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Abstract. We discuss the Fourier–Borel transform for the dual of spaces
of monogenic functions. This transform may be seen as a restriction of the clas-
sical Fourier–Borel transform for holomorphic functionals, and it transforms
spaces of monogenic functionals into quotients of spaces of entire holomorphic
functions of exponential type. We prove that, for the Lie ball, these quotient
spaces are isomorphic to spaces of monogenic functions of exponential type.

1. Introduction and preliminaries.

The classical Fourier–Borel transform is an extension of the Fourier transform to the
spaces of analytic or holomorphic functionals (the duals of the spaces of analytic functions
or holomorphic functions). It transforms analytic functionals into entire holomorphic
functions of exponential type. A main result by A. Martineau states that the convex
carrier of a functional can be determined by the exponential estimates of the Fourier–
Borel transform. Fourier transforms for the spaces of hyperfunctions, and hence also for
other function spaces which are subspaces of hyperfunctions, can be seen as a restriction
of the Fourier–Borel transform.

In this paper, we focus on the dual of the spaces of left (or right) monogenic functions,
which are defined as solutions of the left (or right) Dirac or of the generalized Cauchy–
Riemann equation. These dual spaces, of so-called monogenic functionals, admit Hahn–
Banach extensions belonging to spaces of analytic or holomorphic functionals, so that
the Fourier–Borel transform in the sense of A. Martineau, becomes available for spaces
of monogenic functionals.

The main problem is to determine the Fourier–Borel image of the functionals van-
ishing on spaces of monogenic functions. This restricted Fourier–Borel transform maps
spaces of monogenic functionals into quotient spaces of entire holomorphic functions of
exponential type. These quotient spaces may, in some cases, be interpreted as spaces of
complex monogenic functions of exponential type, and so the Fourier–Borel transform
may be re-interpreted as a transform which maps monogenic functionals into monogenic
functions.

The development of our theory goes in several stages. In Section 2 we recall the
duality theory for spaces of monogenic functions as established in the paper by R. De-
langhe and F. Brackx [2]. This includes the Cauchy transform of a monogenic functional
which leads to an isomorphism from spaces of monogenic functionals on a compact set K

into spaces of functions monogenic outside the compact set K and vanishing at infinity.
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We also discuss the embedding of monogenic functionals into spaces of analytic or holo-
morphic functionals and, in particular, into the space of holomorphic functionals on the
Lie ball. The Lie ball is important because every monogenic function on the unit ball of
Rm+1 admits a holomorphic extension to the Lie ball, a result that has been proved for
harmonic functions by, for instance, J. Siciak [13].

In the sequel, we will also make substantial use of the theory of spherical harmonics
and spherical monogenics on the Lie sphere, as it has been established in the papers by
M. Morimoto [10] and F. Sommen [17].

In Section 3, we start by recalling the Fourier–Borel transform for spaces of holomor-
phic functionals and a main result by A. Martineau, (see Theorem 3.3). Next, we adapt
this theorem to the situation of monogenic functionals. This leads to a Fourier–Borel
transform with values in a quotient space of entire holomorphic functions of exponential
type. In a first subsection, we discuss the Fischer decomposition and its dual for spaces
of holomorphic functions and functionals on the Lie ball; see, in particular, Theorem
3.8. In a second subsection, we apply these results to the Fourier–Borel transform for
monogenic functionals in the Lie ball, see Theorem 3.12. This Fourier–Borel transform
takes values in the space of left monogenic functions of exponential type.

In Section 4 we revise the Fischer decomposition of the Fourier–Borel kernel whose
expression is given in terms of the Gegenbauer polynomials.

In the fifth and last section we discuss transforms which are related to the Fourier–
Borel transform. First of all, we show that the Fourier–Borel transform can be re-
interpreted as a transform mapping functionals into holomorphic functions on the null-
cone. We also present a Gabor–Fourier–Borel transform satisfying the heat equation and,
finally, we discuss a related integral transform that may be expressed in terms of Bessel
functions.

We now present some preliminary definitions and notations. Let us denote by Rm

the real Clifford algebra over m imaginary units e1, . . . , em satisfying the relations eiej +
ejei = −2δij . As customary, an element x in the Clifford algebra will be denoted by
x =

∑
A eAxA where xA ∈ R, A = i1 · · · ir, i` ∈ {1, 2, . . . , n}, i1 < · · · < ir is a multi-

index, eA = ei1ei2 · · · eir
and e∅ = 1.

In the Clifford algebra Rm, we can identify the so called 1-vectors, namely the linear
combinations with real coefficients of the elements ei, i = 1, . . . , m, with the vectors in
the Euclidean space Rm. The correspondence is given by the map (x1, x2, . . . , xm) 7→
x = x1e1 + · · ·+ xmem.

Analogously, an element (x0, x1, . . . , xm) ∈ Rm+1 will be identified with the element
x = x0 + x which is called paravector. The product of two 1-vectors splits into a scalar
and a vector part:

xu = −〈x, u〉+ x ∧ u

where 〈x, u〉 = −(xu + u x)/2 and x ∧ u = (xu− u x)/2.
The norm of a paravector x is defined as |x|2 = x2

0 + x2
1 + · · · + x2

m. The real part
x0 of x will be also denoted by Re(x). A function f : U ⊆ Rm+1 → Rm is seen as a
function f(x) of the paravector x.
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In the sequel, we will also consider the complexified Clifford algebra Cm which is
generated over C by the imaginary units ei, i = 1, . . . , m. An element (z1, . . . , zm) ∈ Cm

will be identified with the element z =
∑m

j=1 ejzj ∈ Cm, zj = xj + iyj , j = 1, . . . , m.

2. Monogenic functionals.

The class of functions we will consider in this paper are in the kernel of the so-called
generalized Cauchy–Riemann operator which is defined as

∂x0 + ∂x where ∂x =
m∑

i=1

ei∂xi
.

Definition 2.1. Let Ω be an open set in Rm+1. A real differentiable function
f : Ω → Rm is said to be (left) monogenic if

(∂x0 + ∂x)f(x0, x) = 0,

while f is said to be right monogenic if

f(x0, x)(∂x0 + ∂x) = 0.

The set of functions (left) monogenic (resp. right monogenic) on Ω is denoted by M`(Ω)
(resp. Mr(Ω)).

The set M`(Ω) is a right Rm-module, while Mr(Ω) is a left Rm-module. If K ⊂ Rm+1

is a compact set, we set

M`(K) = ind lim
Ω open⊃K

M`(Ω), Mr(K) = ind lim
Ω open⊃K

Mr(Ω).

In the sequel we will mainly consider Mr(K). As it is well known, see [15], Mr(K) is
equipped with the inductive limit topology which is an LF-topology since the sets Mr(Ω)
are Fréchet modules, see [3].

Definition 2.2. The set of right Rm-linear functionals T : Mr(Rm+1) → Rm is
denoted by M ′

r(Rm+1) and we call an element T ∈ M ′
r(Rm+1) a monogenic functional.

The set of Rm-linear functionals T : Mr(K) → Rm is denoted by M ′
r(K) and we

call an element T ∈ M ′
r(K) a monogenic functional on K.

Remark 2.3. It is immediate that the set of monogenic functionals is a left Rm-
module.

We also note that the action of a monogenic functional can be described as a formal
integral

T [f ] =
∫

f(x)T (x)dx.
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Example 2.4. Let K be a compact set, K ⊂ Ω where Ω is an open set in Rm+1.

1. Let ϕ ∈ D(K), the set of test functions supported by K. Then Tϕ defined by

Tϕ[f ] :=
∫

Rm+1
f(x)ϕ(x)dx

is a monogenic functional.
2. Let F ∈ E ′(K), the set of distributions supported by K. Then TF defined by

TF [f ] :=
∫

Rm+1
f(x)F (x)dx

is a monogenic functional.
In particular, δu[f ] = f(u) =

∫
Rm+1 δ(u− x)f(x)dx.

In order to state next definition, we need to recall that the Cauchy kernel for mono-
genic functions is, see [3]:

E(x) = E(x0 + x) =
1

ωm+1

x0 − x

|x0 + x|m+1
,

where ωm+1 is the surface area of the unit sphere Sm.

Definition 2.5. The Cauchy transform of a functional T (also known as Fantappié
indicatrix of the functional T ) is defined by

T̂ (x) =
∫

E(x− u)T (u)du = Tu[E(x− u)].

If T ∈ Mr(K)′ then T̂ ∈ M 0
` (Rm+1 \ K) where M 0

` (Rm+1 \ K) denotes the Rm-
module of functions monogenic outside K which vanish at infinity. Also the converse is
true, namely, any element in M 0

r (Rm+1 \K) defines a functional in M ′
r(K). In fact, let

f ∈ M 0
` (Rm+1 \ K) and g ∈ Mr(K). Then there exists a function g̃ monogenic in an

open set Ω ⊃ K which extends g. Consider a compact K ′ ⊂ Ω with smooth boundary
and such that K is contained in the interior of K ′. We define a functional Tf ∈ Mr(K)′

by setting

Tf [g] =
∫

∂K′
g̃(x)dσxf(x)

where

dσx =
m∑

j=0

(−1)j+1ej dx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxm

and d̂xj means that dxj is omitted. This construction does not depend on the choices of
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K ′ and g̃. This one-to-one correspondence has been proved in [2] and is precisely stated
in the next result:

Theorem 2.6. Let K ⊂ Rm+1 be a compact set. Then

M ′
`(K) ∼= M 0

r (Rm+1 \K), M ′
r(K) ∼= M 0

` (Rm+1 \K),

where M 0
r (Rm+1 \K) (resp. M 0

` (Rm+1 \K)) denotes the set of right (resp. left) mono-
genic functions outside K which vanish at infinity.

Following [15], but see also [11], we now give the following definition:

Definition 2.7. Let Ω ⊆ Rm (or Ω ⊆ Rm+1). We denote by A(r)(Ω) the right
Rm-module of functions of the form

∑
A fAeA where fA : Ω → C are real analytic.

We denote by A(`)(Ω) the left Rm-module of functions of the form
∑

A eAfA where
fA : Ω → C are real analytic.
By A ′

(r)(Ω) (resp. A ′
(`)(Ω)) we denote the right (resp. left) Rm-module of real analytic

functionals on Ω with values in Rm.

As we did before, by taking the inductive limit, for K compact set in Rm we define
A ′

(r)(K) and A ′
(`)(K).

Remark 2.8. By the uniqueness of the Cauchy–Kowalevskaya extension, any real
analytic function f ∈ A(`)(K) can be extended to a unique function f̃ ∈ Mr(K), where
here K is thought as a subset of Rm+1, see [14, Theorem 2.1]. As a consequence

A ′
(`)(K) ∼= M 0

` (Rm+1 \K).

To move from analytic functionals to monogenic functionals we note that if K ⊂ Rm+1

then Mr(K) ⊂ A(`)(K) in fact every monogenic function is, in particular, real analytic
(see [3]). Moreover, it is immediate that Mr(K) is a closed submodule of A(`)(K).

Let us recall that for any hyperfunction T the hyperfunctions ∂xj
T and ejT are well

defined. In particular, if T ∈ A ′
(`)(K) and f ∈ A(`)(K) then ∂xj

T and ejT act as follows

(∂xj T )[f ] = −T [∂xj f ] and (ejT )[f ] = T [fej ],

which is in accordance with the kernel representation

T [f ] =
∫

f(x)T (x)dx.

The Cauchy transform can be defined also in the case of real analytic functionals:

Definition 2.9. Let T ∈ A ′
(`)(K), and let E(x) be the Cauchy kernel of monogenic

functions. The Cauchy transform T̂ of T is defined as
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T̂ (x) := Tu ∗ E = Tu[E(x− u)].

Note that in the previous definition the Cauchy kernel E(x) is considered as a
hyperfunction in the whole space.

We now prove:

Lemma 2.10. Let T ∈ A ′
(`)(K) be such that its restriction to Mr(K) is zero. Then

S = T̂ ∈ A ′
(`)(K) or, in other words, we have (∂x0 + ∂x)S = T for some S ∈ A ′

(`)(K).

Proof. If the restriction of T to Mr(K) vanishes, then for x = x0 +x outside K,
T̂ (x) = Tu[E(x − u)] = 0 which proves that the support of T̂ is contained inside K or
S = T̂ belongs to A ′

(`)(K). Moreover we also have that

(∂x0 + ∂x)S = T ∗ [(∂x0 + ∂x)E] = T ∗ δ = T

which completes the proof. ¤

Theorem 2.11. Let K be a compact set in Rm+1. Then

M ′
r(K) ∼=

A′(`)(K)

(∂x0 + ∂x)A′(`)(K)
.

Proof. Since A(`)(K) is locally convex then the restriction map A′(`)(K) →
M ′

r(K) is surjective by the Hahn–Banach theorem. Thus any functional T ∈ M ′
r(K)

extends to a functional F ∈ A′(`)(K). Moreover, due to Lemma 2.10, if for a given
F ∈ A′(`)(K) the restriction T to M ′

r(K) vanishes, then F has the form F = (∂x0 + ∂x)S
for some S. This proves the result. ¤

Monogenic functionals, as well as analytic functionals, do not possess a well defined
support, so the corresponding notion is the one of carrier, that we recall below:

Definition 2.12. We say that a monogenic functional T ∈ M ′
r(Rm+1) is carried

by the compact set K (and K is said to be a carrier) if for every open neighborhood Ω
of K there is a positive constant cΩ such that for every f ∈ Mr(Rm+1) it is

|T (f)| ≤ cΩ sup
x∈Ω

|f(x)|.

Note that a carrier of a functional is not unique, in fact if K is carrier, any other
compact set containing K is a carrier. A carrier is not unique not even when we impose
that it is minimal, namely that no proper closed subset of it is a carrier. For uniqueness
more hypothesis on a minimal carrier are needed.

Assume that a functional T ∈ M ′
r(Rm+1) is carried by a compact K and suppose

that K has no holes. By Runge’s theorem, see [3], Mr(Rm+1) is dense in Mr(K).
In the sequel we will assume that K has no holes, is minimal and convex.
Let us now extend the previous discussion and let us consider Cm, whose elements
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will be denoted by z =
∑m

j=1 ejzj , zj = xj + iyj ∈ C, j = 1, . . . , m, and the complexified
Clifford algebra Cm. We can also write z = x+ iy, with obvious meaning of the symbols.
Let Ω be an open subset of Cm+1 or Cm. The linear space O(K) of holomorphic functions
on K is defined, as customary, as inductive limit. Similarly to what we have done before,
we can define the Cm-modules O(`)(Ω) as the set of elements of the form

∑
A eAFA

where FA ∈ O(Ω). In an analogous way, one defines O(r)(Ω) and, as before, O(`)(K)
and O(r)(K) where K is a compact in Cm+1 or Cm. Let us set ∂z = ∂z0 +

∑m
j=1 ej∂zj =

∂z0 + ∂z.
Similar to Theorem 2.11 one may expect the following property:

Property 2.13. Let K be a compact set in Cm+1. Then

M ′
r(K) ∼=

O′(`)(K)

(∂z0 + ∂z)O′(`)(K)
. (1)

However, while the Hahn–Banach extension theorem is still available, the Lemma
2.10 does not generalize to compact subsets of Cm+1. It still holds for K ⊂ Rm+1 ⊂ Cm+1

and also for very special domains like the Lie ball.

Definition 2.14. A compact set K ⊂ Cm+1 is said to be admissible if the iso-
morphism (1) holds.

Of course, the previous ideas and constructions can be easily adapted to the case of
Dirac operators ∂z in Cm. From this point on, we will work in Cm.

Example 2.15. The above Property 2.13 applies to the case in which K is the
closure of the unit ball BR(0, 1) in Rm. A fundamental system of open, convex sets
containing K is given by Ωε = BR(0, (1 + ε)) + iBR(0, ε) ⊂ Cm and Mr(K) can be
obtained as an inductive limit of such open sets Ωε. It appears that this choice of the
compact K does not lead to a Fischer decomposition for the space O(`)(K). The only
example we know of an admissible compact set where the Fischer decomposition holds
for the space O(`)(K) is the case in which K is the closure of the Lie ball.

Definition 2.16. The Lie norm L(z) is given by

L2(z) := |x|2 + |y|2 + 2|x ∧ y|,

while the Lie ball is defined as

LB(0, 1) = {z ∈ Cm : L(z) < 1}.

It is immediate to verify that L(z) ≥ |z| hence it is clear that if f(x) ∈ M`(B(0, 1))
then f(z) ∈ M`(LB(0, 1)), see also [13].

It is also true that if f(x) ∈ Mr(BR(0, 1)) then its complex extension f(z) ∈
Mr(LB(0, 1)) and the Lie ball is the maximal domain with such extension property
(see also [13]).



1494 I. Sabadini and F. Sommen

3. The Fourier–Borel transform.

Let us begin this section by briefly revising some basics on the Fourier–Borel trans-
form in the complex case. The Fourier–Borel transform of T ∈ O′(C) is defined as

FT (z) := Tu[euz].

The functional T is carried by B(0, R) if and only if |FT (z)| ≤ Cεe
(R+ε)|z|, i.e. FT is

of exponential type. More in general, we have:

Definition 3.1. Given T ∈ O′(Cm) its Fourier–Borel transform is defined by

FT (z) := Tu[e〈u,z〉],

where 〈u, z〉 =
∑m

j=1 ujzj , u =
∑m

j=1 ejuj , z =
∑m

j=1 ejzj , uj , zj ∈ C.

A well known fundamental result, see [9], is the following

Theorem 3.2. A functional T ∈ O′(Cm) is carried by B(0, R) if and only if
|FT (z)| ≤ Cεe

(R+ε)|z|.

Let K be a compact convex set in Cm. To assume convexity is not reductive, since
we can always take the convex hull of K.

We define the so-called supporting function of a compact, convex K as:

HK(z) = sup
u∈K

Re〈u, z〉

(note that HK is a polar norm of z). It follows from Theorem 3.2 that, see [9]:

Theorem 3.3. The compact set K is a convex carrier of T ∈ O′(Cm) if and only
if

|FT (z)| ≤ Cε exp(HK(z) + ε|z|),

where Cε is a suitable positive number.

In the case K = LB(0, 1), we denote the supporting function HK(z) by L4(z).
Let us now consider the Clifford analysis setting. Let K be an admissible compact,

convex set in Cm and let T ∈ M ′
r(K). In view of Definition 2.14 we can associate to T

an element T + ∂uS where S ∈ O′(`)(K). Thus we define FT as

Tu[exp〈u, z〉] + ∂uS[exp〈u, z〉] = FT + F (∂uS)

where

F (∂uS) =
∫

exp〈u, z〉∂uS(u) du = −zFS(z).
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Let us consider the following space of Clifford algebra-valued entire functions with growth
conditions:

ExpK = {f ∈ O(`)(Cm) : |f(z)| ≤ Cε exp(HK(z) + ε|z|)}.

We will say that a function f belonging to ExpK is of exponential type.
Theorem 3.3 can be rephrased as follows, see [9]:

Theorem 3.4. Let K be a compact convex set. The Fourier–Borel transform
provides the isomorphism

O′(`)(K) ∼= ExpK .

We also have the following:

Theorem 3.5. Let K be an admissible compact convex set. Then the Fourier–Borel
transform

F : M ′
r(K) → ExpK/z ExpK

is an isomorphism.

Proof. Due to the isomorphism (1), every T ∈ M ′
r(K) may be identified with an

equivalence class of holomorphic functionals of the form F + ∂zS with F, S ∈ O′(`)(K).
Hence the Fourier–Borel transform is in fact given by F (F ) + F (∂zS) which is equal to
F (F )− zF (S) where both F (F ) and F (S) are of exponential type on K. This proves
the result. ¤

Example 3.6. Examples of convex sets for which the above results make sense are
K = B(0, 1)∩Rm, K = LB(0, 1). The main problem is to investigate when the quotient
ExpK/zExpK corresponds to a space of entire monogenic functions that still satisfies the
same exponential estimates. It turns out that this will be only possible in the second
case, namely for K = LB(0, 1).

3.1. Fischer decomposition and its dual.
Let f ∈ O(Cm). Then the decomposition

f(z) = M(f)(z) + zg(z)

where g ∈ O(Cm) and ∂zM(f)(z) = 0 is called Fischer decomposition of f . There is also
a Fischer decomposition for f ∈ O(LB(0, 1)), see [17]:

f(z) =
∑

k,s

zsPk,s(z) (2)

where Pk,s(z) is a spherical monogenic of degree k which can be rewritten in the form
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f(z) =
∞∑

s=0

zsMs(f)(z)

where ∂zMs(f)(z) = 0. Note that M0(f) = M(f).
Using the decomposition (2) we can prove the following:

Lemma 3.7. Let f ∈ O(LB(0, 1)). Then there exists a unique g ∈ O(LB(0, 1))
such that

f(z) = (g(z)z)∂z.

Proof. In O(LB(0, 1)) we can decompose f as

f(z) =
∑

k,s

Pk,s(z)zs

where Pk,s(z) is a function right spherical monogenic of degree k. In general, we have

(Pk,s(z)zs)∂z = βk,sPk(z)zs−1

where βs,k satisfy

β2s,k = −2s, β2s+1,k = −(2s + 2k + m), (3)

hence we deduce that βs+1,k 6= 0 and |βs+1,k| ≥ 1. Let g(z) =
∑

k,s(1/(βs+1,k))Pk,s(z)zs,
then g ∈ O(LB(0, 1)). A direct computation shows that f(z) = (g(z)z)∂z. ¤

Theorem 3.8. Let K = LB(0, 1) and let T ∈ O′(`)(K). Then there exists a unique
S ∈ O′(`)(K) such that for all g ∈ O(`)(K) one has

(T − ∂zS)[g(z)z] = 0.

Proof. Let T ∈ O′(`)(K), we have to find S ∈ O′(`)(K) with the above property.
This amounts to determine S[f ] for every f ∈ O(`)(K). So let f ∈ O(`)(K) and let
g ∈ O(`)(K) be the unique solution of f(z) = −(g(z)z)∂z which exists by Lemma 3.7.
Now, by the above assumption S has to be the solution of

(T − ∂zS)[g(z)z] = 0,

which, with the above choice of g leads to

T [g(z)z] = (∂zS)[g(z)z] = −S[(g(z)z)∂z] = S[f ].

This uniquely determines S ∈ O′(`)(K). ¤
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A function f ∈ ExpK decomposes, as an element in O(Cm), as f = M(f) + zg. In
the next subsection we will show that both M(f) and g belong to ExpK when K is the
closure of the Lie ball LB(0, 1). To show this result we make use the following:

Corollary 3.9 (Dual Fischer decomposition). Let T ∈ O′(`)(K), then T admits
a unique decomposition of the form

T = M(T ) + ∂zS

where M(T ) vanishes on all functions of the form g(z)z.

M(T ) will be called the monogenic part of the functional T .
It is clear that for every f ∈ Mr(LB(0, 1))

T [f ] = M(T )[f ].

It is also clear that when f ∈ O(`)(LB(0, 1)) and f = M(f) + g(z)z denotes the Fischer
decomposition, then

M(T )[f ] = M(T )[M(f)].

Definition 3.10. Let Ω ⊆ Cm. We denote by M`,k(Ω) (resp. Mr,k(Ω)) the set of
solutions of the equation ∂k

z f(z) = 0 (resp. f(z)∂k
z = 0), called k-monogenic functions

(resp. k-right monogenic functions).

If K ⊂ Cm is a compact set, by taking the inductive limit we can define M`,k(K)
(resp. Mr,k(K)). In the next remark, K is the closed Lie ball:

Remark 3.11. The Almansi decomposition theorem states that f(z) ∈
M`,k(LB(0, 1)) may be decomposed as

f(z) = f0(z) + zf1(z) + · · ·+ zk−1fk−1(z)

where f0, . . . , fk−1 are left monogenic on the closed Lie ball. The set of k-monogenic
functionals contains elements T belonging to M ′

r,k(LB(0, 1)) where Mr,k(LB(0, 1)) is the
set of right k-monogenic functions on LB(0, 1). Such functionals admit a dual Almansi
decomposition of the form

T = T0 + ∂zT1 + · · ·+ ∂k−1
z Tk−1,

where Tj [g(u)u] = 0 i.e. Tj ∈ M ′
r(LB(0, 1)).

3.2. Fourier–Borel transform for monogenic functionals in the Lie ball.
Assume that f(z) is a Clifford algebra valued entire function satisfying the estimate

|f(z)| ≤ Cε exp((1 + ε)L4(z)).
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Then there exists a holomorphic functional F ∈ O′(`)(LB(0, 1)) such that FF = f , see
[9] and Theorem 3.4. This is crucial to prove next result on monogenic functionals in
the Lie ball.

Theorem 3.12. Let T ∈ M ′
r(LB(0, 1)) and let F ∈ O′(`)(LB(0, 1)) be a Hahn–

Banach extension of T . Then FT may be defined as

FT (z) = FM(F )(z)

and it is an entire left monogenic function belonging to Exp
LB(0,1)

.

Proof. Let F ∈ O′(`)(LB(0, 1)) be a Hahn–Banach extension of T ∈
M ′

r(LB(0, 1)). Consider the dual Fischer decomposition F = M(F )+∂uS, see Corollary
3.9, then

FM(F ) = M(F )u(exp〈u, z〉) =: g(z).

The function g(z) satisfies the same exponential estimate as the function f such that
FF = f , namely

|g(z)| ≤ Cε exp((1 + ε)L4(z)).

Moreover, since

g(z) = M(F )[M(exp〈u, z〉)]

and

∂zM(exp〈u, z〉) = M(exp〈u, z〉)∂u = 0

we have ∂zg(z) = 0. So the relation F = M(F ) + ∂uS transforms to

f = g + F (∂uS) = g + (∂uS)[exp(〈u, z〉)] = g(z) + zh(z)

where g ∈ ExpK is left monogenic and h(z) = FS(z) ∈ ExpK . ¤

Remark 3.13. From now on we write the Fischer decomposition of the Fourier–
Borel kernel as

exp〈u, z〉 = E(z, u) + zh(z, u)u

with

∂zE(z, u) = E(z, u)∂u = 0.

Hence
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FM(F )(z) = M(F )[E(z, u)] = Tu[E(z, u)].

So the Fourier–Borel transform for monogenic functionals may in fact be defined as the
mapping

F : T 7→ Tu[E(z, u)];

moreover, it is a topological isomorphism

M ′
r(LB(0, 1)) ∼= Exp

LB(0,1)
∩M`(Cm).

4. Fischer decomposition of exp〈u, z〉.
The study of the Fischer decomposition of the kernel of the Fourier–Borel transform

exp(z1w1 + · · ·+ zmwm), zi, wi ∈ C, in the multi-dimensional case goes back to the work
of H. S. Shapiro for m = 3, see [12], and has been generalized by J. Aniansson in [1] to
higher dimensions. In the paper [6] the Fischer decomposition of the kernel exp〈u, z〉 has
been studied in the framework of Clifford analysis and we briefly summarize below some
results from [6].

First of all, we note that the Fischer decomposition gives the expansion

1
k!
〈x, u〉k =

k∑
s=0

xsZk,s(x, u)us (4)

where Zk,s are zonal monogenic functions of degree k − s. More specifically, Zk,s are
homogeneous of degree k − s in both u and x, they are left monogenic in x and right
monogenic in u and they have the form

Zk,s(x, u) =
1

βs,k−s · · ·β1,k−s
Zk−s(x, u)

with β2s,k, β2s+1,k as in (3).

Zk(x, u) =
Γ(m/2− 1)

2k+1Γ(k + m/2)
(|x| |u|)k

[
(k + m− 2)Cm/2−1

k (t) + (m− 2)
x ∧ u

|x| |u|C
m/2
k−1 (t)

]
,

t = 〈x, u〉/|x| |u| and Cr
k are the Gegenbauer polynomials. Thus, using (4), the Fischer

decomposition of the kernel exp〈u, z〉 can be written as

exp〈u, z〉 =
∞∑

k=0

1
k!
〈x, u〉k =

∞∑

k=0

k∑
s=0

xsZk,s(x, u)us

=
∞∑

s=0

∞∑

k=s

xsZk,s(x, u)us
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=
∞∑

s=0

xsEs(x, u)us

where we have set Es(x, u) =
∑∞

k=s Zk,s(x, u). Let us set

E(x, u) = E0(x, u) =
∞∑

k=0

Zk(x, u). (5)

To find a closed formula for the Fourier–Borel kernel is complicated. The functions E,
Es may be expressed in terms of Bessel functions as shown in [6].

5. Related transforms.

In this section we present some transforms that are related to the Fourier–Borel
transform. Specifically, we define the Fourier–Borel transform on the nullcone, a trans-
form that involves solutions of the heat equation and a transform that can be expressed
in terms of the Bessel functions.

5.1. The Fourier–Borel transform on the nullcone.
Let us denote by N the nullcone in Cm i.e. the set of z ∈ Cm such that z2 = 0. Then

for f ∈ O(r)(Cm) with Fischer decomposition f(z) = M(f)(z) + zg(z) the restriction to
the nullcone N is such that

zf(z)|N = zM(f)(z)|N .

Lemma 5.1. Let τ ∈ N and consider the correspondence ρ : O(r)(Cm) → O(r)(N )
given by

ρ(g) = τg(τ).

Then ρ is injective on the closed subspace M`(Cm).

Proof. The condition τg(τ) = 0 means that zg(z) = z2h(z) for some h ∈
O(r)(Cm). This implies that g(z) = zh(z), and assuming that g is also monogenic then
it implies g = 0. ¤

Let F ∈ O′(`)(Cm) then the restriction of zFF (z) = Fu[z exp〈u, z〉] to the nullcone
is given by

τFF (τ) = τFM(F )(τ).

Hence for T ∈ M ′
r(Cm) we may find an Hahn–Banach extension F ∈ O′(`)(Cm) and for

the Fourier–Borel transform of T given by

FT (z) = Tu[E(u, z)]

we have that
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zFT (z) = zFM(F )(z).

This last relation restricts to the nullcone as

τFT (τ) = M(F )u[τ exp〈u, τ〉] = Fu[τ exp〈u, τ〉],

since the map u 7→ τ exp〈u, τ〉 is already monogenic in u. Then we also have that

Fu[τ exp〈u, τ〉] = Tu[τ exp〈u, τ〉].

In Rm+1 one may consider the transform

T (Fx0,x)(t) = Fx0,x

[(
1− it

|t|
)

exp(〈x, t〉 − ix0|t|)
]
,

which is related to the Fourier–Borel transform on the nullcone and which makes use
of the monogenic exponential function used in papers by K. I. Kou, C. Li, T. Qian and
A. McIntosh, see [7] and [8].

5.2. The Gabor–Fourier–Borel transform.
Consider the function exp(〈x, z〉 − tz2) where (x, t) ∈ Rm+1 and z ∈ Cm. Then this

function satisfies the heat equation (∆x − ∂t)f(x, t) = 0.
Next, consider the space Mr,s(Cm) of right s-monogenic functions in Cm. Then we

introduce the following:

Definition 5.2. Let F ∈ M ′
r,s(Cm). Then the Gabor–Fourier–Borel transform of

F is given by

G (F )(x, t) = Fz[exp(〈x, z〉 − tz2)]

where F is represented by a functional F ∈ O(`)(Cm) satisfying

F [g(z)zs] = 0, g ∈ O(Cm).

We note that the Gabor–Fourier–Borel transform can be related with the Bargmann
transform, though it is not the same.

Now consider the Fischer decomposition of the Gabor–Fourier–Borel kernel

exp(〈x, z〉 − tz2) = exp(−tz2)
∞∑

k=0

xkEk(x, z)zk,

where the functions Ek(x, z) are defined in (5), which may be rewritten in the form

∞∑

k=0

Gk(x, t; z)zk
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where Gk(x, t; z) satisfies the heat equation (∆x − ∂t)f(x, t; z) = 0 together with the
monogenicity conditions ∂k+1

x f(x, t; z) = f(x, t; z)∂z = 0. Hence the Gabor–Fourier–
Borel transform of F is given by

G (F )(x, t) = Fz

[ s−1∑

k=0

Gk(x, t; z)zk

]

which clearly satisfies the heat equation (∆x − ∂t)f(x, t) = 0 together with the mono-
genicity conditions ∂s

xf(x, t) = 0. It is a polynomial solution to the heat equation with
respect to the variable t.

More in general, for F ∈ O′(`)(Cm) one may define a Gabor–Fourier–Borel transform
by

G (F )(x, t) = Fz[exp(〈x, z〉 − tz2)] =
∞∑

k=0

Fz[Gk(x, t; z)zk],

which satisfies the heat equation, where the above series is an expansion in terms of Clif-
ford algebra valued heat polynomials (namely, polynomials satisfying the heat equation).

Using the dual Fischer decomposition

F =
∞∑

s=0

∂s
zFs, Fs ∈ M ′

r(Cm)

the above transform may be written as

G (F )(x, t) =
∞∑

k,s=0

(∂s
zFs)[Gk(x, t; z)zk]

=
∞∑

k=0

Fk[(−1)kGk(x, t; z)zk∂k
z ].

5.3. The Bessel transform.
Consider the function

B(x, u) = exp〈x, u〉J(x ∧ u)

where

J(x ∧ u) = 2(m−3)/2Γ
(

m− 1
2

)

× |x ∧ u|(3−m)/2

(
J(m−3)/2(|x ∧ u|) +

x ∧ u

|x ∧ u|J(m−1)/2(|x ∧ u|)
)

,
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and J` denotes the Bessel function of the first kind of order `. Then the function B(x, u)
satisfies the two sided monogenicity condition ∂xB(x, u) = B(x, u)∂u = 0. So one may
define for T ∈ M ′

r(Cm) the so-called Bessel transform

BT (z) = Tu[B(x, u)]

which transforms monogenic functionals into left monogenic functions. This transform
is not equivalent to the Fourier–Borel transform but, in [6], the Clifford–Bessel function
B(x, u) has been related to the exponential function E(x, u) that appears in the Fourier–
Borel transform.

In fact, if one considers the restriction to parallel pairs of vectors x ‖ u then we
obtain that

B(x, u)|x ‖u = exp(|x| |u|)

while

E(x, u)|x ‖u =
∞∑

k=0

Γ(m/2− 1)(k + m− 2)
2k+1Γ(k + m/2)

C
m/2−1
k (1)(|x| |u|)k,

which is a confluent hypergeometric function.
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