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Lindelof theorem for harmonic mappings
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Abstract. We extend the classical Lindel6f theorem for harmonic map-
pings. Assume that f is an univalent harmonic mapping of the unit disk U
onto a Jordan domain with C! boundary. Then the function arg(d,(f(2))/z),
where z = re®?, has continuous extension to the boundary of the unit disk,
under certain condition on f|r.

1. Introduction.

1.1. Some elementary facts from measure theory.
Let M(T) be the space of complex measures in the unit circle T and let LP(T),
0 < p < oo be the space of Lebesgue measurable functions of the finite norm

dz 1/ max{p,1}
1l = ( / If(Z)Ip|27r|) |

For y € M(T'), denote by ||u|| its total variation. It is a norm in M (T') and M(T) is a
Banach space. The norm is unique rotationally invariant up to a positive constant, and
we normalize it in such a way that the Lebesgue measure in T' has the norm equal to
1. If p is a absolutely continuous with respect to Lebesgue measure in the unit circle,
then there exists a function F' € L(T) such that du(e®) = dur(e) = F(e')dt. Thus
LY(T) c M(T).

Every homeomorphism F' of the unit circle onto a rectifiable Jordan curve ~ has
a bounded variation and therefore has the first derivative 9;F(e®*) almost everywhere.
Moreover by the Lebesgue-Radon-Nikodym theorem,

dF(e™) = dA,(e™) + dA4(e™),

where A, is an absolutely continuous measure with respect to Lebesgue measure on the
unit disk, and A, is a singular measure orthogonal to A,. Then

dAg(e™) = 0;Fy(e™)dt,
where 0, Fy(e™) is “absolutely continuous part” of 9;F(et).

Let ¢ be the arc-length parametrization of a Jordan curve v of the class C', and
assume for simplicity that |y| = 27. Then there is a homeomorphism ¢ : R — R with
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¥(27) — (0) = 2k, such that F(e®) = g(¢)(t)). Then we have
QF (") = g (W)Y (1) = Dy (b), (1)
for some continuous function (. Further if ¢ is an increasing function, then
dip(t) = po(t)dt + dAs(t),

where ¥} (t) = |0;Fp(e®)] is the “absolutely continuous part of ¢/”, and ), is a positive
singular measure in [0, 27]. By ||d#|| we denote the total variation of the function v on
the [0, 27]. In view of (1) we see that ||dy| = ||dF||, where ||dF|| is the total variation of
the measure dF in T.

1.2. Harmonic mappings.

A mapping f is called harmonic in a region D if f = u + iv where u and v are
harmonic functions in D. If D is simply-connected, then there are two analytic functions
a and b defined on D such that f = a +b. Let

1—r2

P(r,t) =
(1) 27(1 — 2rcost +r2)

denote the Poisson kernel. Let U be the unit disk in the complex plane C and let T be its
boundary. The Poisson integral of a measure y € M(T) (and of a function F € L'(T),
du(ett) = F(e')dt) is a harmonic function given by

2
£(2) = Plul(z)(= PIF)(2)) = / P(r,t — 7)du(e), (2)

where z = re'” € U.
A function f harmonic in the disk U C C belongs to the Hardy class h? = h?(U) if

. d 1/p
I fllne = (0?:81/T |f(re”)|p27tr> < 00. (3)

It turns out that if f € hP?(U), then there exists the finite limit

lim f(re) = F(e) (a.e. on T)

r—1-

and the boundary function belongs to LP(T') for p > 1. Moreover for 1 < p < 0o

[ fllne = 1 Flp- (4)

For p = 1 there exists a complex measure p € M(T) such that

11l = 1lpll- (5)
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Standard properties of the Poisson integral show that P[F| extends by continuity to
F on U, provided that F is continuous. For these facts and standard properties of
harmonic Hardy space we refer to [2, Chapter 6]. With the additional assumption that
F is orientation-preserving homeomorphism of this circle onto a convex Jordan curve 7,
P[F] is an orientation preserving diffeomorphism of the open unit disk. This is indeed
the celebrated theorem of Choquet-Rado-Kneser ([7]). This theorem is not true for non-
convex domains, but holds true under some additional assumptions. It has been extended
in various directions (see for example [12], [13] and [8]). Univalent harmonic mappings
of U form an interesting and much-studied class of planar maps; see [6], [19], [20] or the
book [7].

The object of this paper is to study Lindel6f theorem for univalent harmonic map-
pings f.

1.3. The Lindel6f Theorem.

Let f map U conformally onto the inner domain of a smooth Jordan curve ~.
Since the characterization of smoothness in terms of tangent does not depend on the
parametrization, we may choose the conformal parametrization

[0.27] 5 ¢ — f(p) = f(e") € 7.

An analytic characterization of the smoothness is given by the classical Lindelof [18]
theorem:

ProposiTION 1.1.  Let f map U conformally onto the inner domain of a Jordan
curve y. Then ~y is smooth if and only if arg f'(z) has a continuous extension to T', which
we denote by f(e'?). If v is smooth, then

argf'(e'?) = Bp) — o — (6)

E
2
where 3(p) stands for the tangent angle of the curve v at the point f(ei?).

1.4. New result.
The aim of this paper is to prove the following extension of Lindelof theorem:

THEOREM 1.2. Let f(z) = P[F](z) be a harmonic mapping of the unit disk, such
that F is a homeomorphism of the unit circle T onto a C' Jordan curve . Assume
further that there is a constant k > 0 such that

|0,Fo(e%)| ™! € L(T), (7)

where O,Fy(e'?) is the absolutely continuous part of O,F(e'?). Then there is a non-
negative real number R < 1, such that the function

U(z) := arg(iipf(z)), z=re'?,
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is well defined and continuous in R < |z| <1 and has continuous extension to T with
U(e'®) = Bly) — ¢. (8)

Here (3(y) is the tangent angle of v at F(e'#).

REMARK 1.3. a) In order to deduce the classical Lindelf theorem from Theorem
1.2, observe that, if f = P[F] is conformal, then in view of the Smirnov theorem (see
e.g. [9]) F is absolutely continuous in [0, 27) treated as a function of ¢. Further, the
condition (7), is a priori satisfied for conformal mappings. Indeed a classical result of
Warschawski ([23]) states that 1/8,F (e'?) € L*(T) for every & > 0. Since for z = re’?

0y f(2) = izf'(2),
we infer that
arg(9,f()) = 5 + ¢+ arg(f/(2).
Thus on the unit circle we have

arg(f'(2)) = B(p) — 5 — ¢,

which coincides with (6).
b) The following proof can be applied to merely more general situation. It is enough
to assume that the function F' is a covering of v in order to obtain that the function

V) = ane i )

is well defined in some ring domain R < |z| < 1 and has continuous vanishing extension
inT.

c¢) The condition (7) is implied by the Coifman-Fefferman (A ) condition ([5], [21,
p. 168]) for the weight ®(e'?) = |9, Fp(e'?)|, which is equivalent with Muckenhoupt (4,)
condition for some p > 1 that can be formulated in the following way: there exists a
positive constant M such that

1 L ey 1w
w15 [ ¥ < (g7 [amron@a) )
for all arcs I C T.

2. The proof of main result.

PROOF OF THEOREM 1.2. We will assume in the proof that x > 1, however the
proof carries out with almost no changes for 0 < x < 1. Let z = re?. Assume without
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loosing of generality that |y| = 2w. We follow some notation from the introduction.
Recall that

27 )
£ =PIFIE) = [ Pt =@ P(ear

Since v € C?, its arc-length parametrization g is in C* and ¢'(s) = ), where 0 is

continuous in [0, 27], and in view of the fact #(27) — 6(0) = 27, has natural extension

to R: O(x + 2kw) =: 2kw + 0(z), k € Z. Thus ¢'(1(t)) = @0 = BB where

B(t) = 0(¢(t)) is a continuous function in [0, 27] (and in R) with 5(27) — 5(0) = 2.
Define

V(re'?) := arg(A(z) +iB(z))

where

27
A= / P(r,t)sin(B(t + @) — B(e))dib(t + o)

and

27
B= / P(r,t) cos(B(t + @) — Bl))dib(t + ).

We will prove that V' is continuous in R < |z| < 1 and has continuous extension to
T with

V(e®)=0 (10)

for certain non-negative number R < 1. This statement is equivalent with the main
conclusion of our theorem.
Notice that we can obtain with no effort that the radial limit

27
lim e—iﬁ(cp)atf(z) — }E (e—iﬁ(sa) i P(’/‘,t _ (p)dF(eit)> _ e—iﬁ(w)asoF(eitp)

r—1

exists for almost every ¢, without the condition (7). Also we can obtain a similar
statement for non-tangential limit. However to obtain non-restricted limit, we need
some non-trivial approach.
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Prove that lim;|_; V(z) = 0, where the limit is unrestricted. We will prove that for
given 0 < € < 2 there is § = d(¢) such that if 0 < 1 — |z] < § we have

<e¢ B(z)>0.
Since (3 is continuous, there is € = €(e) > 0 such that

|sin[3(p + 1) — B(p)] e —1] <e. (11)

€
| < )

8[| de || [|1/%" || L
Further, we have

2
= lldy. (12)

[ Pt <
leit—1|>e

2

Thus

Aol [ " P(r, D) sinB(t + ) — B@)ldut + )

[ P lsmiae ) el + o

- /| g, T OISO+ ) = BleNldb(E + )

1-—

2
,
R

<

perd B (13)

o)

€
8ldw[I(1[1/4|

Since (3 is continuous there is € > 0 satisfying (11) and

coslf(t+¢) ~ B > 5, I~ 1] <e. (14
So we have

[ P e+ ) = Nt + )

>1 / P(r, )di(t + ).
2 leit—1|<e

To continue observe that di(t) = {(t)dt + dAs(t), which implies the following
inequality between measures ¢ (t)dt < di(t) on [0,2n]. Since 1/¢'(t) € L*[0, 2], and
Pi(t) = ¢/ (t) for almost every ¢, then
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1 1
Amwwwpmﬁﬁzﬁm%mwpm““

for every measurable set . Now by using Holder inequality with coefficients p = x 4+ 1
and ¢ = (1 4 k)/k, we obtain

/ P(r,t)dt
jeit—1]<e
s(/_ me%@+@ﬁy“</v Pmmww+@|WQ””
leit—1|<e let*—1|<e

= (-/en_lée P(T, t)dd](t - SO)) </eit—1S5 P(ﬁ t)W} (t * S0)_th>

ﬁ 27 ﬁ
<([. peowasa) ([ Peower ora)
et —1|<e 0

S ( [, Proaasa)

Thus
(fieoriee Pl 0de) =
eit—1]<e £ \T"
P(r,t)dy(t+ ) > 15
Joreya, PO /T 1
By (12) and (15) we obtain that
(fioo sy Plrt)it) ™
jeit —1)<e £ (T R s
B(z) > . dip||. 16
(2) T ol LU (16)
From (13) and (16) we obtain
1—1r2 €
—— Iyl + o Y|
A(2)] _ € Blldyll(I11/¢]|s)
= e
PO e PO 12
11/4" | e?
1—1r2 €
2 + ’ 1+k
= Sl ) n
1—7r2 ’
I— =

where
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14k

(Sieit_1)<c P(r t)dt)%

I =
[ ll[11/4" || x

Since

2 1+7r €
P(r,t)dt = — arctan
»/leit—1|§€ ( ) T |:1—T\/2—5\/2+5

it follows that there is p > 0 such that for r > p,

1+k

(/ P(r,t)dt) "1
‘eit—l‘gs 2

We have that for r > p

/> b
— 2l delllI1/4 o

Hence

1—7r2

e2

_l’_
iz

€
[A()]  SlavlT/e
B&IS T 17

2

Also we can assume that p is such that for r > p we have

1—r2 < €
e 7 8llaypllll1/¢ o

From (18) and (19) we obtain

if r = |z > p.
To define R, observe that, from the previous proof we obtain that

1

(18)

(19)

if p < |2| < 1, where p = p(e), 0 < € < 2. Then we take R = p(2), and obtain that
the continuous complex function C(z) = A(z) 4+ iB(z) maps the annulus R < |z] < 1 to
the upper half-plane, and this means that it allows a continuous argument arg(C(z)) :=

Im(log(C(z))) in R < |z| < 1. Since
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! i i(8(0)—)
L0,(/(re) = reOP=O0(2),
we obtain that
1 i
arg( ~0,(f(re™)) | = Bp) — ¢ + Im(log(C(2)))
and this is a well-defined continuous function in R < |z| < 1. O

3. Application.

By definition, K-quasiconformal mappings are orientation preserving homeomor-
phisms f : Q — Q' between domains €2, ' C C, contained in the Sobolev class Wlif(Q),
for which the differential matrix and its determinant are coupled in the distortion in-

equality,

[Df(2)* <K det Df (=), where |Df(z)| = max [Df(2)¢]. (21)

for some K > 1.

THEOREM 3.1. If f(z) = P[F](z) = g(z) + h(z) is a quasiconformal harmonic
mapping of the unit disk onto a Jordan domain bounded by a C' convex curve ~y, or onto
a Jordan domain bounded by a C? curve vy, then the function

10

) = a1 1)

is well defined and smooth in U* := U \ {0} and has continuous extension to T with
U(e™) = Bly) = o
Here B(y) is the tangent angle of v at F(e'?).

PROOF. By [3, Proposition 1.6.28], every continuous function P : 2 — C*, defined
in a simply-connected domain 2 has a unique continuous logarithm, @ : 2 — C, satis-
fying the condition Q(zp) = wo. This means that e?*) = P(z), i.e., Q(z) = log P(2).
Let

Then

So
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0 k
. m(z
log(P(2)) = log(ia(2)) — 3_ "
k=1
where
_2l(2)
m(z) = za'(z)
satisfies the condition
K-1
<
)| < g <1,

is a well defined in U*. Since U(z) = Im(log(P(z))), it follows that U(z) is well-defined
smooth function in U*.

Further to deal with convex case we use a result of the author proved in [15]. By
[15], we have that

IDf ()] > Sdist(£(0),7)

for z € U. As |Df(2)| = |d/(2)| + |b/(2)] and O, f(2) = i(za'(z) — 2V/(2)), it follows that

2|

100 f(2)] = [2[(Ja'(2)] = V(2)]) = K[=[(Ja(2)] + [b'(2)]) = 77 dist(£(0),7)-

Since

lim1 O, f(2) = 0,F(e%)

for almost every ¢ € [0,2n], it follows that |9,F (e'?)|~* € L°°(T) C LY(T). So for
k = 1, the conditions of Theorem 1.2 are satisfied.

If 7y is not convex but v € C?, then by the main result of author in [14] we have
that f is bi-Lipschitz. By using Theorem 1.2 we obtain the desired conclusion. O

The canonical representation of a harmonic mapping is f = a +b, b(0) = 0, where a
and b are analytic functions in the unit disk U. With the convention that b(0) = 0, the
representation is unique. The power series expansions of a and b are denoted by

a(z) = ianz", b(z) = i bpz".
n=0 n=1

If f is a sense-preserving harmonic mapping U onto some other region, then by Lewy’s
theorem its Jacobian is strictly positive. Equivalently, the inequality [b'(2)| < |a’(2)|
holds for all z € U. This shows in particular that |a’(0)| > 0, so there is no loss of
generality in assuming that 5(0) = 0 and o/(0) = 1. The class of all sense-preserving
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harmonic mappings of the disk with ag = by = a; — 1 = 0 will be denoted by Sg. Thus,
Sy contains the standard class S of analytic univalent functions. Let S% be the class of

normalized harmonic mappings f(z) = a(z) + b(z), of the unit disk into C satisfying the
condition f(0) =0 and a’(0) — 1 ='(0) =0 ([7, Chapter 7]). If f € Sy, then

f(z) = b1 f(2)

SO,
1= o2 <7

fO(Z) -

If F is the boundary mapping of f, denote by F, the boundary mapping of f,. Also if
v = F(T) we set 7o = F,(T). Then it is clear that v € C! if and only if 7, € C'. Having
these facts in mind we formulate the following application of our main result.

THEOREM 3.2. Let f(z) be a univalent harmonic mapping of the unit disk onto
a Jordan domain bounded by a C' curve y such that 1/0,F € L*(T) for some k > 0.
Then the function

U(e) =g (150102 )
is well defined and smooth in U* and has a continuous extension to OU = T with
U(e'?) = B(yp) — ¢

Further assume as we may that f € Sy and let f, be its normalization mapping. Then

U, = arg(iipﬁ;(z))

is well defined and smooth in U* and has continuous extension to OU* = T U {0} with

Us(e'?) = Bolp) — ¢, Uo(0) =

vl

Here 3(p) and B.(p) are the tangent angles of v at F(e'¥) and that of F,(e'%) at v,
respectively.

PROOF. Since f = P[F] is univalent, F has bounded variation. By following the
proof of the previous theorem we obtain the statement of the theorem but for U*. In
order to show that the mapping is continuous in 0, observe first that

lim ia’(2) <1 — Zb/(z)> =ia'(0) =

2—0 za'(z)

~.

5
So arg(U(0)) = arg(ia’(0)) = 7/2. O

The following example demonstrates that the condition (7) is important. However
it also suggests that a certain generalization of the main result could hold without the a
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priori condition (7).
EXAMPLE 3.3. Let

y 1, if0<t<m,
F(e") =
() eQi(t*W), ifr<t<2m.

By using an approximation argument and the Choquet—Rado—Kneser theorem, we con-
clude that f(z) = P[F](z) is a harmonic diffeomorphism of the unit disk onto itself.
Further

0, ifo<t<m,

2ie2t=m) if T < t < 2m.

B, F(eit) = {

Next we have 8(t) = n/2 if t € (0,7) and 5(t) = 2(t — 7) + 7/2 for ¢t € [m,27]. So for
¢ € [0, 27]

0, ifo<t<m,
e—iﬁ(w)atp(eit) - 2621'(%50), ifm < t<2m,
2e2t, ifr<t<2m 0<p<m.
Let
W(z) = e PP, f(2). (22)

Then for z = re’? and ¢ € [r, 27]

W(z) = e POP[,F(e)](2)

vy 1 2 2rsin g
_ 21
= 2e W(f(z)—2(1+Warctan{1_rz})>. (23)
Hence for ¢ € (7, 2m) we have
lim W(z) = 2.

Also from (23) it follows that for ¢ = 7 or ¢ = 27 we have that

liminf  W(z) > 1.
z—e*? Re(z)<0

Thus

Im(W(2))

li " — M(e) = 0.
edB R (2 M)
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For ¢ € [0, 7]
2m 2\ 2t
(I—=7r%)e dt
= — 24
W(z) 2/7T 14+7r2—2rcos(t —p) 7’ (24)
thus
T sin(2t) it
) Im(W(z)) o 1+cos(t— ) ;
1 = = M P
2sei# Re(2)20 Re(W(2)) /” cos(2) (e%)
o 14+cos(t— )
where
M(e#) = 2( — 4 cos[i] + 2 cos[2¢p] log [ cot [£]] + 7 sin[2¢])

2w cos[2¢p] — cot [£] + 8(1 — cos[y]log [ cot [£]]) sinfp] — tan [£]
Thus M(1) = 0= M(—1) and |M(e*?)| < 1. Further we prove that

Re(W(z)) > 0. (25)
Thus we have that

lim arg(W(z)) = arctan M (e*?). (26)

z—elP

After some elementary transformation we obtain

Re(W(2)) = /Tr/4 ™ g,
)
where
m = 2r(1 — r?) sin z sin(2z)
< (4(r + ) cosm + V2(1 + 4r® + r* + 2r% cos(2z) + 2r® cos(2y)) sin y)
and

4
X <1+r2—2rsin {Z—i—x—y})(l—i—?ﬂ—l—%sin {Z—i—x—}—y})

Hence Re(W(z)) > 0 in this case.
We conclude that V(z) = arg(W(z)) has a continuous extension to T but the ex-

n= (1+r22rcos [Z+x+y]>(l+r2+2rsin {W:chy})
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tension does not vanish on the upper half-circle T", contrary to our conclusion (10), i.e.,
to (8). This implies that our assumption (7) is important.

REMARK 3.4. An alternative approach for the proof of Lindel6f theorem for con-

formal mappings and can be found in the recent monographs [4] and [11] and in the

paper [10].
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