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Abstract. We prove that for n > 2 there exists a quandle of cyclic
type of size n if and only if n is a power of a prime number. This establishes
a conjecture of S. Kamada, H. Tamaru and K. Wada. As a corollary, every
finite quandle of cyclic type is an Alexander quandle. We also prove that finite
doubly transitive quandles are of cyclic type. This establishes a conjecture of
H. Tamaru.

Introduction.

Quandles are algebraic structures deeply related to the Reidemeister moves of clas-
sical knots. These structures play an important role in knot theory because they produce
strong knot invariants, see for example [4], [5] and [6]. The applications of quandles in
knot theory force us to study certain particular classes of quandles. One of these classes
is the class of finite quandles of cyclic type. The idea of studying such quandles goes as
far as [13]. Quandles of cyclic type were independently considered in [10] and [17].

In this note we present the proofs of two conjectures related to quadles of cyclic
type. First we prove the following theorem, conjectured by S. Kamada, H. Tamaru and
K. Wada, see [12, Conjecture 4.7].

Theorem 1. Let n ≥ 3. Then there exists a quandle of size n of cyclic type if and
only if n is a power of a prime number.

K. Wada independently proved that cyclic quandles with a prime power size are
Alexander quandles [18]. Theorem 1 yields the following stronger result.

Corollary 2. Let X be a finite quandle of cyclic type. Then |X| is a power of a
prime number and X is an Alexander simple quandle over the field with |X| elements.

Finally, using the classification of simple groups we prove the following theorem.

Theorem 3. Every finite doubly transitive quandle is an Alexander simple quan-
dle.
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The theorem gains in interest if we know that doubly transitive Alexander quandles
are of cyclic type. This was proved by K. Wada [18]. Then one immediately obtains the
following corollary, which proves a conjecture of H. Tamaru, see [17, Conjecture 5.1].

Corollary 4. Every finite doubly transitive quandle is of cyclic type.

The principal significance of the corollary is that it advances the classification of
k-transitive quandles for k ≥ 2. On the other hand, the classification of finite indecom-
posable quandles is somewhat out of reach. Thus the following seems to be an interesting
problem.

Problem 5. Classify finite primitive quandles.

The paper is organized as follows. In Section 1 we set up notations and terminology,
and we review some basic facts about quandles and permutation groups. Section 2 is
devoted to prove Theorem 1 and Corollary 2. The proof of the theorem is based on the
following observation: the inner group of a finite quandle of cyclic type is a Frobenius
group. The proof of the corollary uses Theorem 1 and the classification of simple quandles
of Andruskiewitsch and Graña [2, Section 3]. In Section 3 we prove Theorem 3. The
proof depends on the classification of simple groups.

1. Preliminaries.

Recall that a quandle is a set X with a binary operation . : X ×X → X such that
x . x = x for all x ∈ X, the map ϕx : X → X, y 7→ x . y, is bijective for all x ∈ X,
and x . (y . z) = (x . y) . (x . z) for all x, y, z ∈ X. The inner group of X is the group
Inn(X) = 〈ϕx | x ∈ X〉. The quandle X is indecomposable (or connected) if Inn(X) acts
transitively on X. From the definition of quandle one immediately obtains the following
lemma.

Lemma 6. Let X be a quandle and x ∈ X. Then ϕx is a central element of the
stabilizer of x in Inn(X).

A quandle X is primitive if Inn(X) acts primitively on X. For k ≥ 1 we say that X is
k-transitive if Inn(X) acts k-transitively on X. It is worth pointing out that 1-transitive
means indecomposable, and that 2-transitive (or doubly transitive) quandles are called
two-point homogeneous in [17]. A similar argument to that of [19, Theorem 9.6] shows
that doubly transitive quandles are primitive. Similarly, (k + 1)-transitive quandles are
k-transitive for all k ≥ 1. The following result of McCarron [15, Proposition 5] shows
that higher transitivity is a rare phenomenon: the dihedral quandle with three elements
is the unique 3-transitive quandle.

Lemma 7 (McCarron). Let k ∈ N with k ≥ 2 and X be a finite k-transitive quandle
with at least four elements. Then k ≤ 2.

Proof. Suppose that k ≥ 3. Since X is k-transitive, it is indecomposable and
nontrivial. Thus let x, y ∈ X such that |{x, y, x . y}| = 3. By assumption, there exists
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z ∈ X \ {x, y, x . y}. Since Inn(X) acts k-transitively on X and k ≥ 3, there exists
f ∈ Inn(X) such that f(x) = x, f(y) = y and f(x . y) = z. Then x . y = f(x) . f(y) =
f(x . y) = z, a contradiction. �

We shall also need the following lemma of [14]. Recall that a quandle is simple if it
has no quotients except itself and the trivial quandle of one element [11].

Lemma 8 (McCarron). Let X be a finite quandle and suppose that Inn(X) acts
primitively on X. Then X is simple.

Proof. Suppose that X is not simple. Then there exist a nontrivial quandle
Q 6= X and a surjective homomorphism of quandles p : X → Q. Consider the equivalence
relation over X given by x ≡ y if and only if p(x) = p(y). We claim that the orbits of
this action form a system of blocks for Inn(X). To prove our claim let x ∈ X and

∆x = {y ∈ X | p(x) = p(y)}

be an equivalence class. Then ϕy ·∆x = ∆ϕy(x) for all y ∈ X and hence f ·∆x = ∆f(x)
for all f ∈ Inn(X). Thus f ·∆x is also an equivalence class and therefore f ·∆x ∩∆x = ∅
or f ·∆x = ∆x. This implies that Inn(X) is not primitive. �

Following [17, Definition 3.5], we say that a quandle X is of cyclic type (or cyclic)
if for each x ∈ X the permutation ϕx acts on X \ {x} as a cycle of length |X| − 1,
where |X| denotes the cardinality of X. Tamaru proved that quandles of cyclic type
are doubly transitive [17, Proposition 3.6]. In particular, quandles of cyclic type are
indecomposable.

Example 9 (Alexander quandles). Alexander quandles form an important family
of examples. Let A be an abelian group and g ∈ Aut(A). Then A is a quandle with
x . y = (1− g)(x) + g(y) for all x, y ∈ A. This is the Alexander quandle of type (A, g).

Example 10. Let us mention a particular case of Example 9. Let p be a prime
number, m ∈ N, q = pm, and Fq be the field of q elements. For each α ∈ Fq the Alexander
quandle of type (q, α) is the quandle structure over Fq given by x . y = (1−α)x+αy for
all x, y ∈ Fq.

2. Proofs of Theorem 1 and Corollary 2.

Using Alexander quandles, H. Tamaru proved the existence of quandles of cyclic
type with a prime number of elements, see [17, Section 4]. We use Tamaru’s method to
prove a similar result.

Recall that for any power q of a prime number, the multiplicative subgroup of Fq is
cyclic of order q − 1.

Proposition 11. Let p be a prime number, m ∈ N and q = pm. Let α ∈ Fq and
X be an Alexander quandle of type (q, α). Then X is of cyclic type if and only if α has
order q − 1.
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Proof. Suppose first that X is of cyclic type. Then ϕ0 acts on X \ {0} as a cycle
of length q − 1. Thus

ϕ0 =
(

1 ϕ0(1) ϕ2
0(1) · · ·ϕq−2

0 (1)
)

and ϕi
0(1) 6= ϕj

0(1) for i, j ∈ {0, . . . , q − 2} with i 6= j. Since ϕk
0(1) = αk for all

k ∈ {0, . . . , q − 2}, the claim follows.
Conversely, suppose that α has order q − 1. Since X has no nontrivial subquandles

by [1, Proposition 4.1], it follows that X is indecomposable. The permutation ϕ0 acts on
X as the cycle (1αα2 · · ·αq−2) of length q − 1. Since X is indecomposable, this implies
that X is of cyclic type by [17, Proposition 3.9]. �

Now we prove that the cardinality of a finite quandle of cyclic type is some power of
a prime number. For that purpose, we need some basic properties of Frobenius groups.
A finite group G acting on a finite set X is a Frobenius group if Gx ∩ Gy = 1 for all
x, y ∈ X with x 6= y, where Gx and Gy denote the stabilizer (or isotropy) subgroups of
x and y respectively. The degree of G is the cardinality of X.

It follows from the definition that the center of a Frobenius group is trivial. The
following result is a consequence of [19, Theorem 5.1] and [19, Theorem 11.3(a)].

Theorem 12. Let G be a doubly transitive Frobenius group of degree n. Then
n = pm for some prime number p and m ∈ N.

We shall also need the following two lemmas.

Lemma 13. Let X be a finite quandle of cyclic type, x ∈ X, and G = Inn(X).
Then Gx is cyclic and generated by ϕx.

Proof. Assume that X has n elements. Then G is a subgroup of Sn. Since

fϕxf
−1 = ϕf(x) = ϕx

for all f ∈ Gx, we conclude that Gx ⊆ CG(ϕx), where CG(ϕx) denotes the centralizer of
ϕx in G. The permutation ϕx is a cycle of length n− 1. Hence

CG(ϕx) = CSn
(ϕx) ∩G = 〈ϕx〉

and therefore Gx = 〈ϕx〉. �

Lemma 14. Let n ≥ 3 and X be a quandle of cyclic type of size n. Then Inn(X)
is a Frobenius group of degree n.

Proof. Let G = Inn(X) and x ∈ X. By Lemma 13, Gx = 〈ϕx〉. We claim that
for each g ∈ G \Gx the subgroups Gx and gGxg

−1 = Gg(x) have trivial intersection. Let
h ∈ Gx ∩ gGxg

−1 and assume that h = gϕk
xg
−1 = ϕl

x for some k, l ∈ {0, . . . , n− 2} and
g ∈ G \Gx. Then

ϕl
x = gϕk

xg
−1 = (gϕxg

−1)k = ϕk
g(x).
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Let y ∈ X \ {x} such that g(x) = y. Then ϕl
x = ϕk

y . Since ϕy is a (n− 1)-cycle that fixes
y and ϕk

y(x) = ϕl
x(x) = x, we conclude that k = 0. From this the claim follows. �

Now we prove that for n ≥ 3 there exists a quandle of cyclic type of size n if and
only if n is a power of a prime number. This establishes [12, Conjecture 4.7].

Proof of Theorem 1. Assume that n = pm, where p is a prime number and
m ∈ N. By Proposition 11, there exists a quandle of cyclic type of size n. Conversely, if
X is a quandle of cyclic type and size n, then Inn(X) is a Frobenius group by Lemma 14.
Since Inn(X) acts doubly transitively on X by [17, Proposition 3.6], Theorem 12 implies
that n is a power of a prime number. �

Theorem 1, Lemma 8 and the classification of simple quandles of Andruskiewitsch
and Graña [2, Section 3] yield Corollary 2.

Proof of Corollary 2. Let us assume that X is a cyclic quandle. By Theo-
rem 1, the cardinality of X is some power of a prime number. Since X is doubly transitive
by [17, Proposition 3.6], it follows that Inn(X) acts primitively on X. By Lemma 8, X
is simple. Now [2, Theorem 3.9] yields the claim. �

3. Proof of Theorem 3.

Recall that a minimal normal subgroup of G is a normal subgroup N of G such
that N 6= 1 and N contains no normal subgroup of G except 1 and N . The socle of G is
the product of the minimal normal subgroups of G. The following theorem goes back to
Burnside, see for example [3, Theorem 4.3].

Theorem 15 (Burnside). Let G be a doubly transitive group and N be a mini-
mal normal subgroup of G. Then N is either a regular elementary abelian group, or a
nonregular nonabelian simple group.

As a consequence of the odd analogue of Glauberman Z*-theorem, we prove that
finite doubly transitive quandles are Alexander simple. The key step is a group-
theoretical result kindly comunicated to us by G. Robinson, see http://mathoverflow.net/
questions/184682. We refer to [8, Chapter 6] for more details.

Proof of Theorem 3. Let G = Inn(X). The quandle X is doubly transitive
and hence G acts primitively on X. Then X is simple by Lemma 8 and therefore X is a
conjugacy class of G and G has a trivial center by [11, Lemma 1].

Suppose that G is nonsolvable. Let N be the commutator subgroup of G. Since N
is the unique minimal normal subgroup of G by [11, Lemma 2] and G is nonsolvable,
it follows from Theorem 15 that N is a nonregular nonabelian simple group. Hence G
is equivalent to a doubly transitive group with simple socle. Such groups are classified,
see [3, Table 7.4]. With Lemma 7 one excludes from [3, Table 7.4] the groups with
transitivity ≥ 3. Thus we may assume that G is a doubly transitive group with F (G) = 1,
where F (G) denotes the Fitting subgroup of G. We claim that Z(Gx) = 1. Suppose that
Z(Gx) 6= 1. Let p be a prime number dividing the order of Z(Gx) and let g ∈ Z(Gx) be
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an element of order p. The case where p = 2 follows from Glauberman Z*-theorem [7], so
we may assume that p is odd. The permutation action of G on X is equivalent to that of
G on the conjugacy class of g by conjugation. Since the action is doubly transitive and
F (G) = 1, no conjugate of g other than itself commutes with g. By [16, Corollary 2],
there must be a p′-subgroup T of G which is normalized, but not centralized by g. Hence
for some t ∈ T , g−1t−1gt is a nontrivial p′-element (i.e. an element of order not a
multiple of p). Since CG(g) is transitive on the remaining conjugates of g, one obtains
that for all h ∈ G the order of g−1h−1gh is not a multiple of p. By [9, Theorem D],
Op′(G) 6= 1, where Op′(G) denotes the largest normal subgroup of G which is a p′-group.
Since G is doubly transitive on X, it follows that G = Op′(G)CG(g). From g 6∈ Z(G)
one obtains that there exist a prime number q 6= p and a q-Sylow subgroup Q of Op′(G)
normalized but not centralized by g. A similar argument and [9, Theorem D] prove
that [G, g] = [Op′(G), g] is a nontrivial q-group of G and thus Oq(G) 6= 1, which is a
contradiction.

Since G is the inner group of a quandle, we conclude from Lemma 6 and the previous
argument that G is solvable. Since X is a simple quandle and its inner group G is solvable,
there exist a prime number p and m ∈ N such that X is an Alexander quandle of size
pm by [2, Theorem 3.9]. �
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