] = e1, [e2, e3] = e2, [e1, e4] = −e2, [e2, e4] = e1 .

This establishes Assertions 1-6; Assertion 7 follows from Lemma 3.2. □

Remark 3.7. No surface in one family of Definition 3.5 is linearly isomorphic to

a surface in another family. We argue as follows to see this. The Lie algebra K(Mc
5)

is A4,12; this is different from the Lie algebras of the other 4 families so this family is

distinct. Similarly, the Lie algebra of M1 or Mc
4 is A0

4,9 while the Lie algebra of Mc
2 or

Mc
3 is A2 ⊕A2. So we must construct a linear invariant distinguishing M1 from Mc

4 or

distinguishing Mc
2 from Mc

3. The Ricci tensor of any surface in Definition 3.5 has rank

1 so ker(ρ) is a 1-dimensional distribution; we have normalized the coordinate system so

ker(ρ) = ∂1 · R. Let ρ0 := Γij
jdxi. Since contraction of an upper against a lower index

is invariant under the action of GL(2,R), ρ0 and hence dim{ker(ρ) ∩ ker(ρ0)} is a linear

invariant. We compute

ρM1
0 (∂1) = −1, ρ

Mc
2

0 (∂1) = −1, ρ
Mc

3
0 (∂1) = 0, ρ

Mc
4

0 (∂1) = 0 .

Thus ker(ρ) ∩ ker(ρ0) = {0} if M = M1 or M = Mc
2 while ker(ρ) ∩ ker(ρ0) ̸= {0} if

M = Mc
3 or M = Mc

4. Thus in fact the 5 families of Definition 3.5 are distinct under

linear equivalence and Lemma 3.6 is minimal in this respect.
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Although the 5 basic families of Definition 3.5 are distinct under linear equivalence,

there are non-linear changes of coordinates that can be used to relate members of different

families. We use such changes to establish the following result that shows that the

invariants α and ϵ form a complete system of invariants for Type A surfaces where the

Ricci tensor has rank 1.

Theorem 3.8. Let M and M̃ be Type A affine surfaces with Rank{ρ} = 1. As-

sume that α(M) = α(M̃) = α and that ϵ(M) = ϵ(M̃) = ϵ.

1. If α = 16, then M ≈ M̃, K(M) ≈ A0
4,9, and M is also of Type B.

2. If α ∈ (0, 16), then M ≈ M̃, K(M) ≈ A4,12 and M is not of Type B.

3. If α /∈ [0, 16], then M ≈ M̃, K(M) ≈ A2 ⊕A2, and M is also of Type B.

4. Assume α = 0.

(a) If ϵ < 0, then M ≈ M̃, K(M) ≈ A2 ⊕A2, and M is also of Type B.
(b) If ϵ > 0, then M ≈ M̃, K(M) ≈ A4,12 and M is not of Type B.

Proof. We first deal with the surfaces M1 and Mc
2.

Assume xΓ11
1 = −1, xΓ11

2 = 0, xΓ12
2 = 0, and xΓ22

1 = 0. Set u1 = e−x
1

and

u2 = x2. Then

du1 = −e−x
1

dx1, du2 = dx2,

∂u1 = −ex
1

∂1, ∂u2 = ∂2 .

We then have SpanR{∂1, ex
1

∂1, ∂2} = SpanR{−u1∂u1 , ∂
u
1 , ∂

u
2 }. We compute:

∇∂u
1
∂u1 = ex

1

∇∂1{ex
1

∂1} = e2x
1

{(1 + xΓ11
1)∂1 +

xΓ11
2∂2},

∇∂u
1
∂u2 = −ex

1

∇∂1∂2 = −ex
1

{xΓ12
1∂1 +

xΓ12
2∂2},

∇∂u
2
∂u2 = ∇∂2∂2 = xΓ22

1∂1 +
xΓ22

2∂2 .

This implies that:

uΓ11
1 = −(1 + xΓ11

1) · ex1

= 0, uΓ12
1 = xΓ12

1 ∈ R,
uΓ22

1 = −xΓ22
1 · e−x1

= 0, uΓ11
2 = xΓ11

2 · e2x1

= 0,
uΓ12

2 = −xΓ12
2 · ex1

= 0, uΓ22
2 = xΓ22

2 ∈ R.

Thus α is unchanged and M̃ := (R+ × R, uΓ) is isomorphic to M := (R2, xΓ). (This

shows, incidentally, that (R2, xΓ) is incomplete in this instance).

Case 1. The surface M1. We may identify M1 with M0
4. We will discuss the surfaces

Mc
4 for more general c subsequently.

Case 2. The surfaces Mc
2. We may identify Mc

2 with Mc
3. Let x = Γ12

1. We have

α = 4(1 + 2x)2/(x2 + x). This is symmetric about the line x = −1/2. We note that

α = 0 precisely when Γ12
2 = −1/2; in this setting ρ22 < 0.
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This is the setting of Theorem 3.8 (4a) and there is only one surface in this class.

If we assume α ̸= 0, then α takes values in (−∞, 0) ∪ (16,∞). There are two possible

values of x (and two corresponding surfaces). We make a linear change of coordinates

x1 → x1 −x2 and x2 → 2x2 to have K(M) = SpanR{ex
1−x2

∂1, e
x1+x2

∂1}⊕KA
0 . We have

ex
1±x2

∂1 are affine Killing vector fields if and only if the following equations are satisfied:

0 = Γ11
1 − Γ11

2 + 1, 0 = Γ11
1 + Γ11

2 + 1,

0 = Γ11
2, 0 = Γ11

2,

0 = Γ11
1 − Γ12

2 + 1, 0 = Γ11
1 − Γ12

2 + 1,

0 = Γ11
2 + Γ12

2, 0 = Γ12
2 − Γ11

2,

0 = 2Γ12
1 − Γ22

1 − Γ22
2 + 1, 0 = 2Γ12

1 + Γ22
1 − Γ22

2 − 1,

0 = Γ12
2, 0 = Γ12

2,

or equivalently

Γ11
1 = −1, Γ11

2 = 0, Γ12
2 = 0, Γ22

1 = 1, Γ22
2 = 2Γ12

1 .

We now have α = 16x2/(x2 − 1) where x = Γ12
1. The symmetry can now be realized by

x2 → −x2, i.e. Γ12
1 → −Γ12

1. Thus α and ϵ completely detect the surfaces Mc
2.

Case 3. The surface Mc
3. These surfaces have been identified with the surfaces Mc

2

and dealt with in Case 2.

Case 4. The surfaces Mc
4. We have the relations

xΓ11
1 = 0, xΓ11

2 = 0, xΓ12
1 = 1, xΓ12

2 = 0, xΓ22
2 = 2 .

We have α = 16 and K(M) = SpanR{x2∂1, (
xΓ22

1(x2)2 + 2x1)∂1} ⊕ KA
0 . The parameter

c := xΓ22
1 is undetermined. Let u1 = x1 + (1/2)xΓ22

1(x2)2 and u2 = x2 be a change of

coordinates. We have

du1 = dx1 + xΓ22
1x2dx2, du2 = dx2,

∂u1 = ∂1, ∂u2 = −xΓ22
1x2∂1 + ∂2.

We compute:

∇∂u
1
∂u1 = ∇∂1∂1 = xΓ11

1∂1 +
xΓ11

2∂2 = 0,

∇∂u
2
∂u1 = −xΓ22

1x2(xΓ11
1∂1 +

xΓ11
2∂2) +

xΓ12
1∂1 +

xΓ12
2∂2

= ∂1 = ∂u1 ,

∇∂u
2
∂u2 = (xΓ22

1x2)2∇∂1∂1 − 2xΓ22
1x2∇∂1∂2 − xΓ22

1∂1 +∇∂2∂2

= 0− 2xΓ22
1x2∂1 − xΓ22

1∂1 +
xΓ22

1∂1 +
xΓ22

2∂2 = 2∂u2 .

Consequently,

uΓ11
1 = 0, uΓ11

2 = 0, uΓ12
1 = 1,

uΓ12
2 = 0, uΓ22

1 = 0, uΓ22
2 = 2,

so the surfaces M1 and Mc
4 are equivalent for any c.

Case 5. The surfaces Mc
5. We have the relations
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Γ11
1 = −1, Γ11

2 = 0, Γ12
2 = 0, Γ22

1 = −1, Γ22
2 = 2Γ12

1 .

We have α = 16x2/(1 + x2) takes values in [0, 16) where x = Γ12
1. If α = 0, there is

only one surface given by Γ12
1 = 0 and we have ρ22 = 1 + (Γ12

1)2 = 1 corresponding

to Theorem 3.8 (4b). If α ∈ (0, 16), we have two surfaces given by ±Γ12
1 and the

symmetry is realized by x2 → −x2. We have M is not of Type B and K(M) ≈ A4,12,

thus Assertion 2 follows.

This shows that (α, ϵ) completely determines the isomorphism type of M and com-

pletes the proof of Theorem 3.8. □

We summarize our conclusions as follows:

Table 1. Classification of homogeneous affine surfaces of Type A with Rank{ρ} = 1. Let

κ(M) := dim{K(M)}.

α ϵ M K(M) κ(M) Type A Type B
α < 0 −1 Mc

2, Mc
3, |c+ 1/2| < 1/2 A2 ⊕A2 4 ✓ ✓

α = 0 −1 Mc
2, Mc

3, c = −1/2 A2 ⊕A2 4 ✓ ✓
α = 0 +1 M0

5 A4,12 4 ✓ No

0 < α < 16 +1 Mc
5, c ̸= 0 A4,12 4 ✓ No

α = 16 +1 M1, Mc
4, c ∈ R A0

4,9 4 ✓ ✓
16 < α +1 Mc

2, Mc
3, 1/2 < |c+ 1/2| A2 ⊕A2 4 ✓ ✓

3.2. Affine Killing vector fields on Type B homogeneous surfaces.

Linear equivalence for Type A surfaces is the action of GL(2,R). Linear equivalence
for Type B surfaces is a bit more subtle in view of Remark 1.3.

Lemma 3.9. Let Tb,c : (x1, x2) → (x1, bx1 + cx2) for c ̸= 0. Let C and C̃ define

affine manifolds M and M̃ of Type B. Then M and M̃ are linearly equivalent if and

only if there exists Tb,c so T ∗
b,cC = C̃.

Proof. Let G := {T : (x1, x2) → (tx1, ux1 + vx2 + w)} for t > 0 and v ̸= 0 be

a 4-dimensional Lie group which preserves R+ × R. Then by definition, M is linearly

equivalent to M̃ if and only if there exists T ∈ G so that T ∗C = C̃. There are two

non-Abelian subgroups of G which play an important role. Set

H := {S : (x1, x2) → (ax1, ax2 + b) for a > 0} and I := {Tb,c} .

The subgroups H and I generate G as a Lie group. By Remark 1.3, H preserves Type B
structures. Thus only the action of I is relevant in studying linear equivalence for Type

B structures and the Lemma follows. □

The Lie group I plays the crucial role in studying linear equivalence for Type B
structures; the shear (x1, x2) → (x1, εx1 + x2) and the rescaling (x1, x2) → (x1, cx2) for

c ̸= 0 generate I and will play a central role in what follows. The group H also plays an

important role. Let KB
0 be the Lie algebra of H. Then

KB
0 := Span{x1∂1 + x2∂2, ∂2} ⊂ K(M) for any M ∈ FB .
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This non-Abelian Lie sub-algebra plays the same role in the analysis of Type B surfaces

that KA
0 played in the analysis of Type A surfaces.

Let su(1, 1) be the Lie algebra of SU(1, 1) or, equivalently, of SL(2,R). It is the Lie
algebra on 3 generators (also denoted by A3,8 in [17]) satisfying the relations:

[e1, e2] = e1, [e2, e3] = e3, [e1, e3] = −2e2 . (3.c)

Definition 3.10. Set

N±
1 := M(C11

1 = −3

2
, C11

2 = 0, C12
1 = 0, C12

2 = −1

2
, C22

1 = ∓1

2
, C22

2 = 0).

N c
2 := M(C11

1 = −3

2
, C11

2 = 0, C12
1 = 1, C12

2 = −1

2
, C22

1 = c, C22
2 = 2).

N3 := M(C11
1 = −1, C11

2 = 0, C12
1 = 0, C12

2 = −1, C22
1 = − 1, C22

2 = 0).

N4 := M(C11
1 = −1, C11

2 = 0, C12
1 = 0, C12

2 = −1, C22
1 = 1, C22

2 = 0).

We show that these surfaces are not flat and thus N ⋆
⋆ is Type B by computing:

ρ(N±
1 ) = ±(x1)−2dx2 ⊗ dx2,

ρ(N c
2 ) = (x1)−2{3

2
(dx1 ⊗ dx2 − dx2 ⊗ dx1) + (1− 2c)dx2 ⊗ dx2},

ρ(N3) = (x1)−2(−dx1 ⊗ dx1 + dx2 ⊗ dx2),

ρ(N4) = (x1)−2(−dx1 ⊗ dx1 − dx2 ⊗ dx2) .

(3.d)

The main result of this section is the following:

Theorem 3.11. If M ∈ FB, then 2 ≤ dim{K(M)} ≤ 4.

1. If dim{K(M)} = 4, then ρ = (x1)−2ρ̃11dx
1 ⊗ dx1, C12

1 = C22
1 = C22

2 = 0, M
is also of Type A, and up to linear equivalence one of the following 3 possibilities

holds:

(a) C11
1 − 2C12

2 = 0, C11
2 = 1, ρ̃11 = (1 + C12

2)C12
2 ̸= 0, and

K(M) = Span{x1∂1 − x1 log(x1)∂2, x
1∂2} ⊕ KB

0 .

(b) C11
2 = 0, ρ̃11 = (1 + C11

1 − C12
2)C12

2 ̸= 0, and

K(M) = Span{x1∂1, (x
1)a∂2} ⊕ KB

0 for some a ̸= 0.

(c) C11
2 = 0, ρ̃11 = (C12

2)2 ̸= 0, and

K(M) = Span{x1∂1, log(x
1)∂2} ⊕ KB

0 .

2. If dim{K(M)} = 3, then K(M) = Span{X(σ)} ⊕ KB
0 ≈ su(1, 1) where

X(σ) := 2x1x2∂1 + {(x2)2 + σ · (x1)2}∂2 for σ ∈ {−1, 0, 1},

M is not of Type A, and up to linear equivalence, one of the following possibilities

holds:

(a) σ = 0, M = N±
1 , and M is not Type C.

(b) σ = 0, M = N c
2 , and M is not Type C.
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(c) σ = 1, M = N3, and M is Type C.

(d) σ = −1, M = N4, and M is Type C.

3. For each of the 3 structures listed in Assertion 1, dim{K(M)} = 4. For each of the

4 structures listed in Assertion 2, dim{K(M)} = 3.

Remark 3.12. If M is Type C, then dim{K(M)} = 3, ρ = ρs, and Rank{ρ} = 2.

Thus ifM ∈ FB thenM is also of Type C if and only if either Assertion 2c or Assertion 2d

of Theorem 3.11 holds. Similarly, M is both Type B and Type A if and only if Assertion 1

of Theorem 3.11 holds.

The proof of this result will occupy most of this section and will be a direct conse-

quence of the following lemmas. It gives a complete description of those homogeneous

affine surfaces of Type B with dim{K(M)} > 2. If X ∈ C∞(TM) is a smooth vector

field on M , let

Θ := ad(x1∂1 + x2∂2) i.e. Θ(X) := [x1∂1 + x2∂2, X] . (3.e)

Lemma 3.13. Let X ∈ C∞(TM) be polynomial in (x1, x2). If X is homogeneous

of degree ℓ, then Θ(X) = (ℓ− 1)X.

Proof. Let X =
∑
i+j=ℓ(x

1)i(x2)j(c1i,j∂1 + c2i,j∂2) for c
ν
i,j ∈ R. Then:

[x1∂1, X] =
∑
i+j=ℓ

(x1)i(x2)j{(i− 1)c1i,j∂1 + ic2i,j∂2},

[x2∂2, X] =
∑
i+j=ℓ

(x1)i(x2)j{jc1i,j∂1 + (j − 1)c2i,j∂2} .

We add these two expressions to see Θ(X) = (ℓ− 1)X. □

The following result is an analogue of Lemma 3.3; Assertion 2a (resp. Assertion 2b)

will give rise to Assertion 1 (resp. Assertion 2) of Theorem 3.11.

Lemma 3.14. Let M ∈ FB. Suppose that dim{K(M)} > 2.

1. If X ∈ K(M), then X is polynomial in x2, i.e. X =
∑n
k=0(x

2)kXk(x
1).

2. Choose n = n(X) minimal so X ∈ K(M)− KB
0 has the form of Assertion 1. Then

one of the following two possibilities holds:

(a) n = 0 and X = a1(x
1)∂1 + a2(x

1)∂2.

(b) n = 2. By making a change of coordinates (x1, x2) → (x1, αx1 + βx2), we can

ensure X = 2x1x2∂1 + {(x2)2 + σ · (x1)2}∂2 for σ ∈ {−1, 0, 1}.

Proof. We use the structure of K(M) as a KB
0 module. Let X ∈ K(M). Since

ad(∂2) = ∂2 is an endomorphism of K(M) and since K(M) is finite dimensional, there is

a minimal dependence relation of the form:
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∂s2X + cs−1∂
s−1
2 X + · · ·+ c0X = 0 with s > 0 and ci ∈ R .

We factor this relation over C to construct a relation

w∏
v=1

(∂2 − λv)
νvX = 0 for λv ∈ C distinct and νv ≥ 1 .

We clear the previous notation and let L (resp. LB
0 ) be the complexification of K(M)

(resp. KB
0 ). Suppose some λv ̸= 0. By reordering the roots, we may assume λ1 ̸= 0. Since

we have chosen a minimal dependence relation, we have

0 ̸= Y := (∂2 − λ1)
ν1−1

w∏
v=2

(∂2 − λv)
νvX ∈ L .

Since (∂2−λ1)Y = 0, Y = eλ1x
2

Y0(x
1) ∈ L. Since L is finite dimensional, we may choose

Z ∈ L for n maximal of the form

0 ̸= Z = eλ1x
2

n∑
k=0

(x2)kZk(x
1) for Zn(x

1) not identically zero .

We then have 0 ̸= Θ(Z) = (x2)n+1λ1e
λ1x

2

Zn(x
1) + O((x2)n) ∈ L which contradicts the

assumption that n was maximal. Thus terms which are true exponentials in x2 do not

occur and the minimal relation for X takes the form (∂2)
nX = 0. This implies that X

is polynomial in x2 and establishes Assertion 1.

We now establish Assertion 2. Choose X ∈ K(M)−KB
0 so that n = n(X) is minimal.

If n = 0, then X = X(x1) and Assertion 2a holds. We suppose therefore that n > 0.

One has 0 ̸= (∂2)
nX = n!Xn(x

1) ∈ K(M). Because n was minimal, Xn(x
1) ∈ KB

0 . Since

Xn(x
1) does not depend on x2, Xn(x

1) is a constant multiple of ∂2. Therefore after

rescaling X if necessary, we may assume

X = (x2)n∂2 +
n−1∑
k=0

(x2)kXk(x
1) ∈ K(M)− KB

0 .

If n > 2, then ∂2X ∈ K(M) has degree at least 2 in x2 so ∂2X /∈ KB
0 . This contradicts the

minimality of n and shows n = 1 or n = 2. If n = 1, then X̃(x1) := X − x1∂1 − x2∂2 ∈
K(M) − KB

0 is independent of x2 and therefore has n(X̃) = 0; this contradicts the

minimality of n. Thus n = 2 so

X = (x2)2∂2 + x2X1(x
1) +X0(x

1) ∈ K(M)− KB
0 .

We note that

X̃1(x1) := ∂2X − 2(x1∂1 + x2∂2) = X1(x
1)− 2x1∂1 ∈ K(M) .

Thus by the minimality of n, Y := X1(x
1) − 2x1∂1 ∈ KB

0 . Since Y = Y (x1), Y = c2∂2.

By replacing X by X − c2(x
1∂1 + x2∂2), we may assume X1 = 2x1∂1 so
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X = (x2)2∂2 + 2x1x2∂1 +X0(x
1) ∈ K(M)− KB

0 .

Since (x2)2∂2 + 2x1x2∂1 is homogeneous of degree 2, Lemma 3.13 implies

Y := (Θ− 1)X = (x1∂1 − 2)X0(x
1) ∈ K(M) .

The minimality of n then shows Y ∈ KB
0 so (x1∂1 − 2)X0(x

1) = ϵ∂2. By subtracting an

appropriate multiple of ∂2 from X we can assume ϵ = 0 so

(x1∂1 − 2)X0(x
1) = 0 .

We can solve this ODE to see X0 is homogeneous of degree 2 in x1 and, consequently,

X = {2x1x2 + (x1)2c1}∂1 + {(x2)2 + (x1)2c2}∂2 for some (c1, c2) ∈ R2.

We consider the linear change of coordinates (u1, u2) = (x1, ϵx1 + x2). Then

∂u1 = ∂x1 − ϵ∂x2 , ∂u2 = ∂x2 ,

X = {2x1x2 + (x1)2c1}∂x1 + {(x2)2 + (x1)2c2}∂x2
= {2u1(u2 − ϵu1) + (u1)2c1}(∂u1 + ϵ∂u2 ) + {(u2 − ϵu1)2 + (u1)2c2}∂u2
= {2u1u2 + (c1 − 2ϵ)(u1)2}∂u1 + {(u2)2 + (u1)2c3(ϵ)}∂u2 for c3(ϵ) ∈ R .

Thus by choosing ϵ = (1/2)c1, we may assume c1 = 0 to assume

X = 2x1x2∂1 + {(x2)2 + (x1)2c3}∂2 .

We may now rescale x1 to ensure c3 ∈ {−1, 0, 1}. □

We continue our study firstly assuming the existence of affine Killing vector fields

as in Assertion 2a of Lemma 3.14. The condition C12
1 = C22

1 = C22
2 = 0 will play a

crucial role in our analysis; by Lemma 2.10, it is an affine invariant in this setting. The

surfaces of Assertion 1 of Theorem 3.11 will arise as follows:

Lemma 3.15. Let M ∈ FB.

1. x2∂1 /∈ L(M) and (x1)a∂1 ∈ L(M) if and only if a = 1, C22
2 = 0, C12

1 = 0,

C22
1 = 0, and C11

2 = 0.

2. (x1)a∂2 ∈ L(M)−LB
0 if and only if a := 1+C11

1−2C12
2 ̸= 0, C12

1 = 0, C22
1 = 0,

C22
2 = 0.

3. log(x1)∂2 ∈ L(M) if and only if 1 + C11
1 − 2C12

2 = 0, C12
1 = 0, C22

1 = 0,

C22
2 = 0.

4. If there exists X = X(x1) ∈ K(M)− KB
0 , then C12

1 = C22
1 = C22

2 = 0.

5. If C12
1 = C22

1 = C22
2 = 0, then M is also of Type A, dim{K(M)} = 4, ρ =

(x1)−2ρ̃11dx
1 ⊗ dx1, and one of the following holds:
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(a) C11
1 − 2C12

2 = 0, C11
2 = 1, ρ̃11 = (1 + C12

2)C12
2 ̸= 0, and

K(M) = Span{x1∂1 − x1 log(x1)∂2, x
1∂2} ⊕ KB

0 .

(b) C11
2 = 0, a ̸= 0, ρ̃11 = (1 + C11

1 − C12
2)C12

2 ̸= 0, and

K(M) = Span{x1∂1, (x
1)a∂2} ⊕ KB

0 .

(c) C11
2 = 0, a = 0, ρ̃11 = (C12

2)2 ̸= 0, and

K(M) = Span{x1∂1, log(x
1)∂2} ⊕ KB

0 .

Proof. The first three assertions follow by direct computation. We prove Asser-

tion 4 as follows. Suppose that X = a1(x
1)∂1 + a2(x

1)∂2 ∈ K(M) − KB
0 . Let Θ be as

defined in Equation (3.e). Because ΘX = (x1∂1 − 1)X, x1∂1X ∈ K(M). We factor the

minimal dependence relation

(x1∂1)
nX + cn−1(x

1∂1)
n−1X + · · ·+ c0X = 0 for n ≥ 1

over C to express this relation in the form

s∏
v=1

(x1∂1 − λv)
νvX = 0 .

Suppose some λv ̸= 0. By renumbering the roots, we may suppose a := λ1 ̸= 0 so

0 ̸= Y = (x1∂1 − a)ν1−1
2∏
v=2

(x1∂1 − λv)
νvX ∈ L

satisfies the ODE (x1∂1 − a)Y = 0 and hence Y = (x1)a(c1∂1 + c2∂2) ∈ L − L0. If

c1 ̸= 0, by making a (possibly) complex change of coordinates which takes the form

(x1, x2) → (x1, x2 + ϵx1), we may assume Y = (x1)a∂1. Assertion 1 then implies a = 1.

Therefore, we may take Y to be real and the change of coordinates involved is real. The

relations of Assertion 4 then follow from Assertion 1. If, on the other hand, c1 = 0, then

Y = (x1)a∂2 and we use Assertion 2 to show Assertion 4 holds.

We may therefore assume the minimal relation takes the form (x1∂1)
nX = 0 and

we do not need to complexity. If n = 1, then X is constant. Since X ∈ K− K0, we may

assume X = ∂1; this is ruled out by Assertion 1. We therefore conclude that n > 1. By

replacing X by (x1∂1)
n−2X if necessary, we may assume without loss of generality that

n = 2. Since

0 ̸= (x1∂1)X ∈ ker{x1∂1} = Span{∂1, ∂2} ∩ K(M) ,

again by making a change of coordinates of the form (x1, x2) → (x1, x2+ϵx1) if necessary,

we may assume x1∂1X = ∂2. We solve this ODE to see

X = log(x1)∂2 +X0 for X0 = c1∂1 + c2∂2 a constant vector field .

If c1 ̸= 1, we renormalize the coordinates so X0 = ∂1 and obtain Killing equations:
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2C12
1 − C11

1 = 0, 2C12
2 − C11

1 − C11
2 − 1 = 0,

C22
1 − C12

1 = 0, C22
2 − C12

1 − C12
2 = 0,

C22
1 = 0, C22

2 + C22
1 = 0.

This implies C11
1 = 0, C11

2 = −1, C12
1 = 0, C12

2 = 0, C22
1 = 0, C22

2 = 0, and ρ = 0.

This is impossible. We therefore have X = log(x1)∂2 and the relations of Assertion 4

follow from Assertion 3.

We impose the relations C12
1 = C22

1 = C22
2 = 0 for the remainder of the proof. If

M is also of Type A, then Theorem 3.4 implies dim{K(M)} = 4. Thus our task is to

construct two additional affine Killing vector fields ξ1 and ξ2 so {ξ1, ξ2, x1∂1 + x2∂2, ∂2}
are linearly independent and so we can apply Lemma 3.2.

If C11
2 = 0, then x1∂1 ∈ K(M) by Assertion 1. We apply Lemma 3.2 to the pair

{x1∂1, ∂2} to see M is also of Type A and hence by Theorem 3.4, dim{K(M)} = 4. We

set a = 1 + C11
1 − 2C12

2. We apply Assertion 2 of Lemma 3.15 to obtain Assertion 5b

if a ̸= 0 and to obtain Assertion 5c if a = 0.

If C11
1 − 2C12

2 ̸= 0, Assertion 2 of Lemma 2.8 shows there is a linear change of

coordinates, which does not affect the normalization C12
1 = C22

1 = C22
2 = 0, to ensure

C11
2 = 0. The analysis of the previous paragraph then pertains. We may therefore

assume C11
1 − 2C12

2 = 0 and C11
2 ̸= 0. By rescaling x2, we may assume C11

2 = 1.

We apply Assertion 2 with a = 1 to see x1∂2 ∈ K(M). A direct computation shows

x1∂1 − x1 log(x1)∂2 ∈ M. We apply Lemma 3.2 to the pair {x1∂1 − x1 log(x1)∂2, ∂2}
to see M is of Type A and hence by Theorem 3.4 dim{K(M)} = 4. We then obtain

Assertion 5a. □

Remark 3.16.

1. Observe that C12
1 = C22

1 = C22
2 = 0 in Assertion 4 of Lemma 3.15 is an equivalent

condition for a Type B surface to be also of Type A (compare with the results in

[5]).

2. We apply Lemma 3.9 to the three classes in Assertion 5 of Lemma 3.15. Let C

define such a connection. Then C transforms to a new connection C̃ = T ∗
b,cC for

C̃11
2 = (C11

2 + b(2C12
2 −C11

1))/c and C̃ij
k = Cij

k otherwise. It now follows that

the three classes in Assertion 5 of Lemma 3.15 are linearly inequivalent surfaces

since it is not possible to transform one class into another using a transformation

Tb,c.

3. The α invariant satisfies α(M) ∈ (−∞, 0]∪(16,∞) if M corresponds to the families

5a and 5b. This shows that these families are affine isomorphic to Mc
2, whereas

α(M) = 16 for any surface in 5c, and thus they are affine isomorphic to M1.

Next we assume Assertion 2b of Lemma 3.14 holds. This will give rise to Assertion 2

of Theorem 3.11.

Lemma 3.17. Let M ∈ FB. Assume there exists X ∈ K(M) of the form

X(σ) := 2x1x2∂1 + {(x2)2 + σ · (x1)2}∂2 for σ ∈ {−1, 0, 1} .
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1. Up to linear equivalence, one of the following possibilities holds:

(a) σ = 0, M = N±
1 , M is not Type C, and ρ = ±(x1)−2dx2 ⊗ dx2.

(b) σ = 0, M = N c
2 , and M is not Type C.

(c) σ = 1, M = N3, and M is Type C.

(d) σ = −1, M = N4, and M is Type C.

2. K(M) = Span{X(σ)} ⊕ KB
0 ≈ su(1, 1).

3. dim{K(M)} = 3, and M is not of Type A.

4. Two different affine surfaces in Definition 3.10 are not locally affine isomorphic.

In particular, linearly equivalent and affine isomorphic are equivalent notions in

this setting.

Proof. Suppose first σ = 0. The Killing equations are

C11
2 = 0, C11

1 − C12
2 + 1 = 0, 2C12

1 − C22
2 = 0, 2C12

2 + 1 = 0.

We solve these equations to see that

C11
1 = −3

2
, C11

2 = 0, C12
2 = −1

2
, C22

2 = 2C12
1 .

If C12
1 = 0, we may rescale x2 to ensure that C22

1 = ∓1/2 and obtain the surfaces N±
1

and compute that ρ = ±(x1)−2dx2 ⊗ dx2 so ρa = 0. The nature of the Ricci tensor (see

Equation (3.d)) distinguishes these two surfaces.

On the other hand, if C12
1 ̸= 0, we may rescale x2 to assume C12

1 = 1 and obtain

the surfaces N c
2 . We then have ρa = (3/2)(x1)−2dx1 ∧ dx2 is invariantly defined. In

particular, none of these surfaces is locally isomorphic toN±
1 . If we express∇ρa = ω⊗ρa,

then ω is invariantly defined. We compute

∇∂1ρ
a = (x1)−3{−2− C11

1 − C12
2}dx1 ∧ dx2 = 0,

∇∂2ρ
a =

3

2
(x1)−3{−C21

1 − C22
2}dx1 ∧ dx2 = −9

2
(x1)−3dx1 ∧ dx2.

This shows ω̃ := (x1)−1dx2 is invariantly defined. Thus by expressing

ρs = {1− 2c}(x1)−2dx2 ⊗ dx2 = {1− 2c}ω̃ ⊗ ω̃ ,

we conclude 1−2c is an affine invariant and hence all these examples are distinct as well.

Suppose next σ = 1. The Killing equations are

2C12
1 − C11

2 = 0, 2C12
2 − C11

1 + 1 = 0,

C11
1 − C12

2 + C22
1 + 1 = 0, C11

2 − C12
1 + C22

2 = 0,

2C12
1 − C22

2 = 0, 2C12
2 − C22

1 + 1 = 0.

We solve these relations to see M = N3. The symmetric Ricci tensor distinguishes this

surface from the surfaces N±
1 or N c

2 .
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Suppose finally σ = −1. The Killing equations are

C11
2 + 2C12

1 = 0, C11
1 − 2C12

2 − 1 = 0,

C11
1 − C12

2 − C22
1 + 1 = 0, C11

2 + C12
1 − C22

2 = 0,

2C12
1 − C22

2 = 0, 2C12
2 + C22

1 + 1 = 0.

We solve these equations to see M = N4. The Ricci tensor distinguishes these surfaces

from the previous examples.

We now examine the Lie algebra structure. Let e1 := X(σ), e2 := −x1∂1 − x2∂2,

e3 := −∂2. We then have [e1, e2] = e1, [e2, e3] = e3, and [e1, e3] = −2e2. These are the

structure equations for su(1, 1) given in Equation (3.c). The range of the adjoint map is

3-dimensional; the range of the adjoint map in either A2 ⊕ A2 or A0
4,9 is 2-dimensional.

Thus A3,8 = su(1, 1) is not a Lie sub-algebra of either A2 ⊕ A2 or of A0
4,9 and hence by

Theorem 3.8, M is not of Type A.

Let S := X(σ) · R ⊕ KB
0 . Suppose to the contrary, there is some additional affine

Killing vector field Y ∈ K(M) − S. Since M is not of Type A, by Lemma 3.15, Y ̸=
Y (x1). The argument given to prove Lemma 3.14 shows, therefore, ∂n2 Y = 0 for n ≥ 2.

If n = 2, then we have that Y = 2x1x2∂1 + (x2)2∂2 + Z(x1) and hence X(σ) − Y =

σ · (x1)2∂2 − Z(x1) only depends of x1 which contradicts the observation made above.

If n > 3, we may replace Y by (∂2)
n−3Y to ensure n = 3. Since (∂2)

2(∂2Y ) = 0, we

conclude ∂2Y must be a multiple of X and hence

Y = x1(x2)2∂1 +

(
1

3
(x2)3 + σ · (x1)2x2

)
∂2 + Y0(x

1) .

We apply Θ− 2 to see (Θ− 2)Y0 ∈ KB
0 and hence

Y = x1(x2)2∂1 +

(
1

3
(x2)3 + σ · (x1)2x2

)
∂2 + (x1)3(a1∂1 + a2∂2) .

We have Killing equations:

σ = 0: a1 + 2a2C12
1 = 0, a2 = 0, 2− 4a1C22

1 = 0.

σ = 1: 4a1 = 0, 3a2 = 0, 2(a1 − 1) = 0.

σ = −1: 4a1 = 0, 3a2 = 0, 2(1 + a1) = 0.

These equations are inconsistent and thus there is no additional affine Killing vector field.

Up to linear equivalence and homothety, the only pseudo-Riemannian metrics which

are of Type C have the form ds2 = (x1)−2((dx1)2 + ϵ(dx2)2). We use the Koszul formula

Γijk = (gik/j + gjk/i − gij/k)/2 to see:

Γ111 =
1

2
g11/1 = −(x1)−3, Γ11

1 = −(x1)−1,

Γ122 =
1

2
g22/1 = −(x1)−3ϵ, Γ12

2 = −(x1)−1,

Γ221 = −1

2
g22/1 = (x1)−3ϵ, Γ22

1 = (x1)−1ϵ.
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Taking ϵ = 1 (resp. ϵ = −1) yields the surfaces N3 or N4. Thus these are of Type C. On

the other hand, the symmetric Ricci tensor has rank at most 1 if M = N±
1 or M = N c

2

so these surfaces are not of Type C. □

Remark 3.18. In Definition 3.10, we let M := N c
2 for c = 1/2 be determined by

C11
1 = −3

2
, C11

2 = 0 , C12
1 = 1 , C12

2 = −1

2
, C22

1 =
1

2
, C22

2 = 2 .

The Ricci tensor of this Type B surface is alternating and this affine surface corresponds

to the distinguished situation in [12, Theorem 2-(A.1)]. We shall see presently that, up

to affine equivalence, this is the only affine surface of Type B with dim{K(M)} = 3 which

admits an affine gradient Ricci soliton.

Lemma 2.2 shows that every Type A surface has ρ and ∇ρ symmetric. If, moreover,

Rank{ρ} = 1, then ρ is recurrent (see [5]). The next result shows that these geometric

conditions identify Type A among Type B surfaces. It is an immediate consequence of

Lemma 2.10 and the discussion of this section.

Corollary 3.19. Let M be a Type B surface which is not flat. The following

conditions are equivalent :

1. M is also of Type A.

2. ρ is symmetric, recurrent, and of rank 1 and ∇ρ is symmetric.

3. dim{K(M)} = 4.

4. C12
1 = C22

1 = C22
2 = 0.

Remark 3.20. Note that the geometric conditions given in Corollary 3.19, i.e. ρ is

symmetric, recurrent, and of rank 1 and ∇ρ is symmetric, characterize Type A surfaces

amongst Type B ones, but not the converse. In Theorem 3.8, we have identified which

surfaces of Type A are also of Type B in terms of the α invariant given in Definition 2.4

(see Table 1).

3.3. Change of coordinates.

The following result is closely related to the work of [10], [16] and deals with the

homogeneous affine surfaces where dim{K(M)} = 2. As noted in the proof of Lemma 3.9,

the Lie group

G := {T : (x1, x2) → (tx1, ux1 + vx2 + w) for t > 0 and v ̸= 0}

is a 4-dimensional Lie group which preserves R+ × R.

Theorem 3.21. Let M be a simply connected locally homogeneous affine surface

with dim{K(M)} = 2.

1. If M is Type A, then the coordinate transformations of any Type A atlas for M
take the form x⃗ → Ax⃗+ b⃗ for A ∈ GL(2,R) and b⃗ ∈ R2.
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2. If M is Type B, then the coordinate transformations of any Type B atlas for M
belong to G.

Proof. Suppose first that M is of Type A. Cover M by Type A coordinate

charts (Oα, ϕα) so αΓ ∈ R is constant. The transition functions ϕαβ then are local

diffeomorphisms of R2 so that ϕ∗
αβ{βρ} = αρ. Since dim{K(M)} = 2, Theorem 3.4 shows

that Rank{ρα} = 2 so αρ and βρ define flat pseudo-Riemannian metrics with ϕ∗
αβ{βρ} =

αρ. This implies dϕαβ is constant and, consequently ϕαβ is an affine transformation as

given in Assertion 1.

Next suppose M is of Type B. Cover M by Type B coordinate charts (Oα, ϕα) with

transition functions ϕαβ . Fix α and β and let

x⃗ = (x1
β , x

2
β), u⃗ = (u1

α, u
2
α), ϕαβ = (x1(u1, u2), x2(u1, u2)) .

We have

∂u1 = ∂u1 x
1 · ∂x1 + ∂u1 x

2 · ∂x2 and ∂u2 = ∂u2 x
1 · ∂x1 + ∂u2 x

2 · ∂x2 .

Since [x1∂x1 + x2∂x2 , ∂
x
2 ] = −∂x2 and dim{K(M)} = 2, ∂x2 (and similarly ∂u2 ) span the

range of the adjoint action. Consequently ∂u2 is a constant multiple of ∂x2 . This implies

that ∂u2 x
1 = 0 and ∂u2 x

2 ∈ R so

ϕαβ = (x1(u1), x̃2(u1) + cu2) for c ∈ R .

We now have that ∂u1 = ∂u1 x
1 · ∂x1 + ∂u1 x̃

2 · ∂x2 , ∂u2 = c∂x2 , and

u1∂u1 + u2∂u2 = u1∂u1 x
1∂x1 + ⋆∂x2 = ϵ1(x

1∂x1 + x2∂x2 ) + ⋆∂x2 .

This tells us that x1 = au1 for some a ∈ R and that ϵ1 = 1. Consequently

ϕαβ = (au1, x̃2(x1) + cu2) .

Therefore ∂u1 = a∂x1 + ∂u1 x̃
2(x1)∂x2 and ∂u2 = c∂x2 so

u1∂u1 + u2∂u2 = x1∂x1 + x2∂x2 + {u1∂u1 x̃
2(u1)− x̃2(u1)}∂x2 .

Since u1∂u1 + u2∂u2 ∈ Span{x1∂x1 + x2∂x2 , ∂
x
2 }, we conclude

u1∂u1 x̃
2(u1)− x̃2(u1) = d ∈ R .

Thus x̃2(u1) = bu1 + d and the coordinate transformation has the desired form. □

Remark 3.22. If dim{K(M)} > 2, then Theorem 3.11 shows that there are Killing

vector fields which do not belong to the Lie algebra of GL(2,R). Consequently, there are
admissible coordinate transformations which are non-linear. This shows the condition

dim{K(M)} = 2 is essential in Theorem 3.21.

Lemma 3.6 gives representatives of all the elements in FA which are also of Type B.
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We now give an explicit identification of those surfaces with elements of FB. In the

proof of Theorem 3.8, we showed that every Type A surface which is also Type B admits

coordinates (x1, x2) such that the corresponding Christoffel symbols Γkij ∈ R satisfy

Γ11
1 = Γ11

2 = Γ12
2 = Γ22

1 = 0. We now give an explicit construction to show that such

elements of FA, which are affine isomorphic to Mc
3 or M0

4, are also of Type B.

Lemma 3.23. Let M ∈ FA satisfy Γ11
1 = Γ11

2 = Γ12
2 = Γ22

1 = 0. We consider

the change of coordinates (u1, u2) = (ex
2

, x1). We then have:

uΓ11
1 =

1

u1
(−1 + xΓ22

2) , uΓ12
2 =

1

u1
xΓ12

1 , uΓij
k = 0 otherwise.

Proof. We compute:

du1 = ex
2

dx2, du2 = dx1, ∂u1 = e−x
2

∂x2 , ∂u2 = ∂x1 ,

∇∂u
1
∂u1 = e−2x2

{−∂x2 + xΓ22
1∂x1 + xΓ22

2∂x2 } =
1

u1
(−1 + xΓ22

2)∂u1 ,

∇∂u
1
∂u2 = e−x

2

{xΓ12
1∂x1 + xΓ12

2∂x2 } =
1

u1
xΓ12

1∂u2 ,

∇∂u
2
∂u2 = xΓ11

1∂x1 + xΓ11
2∂x2 = 0,

uΓ11
1 =

1

u1
(−1 + xΓ22

2), uΓ11
2 = 0, uΓ12

1 = 0,

uΓ12
2 =

1

u1
Γ12

1, uΓ22
1 = 0, uΓ22

2 = 0. □

4. Affine gradient Ricci solitons.

In this section we study affine gradient Ricci solitons and affine gradient Yamabe

solitons. Recall from Definition 1.5 that (M,∇, f) is an affine gradient Ricci (resp.

Yamabe) soliton if H∇
f + ρs = 0 (resp. H∇

f = 0). A(M) (resp. Y(M)) is the space of

functions on M so that (M,∇, f) is an affine gradient Ricci (resp. Yamabe) soliton. The

following result relates these two notions.

Lemma 4.1. Let M = (M,∇) be an affine surface.

1. If f ∈ A(M) and if X ∈ K(M), then X(f) ∈ ker(H∇), i.e. X(f) ∈ Y(M).

2. If h ∈ ker(H∇), then Rij(dh) = 0 for 1 ≤ i < j ≤ m.

Proof. Let f be an affine gradient Ricci soliton and let X be an affine Killing

vector field. We have by naturality that (ΦXt )∗f is again an affine gradient Ricci soliton.

Since the difference of two affine gradient Ricci solitons belongs to ker(H∇), (ΦXt )∗f −
f ∈ ker(H∇). Differentiating this relation with respect to t and setting t = 0 yields

Assertion 1. Assertion 2 follows from the identity

h;ijk − h;ikj = {Rkj(dh)}i. □

4.1. Type A affine gradient Ricci solitons.

Let M be a Type A affine surface. The associated Ricci tensor is symmetric and

KA
0 := SpanR{∂1, ∂2} ⊂ K(M). The components of the Hessian are given by:
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H∇
11(f) = −Γ11

2f (0,1) − Γ11
1f (1,0) + f (2,0),

H∇
12(f) = H∇

21(f) = −Γ12
2f (0,1) − Γ12

1f (1,0) + f (1,1),

H∇
22(f) = −Γ22

2f (0,1) + f (0,2) − Γ22
1f (1,0).

If Rank{ρ} = 1, we normalize the coordinate system so ρ = ρ22dx
2 ⊗ dx2 ̸= 0. We

examine this situation in the following result.

Lemma 4.2. Let M = (R2,∇) where Γij
k ∈ R and ρ = ρ22dx

2 ⊗ dx2 ̸= 0. Then

f ∈ A(M) if and only if f(x1, x2) = ξ(x2) where ξ′′ − Γ22
2ξ′ + ρ22 = 0.

Proof. Let ρ = ρ22dx
2 ⊗ dx2 ̸= 0. We impose the relations of Lemma 2.3 and

set Γ11
2 = 0 and Γ12

2 = 0. Let f ∈ A(M). We have soliton equations

f (2,0) − Γ11
1f (1,0) = 0,

f (1,1) − Γ12
1f (1,0) = 0,

ρ22 − Γ22
1f (1,0) − Γ22

2f (0,1) + f (0,2) = 0.

We use the first equation to break the analysis into two cases.

Case 1. Γ11
1 ̸= 0. Then f = u0(x

2) + u1(x
2)eΓ11

1x1

. The second soliton equation

yields u′
1(x

2) − Γ12
1u1(x

2) = 0. Thus f = u0(x
2) + c1e

Γ11
1x1+Γ12

1x2

. The final soliton

equation is u′′
0(x

2)−Γ22
2u′

0(x
2)−ρ22(c1e

Γ11
1x1+Γ12

1x2 −1) = 0. This implies that c1 = 0

and that u0 satisfies the ODE given above.

Case 2. Γ11
1 = 0. Then f = u0(x

2) + u1(x
2)x1. We consider the second soliton

equation u′
1(x

2)− Γ12
1u1(x

2) = 0 to see that f = u0(x
2) + c1e

Γ12
1x2

x1. Hence the final

soliton equation becomes 0 = −c1e
x2Γ12

1

x1ρ22 + ..., where we have omitted terms not

involving x1. Since ρ22 ̸= 0, we see that c1 = 0 so f(x1, x2) = ξ(x2) and f is a gradient

Ricci soliton if and only if ξ satisfies the ODE given. This completes the proof. □

The next result shows that gradient Ricci solitons given in Lemma 4.2 are the only

ones in Type A surfaces.

Theorem 4.3. Let M = (R2,∇) where Γij
k ∈ R and ρ ̸= 0. The following

assertions are equivalent :

1. Rank{ρ} = 1.

2. A(M) is non-empty.

Proof. It is clear from Lemma 4.2 that if Rank{ρ} = 1, then there exists f ∈
A(M). We now show that Rank{ρ} = 1 if A(M) ̸= {0}. Suppose to the contrary that

Rank{ρ} = 2; we argue for a contradiction. We necessarily have Rank{R12} = 2. We

apply Lemma 4.1. If h ∈ ker(H∇), then R12(dh) = 0 and dh = 0. Thus ker(H∇) consists

of the constants. Suppose f is a non-trivial gradient Ricci soliton. Since ∂1 and ∂2 are

affine Killing vector fields, ∂1f and ∂2f are constant. This implies f(x1, x2) = ax1+bx2+c

is affine. We may make an affine change of coordinates to assume f(x1, x2) = x2. We

shall establish the desired contradiction by showing Γ11
2 = 0 and Γ12

2 = 0 and then



02-7479: 2017.12.26

60 M. Brozos-Vázquez, E. Garćıa-Ŕıo and P. B. Gilkey

applying Lemma 2.3 to see Rank{ρ} = 1. The soliton equations for f(x1, x2) = x2 are

given by:

0 = Γ12
2(Γ11

1 − Γ12
2) + Γ11

2(−Γ12
1 + Γ22

2 − 1),

0 = (Γ12
1 − 1)Γ12

2 − Γ11
2Γ22

1,

0 = Γ11
1Γ22

1 + Γ12
1(Γ22

2 − Γ12
1)− Γ12

2Γ22
1 − Γ22

2 .

Again, we examine possibilities:

Case 1. Suppose Γ12
2 ̸= 0. We normalize and set Γ12

2 = 1. A soliton equation

implies Γ11
2Γ22

1 − Γ12
1 + 1 = 0. Thus we set Γ12

1 = 1+ Γ11
2Γ22

1. This yields a soliton

equation

Γ11
1 − (Γ11

2)2Γ22
1 + Γ11

2(Γ22
2 − 2)− 1 = 0 .

We set Γ11
1 = (Γ11

2)2Γ22
1 − Γ11

2(Γ22
2 − 2) + 1. This yields an inconsistent equation.

Thus this is impossible.

Case 2. Suppose Γ12
2 = 0. If Γ11

2 = 0, we have the desired contradiction. Thus

we suppose Γ11
2 ̸= 0. By renormalizing x2, we may assume Γ11

2 = 1. We have soliton

equations 1 + Γ12
1 − Γ22

2 = 0 and Γ22
1 = 0. We set Γ22

2 = 1 + Γ12
1 and Γ22

1 = 0. The

final soliton equation then becomes 0 = −1. This provides the desired contradiction and

completes the proof of the theorem. □

4.2. Type B affine gradient Ricci solitons.

Our analysis is similar to that of Section 4.1 which dealt with Type A surfaces. We

compute the components of the Hessian in this setting:

H∇
11(f) = −(x1)−1{C11

1f (1,0) + C11
2f (0,1) − x1f (2,0)},

H∇
12(f) = H∇

21(f) = −(x1)−1{C12
1f (1,0) + C12

2f (0,1) − x1f (1,1)},
H∇

22(f) = −(x1)−1{C22
1f (1,0) + C22

2f (0,1) − x1f (0,2)}.

Definition 4.4. Let (a, c) ̸= (0, 0) and c ≥ 0. Let c̃ ∈ R. Let P±
a,c and Qc̃ be the

affine surfaces defined by:

P±
a,c :C11

1 =
1

2

(
a2 + 4a∓ 2c2 + 2

)
, C11

2 = c, C12
1 = 0,

C12
2 =

1

2

(
a2 + 2a∓ 2c2

)
, C22

1 = ±1, C22
2 = ±2c,

Qc̃ : C11
1 = 0, C11

2 = c̃, C12
1 = 1,

C12
2 = 0, C22

1 = 0, C22
2 = 1 .

Remark 4.5. We show that Qc̃ is not flat by computing:

ρ(Qc̃) = (x1)−2

(
0 1

−1 0

)
.

Similarly, since (a, c) ̸= (0, 0), we show P±
a,c is not flat by computing:
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ρ(P±
a,c) = (x1)−2

(
a
(
1
2 (a+ 2)2 ∓ c2

)
±c

∓c ±a

)
.

A direct computation shows a log(x1) ∈ A(P±
a,c) and 0 ∈ A(Qc). We will show in

Theorem 4.12 that none of these surfaces is isomorphic to a different surface and that

P+

0,3/
√
2
≈ N 1/2

2 where

N c
2 :C11

1 = −3

2
, C11

2 = 0, C12
1 = 1,

C12
2 = −1

2
, C22

1 = c, C22
2 = 2

is as defined in Definition 3.10. This is the only surface with dim{K(M)} = 3 and A

non-empty.

As opposed to Type A surfaces, Type B surfaces do not have symmetric Ricci tensor

in the generic situation. We recall that as well as there is a one to one relation between an

affine gradient Ricci soliton on an affine surface (Σ, D) and a gradient Ricci soliton on the

associated Riemannian extension (T ∗Σ, gD) [3], there is also a one to one relation between

Einstein (indeed Ricci flat) Riemannian extensions (T ∗Σ, gD) and affine surfaces (Σ, D)

with alternating Ricci tensor [9]. The following result gives a complete characterization

of the elements of FB where ρ is alternating and is a slightly different treatment than

that in [12].

Lemma 4.6. Let M ∈ FB. The following assertions are equivalent.

1. The Ricci tensor is alternating, i.e., ρij = −ρji for all 1 ≤ i, j ≤ 2.

2. 0 ∈ A(M).

3. M is isomorphic to P±
0,c for c > 0 or to Qc for arbitrary c.

4. A(M) = R consists of the constant functions.

Proof. The equivalence of Assertion 1 and Assertion 2 is immediate. A direct

computation shows ρ is alternating and non-trivial if M is isomorphic to P±
0,c for c ̸= 0

or if M is isomorphic to Qc. Conversely, suppose ρ is alternating. We distinguish two

cases:

Case 1. Suppose C22
1 ̸= 0. We apply Lemma 2.8 to normalize the coordinate system

so C12
1 = 0; we then rescale to assume C22

1 = ±1. We set C11
2 = c; by changing the sign

of x2, we may assume c ≥ 0. We have ρs12 = C22
2 ∓ 2c and ρ22 = ±(−1 + C11

1 − C12
2).

We set C22
2 = ±2c and C11

1 = 1+C12
2. We have ρ11 = C12

2 ± c2. To ensure ρ ̸= 0, we

require c ̸= 0 and hence c > 0. Thus we obtain the relations of P±
0,c:

C11
1 = 1∓ c2, C11

2 = c, C12
1 = 0, C12

2 = ∓c2, C22
1 = ±1, C22

2 = ±2c .

Case 2. Suppose C22
1 = 0. We set ρ0 := Γij

jdxi; this is invariant under the action

of GL(2,R). We compute
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0 ̸= ρ12 − ρ21 = (x1)−2(C12
1 + C22

2) = (x1)−1ρ0(∂2) .

We can rescale x2 to ensure C12
1 + C22

2 = 2. By replacing ∂1 by ∂1 − ε∂2 for suitably

chosen ε, we may assume ρ0(∂1) = (x1)−1{C11
1 + C12

2} = 0. We set C22
1 = 0, C11

1 =

−C12
2, and C12

1 = 2− C22
2. We obtain

ρ22 = −2(x1)−2{2− 3C22
2 + (C22

2)2} .

If C22
2 = 2, we obtain ρs12 = (x1)−2 which is false. Thus C22

2 = 1. We then obtain

ρs12 = (x1)−2C12
2 so we set C12

2 = 0. Let C11
2 = c; this is a free parameter. We obtain

the structure Qc.

We have shown the equivalence of Assertion 1, Assertion 2, and of Assertion 3. If

A(M) = R, then 0 ∈ A(M) and consequently Assertion 2 holds. Conversely, suppose

Assertion 3 holds. Again, we distinguish cases:

Case 1. Suppose M = P±
0,c. Let f be a gradient Ricci soliton. A soliton equation

0 = ±c2f (0,1) + x1f (1,1) implies f (0,1) = (x1)∓c
2

f0(x
2). We integrate to see that f =

(x1)∓c
2

f1(x
2) + f2(x

1) and obtain a soliton equation

0 = c2f1(x
2) + x1{∓2cf ′

1(x
2)∓ (x1)±c

2

f ′
2(x

1) + x1f
′′
1 (x

2)} .

We differentiate with respect to x2 to see 0 = c2f ′
1(x

2) + x1{∓2cf ′′
1 (x

2) + x1f
′′′(x2)} .

Set x1 = 0 to see f ′
1(x

2) = 0 since c ̸= 0. Consequently f1 is constant and f = f(x1).

We now obtain a soliton equation 0 = ∓x1f ′(x1) so f is constant as desired.

Case 2. Suppose M = Qc. We obtain soliton equations x1f (1,1) = f (1,0) and

x1f (0,2) = f (0,1). This implies x1f (1,2) = f (1,1) = f (0,2) + x1f (1,2). Thus f (0,2) = 0 and

f = f1(x
1) + f2(x

1)x2. We now get an equation −f2(x
1) = 0 which shows f = f(x1).

We now get f ′ = 0 so again f is constant. □

The intersection between Type B and Type A surfaces was previously studied in

Section 3.2 (cf. Corollary 3.19). Now we consider the existence of affine gradient Ricci

solitons in that particular setting.

Lemma 4.7. Let M ∈ FB. Assume F also is of Type A. Then f(x1, x2) ∈ A(M)

if and only if f(x1, x2) = ξ(x1) where ξ satisfies the ODE

(1 + C11
1 − C12

2)C12
2 − x1C11

1ξ′ + (x1)2ξ′′ = 0.

Proof. By Lemma 2.10 and Corollary 3.19 we have that C12
1 = 0, C22

1 = 0, and

C22
2 = 0. Then setting ε := (1 + C11

1 − C12
2)C12

2 the Ricci tensor takes the form:

ρ = (x1)−2

(
ε 0

0 0

)
.

A soliton equation yields f (0,2)(x1, x2) = 0 so f = a(x1) + b(x1)x2. We obtain a soliton

equation C12
2b(x1) = x1b′(x1). This implies f(x1, x2) = a(x1) + cx2(x1)C12

2

. We obtain

a single soliton equation:
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0 = (x1)2a′′(x1)− C11
1x1a′(x1) + ε− cC11

2(x1)C12
2+1 − cx2(x1)C12

2

ε .

Since ε ̸= 0, we conclude c = 0 and f = f(x1) satisfies the given ODE. □

The following is a useful technical result. We adopt the notation of Definition 3.10.

Lemma 4.8. Assume that M ∈ FB admits a gradient Ricci soliton. At least one

of the following possibilities holds:

1. C12
1 = C22

1 = C22
2 = 0, i.e. dim{K(M)} = 4 and M also is of Type A.

2. f = a log(x1) ∈ A(M).

Proof. We will use Lemma 4.1. Suppose that Rank{R12} = 2. If h ∈ ker(H∇),

then R12(dh) = 0 so dh = 0 and h ∈ R is a constant. Let f be an affine gradient

Ricci soliton. Let ξ1 = ∂2 and ξ2 = x1∂1 + x2∂2 be affine Killing vector fields. Since

ker(H∇) = R,

ξ1f = [ξ1, ξ2]f = ξ1(ξ2f)− ξ2(ξ1f) = 0

so f = f(x1). Furthermore ξ2(f) = x1∂1f = a ∈ R so, if f ∈ A(M), then f(x1) =

a log(x1) as desired.

We may therefore assume that Rank{R12} = 1. We have (x1)2R12 is constant.

Choose (α, β) ∈ R2 − {0} so that

ker(R12) = Span{αdx1 + βdx2} .

If β = 0, then dx1 spans ker(R12). If β ̸= 0, let (x̃1, x̃2) := (x1, αx1 + βx2) to ensure

that dx̃2 spans ker(R12). Thus we may suppose that ker(H∇) = Span{dxi} for i = 1, 2.

Case 1. Suppose that ker(R12) = Span{dx2}. Then

ker(H∇) = {h : h(x1, x2) = h(x2)} .

Let f ∈ A(M). Since ∂2f ∈ ker(H∇), ∂2f is a function of x2. This shows that f(x1, x2) =

u(x1) + v(x2) so the problem decouples. Furthermore, since

(x1∂1 + x2∂2)f ∈ ker(H∇) ,

we have that x1∂1u(x
1) is a function only of x2 and hence x1∂1u(x

1) ∈ R. Thus we

conclude

f(x1, x2) = a log(x1) + v(x2) .

A Ricci soliton equation is:

0 = ⋆+ x1C22
2v′(x2)− (x1)2v′′(x2)

where ⋆ indicates a coefficient which is independent of x1 and of x2. From this we see

that v′′(x2) = 0 so v is linear in x2 and f = a log(x1) + bx2. We have
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a+ bx2 = (x1∂1 + x2∂2)f ∈ ker(H∇) .

Subtracting this from f yields a log(x1) − a ∈ A(M) and hence a log(x1) ∈ A(M) as

desired.

Case 2. Suppose ker(R12) = Span{dx1}. Thus if f ∈ A(M), then ∂2f must be a

function only of x1. Thus f(x1, x2) = u(x1) + v(x1)x2. Since (x1∂1 + x2∂2)f also is only

a function of x1, we obtain the equation (x1v′(x1)+ v(x1)) = 0 so v(x1) = b · (x1)−1 and

f = u(x1) + b · (x1)−1x2 for b ∈ R. There are two subcases to be considered.

Case 2a. Suppose f = u(x1)+ b · (x1)−1x2 for b ̸= 0. We normalize x2 to assume

b = 1 so f = u(x1) + (x1)−1x2. We obtain soliton equations:

0 = (2 + C11
1)x2 + ⋆(x1),

0 = 2C12
1x2 + ⋆(x1),

0 = C22
1x2 + ⋆(x1) .

This implies that C11
1 = −2, C12

1 = 0 and C22
1 = 0. A soliton equation then also yields

C22
2 = 0. This is covered by Assertion 1.

Case 2b. Suppose f(x1, x2) = f(x1). Assume also f(x1) ̸= a log(x1) + b so

x1f ′(x1) /∈ R. We obtain soliton equations:

0 = ⋆+ 2x1C12
1u′(x1), and 0 = ⋆+ x1C22

1u′(x1) .

We may then conclude that C12
1 = 0 and C22

1 = 0. A remaining soliton equation then

yields C22
2 = 0 which is the case treated in Assertion 1. □

We can now establish the following classification result.

Theorem 4.9. Let M ∈ FB. The space A(M) is non-empty if and only if at least

one of the following possibilities holds up to linear equivalence:

1. M is also Type A, i.e., C12
1 = 0, C22

1 = 0, and C22
2 = 0.

2. M is isomorphic to P±
a,c for (a, c) ̸= (0, 0) or to Qc for arbitrary c.

Proof. We examine cases. We apply Lemma 4.8. The case C12
1 = 0, C22

1 = 0,

and C22
2 = 0 corresponding to Assertion 1 was examined in Lemma 4.7. We complete

the proof of Theorem 4.9, by assuming that a log(x1) ∈ A(M). If a = 0, then 0 ∈ A(M).

This is the setting of Lemma 4.6; ρ is alternating and we obtain the examples P0,c for

c ̸= 0 or Qc for arbitrary c. We therefore assume a ̸= 0. We decompose the analysis into

two cases depending on whether C22
1 ̸= 0 or C22

1 = 0.

Suppose first that C22
1 ̸= 0. We apply Lemma 2.8 to assume in addition that

C12
1 = 0. We then obtain three soliton equations:

0 = −a(1 + C11
1) + C12

2 + C11
1C12

2 − (C12
2)2 + C11

2C22
2,

0 = −2C11
2C22

1 + C22
2,

0 = C22
1(a− C11

1 + C12
2 + 1) .
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The second equation implies C22
2 = 2C11

2C22
1 and, since C22

1 ̸= 0, the third equation

shows that C11
1 = a + C12

2 + 1. We rescale x2 to assume C22
1 = ±1 and obtain the

surface P±
a,c where c := C11

2.

Next suppose that C22
1 = 0. We obtain soliton equations

0 = C12
1(−2a+ 2C12

2 − 1) + C22
2,

0 = C12
1(C22

2 − C12
1) .

If C12
1 = 0, then we also obtain C22

2 = 0. This is the case of Assertion 1 of Theorem 4.9.

We therefore assume C12
1 ̸= 0 and obtain C22

2 = C12
1. The soliton equation then implies

a = C12
2. A final soliton equation then yields C12

2 = 0. This implies a = 0 contrary to

our assumption. □

Theorem 4.9 classifies the geometries of Type B surfaces which can admit a function

resulting in an affine gradient Ricci soliton. Generically, either A(M) is empty or it is

an affine line. For example, Lemma 4.6 shows that surfaces that are isomorphic to P±
0,c

for c > 0 or to Qc for arbitrary c only admit constant functions as solutions of the Ricci

soliton equation (see Statement 2 of Definition 1.5). The next theorem shows that A(M)

is also an affine line for all P±
a,c with a ̸= 0 except in two cases: a = −2 and a = −1/2.

Theorem 4.10. Let M ∈ FB such that the space A(M) is neither empty nor an

affine line. Then, up to linear equivalence, one of the following alternatives holds:

1. M is also Type A, i.e., C12
1 = 0, C22

1 = 0, and C22
2 = 0.

2. M = P±
−2,0 and A(M) = {−2 log(x1) + c1x

2 + c0} for ci ∈ R.

3. M = P−
−1/2,c, and A(M) = {− log(x1)/2 + c1(x

2 − 2cx1) + c0} for c1, c0 ∈ R and

c2 = 3/8.

Proof. We examine the Hessian. The setting of Assertion 1 in Theorem 4.10 was

examined previously in Lemma 4.7. We assume the setting of Assertion 2 of Theorem 4.9,

i.e. that for a ̸= 0 and c ≥ 0, we have:

C11
1 =

1

2

(
a2 + 4a∓ 2c2 + 2

)
, C11

2 = c, C12
1 = 0,

C12
2 =

1

2

(
a2 + 2a∓ 2c2

)
, C22

1 = ±1, C22
2 = ±2c,

ρ = (x1)−2

(
a
2 (4 + 4a+ a2 ∓ 2c2) ±c

∓c ±a

)
.

We examine the kernel of the Hessian to determine the most general solution. Let

h ∈ ker(H∇) with dh ̸= 0. If h = h(x1), then

H∇
h = (x1)−1

(
⋆(x1) 0

0 ∓h′(x1)

)
.
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This is not possible since h′ ̸= 0. Thus h exhibits non-trivial x2 dependence. We return

to the general setting to obtain a relation. To simplify the notation, we leave C12
2 as a

parameter and obtain:

0 = x1h(1,1) − C12
2h(0,1) .

This implies h(x1, x2) = (x1)C12
2

u(x2) + v(x1). We obtain:

0 = ±x1v′(x1)− (x1)C12
2+2u′′(x2)± 2C11

2(x1)C12
2+1u′(x2)

±C12
2u(x2)(x1)C12

2

.

The powers of x1 decouple. Because h(x1, x2) exhibits non-trivial x2 dependence, we

may conclude that C12
2 = 0 and hence C11

1 = a+ 1. We also conclude u′′(x2) must be

constant. Let h(x1, x2) = c2 · (x2)2 + c1x
2 + v(x1). We obtain:

0 = ∓2c1c+ 2c2(x
1 ∓ 2cx2)∓ v′(x1) .

This ODE implies v is quadratic in x1 so h(x1, x2) = b2 · (x1)2 + b1x
1 + c2 · (x2)2 + c1x

2.

We obtain an equation b1 + ab1 + cc1 + 2ab2x1 + 2cc2x2 = 0. Since a ̸= 0, b2 = 0 so

h = c2(x
2)2+ c1x

2+ b1x
1. We obtain 2c2x

1∓ b1∓2cc1∓4cc2x
2 = 0. This implies c2 = 0

so h = c1x
2 + b1x

1. The remaining equations become

b1(1 + a) + cc1 = 0 and b1 + 2cc1 = 0 .

Thus b1 = −2cc1. We set c1 = 1 to take h = x2 − 2cx1. This yields the final equation

c(2a+ 1) = 0. We require C12
2 = (a2 + 2a∓ 2c2)/2 = 0. We consider cases:

Case 1. Suppose c = 0. Since C12
2 = 0, a2+2a = 0 so since a ̸= 0, we obtain a = −2.

This yields the possibility of Assertion 2.

Case 2. Suppose a = −1/2. Since C12
2 = 0, −3/4 ∓ 2c2 = 0. Thus C22

1 = −1

and c2 = 3/8. This yields the possibility of Assertion 3. This completes the proof of

Theorem 4.10. □

Remark 4.11. The proof of Theorem 4.10 is based on the study of the kernel

of the Hessian on those surfaces that admit an affine gradient Ricci soliton. Thus, the

given families result in examples of non-trivial Yamabe solitons of Type B, i.e. with

nonconstant potential function:

1. If C12
1 = 0, C22

1 = 0, and C22
2 = 0, then Y(N ) consists of the solutions f =

f(x1, x2) = ξ(x1) to the ODE −x1C11
1ξ′ + (x1)2ξ′′ = 0.

2. If M = P±
−2,c for c = 0 or M = P−

−1/2,c for c2 = 3/8, then Y(M) consists of the

functions c1(x
2 − 2cx1) + c2 for c1, c2 ∈ R.

4.3. The moduli space of homogeneous affine gradient Ricci solitons.

This section is devoted to the proof of the following result, which describes the

moduli space of homogeneous affine gradient Ricci solitons.
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Theorem 4.12. Let (M,∇, f) be a non-flat homogeneous affine gradient Ricci

soliton. Then one of the following possibilities holds:

1. (M,∇) is isomorphic to M0
4 (∼= M1

∼= Mc
4 for all c ∈ R), and f ∈ A(M) if and

only if f(x1, x2) ≡ f(x2) with f ′′ − f + 2 = 0.

2. (M,∇) is isomorphic to Mc
3 (∼= Mc

2) with c(1+ c) ̸= 0, and f ∈ A(M) if and only

if f(x1, x2) ≡ f(x2) with f ′′ − (1 + 2c)f + c(1 + c) = 0.

3. (M,∇) is isomorphic to Mc
5 for all c ∈ [0,∞), and f ∈ A(M) if and only if

f(x1, x2) ≡ f(x2) with f ′′ − 2cf + (1 + c2) = 0.

4. (M,∇) is isomorphic to N 1/2
2 (∼= P−

0,c for c = 3/
√
2), and f ∈ A(M) if and only if

f is constant.

5. (M,∇) is isomorphic to Qc for all c ∈ R, and f ∈ A(M) if and only if f is

constant.

6. (M,∇) is isomorphic to Pεa,c, where ε = ±1, (a, c) ̸= (0, 0), and

(a) if Pεa,c = Pε0,c, then f ∈ A(M) if and only if f is constant ;

(b) if Pεa,c = Pε−2,0, then f ∈ A(M) if and only if

f(x1, x2) = −2 log(x1) + c1x
2 + c0, for c0, c1 ∈ R;

(c) if Pεa,c = P−
−1/2,c with c2 = 3/8, then f ∈ A(M) if and only if

f(x1, x2) = − log(x1)/2 + c1(x
2 − 2cx1) + c0, for c0, c1 ∈ R;

(d) if Pεa,c ̸= Pε0,c, Pεa,c ̸= Pε−2,0 and Pεa,c ̸= P−
−1/2,c with c2 = 3/8, then f ∈ A(M)

if and only if f(x1, x2) = f(x1) = a log(x1) + c0, for c0 ∈ R.

The classes listed above represent distinct affine equivalence classes.

Proof. Type A affine gradient Ricci solitons are characterized by Theorem 4.3

and Lemma 4.2. Thus Assertions 1–3 follow from Lemma 3.6 and Theorem 3.8.

Type B affine gradient Ricci solitons are characterized in Theorem 4.9 and Theorem

4.10, thus leading to Assertions 4–6. The only Type B surface with skew-symmetric Ricci

tensor and dim{K(M)} = 3 is N 1/2
2 , which is isomorphic to P−

0,c for c = 3/
√
2.

We complete the proof by showing that the affine structures given Assertions 1–6

are inequivalent. By Theorem 3.8, classes (1), (2) and (3) have 4-dimensional Killing

algebra A0
4,9, A2⊕A2 and A4,12, respectively. Hence these three classes are inequivalent.

Adopt the notation of Definition 2.4 to define the α invariant. We have α(M0
4) = 16,

α(Mc
3) = (c2 + c)−14(1 + 2c)2, and α(Mc

5) = (1 + c2)−116c2. This shows that if i = 3, 5

then Mc
i
∼= Mc̃

i if and only if c = c̃. By Theorem 3.11, K(N 1/2
2 ) = su(1, 1) and hence

N 1/2
2 is not affine isomorphic to (1), (2) or (3). Classes (5) and (6) are of Type B and

have Killing algebra of dimension 2, which shows that they are not isomorphic to any of

the other classes.

We now show the surfaces in Assertions 5 and 6 are inequivalent as well. Set:
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ρ1 :=
1

x1
{Γ12

2dx1 ⊗ dx1 + Γ22
2dx1 ⊗ dx2 − Γ12

1dx2 ⊗ dx1 − Γ22
1dx2 ⊗ dx2},

ρ2 := Γij
kΓkl

ldxi ⊗ dxj , ρ3 := Γik
lΓjl

kdxi ⊗ dxj , ρ0 := Γij
jdxi.

By Theorem 3.21, the coordinate transformations of any Type B surface M with

dim{K(M)} = 2 belong to the Lie group G. Since contracting an upper against a

lower index is invariant under the action of the structure group, the tensors {ρ0, ρ2, ρ3}
are invariantly defined on any such surface. Since we may express ρ = ρ1 + ρ2 − ρ3, we

conclude that ρ1 is invariantly defined as well; ρ1 is a G invariant but not a GL(2,R)
invariant. We note that ρ1 is skew-symmetric for any surface Qc̃ and that ρ1(∂2, ∂2) ̸= 0

for any surface Pεa,c. Hence no surface in Assertion 5 may be equivalent to any surface

in Assertion 6.

The invariant ρ2 is a symmetric (0, 2)-tensor field for Qc which is given by

ρ2(Qc) = 2(x1)−2(c dx1 ⊗ dx1 + dx2 ⊗ dx2) .

It defines a pseudo-Riemannian metric of constant curvature −c−1 if c ̸= 0. This shows

that Qc
∼= Qc̃ if and only if c = c̃. We apply Lemma 3.9. The pull-back action of

Tb,c rescales ∂2: (Tb,c)∗∂1 = ∂1 + b∂2 and (Tb,c)∗∂2 = c∂2. The surfaces Pεa,c satisfy

ρ1(∂2, ∂2) = −ϵ(x1)−2 and ρ0(∂2, ∂2) = 2cϵ(x1)−1. Consequently, if Pεa,c is affine isomor-

phic to P ε̃ã,c̃ then ϵ = ϵ̃ and c = c̃. We compute that

ρ2(∂2, ∂2) = (x1)−2ϵ(1 + 3a+ a2 + 2c2ϵ),

ρ3(∂2, ∂2) = (x1)−2ϵ(2a+ a2 + 2c2ϵ) .

This implies that a = ã which completes the proof. □

4.4. Geodesic completeness.

We have the following application of our analysis.

Lemma 4.13. Let M be a locally homogeneous surface of Type A which is not

symmetric and with Rank{ρ} = 1. Then M is not geodesically complete.

Proof. The analysis of Section 3 shows that in any Type A chart (x1, x2), the

affine Killing vector fields are real analytic. If (u1, u2) is another Type A chart which

intersects the given one, then ∂u1 and ∂u2 are affine Killing vector fields and hence real

analytic. This implies that M is a real analytic surface with respect to an atlas of

Type A charts and our analysis shows A(M) consists of real analytic functions on M.

We suppose Rank{ρ} = 1 and apply Lemma 2.3 to see Γ11
2 = 0 and Γ12

2 = 0. We have

∇ρ = −2Γ22
2dx2⊗ρ. Since M is not symmetric, Γ22

2 ̸= 0, and we can further normalize

the coordinates so Γ22
2 = 1. Let σ(t) := (x1(t), x2(t)) be a local geodesic. The geodesic

equations become ẍ2(t)+ẋ2(t)ẋ2(t) = 0 which may be solved by setting x2(t) = log(t) for

t ∈ (t0, t1) some appropriate positive interval. By Lemma 4.2, ξ(x2) = ρ22x
2 ∈ A(M).

Since M is simply connected, we can extend ξ to a global element of A(M) which is real

analytic. Furthermore, since M is geodesically complete, we can extend σ to a global

real analytic geodesic. Since ξ(σ(t)) = ρ22 log(t) for t ∈ (t0, t1), ξ(σ(t)) = ρ22 log(t) for
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all t ∈ R; this is not possible. □
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Added in proof. A complete analysis of geodesic completeness for Type A surfaces is

available in the work of D’Ascanio et al. [6], which extends the present work.


