A uniqueness of periodic maps on surfaces

By Susumu Hirose and Yasushi Kasahara

(Received Mar. 5, 2015)

Abstract

Kulkarni showed that, if g is greater than 3, a periodic map on an oriented surface Σ_{g} of genus g with order not smaller than $4 g$ is uniquely determined by its order, up to conjugation and power. In this paper, we show that, if g is greater than 30 , the same phenomenon happens for periodic maps on the surfaces with orders more than $8 g / 3$, and, for any integer N, there is $g>N$ such that there are periodic maps of Σ_{g} of order $8 g / 3$ which are not conjugate up to power each other. Moreover, as a byproduct of our argument, we provide a short proof of Wiman's classical theorem: the maximal order of periodic maps of Σ_{g} is $4 g+2$.

1. Introduction.

Let Σ_{g} be the oriented closed surface of genus $g \geq 2$. By the Nielsen-Thurston theory [10], orientation preserving homeomorphisms of Σ_{g} are classified into 3-types: (1) periodic, (2) reducible, (3) pseudo-Anosov. For each type, there exist several conjugacy invariants known. As for type (1), the order might be the most fundamental among such invariants. Kulkarni [7] showed that if the genus g is sufficiently large and the order is more than or equal to $4 g$ then the order determines the conjugacy class of the periodic map up to power. The first author [4] showed the same type of result when the order is more than or equal to $3 g$. In this paper, we investigate on the minimum M satisfying the following condition: if the genus g is sufficiently large and $n>M g$ (or $n \geq M g$) then the order determines the conjugacy class of the periodic map up to power.

Theorem 1.1. Let $g>30$, and $n>8 g / 3$. If there is a periodic map of Σ_{g} of order n, then this map is unique up to conjugacy and power. On the other hand, let N be any positive integer. There is $g>N$ such that there are periodic maps of Σ_{g} of order $8 g / 3$ which are not conjugate up to power each other.

We explain the outline of the proof of Theorem 1.1. By [6], the periodic map which satisfies the condition of Theorem 1.1 is irreducible, that is, the orbit surface of this periodic map is a 2 -sphere with 3 branched points. Let n_{1} be the minimum of the branching indices. In Section 3, it is shown that the order is included in one of certain disjoint ranges which is determined solely by the value of n_{1} when the genus is sufficiently

[^0]large. By using this result, we observe that n_{1} should be at most 4 under the condition in Theorem 1.1. In Section 4, we discuss the uniqueness of periodic map by the order up to conjugacy and power.

It seems that our argument in Section 3, especially Theorem 3.2, is also useful for several known results on the distribution of periodic maps, in simplifying the subcases to be considered in their proofs. As an example, in Section 5, we provide a short and complete proof of Wiman's classical theorem: the maximal order of periodic maps of Σ_{g} is $4 g+2$.

After we finished to write this paper, we were informed from Professor G. Gromadzki about their paper [2] and that Theorem 1.1 follows directly from their result in [2].

2. Preliminaries.

An orientation preserving homeomorphism f from the surface Σ_{g} to itself is said to be a periodic map, if there is a positive integer n such that $f^{n}=\mathrm{id}_{\Sigma_{g}}$. The order of f is the smallest positive integer which satisfies the above condition. Two periodic maps f and f^{\prime} on Σ_{g} are conjugate, if there is an orientation preserving homeomorphism h from Σ_{g} to itself such that $f^{\prime}=h \circ f \circ h^{-1}$. In this section, we will review the classification of conjugacy classes of periodic maps on surfaces by Nielsen [8]. We follow a description by Smith [9] and Yokoyama [12].

Let f be a periodic map on Σ_{g}, whose order is n. A point p on Σ_{g} is a multiple point of f, if there is a positive integer k less than n such that $f^{k}(p)=p$. Let M_{f} be the set of multiple points of f. The orbit space Σ_{g} / f of f is defined by identifying x in Σ_{g} with $f(x)$. Let $\pi_{f}: \Sigma_{g} \rightarrow \Sigma_{g} / f$ be the quotient map. Then π_{f} is an n-fold branched covering ramified at $\pi_{f}\left(M_{f}\right)$. The set $\pi_{f}\left(M_{f}\right)$ is denoted by B_{f}, and each element of B_{f} is called a branch point of f. We choose a point x in $\Sigma_{g} / f-B_{f}$, and a point \tilde{x} in $\pi_{f}^{-1}(x)$. We define a homomorphism $\Omega_{f}: \pi_{1}\left(\Sigma_{g} / f-B_{f}\right) \rightarrow \mathbb{Z}_{n}$ as follows: Let l be a loop in $\Sigma_{g} / f-B_{f}$ with the base point x, and $[l]$ the element of $\pi_{1}\left(\Sigma_{g} / f-B_{f}\right)$ represented by l. Let \tilde{l} be the lift of l on Σ_{g} which begins from \tilde{x}. There is a positive integer r less than or equal to n such that the terminal point of \tilde{l} is $f^{r}(\tilde{x})$. We define $\Omega_{f}([l])=r$ $\bmod n$. Since \mathbb{Z}_{n} is an abelian group, the homomorphism Ω_{f} induces a homomorphism ω_{f} from the abelianization of $\pi_{1}\left(\Sigma_{g} / f-B_{f}\right)$ to \mathbb{Z}_{n}. The abelianization of $\pi_{1}\left(\Sigma_{g} / f-B_{f}\right)$ is $H_{1}\left(\Sigma_{g} / f-B_{f}\right)$, therefore ω_{f} is a homomorphism from $H_{1}\left(\Sigma_{g} / f-B_{f}\right)$ to \mathbb{Z}_{n}. For each point of $B_{f}=\left\{Q_{1}, \ldots, Q_{b}\right\}$, let D_{i} be a disk in Σ_{g} / f, which contains Q_{i} in its interior and is sufficiently small so that no other points of B_{f} are in D_{i}. Let $S_{Q_{i}}$ be the boundary of D_{i} with clockwise orientation.

Theorem 2.1 ([8, Section 11]). Two periodic maps f and f^{\prime} on Σ_{g} are conjugate to each other if and only if the following three conditions are satisfied.
(1) The order of f is equal to the order of f^{\prime}.
(2) The number of elements in B_{f} is equal to that of $B_{f^{\prime}}$.
(3) After renumbering the elements of $B_{f^{\prime}}$, we have $\omega_{f}\left(S_{Q_{i}}\right)=\omega_{f^{\prime}}\left(S_{Q_{i}}\right)$ for each i.

Let $\theta_{i}=\omega_{f}\left(S_{Q_{i}}\right)$ for each i. By the above Theorem, the data $\left[g, n ; \theta_{1}, \ldots, \theta_{b}\right]$ determines a periodic map up to conjugacy. The following proposition shows a sufficient
and necessary condition for a data $\left[g, n ; \theta_{1}, \ldots, \theta_{b}\right]$ to correspond to a periodic map.
Proposition 2.2. There is a periodic map with the data $\left[g, n ; \theta_{1}, \ldots, \theta_{b}\right]$ if and only if the following conditions are satisfied.
(1) $\theta_{1}+\cdots+\theta_{b} \equiv 0 \bmod n$.
(2) Let $n_{i}=n / \operatorname{gcd}\left\{\theta_{i}, n\right\}$, then there exists a non-negative integer g^{\prime} which satisfies

$$
2 g-2=n\left(2 g^{\prime}-2+\sum\left(1-\frac{1}{n_{i}}\right)\right)
$$

where i runs through the branch points.
(3) If $g^{\prime}=0$, then $\operatorname{gcd}\left\{\theta_{1}, \ldots, \theta_{b}\right\} \equiv 1 \bmod n$.

The necessity of three conditions in the above Proposition are shown as follows. (1) follows from the fact that ω_{f} is a homomorphism and $S_{Q_{1}}+\cdots+S_{Q_{b}}$ is null-homologous, (2) is the Riemann-Hurwitz formula, and (3) follows from the fact that ω_{f} is a surjection. The sufficiency of these conditions follows from the existence theorem of a branched covering space by Hurwitz [5]. The number n_{i} is called the branching index of Q_{i}.

In the following, we will use the expression $\left(n, \theta_{1} / n+\cdots+\theta_{b} / n\right)$ in place of $\left[g, n ; \theta_{1}, \ldots, \theta_{b}\right]$. This data $\left(n, \theta_{1} / n+\cdots+\theta_{b} / n\right)$ is called the total valency, which is introduced by Ashikaga and Ishizaka [1]. In the above data, we call θ_{i} / n the valency of Q_{i}, and often rewrite this by an irreducible fraction. We remark that the denominator of the reduced θ_{i} / n is equal to the branching index n_{i} of Q_{i}, and the numerator of the reduced θ_{i} / n is well-defined modulo n_{i}. If k is an integer prime to n and $f=\left(n, m_{1} / n_{1}+\cdots+m_{b} / n_{b}\right)$, then $f^{k}=\left(n,\left(k^{*} \cdot m_{1}\right) / n_{1}+\cdots+\left(k^{*} \cdot m_{b}\right) / n_{b}\right)$ where k^{*} is an integer such that $k \cdot k^{*} \equiv 1 \bmod n$, and $k^{*} \cdot m_{i}$ is the remainder of $k^{*} m_{i}$ modulo n_{i}.

3. A discussion on branching indices.

Let f be an order n periodic map of Σ_{g} whose orbit space $\Sigma_{g} / f=\mathbb{S}^{2}\left(n_{1}, n_{2}, n_{3}\right)$. We assume that $n_{1} \leq n_{2} \leq n_{3}$. By the Riemann-Hurwitz formula, we see

$$
\begin{equation*}
2(g-1)=n\left(1-\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}\right)\right) . \tag{1}
\end{equation*}
$$

The branching indices n_{1}, n_{2}, n_{3} satisfy the Harvey's lcm condition [3], that is,

$$
\operatorname{lcm}\left\{n_{1}, n_{2}\right\}=\operatorname{lcm}\left\{n_{2}, n_{3}\right\}=\operatorname{lcm}\left\{n_{3}, n_{1}\right\}=n .
$$

Lemma 3.1. Let $k_{2}=n / n_{2}, k_{3}=n / n_{3}$, then we see:
(i) $n=\left(n_{1} /\left(n_{1}-1\right)\right)\left(2 g+\left(k_{2}+k_{3}-2\right)\right)$,
(ii) $k_{2} \geq k_{3}$,
(iii) k_{2}, k_{3} are divisors of n_{1},
(iv) $\operatorname{gcd}\left\{k_{2}, k_{3}\right\}=1$,
(v) $k_{2}+k_{3} \leq n_{1}+1$.

Proof. (i) is valid by (1).
(ii) is valid by $n_{2} \leq n_{3}$.
(iii) Since $k_{2} n_{2}=\operatorname{lcm}\left\{n_{1}, n_{2}\right\}, k_{2}$ is a divisor of n_{1}. Similarly k_{3} is a divisor of n_{1}.
(iv) Since $k_{2} n_{2}=k_{3} n_{3}=n=\operatorname{lcm}\left\{n_{2}, n_{3}\right\}$, k_{2} and k_{3} are prime each other.
(v) If $n_{1}=2$, then we see $k_{2}, k_{3} \leq 2$ by (iii). Since $k_{3}=1$ by (iv), we see $k_{2}+k_{3} \leq n_{1}+1$. We assume $n_{1} \geq 3$. If $k_{2}=n_{1}$ then $k_{3}=1$ by (iii) (iv). Therefore $k_{2}+k_{3}=n_{1}+1$. If $k_{2} \neq n_{1}$ then $k_{2} \leq n_{1} / 2$. Moreover $k_{3} \leq k_{2}$ by (ii), hence, we see $k_{2}+k_{3} \leq 2 k_{2} \leq n_{1}<$ $n_{1}+1$.

Theorem 3.2. The inequality $\left(2 n_{1} /\left(n_{1}-1\right)\right) g \leq n \leq\left(2 n_{1} /\left(n_{1}-1\right)\right) g+n_{1}$ is valid.

Proof. Since $n_{2}, n_{3} \leq n$,

$$
2(g-1)=n\left(1-\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}\right)\right) \leq n\left(1-\left(\frac{1}{n_{1}}+\frac{2}{n}\right)\right)=n\left(\frac{n_{1}-1}{n_{1}}\right)-2
$$

by the equation (1), hence,

$$
n \geq \frac{2 n_{1}}{n_{1}-1} g
$$

On the other hand, by (i) (v) of the previous lemma, we see

$$
n=\frac{n_{1}}{n_{1}-1}\left(2 g+\left(k_{2}+k_{3}-2\right)\right) \leq \frac{2 n_{1}}{n_{1}-1} g+n_{1} .
$$

Theorem 3.3. For an integer $N \geq 3$, we assume $g>(N-1) N(N+1) / 2$. Then

$$
n_{1}=N \Longleftrightarrow \frac{2 N}{N-1} g \leq n<\frac{2(N-1)}{N-2} g
$$

Remark 3.4. 1. Because $(N-1) N(N+1) / 2$ is increasing for $N \geq 3$, we see that, for any N^{\prime} such that $3 \leq N^{\prime} \leq N$,

$$
n_{1}=N^{\prime} \Longleftrightarrow \frac{2 N^{\prime}}{N^{\prime}-1} g \leq n<\frac{2\left(N^{\prime}-1\right)}{N^{\prime}-2} g
$$

under the assumption of the above theorem.
2. In the case where $g=(N-1) N(N+1) / 2$, there is a periodic map of order $(2 N /(N-1)) g=N^{2}(N+1)$ such that $n_{1}=N+1$ and whose valency data is

$$
\left(N^{2}(N+1), \frac{N}{N+1}+\frac{N-1}{N^{2}}+\frac{1}{N^{2}(N+1)}\right) .
$$

Proof. We assume $n_{1}=N$. By Theorem 3.2, $(2 N /(N-1)) g \leq n \leq$ $(2 N /(N-1)) g+N$. By the assumption $g>(N-1) N(N+1) / 2>(N-2)(N-1) N / 2$,
we see $(2 N /(N-1)) g+N<(2(N-1) /(N-2)) g$. Therefore $(2 N /(N-1)) g \leq n<$ $(2(N-1) /(N-2)) g$.

On the reverse order, we assume $(2 N /(N-1)) g \leq n<(2(N-1) /(N-2)) g$. By Theorem 3.2, we see $n \geq\left(2 n_{1} /\left(n_{1}-1\right)\right) g$. If $n_{1} \leq N-1$ then $2 n_{1} /\left(n_{1}-1\right) \geq 2(N-1) /$ $(N-2)$, hence $n \geq(2(N-1) /(N-2)) g$, which contradicts $(2 N /(N-1)) g \leq n<$ $(2(N-1) /(N-2)) g$. Therefore $n_{1} \geq N$.

Here, we show the following lemma.
Lemma 3.5. If $n \geq(2 N /(N-1)) g$ and $N \geq 2$, then $n_{1} \leq 3 N-1$.
Proof. By the equation (1)

$$
\frac{2 g-2}{n}=1-\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}\right) .
$$

By the assumption that $n_{1} \leq n_{2} \leq n_{3}$ and $n \geq(2 N /(N-1)) g$, we see

$$
\frac{(2 g-2)(N-1)}{2 N g} \geq 1-\frac{3}{n_{1}} .
$$

By this inequality, we get an evaluation $n_{1} \leq(3 g /(g+N-1)) N<3 N$. Therefore, we conclude $n_{1} \leq 3 N-1$.

Here we assume that $n_{1} \geq N+1$. By Theorem 3.2 and the assumption $n \geq$ $(2 N /(N-1)) g$, we see

$$
\frac{2 N}{N-1} g \leq \frac{2 n_{1}}{n_{1}-1} g+n_{1}
$$

By the above inequality and the inequality $2 N /(N-1)>2 n_{1} /\left(n_{1}-1\right)$ obtained from the assumption $n_{1} \geq N+1$, we see

$$
\begin{equation*}
g \leq \frac{(N-1) n_{1}\left(n_{1}-1\right)}{2\left(n_{1}-N\right)} \tag{2}
\end{equation*}
$$

By the above lemma, $n_{1} \leq 3 N-1$. When $N \geq 3$, by the inequality $3 N-1 \leq N^{2}$ and the assumption $n_{1} \geq N+1$, we see $N+1 \leq n_{1} \leq N^{2}$. From this inequality, $\left(n_{1}-(N+1)\right)\left(n_{1}-N^{2}\right) \leq 0$, that is, $n_{1}^{2}-\left(N^{2}+N+1\right) n_{1}+N^{2}(N+1) \leq 0$, hence $n_{1}^{2}-n_{1} \leq N(N+1)\left(n_{1}-N\right)$. By dividing the last inequality by $n_{1}-N>0$, we obtain

$$
\frac{n_{1}\left(n_{1}-1\right)}{n_{1}-N} \leq N(N+1)
$$

By this inequality and the inequality (2), we see

$$
g \leq \frac{(N-1) N(N+1)}{2}
$$

which contradicts the assumption. Therefore $n_{1} \leq N$.
We get a conclusion $n_{1}=N$.

4. The uniqueness by the order.

Theorem 1.1. Let $g>30$ and $n>8 g / 3$. If there is a periodic map whose order is n, then this periodic map is unique up to conjugacy and power.

Remark 4.1. In the sentence, if the genus g is sufficiently large and $n>M g$ (or $n \geq M g$) then the order determines the conjugacy class of the periodic map up to power, the condition of the order $n>8 g / 3$ is best possible. In fact, when the genus $g=3(2 k+1)$, there are two periodic map of order $n=8 g / 3$ whose total valencies are

$$
\frac{1}{4}+\frac{1}{16 k+8}+\frac{12 k+5}{16 k+8}, \quad \frac{3}{4}+\frac{1}{16 k+8}+\frac{4 k+1}{16 k+8}
$$

and any power of the first one is not conjugate to the second one.
Proof. By [6], the periodic map f satisfying the condition in this theorem is irreducible, that is $\Sigma_{g} / f=\mathbb{S}^{2}\left(n_{1}, n_{2}, n_{3}\right)$. As in Section 3, we assume that $n_{1} \leq n_{2} \leq$ n_{3}. Since we already discussed the case where $n \geq 3 g$ in $[7]$ and [4], we assume that $n<3 g$. Since $g>30=4 \cdot\left(4^{2}-1\right) / 2,(2 \cdot(4-1) /(4-2)) g=3 g>n>(8 / 3) g=$ $(2 \cdot 4 /(4-1)) g, n_{1}=4$ by Theorem 3.3. Let $k_{2}=n / n_{2}$ and $k_{3}=n / n_{3}$. By Lemma 3.1, there are 3 cases $\left(k_{2}, k_{3}\right)=(4,1),(2,1),(1,1)$.
(1) $\left(k_{2}, k_{3}\right)=(4,1):$ By (i) of Lemma 3.1, the order $n=(8 / 3) g+4>(8 / 3) g$. Since n is an integer, g should be a multiple of 3 . Let $g=3 l$, then $n=8 l+4, n_{2}=n / k_{2}=2 l+1$, and $n_{3}=n / k_{3}=8 l+4$. We determine the numerators a, b, c of the valency data

$$
\frac{a}{4}+\frac{b}{2 l+1}+\frac{c}{8 l+4} .
$$

Since the branch point corresponding to $c /(8 l+4)$ is the image of a fixed point of f by π_{f}, we fix $c=1$ by taking a proper power of the periodic map f. Since $a / 4$ is an irreducible fraction, $a=1$ or 3 . If $a=3$, then $2 b=l$. If $a=1$, then $2 b=3 l+1$.

When l is even, we put $l=2 m$. If $a=3$, then $b=m$. If $a=1$, then $2 b=6 m+1$. Therefore, $a=3$ and the total valency should be

$$
\frac{3}{4}+\frac{m}{4 m+1}+\frac{1}{16 m+4} .
$$

When l is odd, we put $l=2 m+1$. If $a=3$, then $2 b=2 m+1$. If $a=1$, then $b=3 m+2$. Therefore, $a=1$ and the total valency should be

$$
\frac{1}{4}+\frac{3 m+2}{4 m+3}+\frac{1}{16 m+12} .
$$

(2) $\left(k_{2}, k_{3}\right)=(2,1):$ By (i) of Lemma 3.1, the order $n=4(2 g+1) / 3>(8 / 3) g$.

Since n is an integer, $2 g+1$ should be a multiple of 3 . Therefore $g \equiv 1 \bmod 3$. Let $g=3 l+1$, then $n=8 l+4, n_{2}=4 l+2$, and $n_{3}=8 l+4$. We determine the numerators a, b, c of the valency data

$$
\frac{a}{4}+\frac{b}{4 l+2}+\frac{c}{8 l+4}
$$

Since the branch point corresponding to $c /(8 l+4)$ is the image of a fixed point of f by π_{f}, we fix $c=1$ by taking a proper power of the periodic map f. Since $a / 4$ is an irreducible fraction, $a=1$ or 3 . If $a=1$, then $b=3 l+1$. If $a=3$, then $b=l$. Since $b /(4 l+2)$ is also an irreducible fraction, b should be an odd integer. If l is an even integer, $b=3 l+1$ and $a=1$. Hence, the total valency should be

$$
\frac{1}{4}+\frac{3 l+1}{4 l+2}+\frac{1}{8 l+4} .
$$

If l is an odd integer, $b=l$ and $a=3$. Hence, the total valency should be

$$
\frac{3}{4}+\frac{l}{4 l+2}+\frac{1}{8 l+4} .
$$

(3) $\left(k_{2}, k_{3}\right)=(1,1):$ By (i) of Lemma 3.1, the order $n=(8 / 3) g$, which contradicts the condition $n>(8 / 3) g$.

By the proof of the above theorem, $[7]$ and $[4]$ we see:
Corollary 4.2. Let $g>30$ and $n>8 g / 3$. If there is a periodic map f of Σ_{g} whose order is n, then f is conjugate to a power of one of periodic maps listed on Table 1.

5. A proof of Wiman's Theorem [11].

We provide a short proof of Wiman's Theorem [11] using the argument in Section 3.

Theorem 5.1. When $g \geq 2$, the order of any periodic map of Σ_{g} is at most $4 g+2$.
In the following, it is the subcase III)-iii) which is simplified by the argument mentioned above and seems to have been most involved. While the treatment of the other subcases is standard, we include them for completeness.

Proof. Let n be the order of a periodic map f of Σ_{g}, and $\Sigma_{g} / f=\Sigma_{g^{\prime}}\left(n_{1}, \ldots, n_{j}\right)$, where $n_{1} \leq n_{2} \leq \cdots \leq n_{j}$. By the Riemann-Hurwitz formula,

$$
\begin{equation*}
\frac{2(g-1)}{n}=2\left(g^{\prime}-1\right)+j-\left(\frac{1}{n_{1}}+\cdots+\frac{1}{n_{j}}\right) . \tag{3}
\end{equation*}
$$

Table 1.

genus g	total valency
arbitrary	$\left(4 g+2, \frac{1}{2}+\frac{g}{2 g+1}+\frac{1}{4 g+2}\right)$
arbitrary	$\left(4 g, \frac{1}{2}+\frac{2 g-1}{4 g}+\frac{1}{4 g}\right)$
$3 k$	$\left(3 g+3, \frac{2}{3}+\frac{k}{g+1}+\frac{1}{3 g+3}\right)$
$3 k+1$	$\left(3 g+3, \frac{1}{3}+\frac{2 k+1}{g+1}+\frac{1}{3 g+3}\right)$
$3 k$ or $3 k+1$	$\left(3 g, \frac{1}{3}+\frac{2 g-1}{3 g}+\frac{1}{3 g}\right)$
$3 k+2$	$\left(3 g, \frac{2}{3}+\frac{g-1}{3 g}+\frac{1}{3 g}\right)$
$6 m$	$\left(\frac{8}{3} g+4, \frac{3}{4}+\frac{m}{4 m+1}+\frac{1}{16 m+4}\right)$
$6 m+3$	$\left(\frac{8}{3} g+4, \frac{1}{4}+\frac{3 m+2}{4 m+3}+\frac{1}{16 m+12}\right)$
$6 m+1$	$\left(\frac{4(2 g+1)}{3}, \frac{1}{4}+\frac{6 m+1}{8 m+2}+\frac{1}{16 m+4}\right)$
$6 m+4$	$\left(\frac{4(2 g+1)}{3}, \frac{3}{4}+\frac{2 m+1}{8 m+6}+\frac{1}{16 m+12}\right)$

I) When $g^{\prime} \geq 2$, the RHS of $(3) \geq 2\left(g^{\prime}-1\right) \geq 2$. Therefore $2(g-1) / n \geq 2$, that is, $g-1 \geq n$, then we see $n \leq 4 g+2$.
II) We discuss the case where $g^{\prime}=1$. If $j=0$, then $g=1$, which contradicts the assumption $g \geq 2$. Hence, $j \geq 1$. Since each $n_{i} \geq 2$, we see $1 / n_{1}+\cdots+1 / n_{j} \leq j / 2$. Therefore, the RHS of $(3) \geq j-j / 2=j / 2$, hence $2(g-1) / n \geq j / 2$, and we see $n \leq 4(g-1) / j$. This shows that $n \leq 4 g+2$ in this case.
III) We discuss the case where $g^{\prime}=0$. We first note that Proposition 2.2 implies $j \geq 3$.
i) $j \geq 5$: In this case, the RHS of $(3) \geq-2+j / 2 \geq 1 / 2$, hence $n \leq 4(g-1)$. Therefore, $n \leq 4 g+2$.
ii) $j=4$: We multiply n on both sides of (3) and change n / n_{i} into k_{i} for $i \neq 1$, then we see,

$$
\begin{aligned}
n & =\frac{n_{1}}{2 n_{1}-1}\left(2 g-2+k_{2}+k_{3}+k_{4}\right) \\
& =\frac{n_{1}}{2 n_{1}-1}(2 g-2)+\frac{1}{2 n_{1}-1}\left(n_{1} k_{2}+n_{1} k_{3}+n_{1} k_{4}\right) \\
& \leq \frac{n_{1}}{2 n_{1}-1}(2 g-2)+\frac{3 n}{2 n_{1}-1} .
\end{aligned}
$$

In the last inequality, we use $n_{1} k_{i} \leq n_{i} k_{i}=n$. In the case where $n_{1} \geq 3$, since

$$
n-\frac{3 n}{2 n_{1}-1}=n\left(1-\frac{3}{2 n_{1}-1}\right)=n \frac{2\left(n_{1}-2\right)}{2 n_{1}-1},
$$

we obtain

$$
n \leq \frac{n_{1}}{n_{1}-2}(g-1)
$$

Because $n_{1} /\left(n_{1}-2\right) \leq 3$, we have $n \leq 3(g-1)<4 g+2$. In the case where $n_{1}=2$, we assume that $n \geq 4 g+2 \geq 4 \cdot 2+2=10$. By Harvey's lcm condition [3], we remark

$$
\begin{align*}
n & =\operatorname{lcm}\left\{n_{1}, n_{2}, n_{3}\right\} \\
& =\operatorname{lcm}\left\{n_{1}, n_{2}, n_{4}\right\} \tag{4}\\
& \left.=n_{1}, n_{3}, n_{4}\right\}
\end{align*}=\operatorname{lcm}\left\{n_{2}, n_{3}, n_{4}\right\} .
$$

If all n_{i} are 2 or 3 , then $n \leq 6$ by (4) which contradicts the assumption $n \geq 10$. Therefore, there are some n_{i} 's such that $n_{i} \geq 4$. By (4), there are at least $2 n_{i}$'s such that $n_{i} \geq 4$, hence $n_{3}, n_{4} \geq 4$. We see $n_{1} k_{3}=\left(n_{1} / n_{3}\right) n_{3} k_{3}=\left(n_{1} / n_{3}\right) n \leq n / 2$, and in the same way, we see $n_{1} k_{4} \leq n / 2$. Therefore,

$$
\begin{aligned}
n & =\frac{n_{1}}{2 n_{1}-1}(2 g-2)+\frac{1}{2 n_{1}-1}\left(n_{1} k_{2}+n_{1} k_{3}+n_{1} k_{4}\right) \\
& \leq \frac{n_{1}}{2 n_{1}-1}(2 g-2)+\frac{1}{2 n_{1}-1}\left(n+\frac{n}{2}+\frac{n}{2}\right)=\frac{4 g-4}{3}+\frac{2}{3} n .
\end{aligned}
$$

Hence we have $n \leq 4 g-4$ contradicting the assumption $n \geq 4 g+2$. We conclude $n<4 g+2$.
iii) $j=3$: At first, we show the following lemma:

Lemma 5.2. If the orbit space of a periodic map f of Σ_{g} is a 2 -sphere with 3 branch points, and let n_{1} be the minimal branching index, then $n_{1} \leq 2 g+1$.

Proof. By (3), we see

$$
2(g-1)=n\left(1-\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}\right)\right)=n-\left(k_{1}+k_{2}+k_{3}\right) .
$$

From the above equation, we have

$$
\begin{equation*}
n=2 g+\left(k_{1}+k_{2}+k_{3}\right)-2 \geq 2 g+1 . \tag{5}
\end{equation*}
$$

On the other hand, by the assumption $n_{1} \leq n_{2} \leq n_{3}$, we see $1 / n_{3} \leq 1 / n_{2} \leq 1 / n_{1}$. It follows that $1-\left(1 / n_{1}+1 / n_{2}+1 / n_{3}\right) \geq 1-3 / n_{1}$, and by the equation (3),

$$
2(g-1)=n\left(1-\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}+\frac{1}{n_{3}}\right)\right) \geq n\left(1-\frac{3}{n_{1}}\right) .
$$

If $\left(1-3 / n_{1}\right) \leq 0$, then $n_{1} \leq 3$. Since $g \geq 2$, we see $2 g+1 \geq n_{1}$. If $\left(1-3 / n_{1}\right)>0$, by the equation (5), we have

$$
2(g-1) \geq n\left(1-\frac{3}{n_{1}}\right) \geq(2 g+1)\left(1-\frac{3}{n_{1}}\right) .
$$

Therefore $2 g+1 \geq n_{1}$.
By Theorem 3.2, we have

$$
n \leq \frac{2 n_{1}}{n_{1}-1} g+n_{1}
$$

By this inequality, we see

$$
\begin{aligned}
(4 g+2)-n & \geq(4 g+2)-\left(\frac{2 n_{1}}{n_{1}-1} g+n_{1}\right)=\left(4-\frac{2 n_{1}}{n_{1}-1}\right) g+\left(2-n_{1}\right) \\
& =\frac{2 n_{1}-4}{n_{1}-1} g+\left(2-n_{1}\right)=\left(n_{1}-2\right)\left(\frac{2}{n_{1}-1} g-1\right)
\end{aligned}
$$

Since the branching index is at least $2, n_{1}-2 \geq 0$. By Lemma 5.2 we have $n_{1} \leq 2 g+1$, that is, $\left(2 /\left(n_{1}-1\right)\right) g-1 \geq 0$. By the above inequality, we conclude that $4 g+2 \geq n$.

Acknowledgments. The authors would like to express their gratitude to Professor Gromadzki for informing about their paper [2].

References

[1] T. Ashikaga and M. Ishizaka, Classification of degenerations of curves of genus three via Matsumoto-Montesinos' theorem, Tohoku Math. J. (2), 54 (2002), 195-226.
[2] Cz. Bagiński, M. Carvacho, G. Gromadzki and R. Hidalgo, On periodic self-homeomorphisms of closed orientable surfaces determined by their orders, Collect. Math., 67 (2016), 415-429.
[3] W. J. Harvey, Cyclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. (2), 17 (1966), 86-97.
[4] S. Hirose, On periodic maps over surfaces with large periods, Tohoku Math. J. (2), 62 (2010), 45-53.
[5] A. Hurwitz, Über Riemannsche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., 39 (1891), 1-61.
[6] Y. Kasahara, Reducibility and orders of periodic automorphisms of surfaces, Osaka J. Math., 28 (1991), 985-997.
[7] R. S. Kulkarni, Riemann surfaces admitting large automorphism groups, Contemporary Math., 201 (1997), 63-79.
[8] J. Nielsen, Die Struktur periodischer Transformationen von Flächen, Math. -fys. Medd. Danske Vid. Selsk., 15 (1937), (English transl. in "Jakob Nielsen collected works, Vol. 2", 65-102).
[9] P. A. Smith, Abelian actions on 2-manifolds, Michigan Math. J., 14 (1967), 257-275.
[10] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. (N.S.), 19 (1988), 417-431.
[11] A. Wiman, Über die hyperelliptishen Curven und diejenigen vom Geschlecht $p=3$ welche eindeutigen Transformationen in sich zulassen, Bihang Till. Kongl. Svenska Veienskaps-Akademiens Hadlingar, 21 (1895/6), 1-23.
[12] K. Yokoyama, Classification of periodic maps on compact surfaces, I, Tokyo J. Math., 6 (1983), 75-94.

Susumu Hirose
Department of Mathematics
Faculty of Science and Technology
Tokyo University of Science
Noda, Chiba 278-8510, Japan
E-mail: hirose_susumu@ma.noda.tus.ac.jp

Yasushi Kasahara
Department of Mathematics
Kochi University of Technology
Tosayamada, Kami City
Kochi 782-8502, Japan
E-mail: kasahara.yasushi@kochi-tech.ac.jp

[^0]: 2010 Mathematics Subject Classification. Primary 57N05; Secondary 57M60, 20 F38.
 Key Words and Phrases. Riemann surface, automorphism, cyclic group.
 The first author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 24540096), Japan Society for the Promotion of Science.

 The second author was partially supported by Grant-in-Aid for Scientific Research (C) (No. 23540102), Japan Society for the Promotion of Science.

