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Abstract. We prove a sharp integral inequality valid for non-negative
functions defined on [0, 1], with given L1 norm. This is in fact a generalization
of the well known integral Hardy inequality. We prove it as a consequence of
the respective weighted discrete analogue inequality whose proof is presented

in this paper. As an application we find the exact best possible range of p > q
such that any non-increasing g which satisfies a reverse Hölder inequality with
exponent q and constant c upon the subintervals of (0, 1], should additionally
satisfy a reverse Hölder inequality with exponent p and in general a different

constant c′. The result has been treated in [1] but here we give an alternative
proof based on the above mentioned inequality.

1. Introduction.

During his efforts to simplify the proof of Hilbert’s double series theorem, Hardy

[7], first proved in 1920 the most famous inequality which is known in the literature as

Hardy’s inequality (see also [10], Theorem 3.5). This is stated as

Theorem A. If p > 1, an > 0, and An = a1 + a2 + · · ·+ an, n ∈ N, then

∞∑
n=1

(
An

n

)p

<

(
p

p− 1

)p ∞∑
n=1

apn. (1.1)

Moreover, inequality (1.1) is best possible, that is the constant on the right side cannot

be decreased.

In 1926, E. Copson, generalized Theorem A (see [3]) by replacing the arithmetic

mean of a sequence with a weighted arithmetic mean. More precisely he proved the

following

Theorem B. Let p > 1, an, λn > 0, for n = 1, 2, . . . .

Further suppose that Λn =
n∑

i=1

λi and An =
n∑

i=1

λiai. Then

∞∑
n=1

λn

(
An

Λn

)p

≤
(

p

p− 1

)p ∞∑
n=1

λna
p
n, (1.2)
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where the constant involved in (1.2) is best possible.

In [3], Copson proves also a second weighted inequality, which as Hardy noted in

[8], can be derived from Theorem B. From then and until now there have been given

several generalizations of the above two inequalities. The first one is given by Hardy

and Littlewood who generalized Theorem B in a specific direction (see [9]). This was

generalized further by Leindler in [14], and by Nemeth in [17]. Also in [16] one can see

further generalizations of Hardy’s and Copson’s series inequalities by replacing means by

more general linear transforms. For the study of Copson’s inequality one can also see [4].

Additionally, in [5], Elliot has already proved inequality (1.2) by similar methods such

as those that appear in [3].

There is a continued analogue of Theorem A (see [10]) which can be stated as

Theorem C. If p > 1, f(x) ≥ 0 for x ∈ [0,+∞) then∫ ∞

0

(
1

x

∫ x

0

f(t)dt

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx. (1.3)

Further generalizations of (1.3) can be seen in [8]. Other authors have also studied

these inequalities in more general forms as it may be seen in [15] and [20]. E. Landau has

also studied the above inequality and his work appears in [13]. For a complete discussion

of the topic one can consult [12] and [19]. In this paper we generalize (1.3) by proving

the following

Theorem 1. Let g : [0, 1] → R+ be integrable function, p > 1, and additionally

assume that
∫ 1

0
g = f . Then the following inequality is true, for any q such that 1 ≤ q ≤ p∫ 1

0

(
1

t

∫ t

0

g

)p

dt ≤
(

p

p− 1

)q ∫ 1

0

(
1

t

∫ t

0

g

)p−q

gq(t)dt− q

p− 1
fp. (1.4)

Moreover, inequality (1.4) is sharp in the sense that, the constant (p/(p− 1))q cannot be

decreased, while the constant q/(p− 1) cannot be increased for any fixed f .

In fact we are going to prove, an even more general inequality which is the discrete

analogue of (1.4) for the case q = 1, which is weighted. This is a generalization of (1.2)

and is described by the following:

Theorem 2. Let (an)n be a sequence of non-negative real numbers. We define for

every sequence (λn)n of positive numbers the following quantities An = λ1a1+ · · ·+λnan
and Λn = λ1 + · · ·+ λn. Then the following inequality is true:

N∑
n=1

λn

(
An

Λn

)p

≤
(

p

p− 1

) N∑
n=1

λnan

(
An

Λn

)p−1

− 1

p− 1
ΛN

(
AN

ΛN

)p

, (1.5)

for any N ∈ N.

It is obvious that by setting λn = 1 for every n ∈ N, in Theorem 2, we reach to



06-7323: 2017.12.26

A Hardy type inequality 143

the discrete analogue of (1.4) for q = 1. Then Theorem 1 is an easy consequence, for

the case q = 1, by the use of a standard approximation argument, of L1 functions on

(0, 1], by simple functions . We then use this result (as can be seen in the sequel) in an

effective way to provide a proof of Theorem 1, for any q ∈ [1, p]. We mention also that

an opposite problem for negative exponents involving only the parameter q and not f , is

treated in [18].

We believe that Theorem 1 has many applications in many fields and especially in

the theory of weights. Our intention in this paper is to describe one of them. We mention

the related details. Let Q0 ⊆ Rd be a given cube. Let also p > 1 and h : Q0 → R+

be such that h ∈ Lp(Q0). Then, as is well known, the following, named as Hölder’s

inequality is satisfied(
1

|Q|

∫
Q

h

)p

≤ 1

|Q|

∫
Q

hp, for any cube Q ⊆ Q0.

In this paper we are interested for functions that satisfy a reverse Hölder inequality. More

precisely we say that h satisfies the reverse Hölder inequality with exponent q > 1 and

constant c ≥ 1 if the following holds

1

|Q|

∫
Q

hq ≤ c ·
(

1

|Q|

∫
Q

h

)q

, for every cube Q ⊆ Q0. (1.6)

Now in [6] it is proved the following.

Theorem D. Let 1 < q < ∞ and h : Q0 → R+ such that (1.6) holds. Then there

exists ε = ε(d, q, c) such that h ∈ Lp for any p such that p ∈ [q, q + ε). Moreover the

following inequality holds

1

|Q|

∫
Q

hp ≤ c′
(

1

|Q|

∫
Q

h

)p

,

for any cube Q ⊆ Q0, p ∈ [q, q + ε) and some constant c′ = c′(d, p, q, c).

As a consequence the following question naturally arises and is posed in [2] . What

is the best possible value of ε ? The problem for the case d = 1 was solved in [1] for non-

increasing functions g and was completed for arbitrary functions in [11]. More precisely

in [1] it is shown the following:

Theorem E. Let g : (0, 1] → R+ be non-increasing which satisfies the following

inequality

1

b− a

∫ b

a

gq ≤ c

(
1

b− a

∫ b

a

g

)q

, (1.7)

for every (a, b) ⊆ (0, 1], where q > 1 is fixed, and c independent of a, b. If we define

p0 > q as the root of the following equation
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p0 − q

p0
·
(

p0
p0 − 1

)q

· c = 1, (1.8)

we have that g ∈ Lp((0, 1]) and g satisfies a reverse Hölder inequality with exponent p,

for every p such that p ∈ [q, p0). Moreover the result is sharp, that is the value of p0
cannot be increased.

The problem that is mentioned above was completely solved in [11], where the notion

of the non-increasing rearrangement of h was used and it is defined as follows:

h∗(t) = sup
e⊆(0,1]
|e|≥t

[
inf
x∈e

h(x)
]
.

More precisely the following appears in [11].

Theorem F. Let h : (0, 1] → R+, be a function that satisfies (1.7), for every

(a, b) ⊆ [0, 1] for some q > 1 and c ≥ 1. Then the same inequality is true if we replace h

by it’s non-increasing rearrangement.

It is immediate now that Theorems E and F answer the question as it was posed in

[2], for the case d = 1.

Our aim in this paper is to give an alternative proof of Theorem E by using Theorem

1. We will prove the following variant of Theorem E which we state as

Theorem 3. Let g : (0, 1] → R+ be non-increasing satisfying a reverse Hölder

inequality with exponent q > 1 and constant c ≥ 1 for all intervals of the form (0, t].

That is the following holds

1

t

∫ t

0

gq ≤ c ·
(
1

t

∫ t

0

g

)q

, (1.9)

for any t ∈ (0, 1]. Then for every p ∈ [q, p0) the inequality

1

t

∫ t

0

gp ≤ c′
(
1

t

∫ t

0

g

)p

(1.10)

is true for any t ∈ (0, 1], where c′ = c′(p, q, c) and p0 is defined by (1.8). As a consequence

g ∈ Lp for every p ∈ [q, p0). Moreover the result is sharp, that is, the value of p0 cannot

be decreased.

By the same reasoning we can prove the analogue of Theorem 3, for intervals of the

form (t, 1]. Ending this discussion we mention that in [11] it is proved the following:

Theorem G. Let g : (0, 1] → R+ be non-increasing. Then (1.7) is satisfied for all

subintervals of (0, 1] iff it is satisfied for all subintervals of the form (0, t] and [t, 1].

By the above results we conclude that Theorem 3, and its analogue for the intervals

of the form (t, 1], imply Theorem E.
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2. The Hardy type inequality.

We first present the following which can be seen in [3].

Proof of Theorem 2. For each n ∈ N define

∆n = λn

(
An

Λn

)p

− p

p− 1
λn

(
An

Λn

)p−1

an = λn∆
′
n,

where

∆′
n =

(
An

Λn

)p

− p

p− 1

(
An

Λn

)p−1

an.

Obviously, an = (An −An−1)/λn for every n ∈ N, so we have

∆′
n =

(
An

Λn

)p

− p

p− 1

(
An

Λn

)p−1
An −An−1

λn

=

(
An

Λn

)p

− p

p− 1

(
An

Λn

)p
Λn

λn
+

p

p− 1

(
An

Λn

)p−1
An−1

λn

=

(
An

Λn

)p[
1− p

p− 1
· Λn

λn

]
+

1

p− 1

{
p ·

(
An

Λn

)p−1
An−1

Λn−1

}
Λn−1

λn
. (2.11)

We now use the following elementary inequality

pxp−1y ≤ (p− 1)xp + yp,

which holds for any p > 1 and x, y ≥ 0.

We apply it for x = An/Λn, y = An−1/Λn−1, so using (2.11) we have that:

∆′
n ≤

(
An

Λn

)p[
1− p

p− 1

Λn

λn

]
+

1

p− 1

[
(p− 1)

(
An

Λn

)p

+

(
An−1

Λn−1

)p]
· Λn−1

λn

=

(
An

Λn

)p[
1− p

p− 1

Λn

λn
+

Λn−1

λn

]
+

1

p− 1

(
An−1

Λn−1

)p
Λn−1

λn

= − 1

p− 1
· Λn

λn

(
An

Λn

)p

+
1

p− 1

Λn−1

λn

(
An−1

Λn−1

)p

. (2.12)

Thus from (2.12) and the definition of ∆n we conclude

∆n ≤ 1

p− 1
Λn−1

(
An−1

Λn−1

)p

− 1

p− 1
Λn

(
An

Λn

)p

. (2.13)

This holds for every n ∈ N, n ≥ 2.

It is immediate now that for n = 1 we have the following equality

∆1 = − 1

p− 1
Λ1

(
A1

Λ1

)p

. (2.14)
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For any N ∈ N we sum (2.13) from n = 2 to N and add also the equality (2.14), so we

conclude after making the appropriate cancellations, inequality (1.5) of Theorem 2. □

The following now is an easy consequence of the above result.

Corollary 1. Let g : [0, 1] → R+ be integrable function, p > 1 and additionally

assume that
∫ 1

0
g = f . Then the following inequality is true∫ 1

0

(
1

t

∫ t

0

g

)p

dt ≤
(

p

p− 1

)∫ 1

0

(
1

t

∫ t

0

g

)p−1

g(t)dt− 1

p− 1
fp. (2.15)

We proceed now to the following proof.

Proof of Theorem 1. For any s ∈ [0, p] we define Is by

Is =

∫ 1

0

(
1

t

∫ t

0

g

)p−s

gs(t)dt,

for any g : [0, 1] → R+ integrable function, such that
∫ 1

0
g = f . Then, for the proof of

inequality (1.4), we just need to prove that

I0 ≤
(

p

p− 1

)q

Iq −
q

p− 1
fp,

for any q ∈ (1, p].

We write

I1 =

∫ 1

0

g(t)

(
1

t

∫ t

0

g

)(p−q)/q(
1

t

∫ t

0

g

)p−(p/q)

dt.

We then apply in the above inequality the integral form of Hölder’s inequality, with

exponents q, q/(q − 1), and we have as a consequence that

I1 ≤ I1/qq I
(q−1)/q
0 . (2.16)

Additionally from Corollary 1 we obtain

I0 ≤ p

p− 1
I1 −

1

p− 1
fp. (2.17)

We consider now the difference Lq = I0 − (p/(p − 1))qIq. We need to prove that Lq ≤
−q/(p− 1)fp. By using the inequalities (2.16) and (2.17) we have that

Lq ≤ I0 −
(

p

p− 1

)q
Iq1

Iq−1
0

≤ I0 −
(

p

p− 1

)q

I−q+1
0

(
p− 1

p
I0 +

1

p
fp

)q

. (2.18)

We define now the following function of the variable x > 0:
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G(x) = x−
(

p

p− 1

)q

x−q+1

(
p− 1

p
x+

1

p
fp

)q

.

Then

G(x) = x− x−q+1

(
x+

1

p− 1
fp

)q

,

so that

G′(x) = 1 + (q − 1)

(
1 +

fp

(p− 1)x

)q

− q

(
1 +

fp

(p− 1)x

)q−1

.

Now we consider the following function of the variable t ≥ 1: F (t) = 1+ (q− 1)tq −
qtq−1. Then F ′(t) = q(q−1)tq−2(t−1) > 0, for every t > 1. Thus F is strictly increasing

on its domain, so that F (t) > F (1) = 0, for any t > 1. We immediately conclude that

G′(x) > 0, for every x > 0. As a consequence G is strictly increasing on (0,+∞). We

evaluate now limx→+∞ G(x) = l. We have that

l = lim
x→+∞

x

[
1−

(
1 +

fp

(p− 1)x

)q]
= lim

y→0+

1− (1 + (yfp/(p− 1)))
q

y
= − q

p− 1
fp, (2.19)

by using De’l Hospital’s rule. Thus since G is strictly increasing on (0,+∞), we have

that G(x) < −q/(p− 1)fp, for any x > 0. Thus (2.18) yields Lq < −q/(p− 1)fp, which

is inequality (1.4). We now prove its sharpness.

We let

J ′
0 =

∫ 1

0

(
1

t

∫ t

0

g

)p

dt, and J ′
q =

∫ 1

0

(
1

t

∫ t

0

g

)p−q

gq(t)dt, for any 1 ≤ q ≤ p.

Let also g = ga, where ga is defined for any a ∈ (0, 1/p), by ga(t) = t−a, t ∈ (0, 1].

Then for every t ∈ (0, 1] we have that

1

t

∫ t

0

ga =
1

1− a
ga(t)

and so

J ′
0

J ′
q

=

(1/(1− a))
p
∫ 1

0

gpadt

(1/(1− a))
p−q

∫ 1

0

gpadt

=

(
1

1− a

)q

. (2.20)

Letting a → (1/p)− in (2.20) we obtain that the constant (p/(p − 1))q, on the right of

inequality (1.4), cannot be decreased. We now prove the second part of the sharpness of

Theorem 1. For this purpose we define for any fixed constant f > 0, and any a ∈ (0, 1/p),

the function ga(t) = f(1−a)t−a, for every t ∈ (0, 1]. Then it is easy to see that
∫ 1

0
ga = f ,
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1/t
∫ t

0
ga(u)du = 1/(1− a)ga(t), and

∫ 1

0
gpa = fp(1− a)p/(1− ap). We consider now the

difference

Lq(a) =

∫ 1

0

(
1

t

∫ t

0

ga

)p

dt−
(

p

p− 1

)q ∫ 1

0

(
1

t

∫ t

0

ga

)p−q

gqa(t)dt

=

(
1

1− a

)p ∫ 1

0

gpa −
(

p

p− 1

)q(
1

1− a

)p−q ∫ 1

0

gpa

=
(1− a)qfp [(1/(1− a))

q − (p/(p− 1))
q
]

1− ap
. (2.21)

Letting now a → (1/p)−, we immediately see, by an application of De’l Hospital’s rule

that Lq(a) → −q/(p− 1)fp. We have just proved that the constant q/(p− 1), appearing

in front of fp, cannot be increased. That is, both constants appearing on the right of

(1.4) are best possible. □

3. Applications to reverse Hölder inequalities.

We will need first a preliminary lemma which in fact holds under some additional

hypothesis for g even if it is not decreasing, and which can be proved by using the

integration by parts formula. We present a version that we will need below which is

proved by measure theoretic techniques. More precisely we will prove the following:

Lemma 1. Let g : (0, 1] → R+ be a non-increasing function. Then the following

inequality is true for any p > 1 and every δ ∈ (0, 1)∫ δ

0

(
1

t

∫ t

0

g

)p

dt = − 1

p− 1

(∫ δ

0

g

)p
1

δp−1
+

p

p− 1

∫ δ

0

(
1

t

∫ t

0

g

)p−1

g(t)dt. (3.22)

Proof. By using Fubini’s theorem it is easy to see that∫ δ

0

(
1

t

∫ t

0

g

)p

dt =

∫ +∞

λ=0

pλp−1

∣∣∣∣{t ∈ (0, δ] :
1

t

∫ t

0

g ≥ λ

}∣∣∣∣dλ. (3.23)

Since now g is non-increasing we have that 1/δ
∫ δ

0
g = fδ ≥ f =

∫ 1

0
g. Also for the same

reason we obtain

1

t

∫ t

0

g ≥ fδ, ∀ t ∈ (0, δ) while

1

t

∫ t

0

g ≤ fδ, ∀ t ∈ [δ, 1].

Let λ be such that 0 < λ < fδ. Then for every t ∈ (0, δ] we take 1/t
∫ t

0
g ≥ 1/δ

∫ δ

0
g =

fδ > λ. Thus ∣∣∣∣{t ∈ (0, δ] :
1

t

∫ t

0

g ≥ λ

}∣∣∣∣ = |(0, δ]| = δ.
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Now for every λ > fδ there exists unique a(λ) ∈ (0, δ) such that 1/a(λ)
∫ a(λ)

0
g = λ.

It’s existence is guaranteed by the fact that λ > fδ, that g is non-increasing and that

g(0+) = +∞ which may without loss of generality be assumed (otherwise we work for

the λ’s on the interval (0, ∥g∥∞]). Then{
t ∈ (0, δ] :

1

t

∫ t

0

g ≥ λ

}
= (0, a(λ)].

Thus, from the above and (3.23) we conclude that∫ δ

0

(
1

t

∫ t

0

g

)p

dt =

∫ fδ

λ=0

pλp−1 · δ · dλ+

∫ +∞

λ=fδ

pλp−1a(λ)dλ

= δ(fδ)
p +

∫ +∞

λ=fδ

pλp−1 1

λ

(∫ a(λ)

0

g(u)du

)
dλ (3.24)

by the definition of a(λ). As a consequence, (3.24) gives∫ δ

0

(
1

t

∫ t

0

g

)p

dt =
1

δp−1

(∫ δ

0

g

)p

+

∫ +∞

λ=fδ

pλp−2

(∫ a(λ)

0

g(u)du

)
dλ

=
1

δp−1

(∫ δ

0

g

)p

+

∫ +∞

λ=fδ

pλp−2

(∫
{u∈(0,δ]:
1
u

∫u
0 g≥λ}

g

)
dλ

=
1

δp−1

(∫ δ

0

g

)p

+
p

p− 1

∫ δ

0

g(t)
[
λp−1

] 1
t

∫ t
0
g

λ=fδ
dt

=
1

δp−1

(∫ δ

0

g

)p

+
p

p− 1

[ ∫ δ

0

(
1

t

∫ t

0

g

)p−1

g(t)−
(∫ δ

0

g(t)dt

)
fp−1
δ

]
= − 1

p− 1

1

δp−1

(∫ δ

0

g

)p

+
p

p− 1

∫ δ

0

(
1

t

∫ t

0

g

)p−1

g(t)dt,

where in the third equality we have used Fubini’s theorem and the fact that 1/δ
∫ δ

0
g = fδ.

In this way we derived (3.22). □

We are now able to give the following proof.

Proof of Theorem 3. Suppose we are given g : (0, 1] → R+ non-increasing and

δ ∈ (0, 1]. Our hypothesis for g is (1.9) or that:

1

t

∫ t

0

gq ≤ c ·
(
1

t

∫ t

0

g

)q

, for every t ∈ (0, 1].

Let now p > q and set a = p/q > 1.

We apply Lemma 1 with gq in place of g and a in that of p. We conclude that:∫ δ

0

(
1

t

∫ t

0

gq
)p/q

dt=− q

p− q

1

δ(p/q)−1

(∫ δ

0

gq
)p/q

+
p

p− q

∫ δ

0

(
1

t

∫ t

0

gq
)(p/q)−1

gq(t)dt ⇒



06-7323: 2017.12.26

150 E. N. Nikolidakis

1

δ

∫ δ

0

[(
1

t

∫ t

0

g

)(p/q)−1

gq(t)− p− q

p

(
1

t

∫ t

0

gq
)p/q]

dt =
q

p

(
1

δ

∫ δ

0

gq
)p/q

. (3.25)

Define now for every y > 0 the function ϕy of the variable x, by

ϕy(x) = x(p/q)−1y − p− q

p
xp/q,

for x ≥ y.

Then

ϕ′
y(x) = [(p/q)−1]x(p/q)−2y−[(p/q)−1]x(p/q)−1 = [(p/q)−1]x(p/q)−2(y−x) ≤ 0, for x ≥ y.

Thus

y ≤ x ≤ z ⇒ ϕy(x) ≥ ϕy(z). (3.26)

Let us now set in (3.26)

x =
1

t

∫ t

0

gq, y = gq(t), z = c

(
1

t

∫ t

0

g

)q

, for any t ∈ (0, 1].

Then y ≤ x ≤ z⇒(
1

t

∫ t

0

gq
)(p/q)−1

gq(t)− p− q

p

(
1

t

∫ t

0

gq
)p/q

≥ c(p/q)−1

(
1

t

∫ t

0

g

)p−q

gq(t)

− p− q

p
c p/q

(
1

t

∫ t

0

g

)p

, ∀ t ∈ (0, 1].

As a consequence (3.25) gives, by using the hypothesis and the last inequality the fol-

lowing

1

δ

∫ δ

0

(
1

t

∫ t

0

g

)p−q

gq(t)dt ≤ c · p− q

p
· 1
δ

∫ δ

0

(
1

t

∫ t

0

g

)p

dt+
q

p
c

(
1

δ

∫ δ

0

g

)p

.

We use now the inequality,

1

δ

∫ δ

0

(
1

t

∫ t

0

g

)p

dt ≤
(

p

p− 1

)q
1

δ

∫ δ

0

(
1

t

∫ t

0

g

)p−q

gq(t)dt

which is a consequence of Theorem 1.

We conclude that if p0 is defined by (1.8), for any p ∈ [q, p0), the following holds[
1− c

p− q

p

(
p

p− 1

)q]
1

δ

∫ δ

0

(
1

t

∫ t

0

g

)p−q

gq(t)dt ≤ q

p
c

(
1

δ

∫ δ

0

g

)p

,

where 1− c((p− q)/p)(p/(p− 1))q = kp > 0, for every such p. This becomes
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1

δ

∫ δ

0

(
1

t

∫ t

0

g

)p−q

gq(t)dt ≤ q · c
p · kp

(
1

δ

∫ δ

0

g

)p

, (3.27)

for any δ ∈ (0, 1], and any p ∈ [q, p0).

On the other hand 1/t
∫ t

0
g ≥ g(t), since g is non-increasing, thus (3.27) ⇒

1

δ

∫ δ

0

gp ≤ q · c
p · kp

(
1

δ

∫ δ

0

g

)p

,

for any δ ∈ (0, 1] and p such that q ≤ p < p0, which is an inequality of the form of (1.10),

for suitable c′ > 1.

So the first part of Theorem 3 is now proved. We continue with the sharpness of

the result. For this reason we define for any fixed c ≥ 1 and q > 1 the following function

ga(t) = t−a where a = 1/p0, where p0 is defined by (1.5). Then it is easy to see that

1/t
∫ t

0
gq = c(1/t

∫ t

0
g)q, for every t ∈ (0, 1]. It is obvious now that g /∈ Lp0((0, 1]). Thus,

p0 cannot be increased and Theorem 3 is proved. □
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