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Abstract. We consider some natural infinitesimal Einstein deformations
on Sasakian and 3-Sasakian manifolds. Some of these are infinitesimal defor-
mations of Killing spinors and further some integrate to actual Killing spinor
deformations. In particular, on 3-Sasakian 7 manifolds these yield infinitesimal
Einstein deformations preserving 2, 1, or none of the 3 independent Killing
spinors. Toric 3-Sasakian manifolds provide non-trivial examples with inte-
grable deformation preserving precisely 2 Killing spinors. Thus in contrast to
the case of parallel spinors the dimension of Killing spinors is not preserved
under Einstein deformations but is only upper semi-continuous.

Introduction.

Let M be an n-dimensional Riemannian spin manifold with spinor bundle ¥. A
Killing spinor is a non-trivial section ¢ € I'(X) with

Vxtp = cX -1, (1)

for some constant ¢, where V is the Levi-Civita connection, X any tangent vector, and
X -1 denotes Clifford multiplication. An easy computation shows that Ric, = 4(n—1)c%g.
Thus ¢ must be either purely imaginary in which case M is non-compact, ¢ = 0 with ¥
a parallel spinor and M is Ricci-flat, or ¢ is real and M is positive Einstein and compact
assuming completeness. In the latter case ¢ is a real Killing spinor. We will only consider
real Killing spinors with ¢ # 0. Since ¢ is rescaled by homotheties of the metric, only its
sign is of significance. We denote by N, (respectively N_) the dimension of the space of
Killing spinors with ¢ > 0 (respectively ¢ < 0).

Killing spinors are of interest in physics in supergravity and string theories [11].
But they are also of interest purely mathematically. See [3] for a survey. Much work
has been done in classifying manifolds admitting a Killing spinor. Bér [2] classified
simply connected manifolds admitting a real Killing spinor in terms of the underlying
geometry of (M, g). The classification is given in terms of the holonomy of the metric
cone (C(M),g), C(M) =R; x M, g=dr?+r*g. The argument in [2] is essentially that
the connection Vy — ¢X on ¥ is identified with the Levi-Civita connection V of g on )
(the spin bundle of C(M) when n is even, and half-spin bundle when n is odd). Then
the classification is in terms of irreducible holonomies admitting a parallel spinors [41].
See Table 1 for the classification. Therefore, just as for the irreducible reduced Ricci-flat
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holonomies there are two cases occurring in infinitely many dimensions, the Sasaki—
Einstein and 3-Sasakian manifolds, and two exceptional cases, nearly Kéhler and weak
G2 in dimensions 6 and 7 respectively.

Nearly Kéhler structures, introduced by Gray in the context of weak holonomy, are
almost Hermitian structures (g, J,w) with VxJ(X) = 0 for any X € TM. Note that for
a proper nearly Kahler structure, i.e. not Kéhler, the almost complex structure J is not
integrable and dw # 0. When n = 6 the torsion of the SU (3)-structure is contained in a
1-dimensional subbundle. In [31] it is shown that every nearly Kéhler manifold is locally
the Riemannian product of Ké&hler manifolds, 3-symmetric spaces, twistor spaces over
positive quaternion-K&hler manifolds and 6-dimensional nearly Kéhler manifolds. Thus
most questions about nearly Kéhler manifolds reduces to proper 6-dimensional nearly
Kahler manifolds.

A weak G manifold is a 7-manifold with a vector cross product coming from the
imaginary octonians, or equivalently a stable 3-form o € Q3 with do = —A*o with A # 0
a constant. The form o defines a reduction of the structure group of M to G2 and thus
a metric g, as Go C SO(7), which is Einstein with scalar curvature s = (21/8)A\2. Again,
the torsion of the G-structure lies in a 1-dimensional subbundle. See [16] for results on
weak G5 manifolds including a classification of homogeneous examples.

Most interesting is perhaps n = 7 for which, when M is simply connected and not of
constant curvature, Ny = 1,2, or 3, in which case (M, g) is said to be of type 1, 2, or 3
respectively. Recall that the spinor representation S of Spin(7) is real, S = Sg @ C. Thus
M has a real spinor bundle Y, and the space of solutions to (1) is the complexification
of solutions in I'(Xr). Each section ¢ € I'(Xg) defines a Ga-structure on M with stable
3-form oy, and there is a bijective correspondence between sections of P(Xg) and Ga-
structures with metric g and given orientation. If ¢ is a representative of such a section
with |¢| = 1, then o, defines a weak Go-structure, doy = —\ * oy, if and only if ¢
satisfies (1), with A = 8c. If (M, g) is type 1, then there is a unique 3-form inducing the
given metric and orientation. If it is of type 2, then (M, g) is Sasaki—Einstein but not
3-Sasakian and there is a space of compatible 3-forms parameterized by RP'. And if it is
of type 3, then (M, g) is 3-Sasakian and has a space of compatible 3-forms parameterized
by RP?. See [16].

Note that an easy computation of the curvature of the warped product shows that
(C(M),g) is Ricci-flat if and only if (M,g) is Einstein with Ric, = (n — 1)g. Thus
the classification as in Table 1 gives a natural scaling in which ¢ = +1/2 in (1) and
s=n(n—1).

We consider deformations of the Killing spinor Equation (1) under deformations of
g, both infinitesimal and genuine. As solutions to (1) imply that (M, g) is Einstein we
consider Einstein deformations. The beginnings of a general theory of deformations of
Killing spinors was developed by Wang [42], making use of the work of Bourguignon and
Gauduchon [6] on the variations of spinors under metric variations.

More recently there has been some work on the two exceptional cases in Table 1.
In [28] and [30] it is shown that the space of infinitesimal Einstein deformations of
a proper nearly Kéhler 6-manifold consists of eigenspaces of the Laplace operator A
restricted to the space E of co-closed primitive (1,1)-forms. If E(\) denotes the A-
eigenspace of A restricted to E, then the space of essential infinitesimal Einstein defor-
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Table 1. real Killing spinors.

dimM‘ Ny ‘ N_ ‘HOI(C(M))‘ geometry

n oln/2] [ oln/2] Id n-sphere
dm —1 2 0 SU(2m) Sasaki—Einstein
dm+1 1 1 SU(2m + 1) | Sasaki-Einstein
dm—1 | m+1 0 Sp(m) 3-Sasakian

6 1 1 Go nearly Kahler

7 1 0 Spin(7) weak Go

mations is F(2)@® E(6) ® E(12). The space of infinitesimal deformations of nearly Kéhler
structures is F(12). Besides S®, which has no Einstein deformations the only exam-
ples of proper nearly Kihler 6-manifolds are 3-symmetric spaces, CP* = SO(5)/ U(2),
F(1,2) = SU(3)/U(1) x U(1), and S x S* = SU(2) x SU(2) x SU(2)/A. In [29] it is
shown that the nearly Kihler structures on CP? and S3 x S® have no infinitesimal Ein-
stein deformations, and on F'(1,2) E(2) and E(6) vanish while F(12) is an 8-dimensional
space.

Similar results are known for weak G5 manifolds. In [1] a similar decomposition of
the infinitesimal Einstein deformations on a weak GG3 manifold are given. First recall that
a Go-structure induces a decomposition of the 3-forms into irreducible Gs-representations
A3 = A @ A2 & A3;. And there is a map ¢ : SZ(T*) — A3, which on a decomposable
element « ® B is t(a® B) = a A (Bio)+ B A (aso), which is an isomorphism onto A3.
It is proved in [1] that the essential infinitesimal Einstein deformations is given by the
direct sum

E(16) ® E(4) ® E(8),

where E(16) = {y € Q3| xdy = —4v}, E@4) = {y € Q3| xdy = 2y}, and
E(8) = {v € Q3;|dd*y = 8y}. The notation E()) indicates that these are subspaces
of the A-eigenspace of A. The space E(16) is the subspace of infinitesimal deforma-
tions of weak Gao-structures, or more precisely, those not fixing the metric and deforming
the Killing spinor. This space is computed on the normal homogeneous examples: the
isotropy irreducible space SO(5)/ SO(3), the pinched metric on S7, and the second Ein-
stein metric on the Aloff-Wallach space N(1,1) = SU(3)/ U(1). The first two cases
have no infinitesimal Einstein deformations, while for the third the infinitesimal Einstein
deformations correspond to E(16) which is 8-dimensional.

These results might lead one to suspect that there might be some stability for Killing
spinors under Einstein deformations, either infinitesimal or integrable. Furthermore, for
the case ¢ = 0 in (1), i.e. parallel spinors, there are strong stability results [33], [42].
Recall that a simply-connected, spin, irreducible Riemannian manifold (M, g) admits a
parallel spinor if and only if the holonomy Hol(g) = G where G = SU(m), Sp(m), G, or
Spin (7). Define a G-manifold to be a connected oriented manifold of dimension 2m, 4m, 7
or 8 respectively with a torsion-free G-structure with G from this list. This means
Hol(g) € G. Thus a G-manifold M is Ricci-flat, and we define Wg to be the moduli
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space of torsion-free G-structures on M, M the moduli space of G-metrics, i.e. metrics
induced by a torsion-free G-structure, and My the moduli space of Ricci-flat metrics on
M. Here the moduli spaces are defined by quotienting by diffeomorphisms isotopic to
the identity. We have the following result of J. Nordstrom extending similar results of
Wang [42].

THEOREM 1 ([33]). Let M be a compact G-manifold with G = SU(m), Sp(m), Ga,
or Spin(7). Then Mg is open in My, actually a union of connected components. Fur-
thermore, Mq is a smooth manifold and the natural map

m: Wg — Mg
that sends a torsion-free G-structure to the metric it defines is a submersion.

This article will show that there is no analogous result for Killing spinors. Under
Einstein deformations N, N_ are merely upper semi-continuous and can drop under
infinitesimal and integrable Einstein deformations. In particular, the toric 3-Sasakian 7-
manifolds of [9] have interesting infinitesimal Einstein deformations. Let H'(.A®) be the
first cohomology of the complex (30), that is the first order deformations of the complex
structure of the Reeb foliation .#¢. We know that dime H'(A®*) = bo(M) — 1 if (M, g) is
a toric 3-Sasakian 7-manifold [38].

THEOREM 2.  Let (M, g) be a 3-Sasakian 7T-manifold with dime H'(A®) > 0, e.g. a
toric 3-Sasakian T-manifold with ba(M) > 2. Thus (M, g) has three linearly independent
Killing spinors. Then there exist infinitesimal Einstein deformations of g preserving two,
one, and zero dimensional subspaces of the Killing spinors.

It is unknown whether the infinitesimal Einstein deformations preserving only 1-
dimensional subspaces of Killing spinors or none are integrable. But in Section 3 some
infinitesimal Einstein deformations are proved to be integrable. For example the in-
finitesimal deformations of a toric 3-Sasakian 7-manifold in the theorem preserving a
2-dimensional subspace of Killing spinors can be shown to be integrable.

THEOREM 3. Let (M,g) be a toric 3-Sasakian 7-manifold, so Ny = 3. There
exists an effective space U C CP>M=1 of EBinstein deformations of g = go. Fort € U
and t # 0, g; is Sasaki—Finstein but not 3-Sasakian. Thus gi,t # 0, admits only a two
dimensional space of Killing spinors (Ny =2, N_ = 0).

We also prove in Theorem 3.3 that certain infinitesimal Einstein deformations on a
general 3-Sasakian manifold are integrable. In Section 4.1 we see that this has implica-
tions for the local premoduli space of Einstein metrics.

COROLLARY 4. Suppose (M, g) is 3-Sasakian with dimc H*(A®) > 0, e.g. a toric
3-Sasakian T-manifold with by(M) > 2. Then either there exist Einstein deformations of
g preserving no Killing spinors, or the Finstein premoduli space is singular.

In Section 1 we review necessary background on the deformations of Einstein metrics,
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the variation of spin structures, and deformations of Killing spinors. In Section 2 we show
that infinitesimal deformations of the transversal complex structure of a Sasaki-Finstein
manifold give infinitesimal Einstein deformations. We then give the basic results on
these deformations regarding the behavior of Killing spinors, on Sasaki-Einstein and
3-Sasakian manifolds. In Section 3 we give some results on when these infinitesimal
Einstein deformations integrate to genuine Einstein deformations. In Section 4.1 we
study the space of these infinitesimal Einstein deformations on a 3-Sasakian manifold
more closely, and we prove Theorem 2, Theorem 3 and Corollary 4. In Section 4.2 the
examples of toric 3-Sasakian 7-manifolds from [9] provide non-trivial examples of the
above results.

ACKNOWLEDGEMENTS. [ would like to thank the Max Planck Institute for Mathe-
matics for their hospitality and excellent research environment. Most of the research for
this article was done during a visit in the academic year 2011-2012.

1. Preliminaries.

1.1. Spinors.

We review the explicit construction of the spin representations via explicit repre-
sentations of the Clifford algebras Cl(n). For more details see [23] and [3]. These
representation will give the complex representations of the complex Clifford algebras
Cl(n) = Cl(n) ® C. Suppose V is a real vector space of dimension n = 2m with a metric
g and compatible almost complex structure I : V. — V. We have the decomposition
VeC=V"gVO! and the spinor space is

S(V) := AV = A* VO,

The representation ¢ : C1(V) — End(S(V)) is defined by its action on V®C. For v € V1.0
define ¢(v) := V2u A -, and for w € VO! define c(w) := —v/2w 4+, where the contraction
is induced by the metric g on V' extended complex bilinearly.

Recall we have the splitting C1(V) = Clo(V) @ Cl;(V) into even and odd elements
making Cl(V) into a superalgebra, that is

ClL.(V)-Cly(V) CCl(V) with t =r+s mod 2.

We have Pin(n) C Cl(n), where Pin(n) is the universal cover of O(n), and Spin(n) C
Clp(n) is the universal cover of SO(n).
The representation has a splitting preserved by the superalgebra structure of C1(V)

that is Clo(V)-S3,, C S5, while C1;(V)-SE, C ST, . The restriction of S(V) to Spin(2m)
is the spin representation, which splits into components in (2) which are irreducible.

As in [41], we define S;‘m to be the half-spin representation with highest weight
(x1 + -+ xm)/2, while S5, has highest weight (1 + -+ + Zym—1 — Tm)/2, with the

usual choice of fundamental weights. If {ey, ..., es,,} is an orthonormal basis of V', then
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2
S3., are the +1 and —1 eigenspaces of we = (v/—1)" e egm.

REMARK 1.1. Note that this differs from the convention in [23], where S3

are defined as the +1 and —1 eigenspaces of w¢ = (\/—l)mel -+ -e9m, by a factor of
(_1)m(m+1)/2'

Explicitly, we have

ng _ Am,OV ey Am72,OV @ - ,
S, =AMV gAYV .

2m

(3)

For the odd dimensional case, n = 2m+1, let {ey, ..., €2, } be an orthonormal basis
of V and define V' = V @ Regyna1, with eg,,11 unit length and orthogonal to V. We
define ¢ : C1(V’') — End(S(V)) as follows. If v € V we let ¢/(v) := ¢(v) € End(S(V))
as above, and we define ¢(egp11) := —(—1)™*tV/2¢(e; - - - e3,,) € End(S(V)). Note that
CI(V') = Cl(2m + 1) has two irreducible complex representations, each of dimension 2™,
and changing the sign of ¢/(eg,,11) gives the other representation of C1(V").

Alternatively, let V' = Vj @ Reg,, be an orthogonal sum. Then

CL(Vo) = Clo(V) -5 End(S*(V)), (4)

where the isomorphism v : C1(Vp) < Clo(V) is given by e; — e; - €2,,. The choice of half-
spin representations S*(V) gives the two representations of Cl(Vp) denoted by S;tm_l.
The restrictions of S5, ; to Cly(Vy) are identical, thus restricting to Spin(2m — 1) C
Clp(Vp) gives the complex spin representation So,,—1, without a superscript.

Let (M,g) be an oriented Riemannian manifold with a spin structure. We have
the principal bundle of orthonormal frames Lgo(,) with the spin structure a Spin(n)
principal bundle L gy, () with 2-fold cover 6 : Lgpinn) — Lso(n), restricting to the 2-
fold cover Spin(n) — SO(n) on each fiber. The spin bundle is ¥ = Lspin(n) X Spin(n) Sn-
If n =2m then ¥ = Xt @ X, where ©F = L spin(n) X Spin(n) SF. When n is odd there is
a unique spinor bundle X, although there are two choices as a bundle of Clifford modules
over CI(T'M).

Since Killing spinors correspond to a holonomy reduction we will make use of the
decomposition of some restrictions of the spinor representation S,,. Let u,, be the usual
representation of SU(m) C SO(2m) on C™. Since SU(m) is simply connected, SU(m) C
SO(2m) lifts to an embedding SU(m) C Spin(2m) under 6 : Spin(2m) — SO(2m). We
have from our conventions

Stmlsu(m) = A" pim &A™ P, & - -

— m— me— (5)
Somlsvm) = A" i & APy & -

We will need to consider the spin representation restricted to sp(m) @ sp(1) C
S0 (4m). Let vay, be the complex representation of Sp(m) given by Sp(m) C SU(2m).
Contraction by the symplectic form gives A*vo,, = Ay @ A¥ 21y, for 2 > k > m, as
Sp(m)-representations where Ay, is the irreducible representation of Sp(m) with highest
weight 1 + -+ + 5. It is an elementary result (see [10, Proposition 4.14]) that an
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irreducible representation of Sp(m) x Sp(1) is of the form V&W where V and W are
irreducible representations of Sp(m) and Sp(1) respectively. A little more work shows
that

SIm'Ep(m)@sp(l) = Ao®Ym @ A2®'7m72 SPREE (©)

Szzm|5p(m)@5p(1) = A1®’mel S A3®’Ym73 SRR

where 5, = S¥ () is the irreducible representation of SU(2) = Sp(1) of dimension &+ 1.
It follows from (6) that for m even the inclusion Sp(m) - Sp(1) = Sp(m) x Sp(1)/Z, C
SO(4m) lifts under 6 : Spin(4m) — SO(4m) to Sp(m) x Sp(1)/Zy C Spin(4m). While
when m is odd 671(Sp(m) - Sp(1)) = Sp(m) x Sp(1) C Spin(4m), which contains
(—=I,—1) = —1 € Spin(4dm).

1.2. Deformation of Einstein metrics and Killing spinors.

1.2.1. Deformation of Einstein metrics.

We describe what we will need from the theory of deformations of Einstein metrics
and deformations of Killing spinors. For more on the deformation theory of Einstein
metrics see [5, Chapter 12] or [20]. See [6] for the apparatus for working with spinors
under metric variations, and see [42] for this applied to the Killing spinor equation. In
this article M denotes a compact connected n-dimensional manifold.

DEFINITION 1.2. Let g be an Einstein metric on M. A family g; of Einstein metrics
on M of fixed volume with gy = ¢ depending smoothly on t € U C RF is an FEinstein
deformation of g.

Because Einstein metrics are critical points of the total scalar curvature functional
g | w1 Sg Mg restricted to metrics of a fixed volume, a deformation of Einstein metrics
has fixed scalar curvature s = s4,. Thus

Ricg, = Age, (7)

where A = s/n. We will consider positive scalar curvature Einstein metrics, and it will
be convenient for us to assume A =n — 1.

Let . be the space of Riemannian metrics on M of fixed volume ¢. This is acted
upon by the diffeomorphism group 2. A local description of the quotient .#./2 is given
by Ebin’s Slice Theorem [12]. The tangent space to .#. at g denoted by T,.#. consists
of symmetric 2 tensors h € F(S2 T*M) with fM trhpg = 0. The tangent space to the
orbit Z*g consists of all Lie derivatives Lxg = 26;Xb, where X” is the 1-form dual to
the vector field X and

(6;X")i5 = = (ViX] + V; X)), (8)

N | —

with V the Levi-Civita connection. One can show that Imé; C Ty.#. is closed, and
Tyl =1m6, & (TyM. Nkerd), (9)

where (04h); = —V7 hy; is adjoint to J7.
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Let h = dg;/dt|¢=o, then differentiating (7) gives
2B (h) = (A+2L — 6,6, — Vdtrg)h =0, (10)
where (Lh);; = Rikjlhkl and A = V*V is the rough Laplacian.

DEFINITION 1.3. Let (M,g) be an Einstein manifold. A symmetric 2-tensor
h € F(82 T*M) is an infinitesimal Finstein deformation of g if h satisfies (10) and
/ s trg b g = 0. The space of infinitesimal Einstein deformations is denoted by £D(g).

An infinitesimal Einstein deformations of the form Lxg¢ is said to be trivial. The
space of trivial infinitesimal Einstein deformations is denoted by TED(g). An infinites-
imal Einstein deformation h is said to be essential if it is orthogonal to TED(g). The
space of essential infinitesimal Einstein deformations is denoted by E£D(g). We can use
the following lemma due to Berger and Ebin as the definition of ££D(g).

LEMMA 1.4 ([4]). Let (M,g) be an Einstein manifold. An h € T'(S*T*M) is an
element of EED(g) if and only if h satisfies

(A+2L)h =0, 6,h=0, trgh=0. (11)
We have the decomposition of closed spaces
ED(g) = EED(g) ® TED(g), (12)
with £€D(g) finite dimensional.

DEFINITION 1.5. Let (M,g) be an Einstein manifold. The subset of Einstein
metrics in the Ebin slice .7, (cf. [12]) at g is called the local premoduli space of Einstein
structures and denoted by 2. (g).

The local moduli space is Z.# (g)/Isom(g), but it will be more convenient to work
with the local premoduli space.

1.2.2. Deformation of spinors.

We will need the machinery due to Bourguignon and Gauduchon [6] for describing
variations of spinor bundles and spinors under metric variations and applied by Wang [42]
to study Killing spinor variations.

Let P = Lgo(n) be the bundle of oriented orthonormal frames on (M, g). A spin
structure is a double cover P. Given a symmetric, with respect to g, automorphism
a:TM — TM we have a new metric

g (X,Y) =gla X, oY),

If P* is the bundle of g®-orthonormal oriented frames, o : P — P¢ is SO(n)-equivariant,
and gives an isomorphism

(0%
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Let «(t) be a smooth path of symmetric automorphisms with «(0) = 17, and 6
Killing spinors for ¢®®),

Vi(t)frt =cX ¢ &t.
Set oy = a(t)~1(64), then in terms of the original spin bundle
Vi = ca(t) ™ (X) - or, (13)

where ?32(” =a(t)to V‘;((t) oa(t).
A deformation of the Killing spinor g is a path («(t), o) satisfying

£oa(t), o) (X) = V0, — ca(t) ™ (X) - 0, = 0. (14)
We will make use of the twisted Dirac operator
D:T(TM:®Y) - T(TM:®X). (15)
Decomposing into irreducible representations of Spin(n)
TMg® % =X X3,

where Y35 is the bundle coming from the kernel of Clifford multiplication p: T'® S,, —
Sp. The component of D on X3/, is the Rarita—Schwinger operator

Q: T(S1/2) = [(s2). (16)

If ¥ € I'(X3/5) then D¥ = QW if and only if §,¥ = 0.
We define tensors ¥(%:00) @(F:00) ¢ D(T*Mc@X) for B : TM — TM and o € T(X):

\Il(B’UO)(X) _ B(X) .09 (17)
OB (X)) = Zei(vlﬂ)(X) 00, (18)

where X € TM and {e;} is a local orthonormal frame. If § is symmetric, try 8 = 0, and
648 = 0 then W(Fo0) @Bo0) ¢ I'(X3/2). And if o¢ is a Killing spinor, then 5yUBho0) =
5,070 = 0.

Differentiating (14) at (17, 09):

PROPOSITION 1.6 ([42]).

AL (6, 6)(X) = Viy — cXé + ca(X)og — % Y ei(Vid)(X)oo + %g(dd,X)oO.

K2

If try(@) = 6& = 0, then dL%(c, &) = 0 if and only if Vx& = cX& and DY(@o0) =
new(@00)

For 8 : TM — TM g-symmetric, define h(X,Y) = —2¢(8(X),Y).
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PROPOSITION 1.7 ([42]). Iftry 3 =68 =0 and DU 20 = cn¥(5:90) then (A +
2L)h =0 where (Lh);; = Rikjlhkl,

So h € F(S2 T*M ) is an infinitesimal Einstein deformation.

DEFINITION 1.8.  An infinitesimal deformation of the Killing spinor oq is a pair
(B8,0), B:TM — TM symmetric and o € ['(X), satisfying:

(i) o is a Killing spinor with constant c,
(11) tI‘gﬁ = (56 — O7
(iii) DY (Bo0) = pew(B00),

The following result will have applications for the existence of eigenvectors of Q.

PROPOSITION 1.9 ([42]). Let (M,g) be spin with nonzero Killing spinor og. Let
h e EED(g), and define B: TM — TM by h(X,Y) = —2¢(8(X),Y). Then we have an
eigenvector of Q of either eigenvalue cn or ¢(2 —n), that is

(i) DY) = newB:90) gnd B is an infinitesimal deformation of oo, or

(ii) ©Bo0) —2cw(B:o0) £ gnd

D(@(ﬂﬂo) _ QC\IJ(BVUU)> _ 0(2 —n) (@(/870'0) _ 20\11(,3700)).

Let (M, g) be Einstein, then the Einstein premoduli space Z.# (g) C Z, where Z is
a finite dimensional real analytic submanifold of the slice . [21]. The bundles ¥, and
Equation (1) depend real analytically on ¢’ € Z. Define N, ;7 (resp. N, g_/) to be space of
solutions of (1) for ¢’ € Z and ¢ = 1/2 (resp. ¢ = —1/2). Since (1) has injective symbol
dime NV, gi, is upper semi-continuous. See for example [20, Lemma 4.3]. We will see by
example that it is not locally constant as in the case of parallel spinors.

1.3. Sasakian manifolds.

1.3.1. Sasakian structures.

The Killing spinor deformations we consider are of the non-exceptional cases of
Sasakian and 3-Sasakian manifolds in Table 1. See [7] or the monograph [8] for more on
Sasakian geometry.

DEFINITION 1.10. A Riemannian manifold (M, g) is Sasakian if the metric cone
(C(M),g), C(M) :=Ry x M and g = dr? +r?g, is Kihler, that is § admits a compatible
almost complex structure J so that (C(M),g,J) is a Kéhler structure. Equivalently,
Hol(C(M),g) C U(m), where dimM =n =2m — 1.

It is convenient to identify M with {r =1} = {1} x M C C(M). A Sasaki structure
is a special type of metric contact structure. Traditionally the Sasakian structure on M
was defined as a metric contact structure (g,n, &, ®) satisfying an additional condition
called normality, which is an integrability condition, where 7 is a contact form with Reeb
vector field £ and ® is a (1,1) tensor. Here £ and 7 are restrictions to M of
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1,
§=Jror, n(X)=-3£47, (19)
on C(M), which are given the same notation. It follows from the latter formula that
n=dlogr, (20)

where d° = /—1(0 — 9). One can show from the warped product structure of (C(M), g)
that ¢ is Killing and real holomorphic. If w is the Kéhler form of g, then

_ 1 2 _ 1 c, .2
w= Zd(r 17)—4dd7“ .
We also have
L. a2 L
w= id(r n) =rdr An-+ 57 dn. (21)
Let D C TM be the contact distribution which is defined by
D, = kern, (22)
for x € M. There is a splitting of the tangent bundle TM
TM =D ® L, (23)

where L is the trivial subbundle generated by . The tensor ® € End(T'M) is defined
by ®|p = J and ®(£) = 0. Since ¢ is Killing one can show that & = VE. We denote the
Sasakian structure by (g,7,&, ®).

The vector field £ 4 /=170, is holomorphic on C'(M), thus it defines a holomorphic
action of C*, the universal cover of C*. The intersection of each orbit with M c C (M)
is an orbit of the action of £ on M. Thus the orbits define a transversely holomorphic
foliation .%#¢ on M called the Reeb foliation. If £ generates a free U(1)-action, then the
Sasakian structure is reqular. The Sasakian structure is quasi-regular if it generates a
locally free U(1)-action, and irregular if not all the orbits are compact.

The foliation %, together with its transverse holomorphic structure is given by
an open covering {U,}aeca and submersions m, : U, — W, C C™~! such that when
UoNUg # 0 the map

bpa =mpomyt i To(Us NUp) = m(Us NUg)

is a biholomorphism.

Note that on U, the differential dm, : D, — Tr. x)Wa at © € U, is an isomorphism
taking the almost complex structure J, to that on 5 (,)Wa. Since £ Jdn = 0 the 2-form
(1/2)dn descends to a form wl on W,. Similarly, g* = (1/2)dn(-, ®-) satisfies Leg” =0
and vanishes on vectors tangent to the leaves, so it descends to an Hermitian metric g2
on W, with Kihler form wl. The Kihler metrics {g} and Kihler forms {wl} on {W,}
by construction are isomorphic on the overlaps

¢5a : Wa(Ua n UB) — Wﬁ(Ua N Uﬁ).
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We will use g7, respectively w’, to denote both the Kihler metric, respectively Kihler
form, on the local charts and the globally defined pull-back on M.

If we define v(%¢) = TM/L¢ to be the normal bundle to the leaves, then we can
generalize the above concept.

DEFINITION 1.11. A tensor ¥ € I'((v(F¢)*)*? Q@ v(F¢)®1) is basic if Ly ¥ = 0
for any vector field V' e I'(Ly).

Note that it is sufficient to check the above property for V = &. Then g7 and w” are
such tensors on v(%¢). We will also make use of the bundle isomorphism 7 : D — v(%¢),
which induces an almost complex structure J on v(.%¢) so that (D, J) = (v(F),J) as
complex vector bundles. Clearly, J is basic and is mapped to the natural almost complex
structure on W, by the local chart dm, : D, — Tﬂa(w)Wa.

To work on the Kihler leaf space we define the Levi-Civita connection of g7 by

me(VxY) if X,Y are smooth sections of D,

24
me([V,Y]) if X =V is a smooth section of Lg, (24)

V§Y:{

where m¢ : T'M — D is the orthogonal projection onto D. Then V7T is the unique torsion
free connection on D 2 v(.%¢) so that V¥ g7 = 0. Then for X, Y € I'(TM) and Z € I'(D)
we have the curvature of the transverse Kéhler structure

RY(X,Y)Z =VVyZ - VYV Z = Vix 7, (25)

and similarly we have the transverse Ricci curvature Ric” and scalar curvature s7. We
will denote the transverse Ricci form by p?. From O’Neill’s tensors computation for
Riemannian submersions [34] and elementary properties of Sasakian structures we have
the following.

ProrosITION 1.12.  Let (M, g,n,&,®) be a Sasakian manifold of dimension n =
2m — 1, then

(i) Ricy(X,€) = (2m —2)n(X), for X € T(TM),
(i) Ric™(X,Y) = Ric,(X,Y) +2¢7(X,Y), for X,Y € T(D).

In particular, if (M,g,n,& ®) is Sasaki-Finstein, then by 1.12 i it has Einstein
constant n — 1, that is

Ricy, = (n — 1)g. (26)
Note that (26) is equivalent to (C'(M),g) being Ricci-flat, since
Ricz = Ricyg —(n — 1)g.

1.3.2. 3-Sasakian structures.
Recall that a hyperkahler structure on a 4m-dimensional manifold consists of a
metric g which is Kéhler with respect to three complex structures Ji, Jo, J3 satisfying
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the quaternionic relations J,Jo = —JsJ; = J3 etc.

DEFINITION 1.13. A Riemannian manifold (M,g) is 3-Sasakian if the metric
cone (C(M),g) is hyperkéhler, that is § admits compatible almost complex structures
Jo, a = 1,2,3 such that (C(M), g, J1, J2, J3) is a hyperkédhler structure. Equivalently,
Hol(C(M)) € Sp(m).

A consequence of the definition is that (M, g) is equipped with three Sasakian struc-
tures (g,7:,&,®P;), ¢ = 1,2,3. The Reeb vector fields & = J;(rd,), i = 1,2,3 are
orthogonal and satisfy [&;,§;] = —2e%k €, where €% is anti-symmetric in the indices
i,j,k € {1,2,3} and £'23 = 1. The tensors ®;, i = 1,2, 3 satisfy the identities

D;(&5) = k¢, (27)
(Di [0) (bj = —(S”]l + &‘ijkq)]g + 75 ® fz (28)

It is easy to see that there is an S? of Sasakian structures with Reeb vector field &, =
&1 + o + 13&3 with T € Sz.

The Reeb vector fields {&1, &2, €5} generate a Lie algebra sp(1), so there is an effective
isometric action of either SO(3) or Sp(1) on (M, g). Both cases occur in the examples in
this article. This action generates a foliation %, ¢, ¢, with generic leaves either SO(3)
or Sp(1).

If we set D; = kern; € TM, i = 1,2,3 to be the contact subbundles, then the
complex structures J;, ¢ = 1,2,3 are recovered by

Ji(Tar) = fi, Ji‘Di = ‘I)Z'. (29)
Because a hyperkéhler manifold is always Ricci-flat we have the following.

PROPOSITION 1.14. A 3-Sasakian manifold (M, g) of dimension 4m—1 is Einstein
with Einstein constant A\ = 4m — 2.

We choose a Reeb vector field &7, fixing a quasi-regular Sasakian structure, then the
leaf space F¢, is a Kéhler orbifold Z with respect to the transversal complex structure
J = ®;. But it has in addition a complex contact structure and a fibering by rational
curves which we now describe. The 1-form n¢ = 1 ++/—1n3 is a (1, 0)-form with respect
to J. But it is not invariant under the U(1) group generated by exp(t¢;). We have
exp(t€1)*n® = e2V=1tyc, Let L = M x u(1) C, with U(1) acting on C by e~2V=1t This
is a holomorphic orbifold line bundle; in fact C(M) is either L=! or L~'/2 minus the zero
section. It is easy to see that each of these cases occur precisely where the Reeb vector
fields generate an effective action of SO(3) and Sp(1) respectively. Then n° descends
to an L valued holomorphic 1-form 6 € T'(Q"°(L)). It follows easily from (28) that
dn® restricted to D1 Nkern® is a non-degenerate type (2,0) form. Thus 6 is a complex
contact form on Z, and 6 A (d§)™~! € I'(Kz ® L™) is a non-vanishing section. Thus
L= K,'/™

Each leaf of ¢, ¢, ¢, descends to a rational curve in Z. Each curve is a CP' but
may have orbifold singularities for non-generic leaves. It is also well-known that restricted
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to a leaf L|cpr = O(2), the degree 2 line bundle on a generic smooth leaf, while O(2)
is interpreted as an orbifold line bundle when the leaf has orbifold singularities. The
element exp((m/2)&3) acts on M taking &; to —&;, thus it descends to an anti-holomorphic
involution ¢ : Z — Z. This real structure is crucial to the twistor approach. Note that
¢*# = 6. This all depends on the choice & € S? of the Reeb vector field. But taking a
different Reeb vector field gives an isomorphic twistor space under the transitive action
of Sp(1).

2. Killing spinor deformations on Sasaki—Einstein manifolds.

2.1. Deformations of transversal complex structures.

Let (M,g,n,&,®) be a Sasakian manifold. Then the Reeb foliation (¢, J) has
a transversely holomorphic structure. The existence of a versal deformation space for
(Z¢, J), fixing the smooth structure of .7, was proved in [14] and [18] using arguments
similar to those in [22].

Let AF = F(Ag’k ® v(F)10) be the space of smooth basic forms of type (0, k) with
values in v(.#)19. We have the Dolbeault complex

0 A0 2y gt Doy p2 (30)

Here (30) is the basic version of the complex used by Kuranishi [22] whose degree one
cohomology is the space of first order deformation of the complex structure modulo
diffeomorphisms. Likewise, the first order deformations of (¢, .J) modulo foliate diffeo-
morphisms are given by H'(A®). As in [22] there is an open set U C H'(A®) and the
versal deformation space V C U is the germ of #~1(0) where  is an analytic map

HY(A") 5 H2(A%).

PROPOSITION 2.1.  Suppose (M,g,n,€&,®) is Sasaki-Einstein (just Ric’ > 0 is
sufficient). We have H?*(A®) = {0}, so the versal deformation space is smooth, U C
H(A®).

PROOF. The basic version of Serre duality gives
H2(A%) = HP (DAY A7) = 0,

where the second equality is given by Kodaira—Nakano vanishing, since AZ"’_LO < 0 and
(m—3)+1=m—2< m—1. The proof of Kodaira-Nakano vanishing in [19] goes
through in transversally Kéhler case using the transversal harmonic theory of [15]. O

Since Ric? > 0, the obstruction to lifting a deformation J;, t € U, to a deformation
of Sasakian structures vanish.

PROPOSITION 2.2.  Let (M,g,n,&,®) be Sasaki-Einstein (or just Ric’ > 0 is suf-
ficient), then after possibly shrinking U, the deformation J;, t € U, lifts to a smooth
family (ge,me, €, @), t €U, where @y induces the transversal complex structure J;.
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Proor. We first show that the basic Dolbeault cohomology H[?’k = Hgb (A)®) =
{0}. This can be proved using Kodaira vanishing as above or from the Weitzenbock
formula on v € Qg’k

2Aa wal O T ATT/)CH ap T Z B’Y Rlca Bw(h N S R RS R (31)

where AT = (VT)*V7T is the transversal rough Laplacian. Then if ¢ is harmonic and
Ric” > Ag” then integrating (31) gives

0> /M(<VT1/1, VIP) + kX, 9)) g,

where (-, -) is the Hermitian product and pu, = (1/(m — 1))y A ((1/2)dn)™~*. Therefore
P =0.

By [13] there is a family of transversal Kihler metrics with Kéhler forms w! on
(ZF¢, Jt) depending smoothly on t € U with wl = w?. The above argument shows that
after shrinking & the Dolbeault groups on (%, .J;) also satisfy H, l? ’tk = {0} Since the
harmonic space H2 A, , of the transverse Laplacian A Wlth respect to wy , has constant

dimension, by for example [20, Lemma 4.3] there are 1som0rphlsms Ry« HX A, HA 5
b,t

depending smoothly on t. There exists smoothly varying a; € HA A, SO that Ri(ay) =
b

[wT — w]']s, the harmonic component. Let G be the Green’s operator for Az,. Let

B = d*G(wl + Ri(a) — wT), and define 7, = n + B;. Then (1/2)dn; = wl + Ri(ay)
which is of type (1,1) and is positive definite for small enough ¢.

The family of Sasakian structures (g¢,n:, &, ®;) is defined by lifting J; to kern; to
get ®;, while

1
gt = §d7lt('7 Qi) + 1 @1 (32)

O

REMARK 2.3. With the assumption ¢; (%, J;) > 0 made in this article, the defor-
mations in Proposition 2.2 along with transversal Kahler deformations

i=n+dy, ®=0-E@ijod,

for ¢ € Cp°(M) basic, give all local deformations of the Sasakian structure fixing the
Reeb vector field. See [40] for details.

Since a Sasaki-Einstein structure is transversally Kihler—Einstein by Proposi-
tion 1.12.ii, a necessary condition for a compatible Sasaki—Einstein structure is that

me (Fe, J) = mw. (33)

It follows from the proof of Proposition 2.2 that if (33) holds for (M, g,n, &, @), then the
family (g¢,m:, &, @4), t € U, also satisfies
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ag. T\ — T
mer(Fe, Jv) = muwy .

We consider some properties of a first order deformation through Sasakian metrics
which will be used later. We differentiate (32) and use the notation

Ji=1, oT=¢, and ¢T=h
where we have
diy = 2¢. (34)
Since w! (X,Y) = gI (J;X,Y), we have

qba[? = \/jlhaﬁ (36)

Note that since I anti-commutes with Jg, it only has components IQB and Iaﬁ .
In addition differentiating

90 (LX.Y) +g¢ (X, J,Y) =0 (37)
gives
2V =Thag + (Ing + I54) = 0. (38)
Finally (35) and (38) give
Pap = %(Iaﬁ —Iga). (39)

2.2. Skew—Hermitian Einstein deformations.
By Proposition 1.12.ii if (M, g, n, £, ®) is Sasaki-Einstein then the transversal Kéhler
metric g7 on % is Einstein

Ricyr = 2mg” .

We define the space E£D(g”) just as in Section 1.2.1 using the transversal Levi-
Civita connection defined in (24), that is

EED(g") ={h e T(S*Ty M) | tryr h = d,oh =0, (AT +2L7)h = 0},

where LT is defined as in (10) but with the transverse curvature R7.
Given h € I'(S* Ty M) we decompose h into its Hermitian hy and anti-Hermitian
h.a parts with respect to the transversal complex structure J on v(Fe), e

hH(anjY):hH(X7Y)a hA(jX7jY):_hA(X7Y)

We denote by EEDy(gT) (resp. £EDa(gT)) the space of Hermitian (resp. anti-
Hermitian) essential infinitesimal Einstein deformations. The following is an adaptation
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of results of Koiso [20] to the current situation.

PROPOSITION 2.4.  Suppose (M, g,n,&,®) is Sasaki-Einstein. Then we have the
decomposition

EED(g") = EEDu(g") ® EEDA(9"), (40)

and h € I‘(S2 Ag’l) is an element of EED A(gT) if and only if
Vahgs — Vihas =0 (41)
(V') ¥hag = 0. (42)

PROOF. Suppose h € I‘(82 Ag’l). If h* denotes raising the second index, then
hf € A'. We have the Weitzenbock formula

Oy h* + 0y0pht = = (AT +2LT ) KA. (43)

[N

Suppose h € EED(gT). Then (AT 4+ 2LT)hy = 0 and (43) implies §,7ha = 0.
Trivially, tr,r ha = 0. Thus hy € EED(g") and (40) follows.

It follows from (43) that h € F(S2 Ag’l) is in EEDa(gT) if and only if (41) and (42)
hold. O

Let H* denote the k-th harmonic space of the complex (30).

COROLLARY 2.5. Let (M, g,n,&, ®) be Sasaki-Einstein. Then there is a canonical
isomorphism
HY = EEDA(gT)

haB — —4/ 71haB. (44)

PROOF. First note that from Proposition 2.4 and formula (43) we have a decom-
position
Hu=Hus®Haa (45)

into symmetric and anti-symmetric parts. If ¢ € 7—[}4714 then L¢ = 0. Thus (43) shows

el . . . . 0,2
that AT¢ = 0, and we have VZ'¢ = 0. Lowering an index gives an harmonic P55 € Q"
Since M is Sasaki-Einstein (31) becomes

2A5b¢aB = ZTd)aB =+ 4mq§aB.
Since all but the last term are zero, ‘baB =0. (]

LEMMA 2.6. Let (M,g,n,&, ®) be Sasaki—Einstein and hT € 1"(S2 Tb*M) an el-
ement of EEDA(gT). If h = n*hT is the pull-back of the basic tensor hT to M then
h e EED(g).
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ProoF. First note that the O’Neill tensor of the local projection 7 onto the leaf
space of the foliation .Z¢ is

AxY = g6, VxY)E = —g(@X,Y)E, XY eT(D). (46)

We will use the formulae of O’Neill on the curvature of a Riemannian submersion. See [5,
Chapter 9] for more details.
If X,Y,Z,W € I'(D) are basic vector fields, then we have
9(R(X,Y)Z,W) = g"(RU(X,Y)Z, W) + 29(2X, Y)g(®Z, W) + g(2X, Z)g(PY, W)
—9(QY, Z)g(2X, W), (47)

A routine calculation shows that
AR(X,Y) = 7" (AThT)(X,Y) + 4h(X,Y) — 2h(2X, DY),
Ah(€,X) = =260 (®X),
Ah(€,€) = —2trhT.
We compute from (47) using an orthonormal frame {es, ..., eam_2,&} that
Lh(X,Y) =" (LTh")(X,Y) + ) [2g(<1>X, €i)g(®Y, e;) + g(®X,Y)g(Pe;, ¢;)
1,7
— (®es, Y)g(@X, e)| hleis )
=" (LT"h")(X,Y) + 2h(®X, ®Y) + h(PY, PX)
=" (L"h")(X,Y) — 3h(X,Y). (49)
And (48) easily gives
Lh(X,&) =—g(&, X)trh+ h(,X) = 0. (50)
It follows from the above equations that
(A+2L)h =" (ATRT) + 27* (LTAT), (51)
and dh = 0, tr h = 0 are trivial. O

T

REMARK 2.7. It is clear from the proof that a non-zero h = n*h* is not an infini-

tesimal Einstein deformation if A7 is not anti-Hermitian.

2.3. Infinitesimal deformations on Sasaki—Einstein manifolds.

From Proposition 2.4 and Lemma 2.6 for any § € H!; we have hf € E€D(g), where
RP(X,Y) = gT(JBX,Y). We define as in Section 1.2.2 ¥590(X) = a(X)og, where
a = —(hP)¥/2 and oy is Killing spinor.
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PROPOSITION 2.8.  Let (M,g) be a spin Sasaki-Einstein manifold admitting the
2 defining Killing spinors o;, 7 = 0,1. If § € 7-134 then the corresponding basic
anti-Hermitian symmetric tensor h® is an infinitesimal Einstein deformation of g, and
(@, 0), a = —(hP)*/2 is an infinitesimal deformation of the Killing spinors o; for j = 0, 1.

REMARK 2.9. The definitions of A?, 570 and « are made to agree with the iden-
tifications made in Corollary 2.5 and Section 1.2.2.

PROOF. That h? is an infinitesimal Einstein deformation follows from Lemma, 2.6.
In the proof we denote (h?)# by h which can be considered to be a basic tensor with
values in D = kern and ®h = —h®. By Proposition 1.6 it is sufficient to prove

> i+ (Vih)(X)oj = 2ch(X)oj, forall X € TM, j=0,1, (52)
for a local orthonormal frame {ey,...,ea,_1} for which we may choose e; € I‘(D) for
1=1,...,2m—2, ep_14; = Pe; fori=1,...,m —1 and eg,,—1 = . We extend to an

orthonormal frame on C (M) by setting ea,, = 0,

Define an Hermitian frame by e, = (eq — vV—1Jea)/V2, @ = 1,...,m — 1 and
em = (eam_1—V—1Jeam_1)/V2 = (£ ++/—=10,)/V2. Denote their duals by e =
(ea +V—1Jey)/v/2 and define e5 = &,. Note that e5 = £°.

Since Hol(g) € SU(m) the spinor bundle ¥ of M can be identified, on the
neighborhood of the frame, with A® Spanc{ec,|a = 1,...,m} = ATHOC(M)|y, or
A°% Spang{e,|a = 1,...,m}. Clifford multiplication is given by e; — e;eqm, 1 < i <
2m — 1 (or e; = —e;ea, giving the other Clifford module structure on X).

If m is even we take ¥ = A Spanc{e,|a =1,...,m}. If m is odd, then we take 3 =
A°% Spang{e,|a = 1,...,m} when considering o; € I'(¥), and ¥ = A®’ Spanc{e,|a =
1,...,m} when considering oy € T'(X). In the latter case we take Clifford multiplication
to act through e; — —e;es,, in order to obtain the same Clifford module structure on ¥
(in this case ¢ = —1/2).

The Killing spinors are locally og = a(z) € I'(A°) and oy = b(z)ey A -+ A gy €
F(Am)7 where a,b are smooth functions.

Note that for X,Y € I‘(D) basic

Vyh(X) = Vyh(X) + g(Vy (hX), )¢

— VIR(X) — g(h(X), DY)E. (53)
Thus
S (Vi) (X = 3 (VTR (X)oy + £(Veh) (X)oy + 3 cag(@h(X), er)éo;
=1 =1 7

= Z ei(VIh)(X)oj + 26@h(X)o; + ®h(X)Eo;

i=1
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i (VIn)(X)o; — ®h(X)Eo;. (54)

We will show that the first term on the right of (54) vanishes. First suppose X = ¢,
then

2m—2 m—1 m—1
Z ei(Vih)(X)o; = e*(VZL h)(ey)oj + Z e®(VZL h)(e4)0;
i=1 a=1 a=1
=e2vln,p sﬁaj +eVin Bsﬁaj (55)

If j = 0, then this vanishes since eg00 = 0. Suppose j = 1, then the first term on the
right of (55) is
savghﬁsaol =V hge¥P oy

= (VEhgy = VEhay )’ =0, (56)
a<f

because of (41). And the second term on the right of (55) is
aavghﬁsgal = V§h575a5601
= VZhgy (=™ —29(%, 7))oy

= —2(V") " hoyor =0, (57)
because of (42). The case of X = &5 is completely analogous.
We have

2m—1 2m—2

D ei(Vih)(©oj == Y eih(®e;)o;
i=1 i=1
2m—2

= — Z eih(De;, er)exo;
ik=1
2m—2

= Z h(@ei,ei)aj = O, (58)
i=1

for j = 0,1. The last two equalities follow because h(®-,-) is symmetric and anti-
Hermitian.

We have that
2m—1
> ei(Vih)(X)o; = —~®h(X)éo;, for X € TM. (59)
i=1
Recall that Clifford multiplication is X-0; = X 0,05, for X € T'M with our representation

space, unless o; has ¢ = —1/2 in which case we must take X - 0; = —X0,0,. It is easy
to check that
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—h(X)eo; = h(X)dpo;, j=1,2. (60)
Then (52) follows from (59) and (60) and the Proposition follows. O

2.4. Infinitesimal deformations on 3-Sasakian manifolds.
Recall the important result of Pedersen and Poon that 3-Sasakian structures are
rigid.

THEOREM 2.10 ([35]). Let (M,g), dim M = 4m — 1, be a 3-Sasakian manifold
with Killing spinors o;, i = 0,...,m. Then any Einstein deformation (M, g;) of g with
compatible 3-Sasakian structures, i.e. preserving the existence of the o;, i =0,...,m, is
trivial. That is, there exists a family ¢ of diffeomorphisms of M with ¢fg: = g.

The transversal space Z¢, for any fixed Reeb vector field £ € S?%, is an orbifold Z
with a complex contact structure. Recall that the twistor spaces for any two & € S* are
isomorphic via the transitive action of Sp(1) on the S? of Reeb vector fields. We denote
by HY4(€) the harmonic space of the particular £ € S*. Although, the HY (€), & € S?, are
isomorphic they give different deformations h” € EED(g), B € HY(€).

The proof of Theorem 2.10, and the earlier similar result [24] of LeBrun, follow
mainly from the vanishing of H*(Z, O(L)). We have

HY(Z,0(L)) = H'(2,9*" YK ;' ® L)) = {0}

by Kodaira vanishing, since Kgl ®L > 0.
The following provides a spinor version of this vanishing result.

PROPOSITION 2.11.  Let (M,g), dim M = 4m — 1, be a 3-Sasakian manifold with
Killing spinors o5, j = 0,...,m. If B € 7—[}4(5) is nonzero, then the corresponding
basic anti-Hermitian symmetric tensor h® is an infinitesimal Einstein deformation of g,
and (a,0), o = —(hP)#/2 is an infinitesimal deformation of the Killing spinors o; for
j =0, m, but never for any nonzero o € Spanc{o;lj=1,...,m—1}.

It will be convenient to introduce some notation. Given o € N, we change notation
and write the formula in Proposition 1.6 as

1 1
L(a,0)(X) = -5 Z ei - (Via)(X)o + 504()()0, for all X € TM. (61)
i
Then the proposition asserts that £L(a,0) = 0 for 0 = ¢; j = 0,m and L(«,0) # 0 for
nonzero o € Spanc{o;[j=1,...,m — 1}.

ProOOF. We consider a local orthonormal frame which is in the Sp(m)-structure
of C(M)

(61762,...764"1) = (f17J1f17J2f17J3f1;f27J1f2 "';fm7J1fm7J2fm7J3fm)7

where €1y...,€4m—4 € ﬂi:1,2,3 D, = D, fm = —63, Jlfm = fg, J2fm = —51 and Jgfm =
O
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We define an Hermitian frame by e, = (e2a-1—vV—1J1€20-1)/V2 =
(201 — V—1e2n)/V2, a = 1,...,2m, and their duals e* = ¢5 = Z,. In par-
ticular, we have €g,,_1 = (=& —V—1&)/V2 and €3, = (=& —/—10,)/V2. As
in the proof of Proposition 2.8 the spinor bundle of (M, g) can be identified with
Y = ATYOC(M)|p = A% Spang{eq|a =1,...,2m}.

Define the “symplectic form”

w = Z €2a—-1 N\ E2q- (62)
a=1

The Killing spinors on (M, g) can be identified with

1
ok = gwk eT(ATC(M)), k=0,...,m.
From the proof of Proposition 2.8 a Killing spinor oy, is preserved to first order by the
Einstein deformation A if and only if

2m—1 2m—1
> e VIMX)or+ Y EVEMX)op + E@1h(X )0y = 2ch(X)or, (63)
a=1 a=1

holds for all X € D;. Here ¢ = 1/2.
Define ¢ € QY1(L) by Yg = h%9v~ Since 6 is holomorphic ¢ = 0. The line bundle

L has a natural Hermitian metric by the identification L = K 21/ "

connection on L. Then

, S0 there is a natural

o =~V Py
= —h3"V’0, =0, (64)

where the second equality holds from VTﬁhB'Y = 0. For the third equality observe
that Vg6, lifts to the form dn® = g(®2-,-) + /—1g(®3-, ) restricted to Dy, but h#7 is
symmetric and so the contraction is zero.

Therefore ¢ € Q%1(L) is harmonic. But as we observed, H'(Z, O(L)) = 0, so ¢ = 0.
It follows that h(X) € D for all X € TM. This fact will be used repeatedly in the rest
of the proof.

Substituting & = (—1/v2)(e2m + €3=) and 9, = (vV—1/v/2)(e2m — €5) into (63)

and canceling terms gives

2m—1 2m—1
Y VA X)op+ Y e VERX)a — V=1V21(X) " o +V=TV2R(X) egy = 0.
a=1 a=1

(65)
We saw in the proof of Proposition 2.8 that

e*Vihpye? =e"VEhge? =0,

so (65) becomes
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2m—12m—1

> > VEhgye®lor — V=1V2h(ep)eamor =0, for X =g, (66)
a=1 ~=1

2m—12m—1 B

Z Z vghB,nyaE’YJk + v —1\/§h(5,§)8%0k = 0, for X = EB. (67)

a=1 ~=1

Define ¢ = 22;11 €9a—1 /N €24, then we have

o = yﬁk G _1 1)!19]“*1 A Eom—_1 N Eopm. (68)
The second term of (66) is
—\/jl\/ih(Eﬁ)EQmU}c = —\/?%\/iagm A (h(sg) Jﬁk)
= _\(/1221\)/5527” A (h(gg) 29) AR
\(/;21\)['52m A Poh(eg) A A9FL. (69)

Note that every term of (69) contains €9, but does not contain €s,,_1. The terms of the
first component of (66) which also contain e, but not £2,,_1 are

2m—1 -
Z vgh62m—15a52m710k. (70)
a=1
We simplify (70) to get
Zm_1 2m—1
Z vghggm_lgang—lak = Z _h(gﬁavZHEQm—l)EaEQm_lo'k
a=1 a—1
2m—1
- \/7[ Z h 55’¢25a) 1Uk
VBB
2
\(/]; {@Qh(ég) A9ET A €9m.- (71)
Together the terms of (66) which contain £g,, but not €s,,_1 are
—14v/2
_\(/];1) €am N Pah(eg) A A9E—1 (72)

We claim that (72) is non-zero for 1 < k < m — 1 when ®3h(eg) is non-zero. But this
follows because ¥ is a complex symplectic form on D. Thus h(eg) = 0.
A similar argument will be carried out with (67). The second term of (67) is
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\/jl\/ih(e’:‘é)é‘ﬁn(fk = Qh(&‘g)(ﬁk_l N €2m—1)

(k— 1)

The terms of the first component of (67) which contain e,,_1 but not ey, are

2m—1
Z Vghﬁmgaé‘zmilgk. (74)
a=1
We compute
2m—1 2m—1
Z Vghgmsagm*lak = Z —h(sB,vg%—m_l)s%?m*lak
a=1 a=1
2m—1
= —V/—-1V2 Z g(h(&a),q)gé‘a)€a€2m710'k
a=1

=V 71\/§¢2h(63)€2m_10k

_veve (®2h(z5) 29%)

k!
- \(/1221‘)/?%1 A (D2h(e5) 20) AOFT
= \(/1221\{?52,%_1 Ah(eg) A oL (75)
Combining (73) and (75) give
_@5%_1 Ah(eg) A9*1. (76)

k- 1)

We have for X € I'(D'?) that the component of £(a, 0y )(X) containing £a,, but not
€om—1 18 —1/2 of (72). Since these terms are linearly independent, for o = Z;n;ll aRo,
L(a,01)(X) =0 for all X implies h = 0. O

The proof involved determining the component of (61) with the spinor component
containing precisely one vector in Spang{ea;,—1,&2m,}. This is given in (72) and (76).
This component is preserved under changes of the frame used in the calculation. This
will be used later in Section 4.1 where more details will be given. It will be useful that
this component is

— O W(X)Ey - o — W(X)D, - 0. (77)

3. Integrable deformations of Killing spinors.

We consider the integrability of the infinitesimal Einstein deformations h” € ££D(g)
for 3 € Ml from the last section. We will also consider the integrability of infinitesi-
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mal Killing spinor deformations. This is essentially the problem of deforming Sasaki—
Einstein metrics. We give some sufficient conditions for integrating these infinitesimal
deformations. A deeper sufficient condition for deforming Sasaki-Einstein metrics is K-
polystability (see [40]), but here we merely give some sufficiency results using analytic
methods.

3.1. Integrability on Sasaki—Einstein manifolds.

We state a result from [39] giving a sufficient condition for deforming Sasaki-
Einstein structures. Let (M, g,n, &, @) be a Sasaki-Einstein structure, and let G C G’ =
Aut(g,n,&,®) be a compact subgroup. We consider G-equivariant deformations of the
foliation (Z¢,J). We have the G-equivariant Dolbeault complex

0— A% 2 AL 2y A2 . (78)

with A% = I‘(Ag’l€ @v(F)H0)C the subspace of G-invariant sections. Then H'(Ag,) gives
the first order deformations of (%, J) preserving the action of G. We saw in Proposi-
tion 2.1 that the versal deformation space U is smooth. The space of G-equivariant
deformations Y% C U is a submanifold with tangent space H'(A%) C H'(A). With
respect to a fixed transversal Kéhler structure we have the G-invariant harmonic space
HYy o and H'(A%) = HY o

If (Ze,Ji)tev is a G-equivariant deformation, then one can show as in Propo-
sition 2.2 that there is a family of Sasakian structures (g, 7, &, ®:), t € V, with
G C Aut(gs,ns, &, ®;) where ®; induces the transversal complex structure .J;. Argu-
ments using the implicit function theorem can show the following.

THEOREM 3.1 ([39]). Suppose (M,g,n,&, ®) is a Sasaki-Einstein manifold. Let
G C Aut(g,n, &, ®) be a mazimal torus, and let (F¢, Ji)iey be a G-equivariant deforma-
tion with V smooth. Then after possibly shrinking V, there is a family (g¢,me, &, Pt), t €V
of Sasaki-Einstein structures with (go,no,&, o) = (9,1,&, ®) and with ®; inducing the
transversal complex structure J,.

This implies the following in terms of Killing spinors.

COROLLARY 3.2. Let (M, g) be a spin Sasaki—Finstein manifold admitting the two
defining Killing spinors o, 7 = 0,1, e.g. M is simply connected. Then the infinitesimal
FEinstein deformations h®, for B € 7—[}4,G, integrate to a family g;, t € V C C¢, d =
dim¢ 'H}&G, of Einstein deformations preserving o, j =0, 1.

The components in EED(g) of {v(gs) | v € ToV} are precisely the original infinites-
imal Einstein deformations {h® | B € Hac)-

PrOOF. Just the last statement remains to be proved. Consider the family
(9t,mt,&, D), t € V of Proposition 2.2. Using the notation of Section 2.1 and differ-
entiating in the direction of some v € Ty) we have

¢ap =0 (79)
b0z = V—1h,j5 (80)
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haﬁ =V _]--[04,37 (81)

which follow from (39), (36) and (35) respectively. In the proof of Proposition 2.2 the
basic cohomology class [w ] is constant. Thus ¢ is an exact (1, 1)-form. We may replace
1 with 1, + d“y, so that using the same notation we have (1/2)dn, = ¢ = 0.

The possible contact forms for a fixed Reeb vector field ¢ and transversal complex
structure J; are 1; + d°; + df; for basic functions 1y, 0; € C°(M). See [39, Lemma
2.2.3], where we also use that Ric? > 0, which implies that the basic cohomology H} =
HY(M,R) = {0}. And df, is given by a gauge transformation exp(6;£)*n;, which fixes
basic tensors. Therefore, by adding a factor of df; to 7, we may arrange that n; = 0.
We assume that the family (g, m:, &, P¢), t € V is chosen so that 7 = 0 at ¢t = 0. Thus
the only component of §; at t = 0 is hapg = V—11,5 € EED(g).

Recall that if ¢ € Cp°(M) is sufficiently small there is a Sasakian structure
(9t,0, M5 € i) with contact form 7 = 1 + d°y and transversal complex structure

J¢. The metric is

1 _
Gtp = §d7h,w(w ) + Ny @ Ny

and @, is the lift of J; to kerm; .

Theorem 3.1 is proved by using the implicit function theorem to find 1, €
Cp°(M), t € V, so that the Sasakian structure (ge ., 7.y, &, ®rp) has scalar curvature
St = 0. We review enough of the proof of Theorem 3.1 to prove the corollary. For
more details see [39].

We consider the G-invariant Sobolev space L£+41G(M)7 k > m, of k+4 times weakly
differentiable functions. For ¢ € L t4.6(M) small we have the Sasakian structure with
metric g, as above. We have the space of holomorphy potentials ’Hiw for this metric
where g is the Lie algebra of G (cf. [39]). Using the metric g, to define the L? inner
product on L (M) we have the orthogonal decomposition

L%,G(M) = \/letg,w © Wit
and the projections
wa : Li,G(M) — \/—717-[?71/}, and Wm : Li’G(M) = Wit -
The reduced scalar curvature of g; 4 is given by
St = Mo (st,) = (1 =707y ) (51,0)- (82)

Let U C V x Lj 4 (M) be a neighborhood of (0,0) so that for (t,¢)) € U,
(e, Meps & Do) is well defined. For U =U N (V X Wk+470) we define a map

S: U — Wk70

() > m (5. (83)

The derivative of (83) is
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dS : Wiga,0 = Wi, (84)
with dS(z/}) = fQILgv,/}. Here L, is the self-adjoint operator
Ly = %Agw + %(RicT,ddcz/)) + %(dw,dsg).
As proved in [39, Corollary 4.2.5] there is a family ¢, ¢t € U, with
S(t, ) =g (i) = 0. (85)

Since ¢ € EED(g) it is easy to check that (d/dt)sf, = 0 at ¢ = 0. Then differentiating
(85) at t = 0 gives —2L,¢p; = 0. But (84) is an isomorphism, so ¢); = 0 at t = 0.
Therefore at t = 0 we have §; 4, = ¢ which is hag = V11,3 € EED(g). O

We will give an application of Theorem 3.2 in Section 4.2.

3.2. Integrability on 3-Sasakian manifolds.

We can prove integrability of many of the transversal infinitesimal deformations on
a 3-Sasakian manifold. The infinitesimal deformations of the real subspace Re H!{(£) C
HY (&) with respect to the real structure ¢ : HY(¢) — HY(€) induced by the anti-
holomorphic real structure ¢ : Z — Z integrate to Einstein deformations preserving the
existence of precisely two Killing spinors.

THEOREM 3.3. Let (M,g), dim M = 4m—1, be a 3-Sasakian manifold, and denote
by o;, 1 =0,...,m the Killing spinors associated to the 3-Sasakian structure. Then the
infinitesimal Einstein deformations h® of g for B € Re HY(€) in Proposition 2.8 integrate
to a family g;, t € N C R?, d = dimc HY, of Einstein deformations of g preserving o
and o, but not the remaining. The components in EED(g) of {v(g:) | v € ToN} are
precisely the original infinitesimal Einstein deformations {h” | B € HY4(£)}.

COROLLARY 3.4. Let (M,g), dim M = 4m — 1, be a 3-Sasakian manifold with d =
dimgc HY(A®). Then g has a d-dimensional family of non-trivial deformations, {g; | t €
N C R4}, where g;, t # 0, has a compatible Sasaki-Einstein structure but no 3-Sasakian
structure.

Recall that the quotient of M, dim M = 4m + 3, by the action of Sp(1)-action
generated by {€1, &, &3} is a quaternion-Kéhler orbifold (M, §), dim M = 4m. If m > 2,
this means there is a three dimensional bundle J C End(7'M) which is locally spanned
by almost complex structures Ji,i=1,2,3 satisfying the quaternionic identities which
is preserved by the Levi-Civita connection of g. This is equivalent to the existence of
a 1-integrable Sp(m) Sp(1)-structure on M. The O’Neill formulas of the submersion
7 : M — M show that (M,§) is Binstein with constant A = 4m + 8. If m = 1,
every oriented manifold satisfies this with J = A%r. A 4-dimensional quaternion-Kéhler
orbifold (]\}LQ) is defined to be oriented and satisfy W;‘ = 0 and Ricy = Ag.

We will consider a weaker condition, that of a quaternionic structure (cf. [37]).
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DEFINITION 3.5. A quaternionic structure on M, of dimension 4m, m > 2, is a
three dimensional subbundle J C End(TM ) which is locally spanned by almost com-
plex structures Ji, i =1,2,3 satisfying the quaternionic identities and preserved by a
torsion-free connection on TM. This is equivalent to the existence of a 1-integrable
GL(m,H) Sp(1)-structure.

If m = 1, then a quaternionic structure is defined to be a conformal class [g] with
an orientation on M satisfying W[Jgr] =0.

Part of the interest in quaternionic manifolds is due to an attractive twistor corre-
spondence [36]. If (M, ) is a 4m-dimensional quaternionic manifold, then the twistor
space is Z = P(E) where E is the locally defined complex 2-dimensional bundle associ-
ated to the complex 2-dimensional representation of the Sp(1)-factor of GL(m,H) Sp(1).
Then Z is a 2m+ 1-dimensional complex manifold with a family of twistor lines CP' with
normal bundle O¢p1 (1)®2m
real twistor lines. Conversely, if Z is a 2m + 1-dimensional complex manifold with a
family of twistor lines CP' with normal bundle Ogp: (1)$2™ and an anti-holomorphic in-
volution o : Z — Z, then a connected component of real twistor lines is a 4m-dimensional

manifold with a quaternionic structure. Since the twistor correspondence is natural, if

and an anti-holomorphic involution ¢ : Z — Z preserving the

(M, J) is a quaternionic orbifold we may define the twistor space over each uniformizing
chart as for manifolds and quotient by the orbifold group.

We say that a diffeomorphism of a quaternionic manifold(orbifold) F : M— Misa
quaternionic automorphism if the derivative of I’ preserves the bundle 7, or equivalently
preserves the GL(m,H) Sp(1)-structure. The following is essentially different proof of a
result of LeBrun [26, Corollary C], but we need to consider the case in which (M, §) is
an orbifold.

LEMMA 3.6. Let (M,g) be a quaternion-Kdahler manifold or orbifold whose asso-
ciated 3-Sasakian space M is smooth. If (M,§) admits a quaternionic automorphism
which is not an isometry, then (M, g) is locally isometric to HP™ with the symmetric

metric. Thus (M, §) = MHP™, T C Sp(m+1).

PROOF. Let M — M be the Sp(1) or SO(3) orbifold bundle with M the 3-Sasakian
space associated to M. Suppose there is such a quaternionic automorphism F' : M — M,
then F lifts to a diffeomorphism F : M — M which maps each &, i = 1,2,3 to itself
and preserves the complex structure on the transverse space Z. The complex contact
form 6 of Z lifts to ¢ = 1o + v/—1n3. Since F : M — M is an isometry if and only if
the biholomorphism induced on Z is complex contact [25], [32], # = F*n® # n°. And
C(M) has two holomorphic symplectic forms @ = d(r?n¢) and & = d(r?h). If V is the
Levi-Civita connection of (C(M), ), then Voo = 0. Note that both @ and & are of
order 2 with respect to the Euler vector field rd,.. Since ﬁar O, =0 and ﬁraTX = X for a
vector field X on M viewed as a vector field on C'(M), it is easy to check that V & = 0.

We have the following formula on a Kéhler—Einstein manifold with Einstein constant
A

VPV §®araz = VP V3araz + 2ABayas- (86)



Deformations of Killing spinors 81

Since A = 0 and @& is holomorphic, we have VAV 3%4,0, = ﬁgﬁgﬁalw = 0. Consider
TC(M)|y as an Hermitian vector bundle on M and denote by V the connection V
restricted to M. Then V*V& = V*V& = 0 and

0— / V'V, &Y g
M

- / (Ver, Ver) .
M

Therefore V& = 0. So the holonomy of (C(M),§) stabilizes two linearly independent

—~—

(2,0)-forms of maximal rank, and the holonomy of the universal cover C'(M) is reducible.

e~

It follows from [17, Proposition 3.1] that C'(M) is flat. Thus M is isometric to a space
form T'\ S5, O

PROOF OF THEOREM. Fixing a & € S® we have the foliation (%, .J) whose
transversal space is the twistor space Z. There is a subspace N' C U C H'(A®) of
the versal deformation space of (.F, J) of real deformations. These are the deformations
Jy for which ¢(J;) = —J;. By straightforward averaging one can choose the family of

compatible Sasakian structures in Proposition 2.2 (g¢, m¢, &, ®;) to satisfy
<9t = 91, §*77t =1 GE=—E, P = Dy, (87)

for t € N. In particular, we also have ¢*w?” = —w”. For t € N with respect to
(gt mt, &, @) we have Re H'(A®*) = Re 11 (€) for the tangent space to N at 0. Therefore
(F¢,Jt) = (Z,J;) has a Kihler structure wf, with wf € (7/2m)c1(F¢, Jo) depending
smoothly on ¢ € N and Ricci(wd ) = 4mwd . Since the leaf space is an orbifold we will
denote the transversal Kihler space by (Z, J;,wy).

Let g be the Lie algebra of quaternionic automorphisms of (M ,g). By the twistor
correspondence, g = {X € hol(Z, Jo)[s.X = X}. Since g is a real form of hol(Z, Jy),
g ®C = hol(Z,Jy). By Lemma 3.6 g C isom(M, §,7). Thus g C isom(Z,wp,Jo). Since
(Z,wo, Jo) is Kihler-Einstein the results of Matsushima [27] show that isom(Z,wo, Jo) C
g ® C is a real form, so g = isom(Z, wo, Jo).

Recall that f € C>°(Z,C) is a holomorphy potential if

L= @ONF =3

i,J

Of % 9

9k 0z
is holomorphic. We define the space of normalized holomorphy potential functions,

Hy = {f € C*(Z,C) ‘ f is Hamiltonian and /fug = O} . (88)
Suppose W € T'(T*YZ) is holomorphic with ReW = X € g = {Y € hol(Z, Jy) | c.Y =

Y}, so Lxw = 0. And let fiy € C*°(Z) be a symplectic Hamiltonian, with [, fiw g =0,
that is

X iw= de (89)
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Then

1 1 v—=1
o fur = 5(de +V=1J*dfw ) = §(JX +V-1X) = W
From (87) and (89) we have ¢*dfyy = —dfw, and fZ fw g = 0 implies that ¢* fyr =
—fw. Since H, is the complexification of the real functions fy considered, we have that
s*f=—fforall feH,
There are Fy € C*(Z) depending smoothly on ¢t € A/ with

vV _18t5tFt = RiCCi(UJt) — 4m(.Ut. (90)

Since F; is defined up to a constant, ¢*F, = F;+¢, for t € ReN. But [(F,—<*F;)pg, =0,
so ¢*Fy = Fy.

Define C*(Z)sym to be the Holder space of functions f with ¢* f = f. The Monge-
Ampere equation

+V=18,9,0,)*" !
W t) = log (U IY ORI | gy = B, o1)

Wy

is ¢-invariant for t € Re N, and ¥ defines a smooth map
T CFF2(Z) gy X ReN — CF*(Z)gym. (92)
The differential of (92) is
D,V (¢) = (—Az +4m)¢. (93)

But it is a result of Matsushima [27] that H, = ker(Az — A), where A = 4m is the
Einstein constant. Thus D, : CF*22(Z) 0, — C¥Y(Z)gym is an isomorphism. By the
implicit function theorem, after possibly replacing A/ by a smaller neighborhood of 0, for
t € N there is a ¢y € CHT2Y( 2y, with U(p;) = Fy, and

wg = w; +V _1875515%5% (94)

is Kéhler-Einstein. The well-known regularity results show that ¢, € C°°(Z)sym.

Let m : My — Z; be the U(1)-bundle associated to either Ké{m or thl/zm, depend-
ing on whether (M, g) fibers over (M, §) with generic SO(3) or Sp(1) fibers. Choose the
connection form on M; to be 1} = n; + dfp:. Then from (94) one has (1/2)dn, = w;. We

get a Sasaki-Einstein structure (g;,n;,&, ®4) on M; where

and @} is the lift of .J; to kermn,.
By Theorem 2.10 for small ¢t € N, (M, g;) has no compatible 3-Sasakian structure.
It remains to prove that the components in EED(g) of {v(g;) | v € ToN'} are pre-
cisely the original infinitesimal Einstein deformations {h® | 3 € H1(¢)}. Consider the
family (g¢,m4, &, ®t), t € N of Proposition 2.2. Using the notation of Section 2.1 and



Deformations of Killing spinors 83

differentiating in the direction of some v € TyN we have

Gag =0 (96)
bo5 = V—1h,3 (97)
haﬂ - \/jllaﬁa (98)

which follow from (39), (36) and (35) respectively. In the proof of Proposition 2.2 the
basic cohomology class [w]] is constant. Thus ¢ is an exact (1, 1)-form. We may replace
ne with 1, 4+ dy, so that using the same notation we have (1/2)dn; = ¢ = 0.

The possible contact forms for a fixed Reeb vector field ¢ and transversal complex
structure J; are n, + d°; + df, for basic functions 1,0 € Cp°(M). See [39, Lemma
2.2.3], where we also use that Ric” > 0, which implies that the basic cohomology H} =
HY(M,R) = {0}. And df; is given by a gauge transformation exp(6;£)*n;, which fixes
basic tensors. Therefore, by adding a factor of df; to n;, we may arrange that 7, = 0.

We suppose now that we have chosen (g¢,1m:,&,®4), t € N as such. Thus the
only component of h is hag = v/—1l,3, which is a transversal infinitesimal Einstein
deformation. Differentiating (90) gives

V —151,(791,15} - 0
Then differentiating (91) with respect to t gives
(=Ag +4m) @y =0,

and it follows that ¢ = 0 at ¢ = 0. Therefore (g;,7;,&, ®}) gives the same first order
Einstein deformation at t = 0 as (g¢, ¢, &, ®;) which is hapg = vV —114p. O

4. Deformations on a 3-Sasakian manifold.

4.1. Space of deformations on a 3-Sasakian manifold.

The space of Einstein deformations on a 3-Sasakian manifold constructed in Section 2
has an interesting structure. Suppose (M, g) has a 3-Sasakian structure with Reeb vector
fields &1, &, &3 satistying [¢;, &;] = —27%€;, and space of Reeb fields S°.

For & € S? and 8 € HY (&) we define b€ € E€D(g), where h*¢(X,Y) = ¢ (JBX,Y)
where we distinguish the particular Reeb vector field. We have the following space of
infinitesimal Einstein deformations

ED(g) = > _{h*%| B e HY(E)} C EED(y). (99)
£es?

We have a left action of Sp(1) on (M,g) generated by &;1,&2,&3. Since Sp(1) acts
by isometries and on the space of Sasakian structures S?, it acts on & 2(g), and all the
subspaces H}L‘(f), ¢ € §?, are isomorphic. The subspace 7—[}4(51) is preserved by &1, so by
elementary representation theory

dimg € 2(g) = 2dimc £P(g) > 6 dime HY (&1).
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This Sp(1)-action acts on (C(M), J1, J2, J3) by quaternionic automorphisms. That
is, it preserves the bundle of quaternionic frames Lgy(m)sp)(C(M)). This lifts, via
the spin structure to an action on Egp(m)gp(l)(C’(M)) C Lspin(am)(C(M)) if m is even
or isp(m)xsp(l)(O(M)) C Lgpin(am)(C(M)) if m is odd. The Killing spinors are con-
tained in the -, factor of S} of (6). Thus Sp(1) acts on the Killing spinors via the
representation of Sp(1) = SU(2) on v,, = S%(p2).

We will consider a principal subbundle £ C L gy (m)sp(1)(C(M)) with structure group
(Sp(m — 1) x Sp(1)) Sp(1) generated by all the local frames considered in the proof of
Proposition 2.11. This subbundle is invariant under the isometric Sp(1)-action. In order
to determine the Sp(1) action on spinors we consider the spin bundle

2= X me1)xsp(1)) Sp() Sim:
Importantly, the subspace of spinors, considered in the proof of Proposition 2.11, with
precisely one vector in Spanc{e2m,—1,&am} is preserved by (Sp(m —1) x Sp(l)) Sp(1).

The Sp(1) action on E is easily computed. Given a € Sp(1l) and v € E, write
asu = u(a), then

¥(a) = ((- kak™"),a) € (Sp(m — 1) x Sp(1)) Sp(1)

is the factor acting non-trivially on the component of spinors with one vector in
Spanc{e2m—1,€2m}. It will be useful that the spin bundle has the decomposition (6)
with the Sp(1)-action acting on the v,,, Ym—2, ... factors in the usual way with v, being
the space of Killing spinors.

We will need a lemma in the proofs of the main theorems.

LEMMA 4.1.  Suppose £,&" € S%. If € £ & and € # —¢€', then

{n%] B e HLEIN (R | B HA(E)} = {0}

Suppose that m = 2, &1,&5,&3 € S* are linearly independent, and B; € HY (&), i =
1,2,3 are non-zero. Then

RS + hP2:E€2 + LR £ 0.

PrROOF. Let oi,k = 0,...,m be the Killing spinors as in the proof of Propo-
sition 2.11 which span the representation =, of Sp(1). More precisely, v,, = S?(C?)
where we identify Sp(1) = SU(2). And under this identification each oy is identified
with (Tk”) e’fe’znfk where e, e5 are the standard basis of C2. By acting by Sp(1) we may
suppose that £ is &;.

By Proposition 2.11 the elements h?¢ preserve the spinors corresponding to the span
of e" and €5 but not the remaining. Let g € SU(2) be such that g§¢ = £’. Then the
elements ¢ preserve precisely the spinors g(ef") and g(ef*). This is the same subspace
as that spanned by ef® and e} if and only if g is in the subgroup generated by the
elements



Deformations of Killing spinors 85

u0 01
, such that |u| =1, and J = .
Ou —-10

This is precisely the subgroup fixing & € RP2.
For the second part recall that v, is a real representation, with real Killing spinors
Go=14¢e1NeaNegNey
¢1 =1ie1 Nea +ie3 N ey (100)
G =1—161 Neg Neg N ey.
Again we may assume that & is the standard Reeb vector field, thus h%:¢t preserves
oo and o9. Suppose & = a&; and & = b€ where a,b € Sp(1). By assumption

Spang{oo, o2} N Spang{acy,ace} is 1-dimensional, and let o be a non-zero element.
Then o ¢ Spang{bog, bos}. Then

E(hﬁlafl 4 pPte o h53,53’ o) = E(hﬁ?n{s’ o) #0
by Proposition 2.11. O

PROPOSITION 4.2.  Let (M, g) be 3-Sasakian with dim M = 4m—1. Suppose £,&’ €
S% with € # & and & # —€'. And suppose f3 € HY (&) and B’ € HY (&) are non-zero, then

W€ 4 1P e £9(g)

is non-zero and preserves a 1-dimensional subspace of Killing spinors if m = 2 and no
Killing spinors if m > 2.

PrROOF. We may suppose that {=¢&; and ' =cos(t)&1 +sin(t)Es, 0<t<m, after
possibly transforming by Sp(1). Then £ =exp((t/2)m).&1. Set a=exp((t/2)w) € Sp(1).
By Lemma 4.1 B4 417 2£0. Set hy =h"€ and h#¢" =ahy with hy € HY(&1). Suppose

0= L + 1€ 6)(X) = L(h + aha, ) (X)
= L(h,0)(X) +aLl(hy,a o) (a o X). (101)

The component of interest in this is given by (77) which is
—®1h(X) 0 — X)), -0 — N (X)) 0 —N(X)D, o, (102)

where for shorthand h = hy, b = h#¢ and ® = cos(t)®; + sin(t)®y. Here o =
cooo + -+ + oy, is an arbitrary Killing spinor.
We consider the case m > 2 first. We compute (102) using the notation in the proof
of Proposition 2.11. In particular,
1

1
_ 9k
o=t E

ﬁk_l NEam—1/N\Eam-

The first two terms of (102) with o = oy, are
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2V2/—1

D) (0" 1A @oh(X) O Ay + 95T AR YO Acay). (103)

The second two terms are

— (cos(t)®1h/(X) + sin(t) @20/ (X))

y ( cos(t) (€2m + £2m) + \/ji/séin(t)(gzml — Ezm_l)) ok

(Egm — EQTn)Uk. (104)
After a routine computation we get that (102) with o = oy, is

V—1v/2sin’(t) V—12v/2 cos?(t)

- k! (k—1)!
V—12v/2cos?(t) V—1v/2sin?(t)

B UV (k—2)!
V/2sin(t) cos(t) 2/2 sin(t) cos(t)

* i 1)
2/2 sin(t) cos(t) . V/2sin(t) cos(t)

Tk B (T
\[sm( ) cos(t) \[Sln( ) cos(t)

Kl k—2)!
_V=1V2sin® (1) V—1v/2sin?(t)

k! (k —2)!
V-12v2

7(1)]?/)(1,0 " ﬂk*l
+(k_1)! 2 (X) 7 N eam A

R (X)YO A egmt® + A Dol (X)HO A g, AP

h/(X)l’O/\é‘gm_ll?kil — q)Qh/(X)l’O/\EQm_l /\19]672

h,( ) Eom— 119k (I)Qh/(X)l’O/\SQm_l /\’lgk_1

R(X)YO N g A Do/ (X)1O A gy A2

Doh/ (X)H0 A gy A OF R(X)Y0 A Dgpy g APF2

(I)QhI(X)l’O NEam—_1 N 19k — hI(X)l’O N Eam N 19’672

V-12v2,

o R(X)MO N g1 AOFTL

Consider the image of a general Killing spinor o = coog + - -+ + ¢, 04, under (102). In
particular, consider its component of degree 2k + 2 given by this formula for 0 < k <
m — 2. From the €9, and &5,,_1 components we get the following equations after some
manipulation:

= ¢(V25sin(t) 'R’ (X))
+ cpy1(2v2cos? ()W (X)) — 2v/2sin(t) cos(t)sh/ (X) + 2v/2h(X))
+ Cpy2(V2sin(t)®'h' (X))
and
0 = ¢ (V2sin(t) 'R’ (X))
+ crp1(—2v2 cos? ()W (X) 4 2v/2sin(t) cos(t)Psh’ (X) — 2v2h(X))
+ Crpo(V2sin(H) @B (X)).
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From these we get ¢i + cxr2 = 0 and cpq1(cos(¢) @R/ (X) + ®1h(X)) = 0, which implies
cg+1 = 0 from Lemma 4.1. This implies ¢ = 0 when m > 2.

If m = 2 then we have ¢; = 0 and ¢y + c2 = 0. So the only possible Killing spinors
preserved by h?< + h#"€" are spanned by the real spinor ¢. And one easily sees that
L(hP'€ &) = 0 since exp(th)sy = <. O

Recall that 75 is the real representation of Sp(1), and easy calculation shows that
the standard basis of sp(1) acts as follows in the basis ¢y, 51, <2

002 000 0-20
i=|000|l,j=l002]. k=200
~200 0-2 000

PROPOSITION 4.3.  Let (M, g) be a 7-dimensional 3-Sasakian manifold. Suppose
1,820,835 € S% are linearly independent and B, € 7—[}4(&@) k =1,2,3 are each non-zero.
Then

pPLEL o pB2g2  pBsgs o ED(g)
is non-zero and preserves no Killing spinors.

PRrOOF. By Lemma 4.1 P08 4 pB2:€2 4 pF3:8 s non-zero, so we need to show it
preserves no Killing spinors.

For simplicity we assume that &,k = 1,2, 3 is an orthonormal basis, which we may
assume to be the standard basis after a possibly acting by Sp(1). By considering the
Sp(1)-action on 72, we see that HY (&) preserves ¢1, ¢ and H1(&3) preserves o, 1. Let
0 = ¢o<o + 161 + ¢26o, and denote hé* = hPk:€k . Then suppose

0= ﬁ(hﬁl:fl 4 pP2te hﬁ?”&’,a)
_ Clﬁ(hﬁhﬁl , §1) + Coﬁ(hﬂ27£2 ’ §O) + C2£(h53,537 §2)
=—c1(®1h5 (X)& -1 + A5 (X)0, - 1)
— co(®2h® (X)&s - 5o + h*(X)D, - o)
— o (P30 (X)E5 - 62 + W% (X)0y - 02). (105)

Routine calculation gives
116 (X)Er 61+ WS (X)D, 61 = 2VABoh (X)H0 Ay + HE (X)) A ea)
Doh®2(X)Es - 6o+ h*2(X)D, - co = 2V2v/—1(@2h%2 (X) 10 A g + h&2(X) 10 A ey)
D3t (X)Es - o 4+ A% (X)D, - 6o = 2V2(Poh%3 (X)10 Aeg — b3 (X)H0 A gy).
Thus we have
0= — c12vV2(Pohf (X) 0 A ey + AE(X) 0 Aey)
— 02V 2V =1(®h%2 (X)10 Aeg + A% (X)10 A gy)
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— 22V2(Doh% (X)M0 A ey — B (X)H0 A ey).
The €3 component gives
c1®1h5 (X)) — co®oh®? (X) 4 co®3h% (X) = 0.
Lemma 4.1 now implies that co = ¢y = c3 = 0. O

This proves Corollary 4. By Theorem 3.3 for any 3 € ReHY(¢) the deformation
h5¢ is integrable. By Proposition 4.2 for m > 2, and Proposition 4.3 for m = 2 there
are elements in the span of these elements preserving no Killing spinors.

4.2. Toric 3-Sasakian manifolds.

The examples of toric 3-Sasakian 7-manifolds from [9] provide interesting examples of
Einstein deformations, integrable and infinitesimal, preserving various numbers of Killing
spinors. This will give non-trivial examples of the theorems of the previous sections.

DEFINITION 4.4. A 3-Sasakian manifold (M, g), dim M = 4m — 1, is toric if there
isal™ - AUt(M7 9, 617 §2a 53)

REMARK 4.5. Note that a toric 3-Sasakian manifold is generally not toric as a
Sasakian manifold.
The isometry group of a 3-Sasakian manifold is

AUt(M797£17£2,£3) X Sp(l) or Aut(M797§17£27£3) X 50(3)7

where the Sp(1) or SO(3) factor is generated by the Reeb vector fields.
Toric 3-Sasakian manifolds have been constructed from 3-Sasakian quotients by torus
actions on S$4"~1 [7], [9], with the 3-Sasakian structure given by right multiplication by

Sp(1). A subtorus T* C T" is determined by a weight matrix Qy ,, € Mat(k, n,Z). There
are conditions on 2, Boyer, Galicki, Mann, Rees, 1998 [9], that imply the moment map

E S4n71 N (fk)* ®R3
is a submersion, and further that the quotient
Mg, , = S JT" = p=(0)/T"

is smooth. When n = k 4 2 the above authors showed there are infinitely many weight
matrices in Mat(k,n,Z) for k > 1 giving infinitely many 7-manifolds Mg, , for each
by =k >1.

LEMMA 4.6 ([38]). Let Z be the twistor space of a toric 3-Sasakian 7-manifold M,
then HY(Z,0z7) = HY(Z, 0" and

dime HY(Z,07) = bo(M) —1 =k — 1.
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(Cbg—l

T3
(T2>< Sp(l)(le—l

T3 37

Figure 1. Space of Sasaki—Einstein metrics.

Thus Z has a local by(M) — 1-dimensional space of deformations.

If by (M) > 1, then the maximal torus of Sasakian automorphisms, 7% C Aut(M, &;),
is 3-dimensional. Theorem 3.1 implies the following.

THEOREM 4.7.  Let (M, g) be a toric 3-Sasakian T-manifold. Then (M,g) has a
3-dimensional space of Killing spinors spanned by oy, 01,09. Then g is in an effective
complex by(M) — 1-dimensional family {g;}icu, U € C2M=1 with gy = g, of Sasaki-
Einstein metrics where g; is not 3-Sasakian for t # 0.

Therefore the deformations preserve a two dimensional subspace of Killing spinors
spanned by og, 03.

The deformation space of Sasaki—Einstein metrics with their isometry groups is
illustrated in Figure 1.

For a given ¢ € S?, the space of infinitesimal Einstein deformations {h%¢ | § €
HY (&)} C EED(g) integrate to Einstein deformations preserving Killing spinors o and
o2 but not o;. Note that the space £%(g) defined in (99) is spanned by integrable
Einstein deformations. Theorem 2 now follows from Proposition 4.2 and Proposition 4.3.
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