
c©2016 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 68, No. 3 (2016) pp. 1357–1368
doi: 10.2969/jmsj/06831357

Local maximal operators on fractional Sobolev spaces

By Hannes Luiro and Antti V. Vähäkangas
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Abstract. In this note we establish the boundedness properties of local
maximal operators MG on the fractional Sobolev spaces W s,p(G) whenever
G is an open set in Rn, 0 < s < 1 and 1 < p < ∞. As an application, we
characterize the fractional (s, p)-Hardy inequality on a bounded open set by a
Maz’ya-type testing condition localized to Whitney cubes.

1. Introduction.

The local Hardy–Littlewood maximal operator MG : f 7→ MGf is defined for an
open set ∅ 6= G ( Rn and a function f ∈ Lp(G) by

MGf(x) = sup
r

∫

B(x,r)

|f(y)| dy, x ∈ G,

where the supremum ranges over all radii 0 < r < dist(x, ∂G). Whereas the (local)
Hardy–Littlewood maximal operator is often used to estimate the absolute size, its
Sobolev mapping properties are perhaps less known. The classical Sobolev regularity
of MG is established by Kinnunen and Lindqvist in [12]; we also refer to [7], [11], [13],
[14], [16]. Concerning smoothness of fractional order, the first author established in [17]
the boundedness and continuity properties of MG on the Triebel–Lizorkin spaces F s

pq(G)
whenever G is an open set in Rn, 0 < s < 1 and 1 < p, q < ∞.

Our main focus lies in the mapping properties of MG on a fractional Sobolev space
W s,p(G) with 0 < s < 1 and 1 < p < ∞, see Section 2 for the definition or [3] for a
survey of this space. The intrinsically defined function space W s,p(G) on a given domain
G coincides with the trace space F s

pp(G) if and only if G is regular, i.e., |B(x, r)∩G| ' rn

whenever x ∈ G and 0 < r < 1, see [22, Theorem 1.1] and [21, pp. 6–7]. As a consequence,
if G is a regular domain then MG is bounded on W s,p(G). Moreover, the following
question arises: is MG a bounded operator on W s,p(G) even if G is not regular, e.g., if
G has an exterior cusp? Our main result is an affirmative answer to the last question:

Theorem 1.1. Let ∅ 6= G ( Rn be an open set, 0 < s < 1 and 1 < p < ∞. Then,
there is a constant C = C(n, p, s) > 0 such that inequality

∫

G

∫

G

|MGf(x)−MGf(y)|p
|x− y|n+sp

dy dx ≤ C

∫

G

∫

G

|f(x)− f(y)|p
|x− y|n+sp

dy dx (1)
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holds for every f ∈ Lp(G). In particular, the local Hardy–Littlewood maximal operator
MG is bounded on the fractional Sobolev space W s,p(G).

The simple proof of Theorem 1.1 is based on a pointwise inequality in R2n, see
Proposition 3.1. That is, for f ∈ Lp(G) we define an auxiliary function S(f) : R2n → R

S(f)(x, y) =
χG(x)χG(y)|f(x)− f(y)|

|x− y|n/p+s
, a.e. (x, y) ∈ R2n.

Observe that the Lp(R2n)-norm of S(f) coincides with |f |W s,p(G), see definition (5). The
key step is to show that S(MGf)(x, y) is almost everywhere dominated by

C(n, p, s)
∑

i,j,k,l∈{0,1}

(
Mij(Mkl(Sf))(x, y) + Mij(Mkl(Sf))(y, x)

)
,

where each Mij and Mkl is either F 7→ |F | or a V -directional maximal operator in R2n

that is defined in terms of a fixed n-dimensional subspace V ⊂ R2n, see definition (8).
The geometry of the open set G does not have a pivotal role, hence, we are able to prove
the pointwise domination without imposing additional restrictions on G. Theorem 1.1 is
then a consequence of the fact that the compositions MijMkl are bounded on Lp(R2n)
if 1 < p < ∞. The transference to the 2n-dimensional Euclidean space is a typical
step when dealing with norm estimates for the spaces W s,p(G), we refer to [6], [8], [22]
for other examples. We plan to adapt the transference method to norm estimates on
intrinsically defined Triebel–Lizorkin and Besov function spaces on open sets, [21].

As an application of our main result, Theorem 1.1, we study certain fractional Hardy
inequalities. Let us recall that an open set ∅ 6= G ( Rn admits an (s, p)-Hardy inequality,
for 0 < s < 1 and 1 < p < ∞, if there exists a constant C > 0 such that inequality

∫

G

|f(x)|p
dist(x, ∂G)sp

dx ≤ C

∫

G

∫

G

|f(x)− f(y)|p
|x− y|n+sp

dy dx (2)

holds for all functions f ∈ Cc(G). These inequalities have attracted interest recently, we
refer to [4], [5], [6], [8], [9], [10] and the references therein.

Theorem 4.5 answers a question from [4] by characterizing bounded open sets which
admit an (s, p)-Hardy inequality. The characterization is given in terms of a localized
Maz’ya-type testing condition, where a lower bound `(Q)n−sp . caps,p(Q,G) for the
fractional (s, p)-capacities of Whitney cubes Q ∈ W(G) is required and a quasiadditivity
property of the same capacity is assumed with respect to all finite families of Whitney
cubes. Let us mention in passing that the quasiadditivity property of certain capacities
with respect to Whitney cubes was first considered by Aikawa [1], [2]. Aside from (1),
an important ingredient in the proof of Theorem 4.5 is the estimate

∫

Q

f dx ≤ C inf
Q

MGf, (3)
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which holds for a constant C > 0 that is independent of both Q ∈ W(G) and f ∈ Cc(G).
Inequality (3) allows us to omit the (apparently unknown) weak Harnack inequalities
for the minimizers that are associated with (s, p)-capacities. We remark that the weak
Harnack based approach is taken up in [15]; therein the counterpart of Theorem 4.5 is
obtained in case of the classical Hardy inequality, i.e., for the gradient instead of the
fractional Sobolev seminorm.

The structure of this paper is as follows. In Section 2 we present the notation and
recall various maximal operators. The proof of Theorem 1.1 is taken up in Section 3.
Finally, in Section 4, we give an application of our main result by characterizing fractional
(s, p)-Hardy inequalities on bounded open sets.

2. Notation and maximal operators.

Notation. The open ball centered at x ∈ Rn and with radius r > 0 is written as
B(x, r). The Euclidean distance from x ∈ Rn to a set E in Rn is written as dist(x,E).
The Euclidean diameter of E is diam(E). The Lebesgue n-measure of a measurable set
E is denoted by |E|. The characteristic function of a set E is written as χE . We write
f ∈ Cc(G) if f : G → R is a continuous function with compact support in an open set G.
We let C(?, . . . , ?) denote a positive constant which depends on the quantities appearing
in the parentheses only.

For an open set ∅ 6= G ( Rn in Rn, we let W(G) be its Whitney decomposition.
For the properties of Whitney cubes Q ∈ W(G) we refer to [20, VI.1]. In particular, we
need the inequalities

diam(Q) ≤ dist(Q, ∂G) ≤ 4diam(Q), Q ∈ W(G). (4)

The center of a cube Q ∈ W(G) is written as xQ and `(Q) is its side length. By tQ,
t > 0, we mean a cube whose sides are parallel to those of Q and that is centered at xQ

and whose side length is t`(Q).
Let G be an open set in Rn. Let 1 < p < ∞ and 0 < s < 1 be given. We write

|f |W s,p(G) =
( ∫

G

∫

G

|f(x)− f(y)|p
|x− y|n+sp

dy dx

)1/p

(5)

for measurable functions f on G that are finite a.e. By W s,p(G) we mean the fractional
Sobolev space of functions f in Lp(G) with ‖f‖W s,p(G) = ‖f‖Lp(G) + |f |W s,p(G) < ∞.

Maximal operators. Let ∅ 6= G ( Rn be an open set. The local Hardy–
Littlewood maximal function of f ∈ Lp(G) (1 < p < ∞) is defined as follows. For
every x ∈ G, we write

MGf(x) = sup
r

∫

B(x,r)

|f(y)| dy, (6)

where the supremum ranges over 0 < r < dist(x, ∂G). For notational convenience, we
write
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∫

B(x,0)

|f(y)| dy = |f(x)| (7)

whenever x ∈ G is a Lebesgue point of |f |. It is clear that, at the Lebesgue points of |f |,
the supremum in (6) can equivalently be taken over 0 ≤ r ≤ dist(x, ∂G).

The following lemma is [4, Lemma 2.3].

Lemma 2.1. Suppose that ∅ 6= G ( Rn is an open set and f ∈ Cc(G). Then MGf

is continuous on G.

Let us fix i, j ∈ {0, 1} and 1 < p < ∞. For a function F ∈ Lp(R2n) we write

Mij(F )(x, y) = sup
r>0

∫

B(0,r)

|F (x + iz, y + jz)| dz (8)

for almost every (x, y) ∈ R2n. Observe that M00(F ) = |F |. By applying Fubini’s theo-
rem in suitable coordinates and boundedness of the centred Hardy–Littlewood maximal
operator in Lp(Rn) we find that Mij : F 7→ Mij(F ) is a bounded operator on Lp(R2n);
let us remark that the measurability of Mij(F ) for a given F ∈ Lp(R2n) can be checked
by first noting that the supremum in (8) can be restricted to the rational numbers r > 0
and then adapting the proof of [19, Theorem 8.14] with each r separately.

3. The proof of Theorem 1.1.

We prove our main result, namely Theorem 1.1 that is stated in the Introduction.
Let us first recall a convenient notation. For f ∈ Lp(G) we write

S(f)(x, y) = SG,n,s,p(f)(x, y) =
χG(x)χG(y)|f(x)− f(y)|

|x− y|(n/p)+s

for almost every (x, y) ∈ R2n. The main tool for proving Theorem 1.1 is a pointwise
inequality, stated in Proposition 3.1, which might be of independent interest.

Proposition 3.1. Let ∅ 6= G ( Rn be an open set, 0 < s < 1 and 1 < p < ∞.
Then there exists a constant C = C(n, p, s) > 0 such that, for almost every (x, y) ∈ R2n,
inequality

S(MGf)(x, y) ≤ C
∑

i,j,k,l∈{0,1}

(
Mij(Mkl(Sf))(x, y) + Mij(Mkl(Sf))(y, x)

)
(9)

holds whenever f ∈ Lp(G) and Sf ∈ Lp(R2n).

By postponing the proof of Proposition 3.1 for a while, we can prove Theorem 1.1.

Proof of Theorem 1.1. Fix f ∈ Lp(G). Without loss of generality, we may
assume that the right hand side of inequality (1) is finite. Hence Sf ∈ Lp(R2n) and
inequality (1) is a consequence of Proposition 3.1 and the boundedness of operators Mij
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on Lp(R2n). ¤

We proceed to the postponed proof that is motivated by that of [17, Theorem 3.2].

Proof of Proposition 3.1. By replacing the function f with |f | we may assume
that f ≥ 0. Since f ∈ Lp(G) and, hence, MGf ∈ Lp(G) we may restrict ourselves to
(x, y) ∈ G ×G for which both x and y are Lebesgue points of f and both MGf(x) and
MGf(y) are finite. Moreover, by symmetry, we may further assume that MGf(x) >

MGf(y). These reductions allow us to find

0 ≤ r(x) ≤ dist(x, ∂G) and 0 ≤ r(y) ≤ dist(y, ∂G)

such that the estimate

S(MGf)(x, y) =
|MGf(x)−MGf(y)|

|x− y|(n/p)+s

=
|∫

B(x,r(x))
f − ∫

B(y,r(y))
f |

|x− y|(n/p)+s
≤
|∫

B(x,r(x))
f − ∫

B(y,r2)
f |

|x− y|(n/p)+s

is valid for any given number

0 ≤ r2 ≤ dist(y, ∂G);

this number will be chosen in a convenient manner in the two case studies below.

Case: r(x) ≤ |x− y|. Let us denote r1 = r(x) and choose

r2 = 0. (10)

If r1 = 0, then we get from (10) and our notational convention (7) that

S(MGf)(x, y) ≤ S(f)(x, y).

Suppose then that r1 > 0. Now

S(MGf)(x, y) ≤ 1
|x− y|(n/p)+s

∣∣∣∣
∫

B(x,r1)

f(z) dz −
∫

B(y,r2)

f(z) dz

∣∣∣∣

=
1

|x− y|(n/p)+s

∣∣∣∣
∫

B(x,r1)

f(z)− f(y) dz

∣∣∣∣

.
∫

B(0,r1)

χG(x + z)χG(y)|f(x + z)− f(y)|
|x + z − y|(n/p)+s

dz ≤ M10(Sf)(x, y).

We have shown that

S(MGf)(x, y) . S(f)(x, y) + M10(Sf)(x, y)
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and it is clear that inequality (9) follows (recall that M00 is the identity operator when
restricted to non-negative functions).

Case: r(x) > |x− y|. Let us denote r1 = r(x) > 0 and choose

r2 = r(x)− |x− y| > 0.

We then have
∣∣∣∣
∫

B(x,r1)

f(z) dz −
∫

B(y,r2)

f(z) dz

∣∣∣∣

=
∣∣∣∣
∫

B(0,r1)

(
f(x + z)− f

(
y +

r2

r1
z

))
dz

∣∣∣∣

=
∣∣∣∣
∫

B(0,r1)

(
f(x + z)−

∫

B(y+(r2/r1)z,2|x−y|)∩G

f(a) da

+
∫

B(y+(r2/r1)z,2|x−y|)∩G

f(a) da− f

(
y +

r2

r1
z

))
dz

∣∣∣∣

≤ A1 + A2,

where we have written

A1 =
∫

B(0,r1)

( ∫

B(y+(r2/r1)z,2|x−y|)∩G

|f(x + z)− f(a)|da

)
dz,

A2 =
∫

B(0,r1)

( ∫

B(y+(r2/r1)z,2|x−y|)∩G

∣∣∣∣f
(

y +
r2

r1
z

)
− f(a)

∣∣∣∣da

)
dz.

We estimate both of these terms separately, but first we need certain auxiliary estimates.
Recall that r2 = r1 − |x− y|. Hence, for every z ∈ B(0, r1),

∣∣∣∣y +
r2

r1
z − (x + z)

∣∣∣∣ =
∣∣∣∣y − x +

(r2 − r1)
r1

z

∣∣∣∣ ≤ |y − x|+ |x− y|
r1

|z| ≤ 2|y − x|.

This, in turn, implies that

B

(
y +

r2

r1
z, 2|x− y|

)
⊂ B(x + z, 4|x− y|) (11)

whenever z ∈ B(0, r1). Moreover, since r1 > |x−y| and {y+(r2/r1)z, x+z} ⊂ B(x, r1) ⊂
G if |z| < r1, we obtain the two equivalences

∣∣∣∣B
(

y +
r2

r1
z, 2|x− y|

)
∩G

∣∣∣∣ ' |x− y|n ' |B(x + z, 4|x− y|) ∩G| (12)
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for every z ∈ B(0, r1). Here the implied constants depend only on n.

An estimate for A1. The inclusion (11) and inequalities (12) show that, in the
definition of A1, we can replace the domain of integration in the inner integral by
B(x + z, 4|x− y|)∩G and, at the same time, control the error term while integrating on
average. That is,

A1 .
∫

B(0,r1)

( ∫

B(x+z,4|x−y|)∩G

|f(x + z)− f(a)|da

)
dz.

By observing that both x + z and a in the last double integral belong to G and using
(12) again, we can continue as follows:

A1

|x− y|(n/p)+s
.

∫

B(0,r1)

( ∫

B(x+z,4|x−y|)

χG(x + z)χG(a)|f(x + z)− f(a)|
|x + z − a|(n/p)+s

da

)
dz

.
∫

B(0,r1)

( ∫

B(y+z,5|x−y|)
S(f)(x + z, a)da

)
dz.

Applying the maximal operators defined in Section 2 we find that

A1

|x− y|(n/p)+s
.

∫

B(0,r1)

M01(Sf)(x + z, y + z) dz ≤ M11(M01(Sf))(x, y).

An estimate for A2. We use the inclusion y + (r2/r1)z ∈ G for all z ∈ B(0, r1) and
then apply the first equivalence in (12) to obtain

A2 =
∫

B(0,r1)

( ∫

B(y+(r2/r1)z,2|x−y|)∩G

χG

(
y +

r2

r1
z

)
χG(a)

∣∣∣∣f
(

y +
r2

r1
z

)
− f(a)

∣∣∣∣da

)
dz

.
∫

B(0,r1)

( ∫

B(y+(r2/r1)z,2|x−y|)
χG

(
y +

r2

r1
z

)
χG(a)

∣∣∣∣f
(

y +
r2

r1
z

)
− f(a)

∣∣∣∣da

)
dz.

Hence, a change of variables yields

A2

|x− y|(n/p)+s
.

∫

B(0,r2)

( ∫

B(y+z,2|x−y|)

χG(y + z)χG(a)|f(y + z)− f(a)|
|y + z − a|(n/p)+s

da

)
dz

.
∫

B(0,r2)

( ∫

B(x+z,3|x−y|)
S(f)(y + z, a)da

)
dz.

Applying operators M01 and M11 from Section 2, we can proceed as follows

A2

|x− y|(n/p)+s
.

∫

B(0,r2)

M01(Sf)(y + z, x + z) dz ≤ M11(M01(Sf))(y, x).
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Combining the above estimates for A1 and A2 we end up with

S(MGf)(x, y) ≤ A1 + A2

|x− y|(n/p)+s
. M11(M01(Sf))(x, y) + M11(M01(Sf))(y, x)

and inequality (9) follows. ¤

4. Application to fractional Hardy inequalities.

We apply Theorem 1.1 by solving a certain localization problem for (s, p)-Hardy
inequalities and our result is formulated in Theorem 4.5. This generalizes an earlier
result from [4] that is formulated as Theorem 4.4 for the sake of comparison. Recall that
an open set ∅ 6= G ( Rn admits an (s, p)-Hardy inequality, for 0 < s < 1 and 1 < p < ∞,
if there is a constant C > 0 such that inequality

∫

G

|f(x)|p
dist(x, ∂G)sp

dx ≤ C

∫

G

∫

G

|f(x)− f(y)|p
|x− y|n+sp

dy dx (13)

holds for all functions f ∈ Cc(G). We need a characterization of (s, p)-Hardy inequality
in terms of the following (s, p)-capacities of compact sets K ⊂ G ; we write

caps,p(K, G) = inf
u
|u|pW s,p(G),

where the infimum is taken over all real-valued functions u ∈ Cc(G) such that u(x) ≥ 1
for every point x ∈ K. The ‘Maz’ya-type characterization’ in Theorem 4.1 can be found
in [4, Theorem 1.1] (this result, in fact, applies when 0 < p < ∞); we also refer to [18,
Section 11.11.2; Remark 3].

Theorem 4.1. Let 0 < s < 1 and 1 < p < ∞. Then an open set ∅ 6= G ( Rn

admits an (s, p)-Hardy inequality if and only if there is a constant C > 0 such that

∫

K

dist(x, ∂G)−sp dx ≤ C caps,p(K, G) (14)

for every compact set K ⊂ G.

We solve a ‘localization problem of the testing condition (14)’. Roughly speaking, we
prove that if caps,p(·, G) satisfies a weak quasiadditivity property, see Definition 4.2, then
G admits an (s, p)-Hardy inequality if and only if inequality (14) holds for all Whitney
cubes K = Q ∈ W(G).

Definition 4.2. The (s, p)-capacity caps,p(·, G) is weakly W(G)-quasiadditive, if
there exists a constant N > 0 such that

∑

Q∈W(G)

caps,p(K ∩Q,G) ≤ N caps,p(K, G) (15)
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whenever K =
⋃

Q∈E Q and E ⊂ W(G) is a finite family of Whitney cubes. If there is a
constant N > 0 such that inequality (15) holds for all compact sets K ⊂ G, then we say
that the (s, p)-capacity caps,p(·, G) is W(G)-quasiadditive.

We remark that the quasiadditivity property of (both Riesz and Green) capacity
with respect to Whitney cubes of an open set G was first considered by Aikawa [1], [2].
In order to formulate an earlier localization result from [4] we also need the following
definition.

Definition 4.3. An open set G is said to admit an (s, p)-zero extension, if there
is a constant C > 0 such that |EGu|W s,p(Rn) ≤ C|u|W s,p(G) for every function u ∈ Cc(G).
Here EGu(x) = u(x) if x ∈ G and EGu(x) = 0 otherwise.

Let us emphasise that only continuous functions with compact support need to have
a bounded zero extension, and not all open sets admit an (s, p)-zero extension, [4]. We
aim to improve on the following earlier result, which (essentially) is [4, Theorem 1.2].

Theorem 4.4. Let 0 < s < 1 and 1 < p < ∞ satisfy sp < n. Suppose G 6= ∅ is a
bounded open set in Rn. Then the following conditions are equivalent.

(1) G admits an (s, p)-Hardy inequality ;
(2) caps,p(·, G) is W(G)-quasiadditive and G admits an (s, p)-zero extension;
(3) caps,p(·, G) is weakly W(G)-quasiadditive and G admits an (s, p)-zero extension.

Our main result in this section is Theorem 4.5 which answers a question in [4, p. 2].
That is, we generalize Theorem 4.4 by adding one more condition that is equivalent with
G admitting an (s, p)-Hardy inequality.

Theorem 4.5. Let 0 < s < 1 and 1 < p < ∞ be such that sp < n. Suppose that
G 6= ∅ is a bounded open set in Rn. Then the conditions (A) and (B) are equivalent.

(A) G admits an (s, p)-Hardy inequality ;
(B) caps,p(·, G) is weakly W(G)-quasiadditive and there exists c > 0 such that

`(Q)n−sp ≤ c caps,p(Q,G) (16)

for every Q ∈ W(G).

Remark 4.6. The counterexamples that are given in [4, Section 6] show that
neither one of the two conditions (i.e., weak W(G)-quasiadditivity of the capacity and
the lower bound (16) for the capacities of Whitney cubes) appearing in Theorem 4.5(B)
is implied by the other one. Accordingly, both of these conditions are needed for the
characterization.

Whereas in Theorem 4.4(3) it is assumed that G admits an (s, p)-zero extension,
in Theorem 4.5(B) the lower bound (16) for the capacity is assumed instead. This
lower bound and the boundedness inequality |MGu|W s,p(G). |u|W s,p(G) if u ∈ Cc(G) are,
in fact, both consequences of the assumption that G admits an (s, p)-zero extension; we
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refer to [4, Lemma 2.1 and Lemma 2.2]. These two consequences, together with the weak
quasiadditivity, are the key facts that are needed for the proof of the implication from (3)
to (1) in Theorem 4.4. Since by Theorem 1.1 we now know the boundedness inequality
for the local maximal operator, in Theorem 4.5(B) we only need to assume that the lower
bound (16) for the capacity holds (and that the capacity is weakly quasiadditive).

Proof of Theorem 4.5. The implication from (A) to (B) follows from [4,
Proposition 4.1] in combination with [4, Lemma 2.1]. For convenience of the reader,
we give the proof of the implication from (B) to (A) by closely following the proof of [4,
Proposition 5.1]. The last proposition is a reformulation of the implication from (3) to
(1) in Theorem 4.4.

By Theorem 4.1, it suffices to show that

∫

K

dist(x, ∂G)−sp dx . caps,p(K, G), (17)

whenever K ⊂ G is compact. Let us fix a compact set K ⊂ G and an admissible test
function u for caps,p(K, G). We partition W(G) as W1 ∪W2, where

W1 =
{

Q ∈ W(G) : 〈u〉2−1Q :=
∫

2−1Q

u < 1/2
}

, W2 = W(G) \W1.

As opposed to the proof of [4, Proposition 5.1], here we use the integral average 〈u〉2−1Q

instead of 〈u〉Q.
Write the left-hand side of (17) as

{ ∑

Q∈W1

+
∑

Q∈W2

} ∫

K∩Q

dist(x, ∂G)−sp dx. (18)

The first series is estimated as in [4, Proposition 5.1]; in particular, condition (B) is not
needed here. Instead we first observe that, for every Q ∈ W1 and every x ∈ K ∩ Q,
(1/2) = 1− (1/2) < u(x)−〈u〉2−1Q = |u(x)−〈u〉2−1Q|. Thus, by Jensen’s inequality and
(4),

∑

Q∈W1

∫

K∩Q

dist(x, ∂G)−sp dx .
∑

Q∈W1

`(Q)−sp

∫

Q

|u(x)− 〈u〉2−1Q|p dx

.
∑

Q∈W1

`(Q)−n−sp

∫

Q

∫

Q

|u(x)− u(y)|p dy dx

.
∑

Q∈W1

∫

Q

∫

Q

|u(x)− u(y)|p
|x− y|n+sp

dy dx.

Since G is the union of its Whitney cubes and the interiors of Whitney cubes are pairwise
disjoint, the last term is dominated by |u|pW s,p(G).
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Let us then focus on the remaining series in (18), whose analysis depends both on
Theorem 1.1 for the local maximal operator and the full generality of condition (B). Let
us consider Q ∈ W2 and x ∈ Q. Observe that 2−1Q ⊂ B(x, (4/5)diam(Q)). Hence, by
inequalities (4),

MGu(x) &
∫

2−1Q

u(y) dy ≥ 1
2
. (19)

The support of MGu is a compact set in G by the boundedness of G and the fact
that u ∈ Cc(G). By Lemma 2.1, we find that MGu is continuous. Concluding from
these remarks we find that there is ρ > 0, depending only on n, such that ρMGu is an
admissible test function for caps,p(∪Q∈W2Q,G). The family W2 is finite, as u ∈ Cc(G).
Hence, by condition (B) and the inequality (19),

∑

Q∈W2

∫

K∩Q

dist(x, ∂G)−sp dx

.
∑

Q∈W2

`(Q)n−sp ≤ c
∑

Q∈W2

caps,p(Q,G)

≤ cNcaps,p

( ⋃

Q∈W2

Q,G

)
≤ cNρp

∫

G

∫

G

|MGu(x)−MGu(y)|p
|x− y|n+sp

dy dx.

By Theorem 1.1, the last term is dominated by C(n, s, p,N, c, ρ)|u|pW s,p(G). The desired
inequality (17) follows from the considerations above. ¤
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