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Abstract. We consider the Schrödinger operator −∆ + V on Rn with
n ≥ 3 and V a member of the reverse Hölder class Bs for some s > n/2. We
obtain the boundedness of the second order Riesz transform ∇2(−∆ + V )−1

on the weighted spaces Lp(w) where w belongs to a class of weights related
to V . To prove this, we develop a good-λ inequality adapted to this setting
along with some new heat kernel estimates.

1. Introduction and statement of main result.

We consider the Schrödinger operator on Rn with n ≥ 3 given by

L = −∆ + V

where V is a non-negative and locally integrable function on Rn satisfying, for some
s > n/2, the reverse Hölder inequality

(
1
|B|

∫

B

V s

)1/s

≤ C

|B|
∫

B

V (1.1)

for all balls B ⊂ Rn. We shall denote the set of all locally integrable functions that
satisfy (1.1) by Bs, the class of reverse Hölder weights of order s.

The seminal paper by Z. Shen [26] investigated the operator L in a systematic way,
obtaining amongst other things, the Lp(Rn) estimates for Riesz transforms associated to
L. Shen’s article has since inspired a host of work on the harmonic analysis related to L.
We give a partial list [1], [4], [8], [10], [11], [14], [16], [19] and refer the reader to their
references for further information.

In this article we are interested in a new class of weights introduced by Bongioanni,
Harboure, and Salinas in [10]. Our main goal is to derive a set of good-λ inequalities
(modelled on the work in [6]) for these classes of weights, and then show how these
inequalities may be applied to obtain the weighted estimates for the second order Riesz
transform ∇2L−1.

These weight classes AL
p are defined in the following manner. Given p > 1 we say

that w ∈ AL
p if there exists θ ≥ 0 and C > 0 such that
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(
1
|B|

∫

B

w

)1/p( 1
|B|

∫

B

w1−p′
)1/p′

≤ C

(
1 +

r

ρ(x)

)θ

(1.2)

for every ball B = B(x, r). The function ρ is the ‘critical radius’ function introduced by
Shen [26] and for a definition see (2.1) below. Observe that when θ = 0 these weights
coincide with the Muckenhoupt classes Ap, but in general they form a larger class of
weights. One can also define reverse Hölder type weights BL

q in an analogous fashion.
See Definitions 3.1 and 3.2.

Subsequently these weight classes were further investigated in [9], [11], [32], [33],
[34]. In our article we are focused on the weighted estimates of the following Riesz
transforms

First order: ∇L−1/2, V 1/2L−1/2

Second order: ∇2L−1, V L−1

Before stating our main result we summarize what is known for both the weighted
and unweighted estimates of these transforms. In the following and throughout the rest
of this article, the notation s∗ will denote ns/(n−s) if s < n, and will denote ∞ if s ≥ n.

( i ) We first describe the unweighted estimates.

Table 1. Intervals of boundedness on Lp(Rn).

Operator: V 1/2L−1/2 ∇L−1/2 V L−1 ∇2L−1

V ≥ 0 (1, 2] (1, 2] p = 1 Weak (1, 1)

V ∈ Bs (1, 2s] (1, s∗] (1, s] (1, s]

The first row describes the situation when V is a non-negative and locally in-
tegrable function. In this situation it is known that the operators ∇L−1/2 and
V 1/2L−1/2 are bounded on Lp(Rn) for all p ∈ (1, 2] (see [27], [13]). The oper-
ators ∆L−1 and V L−1 are bounded on L1(Rn) (see [4]), and hence ∇2L−1 is of
weak-type (1, 1).
The second row of Table 1 specializes to the situation where V belongs to a reverse
Hölder Bs class for s > n/2 and n ≥ 3 and the boundedness of the above Riesz
transforms were obtained by Shen [26]. See also [4] where this is proved for all
n ≥ 1 and s > 1.

( ii ) We turn to the weighted estimates.

Table 2. Weighted estimates for V ∈ Bs with s ≥ n/2 and n ≥ 3.

Operator: V 1/2L−1/2 ∇L−1/2 V L−1 ∇2L−1

w ∈ A∞ Ww(1, 2s) Ww(1, s∗) Ww(1, s) Ww(1, s)

w ∈ AL
∞ WL

w(1, 2s) WL
w(1, s∗) WL

w(1, s) ?

Here we use the notation introduced in [6]:
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Ww(p0, q0) :=
{
p ∈ (p0, q0) : w ∈ A(p/p0) ∩ B(q0/p)′

}
.

One can define the sets of exponents WL
w(p0, q0) analogously for the weights in

(1.2).
Table 2 describes the weighted estimates for the case when V ∈ Bs with s ≥ n/2
and n ≥ 3. For the more general setting of non-negative potentials see [2], [29].
The first row in Table 2 gives the Lp(w) estimates with w a Muckenhoupt weight
and the earliest result in this direction [22] was for the operator V L−1. The second
row depicts estimates for the AL

∞ weights and was obtained for ∇L−1/2 in [10],
and for V 1/2L−1/2, V L−1 in [34]. Since the AL

∞ classes contain the A∞ classes,
these estimates imply the corresponding estimates for the latter weight classes in
the first row.

We remark that by standard Calderón–Zygmund theory, the estimates on Lp(Rn)
and Lp(w) with A∞ weights for the operator ∇2L−1 follow from that of V L−1. However
this is not automatically true for the AL

∞ weights. The following theorem completes
Table 2 above, and is the main result of our article.

Theorem 1.1. Let L = −∆ + V on Rn with n ≥ 3 and V ∈ Bs for some s ≥ n/2.
If w ∈ AL

∞ and p ∈ WL
w(1, s) then ∇2L−1 is bounded on Lp(w).

Our techniques are based on good-λ inequalities. These inequalities form an impor-
tant part of classical harmonic analysis (see [31] or [17]). Unfortunately, the operators
considered in our context are beyond the Calderón–Zygmund class of operators that are
treated in say [31] and hence there is a need to adapt these methods to the other sit-
uations. This adaptation is done in [3], [5], [6], [23] and we refer the reader to these
works for a more complete description and historical references. Our work here is also
largely inspired by [6] and part of the motivation for this work is extend the machinery
developed there to classes of weights beyond the Muckenhoupt setting. We do this for
weights in AL

p in Theorem 3.9 below, and this allows us to handle operators such as
∇2L−1 that can not be treated by techniques in [10], [32], [33], [34].

The other tool we need are estimates on the heat kernel of L. Let e−tL and pt(x, y)
be the heat semigroup and heat kernel associated to L respectively. It is now well known
that pt(x, y) admits stronger decay than the Gaussian for large times (see [15], [21] and
Proposition 2.3 below). Our approach in this article is to study the Riesz transform
∇2L−1 through the formula

∇2L−1 =
∫ ∞

0

∇2e−tL dt, (1.3)

and as such we require suitable estimates on second derivatives ∇2
xpt(x, y). We obtain

these estimates in Proposition 2.4 and furthermore show that the extra decay on the
heat kernel mentioned above can be carried through to its derivatives. Loosely speaking
this extra decay allows us to overcome the global growth in the weights defined by (1.2)
when proving Theorem 1.1.

This paper is organized as follows. In Section 2 we prove the required estimates for
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the heat kernel pt(x, y) and the heat semigroup e−tL. The main result of this section is
Proposition 2.3. We turn to the AL

∞ weights in Section 3 and we first gather the required
definitions and properties of these weights before developing the good-λ inequalities.
The key result here is Theorem 3.9. Finally in Section 3.2 we combine the heat kernel
estimates with the good-λ inequalities to prove Theorem 1.1.

We gather here some notation that we will use throughout this article. We write∫
E

f to mean the Lebesgue integral of f over the measureable set E, and the quantity∫
E

f will be used to denote (1/|E|) ∫
E

f , the average of f over E. By a ‘ball B’ we mean
the set B = B(xB , rB), the ball centred at xB and radius rB . Given a ball B and α ≥ 1
we define αB = B(xB , αrB) to be the dilation of B by a factor of α. We also define the
annuli Uj(B) = 2jB\2j−1B for j ≥ 1, and U0(B) = B. Finally we follow the convention
that the symbols C, c in a string of inequalities will mean a constant that may change
over the course of the inequalities, but does not depend on the essential variables.

2. Kernel estimates.

In this section we obtain the kernel estimates needed to prove Theorem 1.1.
Let n ≥ 1 and V be a non-negative locally integrable function on Rn. We define the

form QV by

QV (u, v) :=
∫

Rn

∇u · ∇v +
∫

Rn

V uv

with domain D(QV ) =
{
u ∈ W 1,2(Rn) :

∫
Rn V |u|2 < ∞}

. It is known that this form is
closed and that C∞0 (Rn) is a core for the form. See [28]. We denote by L the self-adjoint
operator associated with QV , with domain

D(L) =
{

u ∈ D(QV ) : ∃v ∈ L2(Rn), with QV (u, ϕ) =
∫

vϕ, ∀ϕ ∈ D(QV )
}

.

We write formally L = −∆ + V .
We need the following auxiliary function, first introduced by Z. Shen [26]: for each

x ∈ Rn we define the critical radius associated to V at x by

ρ(x) := sup
{

r > 0 :
r2

B(x, r)

∫

B(x,r)

V (y) dy ≤ 1
}

. (2.1)

As an example when V (x) = |x|2 then ρ(x) ∼ 1/(1 + |x|). We remark also that when
V ∈ Bs with s > n/2 and V is not identically zero, then 0 < ρ(x) < ∞ for any x ∈ Rn.

Next we collect some properties of ρ and V ∈ Bs that were proved in [26].

Lemma 2.1 ([26, Lemma 1.4]). Let V ∈ Bs with s ≥ n/2. Then there exists C0 > 0
and κ0 ≥ 1 with
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C−1
0 ρ(x)

(
1 +

|x− y|
ρ(x)

)−κ0

≤ ρ(y) ≤ C0 ρ(x)
(

1 +
|x− y|
ρ(x)

) κ0
κ0+1

. (2.2)

In particular if x, y ∈ B(xB , λρ(xB)) for some λ > 0, then

ρ(x) ≤ Cλρ(y) (2.3)

where Cλ = C2
0 (1 + λ)(2κ0+1)/(κ0+1).

Lemma 2.2 ([26, Lemmas 1.2 and 1.8]). If n ≥ 1 and V ∈ Bs for some s > 1 then
there exists C > 0 and σ > 0 such that the following holds:

(a) for each λ > 1 and all balls B,

r2
B

∫

B

V ≤ Cλn/s−2(λrB)2
∫

λB

V,

(b) for all balls B satisfying rB ≥ ρ(xB),

r2
B

∫

B

V ≤ C

(
rB

ρ(xB)

)σ

.

The operator L generates a semigroup e−tL on L2(Rn) with integral kernel pt(x, y),
which we shall refer to as the heat kernel of L. Recall that if V is non-negative and
locally-integrable then the heat kernel of L admits the so-called Gaussian upper bounds
(see p. 195 of [24]). However if V is a reverse Hölder potential then the heat kernel
satisfies stronger bounds.

Proposition 2.3 ([21, Theorem 1]). Assume that V ∈ Bs with s ≥ n/2 for
n ≥ 3, or s > 1 for n = 2. Then there exists C0, c0, c > 0 and δ ∈ (0, 1) such that for all
x, y ∈ Rn and t > 0,

pt(x, y) ≤ C0

tn/2
e−c0

|x−y|2
t e

−c
(
1+

t
ρ(x)2

)δ

. (2.4)

We remark that δ depends on the constant κ0 in Lemma 2.1. Similar estimates can be
found in [15].

The following is the main result of this section. We show that the extra decay term
in (2.4) can be carried over to estimates on the derivatives. The estimates on the second
derivatives in part (c) of the next result will be needed in the proof of Theorem 1.1. The
estimates in parts (a) and (b) are needed to prove part (c).

Proposition 2.4. Assume V ∈ Bs with s ≥ n/2 for n ≥ 3 and s > 1 for n = 2.
Let δ be the constant from (2.4). Then the following holds.

(a) There exists c = c(δ) > 0 and c1 > 0 such that for each k ∈ N there exists Ck > 0
satisfying
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∣∣∣∣
∂k

∂tk
pt(x, y)

∣∣∣∣ ≤
Ck

tn/2+k
e−c1

|x−y|2
t e

−c
(
1+

t
ρ(x)2

)δ

(2.5)

for every x, y ∈ Rn, and t > 0.
(b) For each p ∈ [1, s∗) there exists αp, Cp, c > 0 such that for all y ∈ Rn, and t > 0,

(∫
|∇xpt(x, y)|p eαp

|x−y|2
t dx

)1/p

≤ Cp

t1/2+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

. (2.6)

Also for each p ∈ [1, 2s) there exists αp, Cp, c > 0 such that for all y ∈ Rn, and t > 0,

(∫ ∣∣V 1/2(x)pt(x, y)
∣∣peαp

|x−y|2
t dx

)1/p

≤ Cp

t1/2+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

. (2.7)

Note that αp also depends on s.
(c) For each p ∈ [1, s) there exists βp, Cp, c > 0 such that for all y ∈ Rn, and t > 0,

(∫ ∣∣∇2
xpt(x, y)

∣∣p eβp
|x−y|2

t dx

)1/p

≤ Cp

t1+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

, (2.8)

(∫
|V (x)pt(x, y)|p eβp

|x−y|2
t dx

)1/p

≤ Cp

t1+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

. (2.9)

Proof of Proposition 2.4 (a). Our approach is to work with a holomorphic
extension of the heat semigroup to an appropriate sector in the complex plane, and then
evoke Cauchy’s integral formula. This holomorphic extension is contained in

Lemma 2.5 ([16, Corollary 6.2]). The semigroup
{
e−tL

}
has a unique holomor-

phic extension on L2(eη|x−y|dx) for every η > 0 and y ∈ Rn in the sector Σπ/4 :=
{ξ ∈ C : |arg ξ| < π/4}. Moreover there exists constants C, c > 0 such that

‖e−zL‖L2(eη|x−y|dx)→L2(eη|x−y|dx) ≤ Cecη2<z

for every y ∈ Rn, z ∈ Σπ/4, and η > 0.

In the following we shall write pz(x, y) to mean the integral kernel of the operator
e−zL. Our aim is to obtain the following pointwise bounds on this integral kernel, which
is an extension of (2.4) to complex times.

Lemma 2.6. Assume that the conditions in Proposition 2.4 hold. Then there exists
C, c > 0 such that for all x, y ∈ Rn and z ∈ Σπ/5, one has

|pz(x, y)| ≤ C

(<z)n/2
e
−c

(
1+

<z
ρ(x)2

)δ

e−c
|x−y|2
<z . (2.10)
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Let us demonstrate how (2.10) readily leads to (2.5). Fix x, y ∈ Rn and t > 0. We
shall apply Cauchy’s integral formula to pz(x, y) in the disk

Γ(t) := {ξ ∈ C : |ξ − t| ≤ t/2} .

Observe that Γ(t) ⊂ Σπ/5. Hence pz(x, y) is holomorphic over Γ(t), and so for each
k ∈ N, Cauchy’s integral formula gives

∂k

∂tk
pt(x, y) =

k!
2πi

∫

∂Γ(t)

pz(x, y)
(z − t)k+1

dz.

Using (2.10) and noting that when z ∈ ∂Γ(t) one has t/2 ≤ <z ≤ 3t/2 and |z − t| = t/2,
we get

∣∣∣∣
∂k

∂tk
pt(x, y)

∣∣∣∣ ≤ Ck

∫

∂Γ(t)

e−c
|x−y|2
<z e

−c
(
1+

<z
ρ(x)2

)δ |dz|
(<z)n/2(t/2)k+1

≤ Ck

tn/2+k+1
e−c1

|x−y|2
t e

−c
(
1+

t
2ρ(x)2

)δ ∫

∂Γ(t)

|dz|

≤ Ck

tn/2+k
e−c1

|x−y|2
t e

−c2−δ
(
1+

t
ρ(x)2

)δ

which is (2.5). ¤

To complete the proof of Proposition 2.4 (a) we give the

Proof of Lemma 2.6. We claim that (2.10) follows from the following weighted
estimate: there exists C, c, and ε > 0 such that for every y ∈ Rn, η > 0, and z ∈ Σπ/5,

∫

Rn

|pz(x, y)|2 eη|x−y| dx ≤ Ceεη2<z

(<z)n/2
e
−c

(
1+

<z
ρ(y)2

)δ

. (2.11)

Assume this estimate for the moment. Then the semigroup property, the Cauchy–
Schwarz inequality, and estimate (2.11) gives

|pz(x, y)| eη|x−y| ≤ ∥∥pz/2(x, ·) eη|x−·|∥∥
L2

∥∥pz/2(·, y) eη|·−y|∥∥
L2

≤ Ce4εη2<z

(<z)n/2
e
−c

(
1+

<z
ρ(x)2

)δ

.

Now fix ε0 ∈ (0, 1/4ε) and choose η = ε0 |x− y| /<z. Then our estimate becomes

|pz(x, y)| ≤ C

(<z)n/2
e(4εε20−ε0)

|x−y|2
<z e

−c
(
1+

<z
ρ(x)2

)δ

.
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Since 4εε20 − ε0 < 0, this establishes (2.10).
Hence our proof of Lemma 2.6 will be complete provided we show (2.11). Accordingly

fix x, y ∈ Rn, η > 0, z ∈ Σπ/5 and set t := <z. Then the semigroup property implies
that

pz(x, y) =
(
e−(z−(t/10))Lpt/10(·, y)

)
(x).

Since z ∈ Σπ/5 then z − (t/10) ∈ Σπ/4, and hence by Lemma 2.5

∥∥pz(·, y) eη|·−y|∥∥
L2 =

(∫

Rn

∣∣e−(z−(t/10))Lpt/10(·, y)(x)
∣∣2eη|x−y| dx

)1/2

≤ Cecη2t
∥∥pt/10(·, y) eη|·−y|∥∥

L2 .

The bounds for the heat kernel from (2.4) give

∥∥pt/10(·, y) eη|·−y|∥∥
L2 ≤

C

tn/2
e
−c10−δ

(
1+

t
ρ(y)2

)δ(∫

Rn

e−20c0
|x−y|2

t eη|x−y| dx

)1/2

.

We shall prove that for any θ > 0 there exists Cθ > 0 and cθ > 0 such that for all η > 0
and t > 0,

∫

Rn

e−θ
|x−y|2

t eη|x−y| dx ≤ Cθ tn/2 ecθη2t. (2.12)

Combining (2.12) with the previous two estimates will give (2.11).
We shall obtain (2.12) by considering two cases: (i) η

√
t ≥ 1, and (ii) η

√
t < 1. Fix

a constant c ≥ 8/θ. In the first case we write

∫

Rn

e−θ
|x−y|2

t eη|x−y| dx

≤ 2
∫

B(y,2cηt)

eη|x−y| dx +
∞∑

j=2

∫

Uj(B(y,cηt))

e−θ
|x−y|2

t eη|x−y| dx

≤ 2e2cη2t |B(y, 2cηt)|+
∞∑

j=2

e−θ c2
4 4jη2te2jcη2t

∣∣B(y, 2jcηt)
∣∣ .

Now using that θc ≥ 8 we have that eη2t(c2j−θ4jc2/8) ≤ 1, and hence

∫

Rn

e−θ
|x−y|2

t eη|x−y| dx ≤ Ctn/2e3cη2t + C
∞∑

j=2

e−θ c2
8 4jη2t(2jcηt)n
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≤ Ctn/2e3cη2t + C
tn/2

(η2t)n

∞∑

j=2

2−nj

≤ Ctn/2ecθη2t

where in the next to last line we have used the fact that η2t ≥ 1.
For the second case, with the same c ≥ 8θ, we write

∫

Rn

e−θ
|x−y|2

t eη|x−y| dx

≤ 2e2cη
√

t
∣∣B(y, 2c

√
t)

∣∣ +
∞∑

j=2

∫

Uj(B(y,c
√

t))

e−θ
|x−y|2

t eη|x−y| dx

≤ Ctn/2 +
∞∑

j=2

e−θ c2
4 4j

e2jcη
√

t
∣∣B(y, 2jc

√
t)

∣∣

≤ Ctn/2 + C
∞∑

j=2

e−θ c2
8 4j

(2j
√

t)n

≤ Ctn/2 ≤ Ctn/2ecθη2t.

In the second line we have used that η
√

t < 1.
This completes the proof of (2.12), and hence also of Lemma 2.6. ¤

Proof of Proposition 2.4 (b). We will consider three separate cases: p = 2,
p < 2, and p > 2.

We first obtain the case p = 2. Let c0 be the constant in (2.4), and choose α2 ∈
(0, (2/3)c0). We shall proceed as in [13] with some slight modifications. Let ϕ ∈ C∞0 (Rn)
with 0 ≤ ϕ ≤ 1, support in B(0, 2), |∇ϕ| ≤ 1, and ϕ ≡ 1 on B(0, 1). Define for each
R ≥ 1,

ϕR(·) := ϕ
( ·

R

)
.

Then it follows that |∇ϕR| . 1/R.
Fix y ∈ Rn, t > 0, R ≥ 1, and set

IR(t, y) :=
n∑

k=1

∫

Rn

|∂kpt(x, y)|2 eα2
|x−y|2

t ϕR(x) dx.

Then one has

IR(t, y) = I1
R(t, y)− I2

R(t, y)

where
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I1
R(t, y) :=

n∑

k=1

∫

Rn

∂kpt(x, y) ∂k

[
pt(x, y) eα2

|x−y|2
t ϕR(x)

]
dx

I2
R(t, y) :=

n∑

k=1

∫

Rn

∂kpt(x, y) pt(x, y) ∂k

[
eα2

|x−y|2
t ϕR(x)

]
dx.

Let us study the first term. Since ϕR has compact support then

pt(·, y) eα2
|·−y|2

t ϕR(·) ∈ D(QV ).

Therefore since both V and ϕR are non-negative,

I1
R(t, y) ≤ I1

R(t, y) +
n∑

k=1

∫

Rn

V (x) pt(x, y)2eα2
|x−y|2

t ϕR(x) dx

= QV

(
pt(·, y) , pt(·, y) eα2

|·−y|2
t ϕR(·)

)

=
∫

Rn

Lpt(x, y) pt(x, y) eα2
|x−y|2

t ϕR(x) dx

=
∫

Rn

∂

∂t
pt(x, y) pt(x, y) eα2

|x−y|2
t ϕR(x) dx.

Now using the bounds on the heat kernel (2.4) and on its time derivative (2.5) we have

I1
R(t, y) ≤ C

tn+1
e
−c

(
1+

t
ρ(y)2

)δ ∫

Rn

e−(c0−α2)
|x−y|2

t ϕR(x) dx.

Since α2 < c0 and ϕR ≤ 1 we can control the integral by a multiple of tn/2 and obtain

I1
R(t, y) ≤ C

tn/2+1
e
−c

(
1+

t
ρ(y)2

)δ

. (2.13)

For the second term we have

I2
R(t, y) =

n∑

k=1

∫

Rn

∂kpt(x, y) pt(x, y) eα2
|x−y|2

t

[
∂kϕR(x) +

2α2

t
(xk − yk) ϕR(x)

]
dx

≤
n∑

k=1

C√
t

∫

Rn

|∂kpt(x, y)||pt(x, y)| e2α2
|x−y|2

t ϕR(x) dx

+
n∑

k=1

∫

Rn

|∂kpt(x, y)||pt(x, y)| eα2
|x−y|2

t |∂kϕR(x)| dx

=: I2.1
R (t, y) + I2.2

R (t, y). (2.14)
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To estimate the first term we use the Cauchy–Schwarz inequality, the heat kernel bounds
(2.4), and that 2c0 > 3α2 to obtain

I2.1
R (t, y) ≤

n∑

k=1

C√
t

∥∥∥∥pt(·, y)e
3α2
2
|·−y|2

t ϕR

∥∥∥∥
L2

∥∥∥∥|∂kpt(·, y)| e
α2
2
|·−y|2

t ϕR

∥∥∥∥
L2

≤ Ce
−c

(
1+

t
ρ(y)2

)δ

tn/2+1/2

n∑

k=1

∥∥∥∥e−
(2c0−3α2)

2
|·−y|2

t

∥∥∥∥
L2

∥∥∥∥|∂kpt(·, y)| e
α2
2
|·−y|2

t ϕR

∥∥∥∥
L2

≤ C√
tn/2+1

√
IR(t, y) e

−c
(
1+

t
ρ(y)2

)δ

. (2.15)

Combining (2.13), (2.14), and (2.15), with the inequality
√

AB ≤ (ε/2)A + (1/2ε)B,
valid for all ε,A, B > 0, we obtain

IR(t, y) ≤ Ce
−c

(
1+

t
ρ(y)2

)δ (
1

tn/2+1
+

1√
tn/2+1

√
IR(t, y)

)
+ I2.2

R (t, y)

≤ Ce
−c

(
1+

t
ρ(y)2

)δ (
1 + 2ε

tn/2+1
+

1
2ε

IR(t, y)
)

+ I2.2
R (t, y).

Choosing ε large enough therefore gives

IR(t, y) ≤ C

tn/2+1
e
−c

(
1+

t
ρ(y)2

)δ

+ C I2.2
R (t, y).

Now using that |∇ϕR| . 1/R we see that

I2.2
R (t, y) ≤ C

R

{ n∑

k=1

∫

Rn

|∂kpt(x, y)| |pt(x, y)| eα2
|x−y|2

t dx

}
−→ 0

as R →∞. Hence by Fatou’s Lemma,

∫

Rn

|∇xpt(x, y)|2 eα2
|x−y|2

t dx ≤
∫

Rn

lim inf
R→∞

{
|∇xpt(x, y)|2 eα2

|x−y|2
t ϕR(x)

}
dx

≤ lim inf
R→∞

∫

Rn

|∇xpt(x, y)|2 eα2
|x−y|2

t ϕR(x) dx

= lim inf
R→∞

IR(t, y)

≤ lim inf
R→∞

{
C

tn/2+1
e
−c

(
1+

t
ρ(y)2

)δ

+ I2.2
R (t, y)

}

≤ C

tn/2+1
e
−c

(
1+

t
ρ(y)2

)δ

.
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This proves (2.6) for p = 2.
To obtain (2.7) for p = 2, we observe that

∫

Rn

V (x) pt(x, y)2eα2
|x−y|2

t ϕR(x) dx = QV

(
pt(·, y), pt(·, y) eα2

|·−y|2
t ϕR

)
− I1

R(t, y).

Since both terms have been estimated we can apply the same computations as in (2.6)
and yield (2.7). This completes the proof of Proposition 2.4 part (b) for the case p = 2.

Next we turn to the case p < 2. Let p ∈ [1, 2) and fix αp ∈ (0, α2/4). Applying
Hölder’s inequality with exponents 2/p and (2/p)′ = 2/(2− p) gives

∫

Rn

|∇xpt(x, y)|p eαp
|x−y|2

t dx

=
∫

Rn

|∇xpt(x, y)|p e2pαp
|x−y|2

t e−(2p−1)αp
|x−y|2

t dx

≤
(∫

Rn

|∇xpt(x, y)|2 e4αp
|x−y|2

t dx

)p/2(∫

Rn

e
− 2(2p−1)

2−p αp
|x−y|2

t dx

)1−p/2

.

Since 4αp < α2 we can control the first term by a constant multiple of

[
1

tn/2+1
e
−c

(
1+

t
ρ(y)2

)δ]p/2

,

and since (2p − 1)/(2 − p) > 0 we can bound the second integral by a multiple of
(tn/2)1−p/2. Therefore

∫

Rn

|∇xpt(x, y)|p eαp
|x−y|2

t dx ≤ C

tp/2+(p−1)n/2
e
− cp

2

(
1+

t
ρ(y)2

)δ

which gives (2.6) for p ∈ [1, 2). Similar calculations gives (2.7) for the same range of p.
We now consider the case 2 < p < s∗. We shall make use of the following estimate,

valid for each q ∈ (2, s∗),

‖∇pt(·, y)‖q ≤
Cq

t1/2+n/2q′ e
−c

(
1+

t
ρ(y)2

)δ

∀ y ∈ Rn, t > 0. (2.16)

Assume this estimate for the moment. We shall show how an interpolation between
(2.16) and the estimate (2.6) for p = 2 yields (2.6) for all p ∈ (2, s∗). Indeed for each
p ∈ (2, s∗) set (recall that s∗ = ∞ if and only if s ≥ n)

q :=





p + s∗

2
if s∗ < ∞,

2p if s∗ = ∞
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and αp := α2(q − p)/(q − 2). Note that p and q satisfy

p = 2
(

q − p

q − 2

)
+ q

(
p− 2
q − 2

)
, 0 <

q − p

q − 2
< 1, 1 <

q − 2
q − p

< ∞.

Applying Hölder’s inequality with exponents

q − 2
q − p

and
(

q − 2
q − p

)′
=

q − 2
p− 2

we obtain

∫

Rn

|∇xpt(x, y)|p eαp
|x−y|2

t dx

=
∫

Rn

|∇xpt(x, y)|2 q−p
q−2 eαp

|x−y|2
t |∇xpt(x, y)|q p−2

q−2 dx

≤
(∫

Rn

|∇xpt(x, y)|2 eα2
|x−y|2

t dx

) q−p
q−2

(∫

Rn

|∇xpt(x, y)|q dx

) p−2
q−2

.

Estimate (2.6) for the case p = 2 allows us to control the first term by a multiple of

[
t

n
2 +1

]− q−p
q−2 e

−2c q−p
q−2

(
1+

t
ρ(y)2

)δ

,

while estimate (2.16) allows us to control the second by a multiple of

[
t

q
2+

n(q−1)
2

]− p−2
q−2

e
−cq p−2

q−2

(
1+

t
ρ(y)2

)δ

.

Combining these estimates we obtain

∫

Rn

|∇xpt(x, y)|p eαp
|x−y|2

t dx ≤ C

tp/2+(p−1)n/2
e
−pc

(
1+

t
ρ(y)2

)δ

which is (2.6).
It remains to obtain (2.16). Firstly observe that the semigroup property implies

∇xp2t(x, y) = ∇xe−tLpt(·, y)(x). (2.17)

Now recall from Table 1 in Section 1 that under our assumptions on L = −∆ + V the
Riesz transform ∇L−1/2 is bounded on Lq(Rn) for every q ∈ (1, s∗). This implies that
for each q ∈ (1, s∗)

∥∥∇e−tL
∥∥

q→q
≤ Cq√

t
.
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Indeed by the analyticity of the semigroup
{
e−tL

}
t>0

(see [25, Theorem 6.13, p. 74])

∥∥√t∇e−tLf
∥∥

q
=

∥∥√t∇L−1/2L1/2e−tLf
∥∥

q
.

∥∥√tL1/2e−tL
∥∥

q
. ‖f‖q .

Hence from (2.17)

‖∇p2t(·, y)‖q =
∥∥∇e−tLpt(·, y)

∥∥
q

. 1√
t
‖pt(·, y)‖q . (2.18)

Now using the bounds (2.4), we have

‖pt(·, y)‖q
q ≤

C

tqn/2
e
−qc

(
1+

t
ρ(y)2

)δ ∫

Rn

e−qc
|x−y|2

t dx ≤ C

t(q−1)n/2
e
−qc

(
1+

t
ρ(y)2

)δ

.

Combining this with (2.18) gives (2.16).
Finally to obtain (2.7) for p ∈ (2, 2s) we may argue in a similar fashion as above,

except in place of (2.16) we use

∥∥V (·)1/2pt(·, y)
∥∥

q
≤ Cq

t1/2+n/2q′ e
−c

(
1+

t
ρ(y)2

)δ

∀ y ∈ Rn, t > 0

which follows similarly from the heat kernel bounds (2.4), and the boundedness of
V 1/2L−1/2 on Lq(Rn) for all q ∈ (1, 2s) (see Table 1 from Section 1).

This concludes the proof of Proposition 2.4 (b). ¤

Proof of Proposition 2.4 (c). We shall first obtain the Proposition for p ∈
(1, s). The case p = 1 can then be obtained by Hölder’s inequality (we omit the details for
this case). Fix p ∈ (1, s). Let αp be the constant in Proposition 2.4 (b), c1 be the constant
in Proposition 2.4 (a), and c0 the constant in (2.4). Pick β ∈ (0,min {αp, pc1, pc0}) and
set βp = β/2.

We shall require the following inequality that is in a sense based on the Calderón–
Zygmund inequality. It is inspired by a similar inequality in [12] but valid only on certain
domains of Rn. The following applies to Rn and we defer its proof to the end.

Lemma 2.7. Let p ∈ (1,∞) and f ∈ W 2,p(Rn). Then there exists C = C(p, n)
such that for each 1 ≤ j, k ≤ n one has

‖φ∂j∂kf‖Lp ≤ C
(∥∥f |∇2φ|∥∥

Lp +
∥∥|∇f ||∇φ|∥∥

Lp +
∥∥φ∆f

∥∥
Lp

)

for every φ ∈ C∞0 (Rn).

We will prove (2.8) by using a family of weight functions {wt,R(·, y)}R ⊂ C∞0 (Rn)
that forms a smooth cutoff of eβ|x−y|2/t, and then applying an approximation argument.
Accordingly fix t > 0 and let ϕ ∈ C∞0 (Rn) be a function satisfying the following (for
some fixed constant C):
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suppϕ ⊂ B(0, 2
√

t), ϕ ≡ 1 on B(0,
√

t), |ϕ| ≤ 1, |∇ϕ| ≤ C√
t
,

∣∣∇2ϕ
∣∣ ≤ C

t
.

Now for each R ≥ 1 set ϕR := ϕ(·/R). Then ϕR satisfies:

ϕR ≡ 1 on B(0, R
√

t), |ϕR| ≤ 1, |∇ϕR| ≤ C√
t
,

∣∣∇2ϕR

∣∣ ≤ C

t
.

Now define

wt,R(x, y) := ϕR

(|x− y|)eβp
|x−y|2

pt .

Then suppwt,R(x, y) ⊂ B(y, 2R
√

t) and one can show easily that

|∇xwt,R(x, y)| ≤ C√
t
e
β
|x−y|2

pt and
∣∣∇2

xwt,R(x, y)
∣∣ ≤ C

t
e
β
|x−y|2

pt . (2.19)

Next define for each t > 0, y ∈ Rn and R ≥ 1,

JR(t, y) :=
∥∥wt,R(·, y)

∣∣∇2pt(·, y)
∣∣∥∥

p
.

We apply Lemma 2.7 with f := pt(·, y) and φ := wt,R(·, y). Note that pt(·, y) ∈ W 2,p(Rn).
To see this recall firstly that ∇2L−1 is bounded on Lp(Rn) for p ∈ (1, s) (from Table 1
of Section 1), and secondly that (∂/∂t)pt(·, y) ∈ Lp(Rn) (due to the pointwise bounds
(2.5) on the time derivative of the heat kernel of L). Therefore one has

∥∥∇2pt(·, y)
∥∥

p
=

∥∥∥∥−∇2L−1 ∂

∂t
pt(·, y)

∥∥∥∥
p

.
∥∥∥∥

∂

∂t
pt(·, y)

∥∥∥∥
p

< ∞

so that ∇2pt(·, y) ∈ Lp(Rn). Hence by Lemma 2.7, for each t > 0, y ∈ Rn, and R ≥ 1,
we obtain

JR(t, y) .
∥∥|∇2wt,R(·, y)|pt(·, y)

∥∥
p

+
∥∥|∇wt,R(·, y)||∇pt(·, y)|∥∥

p
+

∥∥wt,R(·, y)∆pt(·, y)
∥∥

p

=: J1
R(t, y) + J2

R(t, y) + J3
R(t, y).

To estimate the first term we use the bounds of our constructed weight functions (2.19),
the bounds on the heat kernel in (2.4), and that β − pc0 < 0:

J1
R(t, y)p =

∫

Rn

∣∣∇2
xwt,R(x, y)

∣∣p pt(x, y)p dx

≤ C

tp+pn/2
e
−pc

(
1+

t
ρ(y)2

)δ ∫

Rn

e(β−pc0)
|x−y|2

t dx

≤ C

tp+(p−1)n/2
e
−pc

(
1+

t
ρ(y)2

)δ

.
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For the second term J2
R we observe that since s∗ ≥ s then Proposition 2.4 (b) applies.

Therefore because β ≤ αp we may combine (2.6) with (2.19) to obtain

J2
R(t, y)p =

∫

Rn

|∇xwt,R(x, y)|p |∇xpt(x, y)|p dx

≤ C

tp/2

∫

Rn

|∇xpt(x, y)|p eβ
|x−y|2

t dx

≤ C

tp+(p−1)n/2
e
−pc

(
1+

t
ρ(y)2

)δ

.

Now for the third term

J3
R(t, y) = ‖wt,R(·, y)(L− V )pt(·, y)‖p

≤ ‖wt,R(·, y)Lpt(·, y)‖p + ‖wt,R(·, y)V pt(·, y)‖p

=: J3.1
R (t, y) + J3.2

R (t, y).

Using the pointwise bounds on the time derivative of the heat kernel (2.5) and that
|wt,R(x, y)| ≤ eβp|x−y|2/t we have

J3.1
R (t, y)p =

∫

Rn

∣∣∣∣
∂

∂t
pt(x, y)

∣∣∣∣
p

wt,R(x, y)p dx

≤ C

tp+pn/2
e
−pc

(
1+

t
ρ(y)2

)δ ∫

Rn

e(βp−pc1)
|x−y|2

t dx

≤ C

tp+(p−1)n/2
e
−pc

(
1+

t
ρ(y)2

)δ

,

where in the last line we have used that βp − pc1 < 0. For the final term J3.2
R (t, y) we

employ the reverse Hölder properties of V , and the improved decay inherent in the heat
kernel of L, namely (2.4). Indeed one has

J3.2
R (t, y)p =

∫

Rn

V (x)ppt(x, y)pwt,R(x, y)p dx

≤ C

tpn/2
e
−pc

(
1+

t
ρ(y)2

)δ ∫

Rn

V (x)pe(βp−pc0)
|x−y|2

t dx

=
C

tpn/2
e
−pc

(
1+

t
ρ(y)2

)δ ∞∑

j=0

∫

Uj(B(y,
√

t))

V (x)pe−β0
|x−y|2

t dx

where β0 := pc0 − βp > 0. Now for each j ≥ 1,
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∫

Uj(B(y,
√

t))

V (x)pe−β0
|x−y|2

t dx ≤ e−β02
2j

∫

B(y,2j
√

t)

V (x)p dx

≤ Ce−β04
j ∣∣B(y, 2j

√
t)

∣∣
( ∫

B(y,2j
√

t)

V (x) dx

)p

≤ Ce−β04
j

2jntn/2

(
2j(n0−n)

∫

B(y,
√

t)

V (x) dx

)p

=
Ce−β04

j

2j(n+n0p−np)

tp−n/2

(
t

∫

B(y,
√

t)

V (x) dx

)p

.

In the second inequality we have used that V ∈ Bp because p < s and hence Bp ⊃ Bs.
In the next to last line we have used that V dx is a doubling measure. Next we remark
that if

√
t ≤ ρ(y), then by Lemma 2.2 (a) and the definition of ρ in (2.1), one has

t

∫

B(y,
√

t)

V (x) dx ≤ C

( √
t

ρ(y)

)2−n/s

≤ C

since s > n/2. On the other hand if
√

t > ρ(y), then Lemma 2.2 (b) implies that

t

∫

B(y,
√

t)

V (x) dx ≤ C

( √
t

ρ(y)

)σ

≤ C

( √
t

ρ(y)

)|σ|
.

In either case we can bound

e
− pc

2

(
1+

t
ρ(y)2

)δ(
t

∫

B(y,
√

t)

V (x) dx

)p

by a fixed constant independent of t and y. Therefore it follows that

J3.2
R (t, y)p ≤ C

e
−pc

(
1+

t
ρ(y)2

)δ

tp+(p−1)n/2

(
t

∫

B(y,
√

t)

V (x) dx

)p{
1 +

∞∑

j=1

e−β04
j

2j(n+n0p−np)

}

≤ C
e
− pc

2

(
1+

t
ρ(y)2

)δ

tp+(p−1)n/2
.

Collecting the estimates for J1
R, J2

R and J3
R we obtain

JR(t, y) ≤ C

t1+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

with C, c independent of R. Therefore
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(∫

Rn

∣∣∇2
xpt(x, y)

∣∣p eβ
|x−y|2

t dx

)1/p

= sup
R≥1

JR(t, y) ≤ C

t1+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

.

This establishes (2.8).
To prove (2.9) we simply note that

(∫
|V (x)pt(x, y)|p eβp

|x−y|2
t dx

)1/p

= sup
R≥1

J3.2
R (t, y) ≤ C

t1+n/2p′ e
−c

(
1+

t
ρ(y)2

)δ

which follows from our previous estimates. ¤

This concludes the proof of Proposition 2.4 part (c), save for the proof of Lemma
2.7 which was deferred. We turn to this now.

Proof of Lemma 2.7. Fix p ∈ (1,∞), f ∈ W 2,p(Rn) and j, k ∈ {1, 2, . . . , n}.
Let φ ∈ C∞0 (Rn). Then the product rule gives the following

φ∂j∂kf = ∂j(φ∂kf)− ∂jφ∂kf

= ∂j(∂k(φf)− f∂kφ)− ∂jφ∂kf

= ∂j∂k(φf)− ∂j(f∂kφ)− ∂jφ∂kf

= ∂j∂k(φf)− f∂j∂kφ− ∂jf∂kφ− ∂jφ∂kf.

Taking Lp norms gives

‖φ∂j∂kf‖p ≤ ‖∂j∂k(φf)‖p + ‖f∂j∂kφ‖p + ‖∂jf∂kφ‖p + ‖∂jφ∂kf‖p . (2.20)

Note that the left hand side is finite because f ∈ W 2,p(Rn) and φ ∈ C∞0 (Rn). Let us
consider each term on the right hand side in turn.

Firstly by noting that |∂jφ| ≤
(∑

k |∂kφ|2)1/2 ≤ |∇φ| for every j ∈ {1, . . . , n}, we
have

‖∂jf∂kφ‖p + ‖∂jφ∂kf‖p ≤ 2
∥∥|∇f | |∇φ|∥∥

p
. (2.21)

Similarly |∂j∂kφ| ≤ (∑
j

∑
k |∂j∂kφ|2)1/2 = |∇2φ| for every j, k ∈ {1, . . . , n}, so that

‖f∂j∂kφ‖p ≤
∥∥f |∇2φ|∥∥

p
. (2.22)

Next since φf ∈ W 2,p(Rn) then by the Calderón–Zygmund inequality (see [30, Chapter
3, Proposition 3]) on Rn,

‖∂j∂k(φ f)‖p ≤
∥∥|∇2(φ f)|∥∥

p
≤ Cp ‖∆(φ f)‖p .

Now direct computations give
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∆(φ f) =
n∑

j=1

∂2
j (φ f) =

n∑

j=1

∂j

(
φ∂jf + f∂jφ

)

=
n∑

j=1

(
∂jφ∂jf + φ∂2

j f + ∂jf∂jφ + f∂2
j φ

)

= φ
n∑

j=1

∂2
j f + f

n∑

j=1

∂2
j φ + 2

n∑

j=1

∂jφ∂jf

= φ∆f + f∆φ + 2∇φ · ∇f.

By Cauchy–Schwarz,

|∆(φ f)| ≤ |φ∆f |+ |f∆φ|+ 2 |∇φ||∇f | ≤ |φ∆f |+ |f ||∇2φ|+ 2|∇φ||∇f |.

Hence

‖∂j∂k(φ f)‖p ≤ Cp ‖φ∆f‖p + Cp

∥∥f |∇2φ|∥∥
p

+ 2Cp

∥∥|∇φ| |∇f |∥∥
p
. (2.23)

Inserting (2.21), (2.22), and (2.23) into (2.20) we obtain

‖φ∂j∂kf‖p ≤ Cp ‖φ∆f‖p + Cp

∥∥f |∇2φ|∥∥
p

+ Cp

∥∥|∇φ| |∇f |∥∥
p
,

and in fact

∥∥φ|∇2f |
∥∥

p
≤

n∑

j,k=1

‖φ∂j∂kf‖p ≤ C
(‖φ∆f‖p +

∥∥f |∇2φ|
∥∥

p
+

∥∥|∇φ||∇f |
∥∥

p

)
,

where C depends on p and the dimension n. This ends the proof of Lemma 2.7. ¤

The estimates in Proposition 2.4 (c) allow us to obtain the following estimates on
the heat semigroup. It will be required in the proof of Theorem 1.1.

Lemma 2.8. Let L = −∆ + V on Rn with n ≥ 2. Then for each j ≥ 2, m ≥ 1,
p ∈ (1, s), ball B, and f ∈ L1(B) we have

( ∫

Uj(B)

|∇2L−1(I − e−r2
BL)mf |p

)1/p

≤ Ce−c4j

∫

B

|f | , (2.24)

( ∫

Uj(B)

|V L−1(I − e−r2
BL)mf |p

)1/p

≤ Ce−c4j

∫

B

|f | . (2.25)

Proof. We first prove (2.24). The first step is to write, using the binomial theo-
rem,
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∇2L−1(I − e−r2
BL)m =

m∑

k=0

(
m
k

)
(−1)k

∫ ∞

0

∇2e−(kr2
B+t)L dt

=
m∑

k=0

(
m
k

)
(−1)k

∫ ∞

0

∇2e−tL1(kr2
B ,∞)(t) dt

=
∫ ∞

0

hrB
(t)∇2e−tL dt

where

hr(t) :=
m∑

k=0

(−1)k
(
m
k

)
1(kr2

B ,∞)(t).

Now observing that
∑m

k=0(−1)k
(
m
k

)
= 0 we can write

hr(t) =
m∑

k=0

(−1)k
(
m
k

)
1(mr2,∞)(t) +

m∑

k=0

(−1)k
(
m
k

)
1(kr2,mr2](t)

=
m∑

k=0

(−1)k
(
m
k

)
1(kr2,mr2](t).

Therefore

|hr(t)| ≤
m∑

k=0

(
m
k

)
1(0,mr2](t) ≤ 2m1(0,mr2](t).

Now by Minkowski’s inequality,

∥∥∇2L−1(I − e−r2
BL)mf

∥∥
Lp(Uj(B))

=
∥∥∥∥
∫ ∞

0

hrB
(t)∇2e−tLf dt

∥∥∥∥
Lp(Uj(B))

≤
∫ ∞

0

|hrB
(t)|∥∥∇2e−tLf

∥∥
Lp(Uj(B))

dt

≤
∫ ∞

0

|hrB
(t)|

∫

B

|f(y)|
∥∥∇2pt(·, y)

∥∥
Lp(Uj(B))

dy dt.

Next for each y ∈ B and t > 0, by estimate (2.8),

∥∥∇2pt(·, y)
∥∥

Lp(Uj(B))
≤

(∫

Uj(B)

∣∣∇2
xpt(x, y)

∣∣p eβp
|x−y|2

t e−βp
|x−y|2

t dx

)1/p

≤ sup
x∈Uj(B)

e−βp
|x−y|2

t

∥∥∇2pt(·, y)eβp
|·−y|2

t

∥∥
Lp(Rn)
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. 1
t1+n/2−n/2p

e−c4jr2
B/t.

Therefore one has

( ∫

Uj(B)

∣∣∇2L−1(I − e−r2
BL)mf

∣∣p
)1/p

=
1

|2jB|1/p
‖∇2L−1(I − e−r2

BL)mf‖Lp(Uj(B))

.
(∫ ∞

0

|hrB
(t)| |B|

|2jB|1/p

e−c4jr2
B/t

t1+n/2−n/2p
dt

)( ∫

B

|f |
)

.
(∫ mr2

B

0

|B|
|2jB|1/p

e−c4jr2
B/t

t1+n/2−n/2p
dt

)( ∫

B

|f |
)

.

Since

|B|
|2jB|1/p

≈ rn
B

(2jnrn
B)1/p

≈ r
n(1−1/p)
B

2jn/p
= 2−jn(2jrB)n(1−1/p),

then it follows that for some ε > 0

|B|
|2jB|1/p

1
tn/2(1−1/p)

. 2−jn

(
2jrB√

t

)n(1−1/p)

≤
(

2jrB√
t

)n(1−1/p)

. eε4jr2
B/t.

Collecting these estimates we obtain

( ∫

Uj(B)

∣∣∇2L−1(I − e−r2
BL)mf

∣∣p
)1/p

.
(∫ mr2

B

0

e−c′4jr2
B/t dt

t

)( ∫

B

|f |
)

. e−c4j/m

(∫ mr2
B

0

t

4jr2
B

dt

t

)( ∫

B

|f |
)

. e−c4j/m

∫

B

|f |

provided m > 0.
The proof of (2.25) is similar but uses (2.9) in place of (2.8) and we omit the details.

¤

3. Weights associated to the Schrödinger operator.

In this section we define weights adapted to Schrödinger operators and give some of
their properties that we shall need. For further properties we refer the reader to [10],
[32], [33], [34].

Throughout the rest of this section we use the following notation. For a given ball
B and a number θ ≥ 0, we set
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ψθ(B) :=
(

1 +
rB

ρ(xB)

)θ

. (3.1)

Here ρ : Rn → (0,∞) is the auxiliary weight function defined in (2.1). Observe that for
any λ ≥ 1, we have ψθ(B) ≤ ψθ(λB) ≤ λθψθ(B). We will also often interchange balls
with cubes in our estimates. In this case if Q is a cube, the expression for ψθ(Q) is the
same as above but with rB replaced by `(Q) (the sidelength of Q), and xB replaced by
xQ (the centre of Q).

The following maximal operator was defined in [11], [34] and will be an essential
tool throughout the rest of this section. For each θ ≥ 0, we set

ML
θ f(x) := sup

B3x

1
ψθ(B)

∫

B

|f(y)| dy. (3.2)

We mention here that f is pointwise controlled by ML
θ f . Indeed, for any f ∈ L1

loc(Rn)
and θ ≥ 0, we have for almost every x,

|f(x)| ≤ 2θML
θ f(x). (3.3)

To see this, we let r ≤ ρ(x) and observe that

∫

B(x,r)

|f | ≤ ψθ(B(x, r))ML
θ f(x) ≤ 2θML

θ f(x).

Now let r → 0 and apply Lebesgue’s differentiation theorem (see [30]) to obtain (3.3).

Definition 3.1 (Weights adapted to the Schrödinger operator). Let w be a non-
negative locally-integrable function. For p ∈ (1,∞) and θ ≥ 0, we say that w ∈ AL,θ

p if
there exists C = C(w, θ, p) > 0 such that for all balls B,

( ∫

B

w

)1/p( ∫

B

w1−p′
)1/p′

≤ Cψθ(B).

We say that w ∈ AL,θ
1 if there exists C = C(w, θ) > 0 such that for all balls B

∫

B

w ≤ C ψθ(B) w(x) a.e. x ∈ B.

For p ∈ [1,∞) we set AL
p :=

⋃
θ≥0AL,θ

p . We also define AL
∞ :=

⋃
1≤p<∞AL

p .

By taking θ = 0 we see that these weights contain the A∞ weights. However the inclusion
is proper. For example let V ≡ 1 and take w(x) = 1 + |x|ε with ε > n(p− 1). Then w is
a member of AL

p but is does not belong to Ap.
We next define the class of reverse Hölder weights adapted to the Schrödinger oper-

ator.
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Definition 3.2 (Reverse Hölder weights adapted to the Schrödinger operator).
Let w be a non-negative locally-integrable function. For q ∈ (1,∞) and θ ≥ 0, we say
that w ∈ BL,θ

q if there exists C = C(w, q, θ) > 0 such that for all balls B,

( ∫

B

wq

)1/q

≤ C ψθ(B)
∫

B

w.

We say that w ∈ BL,θ
∞ if there exists C = C(w, θ) > 0 such that for all balls B,

w(x) ≤ C ψθ(B)
∫

B

w, a.e. x ∈ B.

For q ∈ (1,∞ ] we set BL
q :=

⋃
θ≥0 BL,θ

q .

We remark that in the definitions one can interchange balls by cubes and obtain the
same classes of weights.

Lemma 3.3. Let w ∈ BL,θ
s′ for some θ ≥ 0 and 1 ≤ s ≤ ∞. Then there exists

Cw > 0 such that for any cube Q and measurable E ⊂ Q,

w(E)
w(Q)

≤ Cw ψθ(Q)
( |E|
|Q|

)1/s

.

Proof. If s′ < ∞ then by Hölder’s inequality with exponents s′ and s,

w(E)
w(Q)

=
|Q|

w(Q)
1
|Q|

∫

E

w ≤ |Q|
w(Q)

( ∫

Q

ws′
)1/s′( |E|

|Q|
)1/s

≤ Cw
|Q|

w(Q)
ψθ(Q)

( ∫

Q

w

)( |E|
|Q|

)1/s

= Cwψθ(Q)
( |E|
|Q|

)1/s

.

If s′ = ∞ then the same conclusion holds. ¤

As in the classical situation these two weight classes are intimately connected. It
was shown in [10] that if w ∈ AL

p for some p ∈ [1,∞), then w ∈ BL,θ
q for some q > 1 and

θ ≥ 0 (see [10, Lemma 5]). We give a more explicit statement of this connection in the
next result, itself modelled on [4, Proposition 11.1].

Lemma 3.4. Let w ≥ 0 be a measurable function. Then the following are equivalent.

(a) w ∈ AL
∞.

(b) For all σ ∈ (0, 1), wσ ∈ BL
1/σ.

(c) There exists σ ∈ (0, 1) such that wσ ∈ BL
1/σ.
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Proof. If wσ ∈ BL
1/σ for some σ ∈ (0, 1), then the self improvement property

of these classes (see Lemma 3.5 (v) below) implies that wσ ∈ BL
1/σ+ε for some ε > 0.

Therefore w ∈ BL
1+σε, which implies that w ∈ AL

∞. Hence we have (c) =⇒ (b) =⇒ (a).
We now show (a) =⇒ (b). Let w ∈ AL

∞ and σ ∈ (0, 1). Then w ∈ BL,θ
r for some

r > 1 and θ ≥ 0 (by [10, Lemma 5]). Therefore for any α > 1 and cube Q, the set

EQ :=
{

x ∈ Q : wσ(x) > α

∫

Q

wσ

}

satisfies, by Lemma 3.3,

w(EQ)
w(Q)

≤ Cψθ(Q)
( |EQ|
|Q|

)1/r′

.

Then it follows that

|EQ| = 1
α

∫

EQ

α dx <
1
α

∫

EQ

wσ

∫
Q

wσ
dx ≤ |Q|

α
.

Hence we obtain that

w(EQ) ≤ C α−1/r′ψθ(Q) w(Q).

We choose α such that Cα−1/r′ψθ(Q) = 1/2 (note that α > 1). Next, observe that for
each x ∈ Q\EQ we have w(x) ≤ (

α
∫

Q
wσ

)1/σ. Therefore

∫

Q

w dx =
∫

EQ

w dx +
∫

Q\EQ

w dx

≤ 1
2

∫

Q

w dx +
(

α

∫

Q

wσ

)1/σ ∫

Q\EQ

dx

≤ 1
2

∫

Q

w dx + α1/σ |Q|
( ∫

Q

wσ

)1/σ

.

Rearranging this statement gives us

∫

Q

w dx ≤ 2α1/σ

( ∫

Q

wσ

)1/σ

= 2r′/σ+1 Cr′/σ ψθr′/σ(Q)
( ∫

Q

wσ

)1/σ

.

That is, wσ ∈ BL,θr′

1/σ ⊂ BL
1/σ. ¤

We now describe some further properties of these weights.

Lemma 3.5. One has
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(i) For each θ ≥ 0, if 1 ≤ p1 ≤ p2 < ∞ then AL,θ
1 ⊂ AL,θ

p1
⊂ AL,θ

p2
.

(ii) For each θ ≥ 0, if 1 < p1 ≤ p2 ≤ ∞ then BL,θ
p1

⊃ BL,θ
p2

⊃ BL,θ
∞ .

(iii) For each 1 ≤ p ≤ ∞ and θ ≥ 0, w ∈ AL,θ
p if and only if w1−p′ ∈ AL,θ

p′ .
(iv) If w ∈ AL

p for some p ∈ (1,∞) then there exists p0 ∈ (1, p) with w ∈ AL
p0

.
(v) If w ∈ BL

q for some q ∈ (1,∞) then there exists q0 ∈ (q,∞) with w ∈ BL
q0

.
(vi) For each r ∈ (1,∞), wr ∈ AL

∞ ⇐⇒ w ∈ BL
r .

(vii) Suppose wσ ∈ AL
σ(s−1)+1 for some σ ∈ (0,∞) and s ∈ [1,∞). Then w ∈ AL

s if
and only if w ∈ AL

∞.
(viii) For each 1 ≤ p ≤ ∞ and 1 ≤ q < ∞, we have

wq ∈ AL
q(p−1)+1 ⇐⇒ w ∈ AL

p ∩ BL
q .

(ix) Suppose p0 < p < q0 and w ∈ AL
p/p0

∩ BL
(q0/p)′ . Then there exists p1 and q1 such

that

p0 < p1 < p < q1 < q0 and w ∈ AL
p

p1
∩ BL(

q1
p

)′ .

(x) Given p0 < p < q0, we have

w ∈ AL
p

p0
∩ BL(

q0
p

)′ ⇐⇒ w1−p′ ∈ AL
p′
q′0

∩ BL(p′0
p′

)′ .

Proof. The proofs of (i), (ii) and (iii) follow easily from the definition of the AL
p

and BL
q classes. For the proof of (iv) see [10] and also [32, Proposition 2.1 (iii)]. Property

(v) is the self-improvement property of the BL
q classes mentioned in [10]. Property (vi)

is a restatement of Lemma 3.4. Indeed by replacing 1/σ by r and wσ by w in Lemma
3.4 we obtain (vi).

The proofs of the next two properties are adapted from [17] and [20].
Proof of (vii). We note that AL

s ⊂ AL
∞ for every s ≥ 1, and so necessity is clear. It

suffices to consider the converse. Let w ∈ AL
∞. Suppose firstly that 0 < σ < 1. Since

w ∈ AL
∞ then by Lemma 3.4 (or property (vi) above) we have wσ ∈ BL,θ

1/σ for some θ ≥ 0.
This means that for any ball B,

( ∫

B

w

)σ

=
( ∫

B

(wσ)1/σ

)σ

≤ C ψθ(B)
∫

B

wσ.

Let r := σ(s− 1) + 1. Then since wσ ∈ AL
r ,

( ∫

B

w

)( ∫

B

w−1/(s−1)

)s−1

≤ C ψθ/σ(B)
( ∫

B

wσ

)1/σ( ∫

B

w−1/(s−1)

)s−1

= C ψθ/σ(B)
( ∫

B

wσ

)1/σ( ∫

B

(wσ)−1/(r−1)

)(r−1)/σ

≤ C ψ(r+1)θ/σ(B).
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That is, w ∈ AL,(r+1)θ/(sσ)
s ⊂ AL

s . Suppose now that 1 ≤ σ < ∞. Let B be a ball and
r := σ(s− 1) + 1. Note wσ ∈ AL

r implies that wσ ∈ AL,θ
r for some θ ≥ 0. Since σ ≥ 1 we

may apply Hölder’s inequality with exponents σ and σ′ to get

( ∫

B

w

)( ∫

B

w−1/(s−1)

)s−1

≤
( ∫

B

wσ

)1/σ( ∫

B

w−1/(s−1)

)s−1

=
( ∫

B

wσ

)1/σ( ∫

B

(wσ)−1/(r−1)

)(r−1)/σ

≤ C ψrθ/σ(B).

We have shown that w ∈ AL,θr/(σs)
s ⊂ AL

s . This concludes the proof of (vii).
Proof of (viii). We first show the =⇒ direction . Assume that wq ∈ AL

q(p−1)+1. Then
wq ∈ AL

∞, and by property (vi) above w ∈ BL
q . If in addition w ∈ AL

∞, then applying
property (vii) with σ = q and s = p we obtain w ∈ AL

p . We now prove the converse
⇐= direction. Assume that w ∈ AL

p ∩ BL
q . Then w ∈ BL

q and this implies, by property
(vi), that wq ∈ AL

∞. Hence (wq)1/q = w ∈ AL
p , and property (vii) with σ = 1/q and

p = σ(s− 1) + 1 gives wq ∈ AL
s ≡ AL

q(p−1)+1.
Proof of (ix). Firstly, property (iv) implies there exists p1 such that

1 <
p

p1
<

p

p0
and w ∈ AL

p
p1

.

This implies p0 < p1 < p. Secondly, property (v) implies there exists q1 such that

(
q0

p

)′
<

(
q1

p

)′
< ∞ and w ∈ BL(

q1
p

)′ .

This implies p < q1 < q0.
Proof of (x). The proof is almost the same as that of Lemma 4.4 from [6]. We give

the details here for convenience. Set q = (q0/p)′(p/p0− 1)+1. Using properties (iii) and
(viii), we have

w ∈ AL
p

p0
∩ BL(

q0
p

)′ ⇐⇒ w

(
q0
p

)′
∈ AL(

q0
p

)′( p
p0
−1

)
+1
≡ AL

q

⇐⇒ w

(
q0
p

)′
(1−q′) ∈ AL

q′

and

w1−p′ ∈ AL
p′

q′0

∩ BL(p′0
p′

)′ ⇐⇒ w
(1−p′)

(p′0
p′

)′
∈ AL(p′0

p′
)′( p′

q′0
−1

)
+1

.

Direct computations show
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(
q0

p

)′
(1− q′) = (1− p′)

(
p′0
p′

)′
and q′ =

(
p′0
p′

)′(
p′

q′0
− 1

)
+ 1. ¤

The following weak type property of the operator ML is implicit throughout [34].

Lemma 3.6. For each η ≥ 0, the operator ML
η is weak type (p, p) for every p ∈

[1,∞).

Proof. We simply observe that ML
η is controlled pointwise by M , the Hardy–

Littlewood maximal function, and hence the weak (p, p) bound of ML
η is controlled by

that of M . ¤

The main mapping property of the operator ML
η we will require is the following.

Lemma 3.7 ([32, Lemma 2.2]). Let p ∈ (1,∞) and θ ≥ 0. Then for each w ∈ AL,θ
p

there exists C > 0 such that

∥∥ML
p′θf

∥∥
Lp(w)

≤ C ‖f‖Lp(w) .

Proof. A proof of this result in a more general form can be found in [34, Theorem
2.2]. ¤

Remark 3.8. As a consequence of Lemma 3.7, if p > s, w ∈ AL,θ
p/s and η = (p/s)′θ

then the operator ML
η

(|·|s)1/s is bounded on Lp(w). In fact, since ML
η is bounded on

Lp/s(w) for each w ∈ AL,θ
p/s, then we have

∥∥ML
η

(|f |s)1/s∥∥p

Lp(w)
=

∫ (ML
η |f |s

)p/s
w .

∫
|f |p w.

3.1. A good-λ inequality.
The main result of this section is the following extension of [6, Theorem 3.1] from

A∞ to AL
∞ weights.

We remind the reader that the functions ρ, ψη, and the operator ML
η has been

defined in (2.1), (3.1), and (3.2) respectively.

Theorem 3.9. Fix η > 0, q ∈ (1,∞], ξ ≥ 1, s ∈ [1,∞), and ν ∈ BL
s′ . Assume

that F ,G, and H are non-negative functions on Rn such that for each ball B with rB ≤
12
√

nρ(xB), there exist non-negative functions HB and GB with

F (x) ≤ HB(x) + GB(x) a.e. x ∈ B, (3.4)
∫

B

GB ≤ G(x), ∀x ∈ B, (3.5)

( ∫

B

Hq
B

)1/q

≤ ξ
(ML

η F (x) + H(y)
)
, ∀x, y ∈ B (3.6)
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and for each ball B with rB > 12
√

nρ(xB),

1
ψη(B)

∫

B

F ≤ G(x), ∀x ∈ B. (3.7)

Then there exists C = C(n, q, ν, ξ, s, η, ρ) > 0 and K0 = K0(m, η, ξ, ρ) ≥ 1 with the
following property : for each λ > 0, K ≥ K0, and γ ∈ (0, 1),

ν
({ML

η F > Kλ and G ≤ γλ
}) ≤ C

(
ξq

Kq
+

γ

K

)1/s

ν
({ML

η F > λ
})

. (3.8)

As a consequence, for all r ∈ (
0, q/s

)
, we have

∥∥ML
η F

∥∥
Lr(ν)

≤ C
(‖G‖Lr(ν) + ‖H‖Lr(ν)

)
(3.9)

provided
∥∥ML

η F
∥∥

Lr(ν)
< ∞. If r ≥ 1 then (3.9) holds provided F ∈ L1(Rn).

Remark 3.10. We mention that the term H is an error term, which is useful in
applications. For instance it allows us to consider commutators (see Theorem 3.16 in [6]
for the case of A∞ weights). However we do not give any results in this direction here.

Proof of Theorem 3.9. The proof is an adaptation of the proof of Theorem
3.1 from [6]. Indeed for balls B satisfying rB ≤ 12

√
nρ(xB) the argument is almost the

same but with the operator ML
η in place of the maximal operator M . The key difference

is the scale rB > 12
√

nρ(xB).
We begin by mentioning that it will suffice to consider the case G = H. Indeed if we

set G̃ := G + H, then (3.5) holds with G̃ in place of G and (3.6) holds with G̃ in place
of H. Henceforth we shall assume that H = G.

We shall first demonstrate (3.8). Fix λ > 0 and set

Ωλ :=
{
x ∈ Rn : ML

η F (x) > λ
}

Eλ :=
{
x ∈ Rn : ML

η F (x) > Kλ, 2G(x) ≤ γλ
}

.

Note that Ωλ is an open set, and hence the Whitney decomposition lemma (see [18])
allows us to decompose it into a family of pairwise disjoint cubes Q = {Qj}j , with
Ωλ =

⋃
j Qj , and such that 4Qj meets Ωc

λ for every j. Our aim is to show the following
estimate: there exists C > 0 such that for every j for which Eλ ∩Qj is not empty,

ν(Eλ ∩Qj) ≤ C

(
ξq

Kq
+

γ

K

)1/s

ν(Qj). (3.10)

Then since Eλ ⊂
⋃

j Eλ ∩Qj , we may sum over all the disjoint cubes in Q to obtain
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ν(Eλ) ≤
∑

j

ν(Eλ ∩Qj) ≤ C

(
ξq

Kq
+

γ

K

)1/s ∑

j

ν(Qj) = C

(
ξq

Kq
+

γ

K

)1/s

ν(Ωλ)

which is (3.8).
We proceed with the proof of (3.10). We shall consider two regimes.

J0 :=
{
j : Qj ∈ Q and `(Qj) ≤ 2ρ(xQj

)
}

J∞ :=
{
j : Qj ∈ Q and `(Qj) > 2ρ(xQj )

}
.

We first study the case j ∈ J0. For each such j we define Bj to be the ball with the
same centre as Qj but with radius rBj = (

√
n/2)`(Qj). (That is, Bj is the ‘smallest’ ball

concentric with and containing Qj). Our task will be to show that for each j ∈ J0 with
Eλ ∩Qj non-empty, the following estimate holds:

|Eλ ∩Qj | ≤ C

(
ξq

Kq
+

γ

K

)
|Qj | (3.11)

with C depending only on q, n, η, ρ, and the weak type bounds of ML
η . (We remark

here that if q = ∞ then the first term ξq/Kq is taken to be zero in (3.11)). Once (3.11)
is proven we may obtain (3.10) as follows. Recall that since ν ∈ BL

s′ , then there exists
θ ≥ 0 for which ν ∈ BL,θ

s′ . We then apply Lemma 3.3 to ν, and to the sets Eλ ∩Qj ⊂ Qj ,
to obtain

ν(Eλ ∩Qj) ≤ Cν ψθ(Qj)
( |Eλ ∩Qj |

|Qj |
)1/s

ν(Qj) ≤ C

(
ξq

Kq
+

γ

K

)1/s

ν(Qj). (3.12)

Note we have used that ψθ(Qj) ≤ 3θ since j ∈ J0. This gives estimate (3.10).
We proceed with obtaining (3.11). We shall need a localisation lemma whose proof

we postpone to the end of the section.

Lemma 3.11. There exists K̃0 > 1 depending only on n, η, and the constant C0

in Lemma 2.1 with the following property : for each K ≥ K̃0, and each ball B̃ for which
there exists x̃ ∈ B̃ with ML

η F (x̃) ≤ λ, we have

{
Eλ ∩ B̃

} ⊂ {
x ∈ Rn : ML

η

(
F13 eB

)
(x) > (K/K̃0)λ

}
.

Now recall that 4Qj meets Ωc
λ. This means that there exists xj ∈ 4Qj ⊂ 4Bj with

ML
η F (xj) ≤ λ. (3.13)

Hence applying Lemma 3.11 to the ball 4Bj implies that there for all K ≥ K̃0,

{
Eλ ∩ 4Bj

} ⊂ {
x ∈ Rn : ML

η

(
F112Bj

)
(x) > (K/K̃0)λ

}
. (3.14)
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Now we observe that the hypotheses (3.4), (3.5), and (3.6) may be applied to the ball
12Bj (since j ∈ J0) and hence 12Bj satisfies

r12Bj
= 12rBj

= 6
√

n `(Qj) ≤ 12
√

nρ(xQj
) = 12

√
nρ

(
x12Bj

)
. (3.15)

Combining (3.4) with (3.14), and the fact that ML
η is sublinear,

|Eλ ∩Bj | ≤
∣∣{Eλ ∩ 4Bj}

∣∣

≤ ∣∣{x ∈ Rn : ML
η

(
F112Bj

)
> (K/K̃0)λ

}∣∣

≤ ∣∣{x ∈ Rn : ML
η

(
G12Bj

112Bj

)
(x) > (K/2K̃0)λ

}∣∣

+
∣∣{x ∈ Rn : ML

η

(
H12Bj112Bj

)
(x) > (K/2K̃0)λ

}∣∣. (3.16)

Now recall that Eλ ∩Qj is assumed to be not empty. Hence there exists x̃j ∈ Qj ⊂ Bj

with

G(x̃j) ≤ γ

2
λ. (3.17)

Let cp be the weak (p, p) bound of ML
η (from Lemma 3.6). Applying assumption (3.5),

valid because of (3.15), we obtain

∣∣{x ∈ Rn : ML
η

(
G12Bj

112Bj

)
(x) > (K/2K̃0)λ

}∣∣ ≤ c12K̃0

Kλ

∫

12Bj

G12Bj

≤ c12K̃0

Kλ
|12Bj | G(x̃j)

≤ 12nc1K̃0

K
|Bj | γ. (3.18)

Next suppose that q < ∞. We apply (3.6)—again since (3.15) holds—to get

∣∣{x ∈ Rn : ML
η

(
H12Bj112Bj

)
(x) > (K/2K̃0)λ

}∣∣

≤
(

2K̃0cq

Kλ

)q ∫

12Bj

Hq
12Bj

≤
(

2K̃0cq

Kλ

)q

ξq
(ML

η F (xj) + G(x̃j)
)q |12Bj |

≤ (4K̃0cq)q 12n ξq

Kq
|Bj | , (3.19)

where the points xj and x̃j satisfy (3.14) and (3.17) respectively. We insert now estimates
(3.18) and (3.19) into (3.16) to arrive at
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|Eλ ∩Qj | ≤ |Eλ ∩Bj | ≤ C

(
ξq

Kq
+

γ

K

)
|Qj |

where C depends on q, n, K̃0 and the weak type bounds of ML
η . This gives (3.11) for

the case q < ∞, and hence from (3.12) we get (3.10) for those cubes Qj with j ∈ J0.
If q = ∞, then firstly notice that

∥∥ML
η

(
H12Bj

112Bj

)∥∥
L∞

≤ ∥∥H12Bj
112Bj

∥∥
L∞ ≤ ξ

(ML
η F (xj) + G(x̃j)

) ≤ 2ξλ.

Therefore it follows that whenever K ≥ 4ξK̃0, then

{
x ∈ Rn : ML

η

(
H12Bj

112Bj

)
(x) > (K/2K̃0)λ

}
= ∅.

So we set K0 = 4ξK̃0 ≥ 1, and for each K ≥ K0 we may proceed as before with estimates
(3.18) and (3.19) to obtain the following variant of (3.11):

|Eλ ∩Qj | ≤ C

(
γ

K

)1/s

|Qj | .

Before concluding the proof of the case j ∈ J0, we remark that taking the choice K0 =
4ξK̃0 will allow us to cover both of the situations q < ∞, and q = ∞.

We turn to the proof of (3.10) for the case j ∈ J∞. We shall require the following
decomposition lemma.

Lemma 3.12 ([34, Lemma 3.1]). For any cube Q with `(Q) > 2ρ(xQ) there exists
a finite collection of disjoint subcubes {Qk}N

k=1 such that Q =
⋃N

k=1 Qk with the following
property : for every k ∈ {1, . . . , N}, there exists xk ∈ Qk with

1
2

`(Qk) ≤ ρ(xk) ≤ 2
√

nC0 `(Qk),

where C0 is the constant from Lemma 2.1.

Recall that when j ∈ J∞ the cube Qj satisfies `(Qj) > 2ρ(xQj
). Hence we may apply

Lemma 3.12 to Qj and obtain a finite collection of disjoint subcubes {Qj,k}Nj

k=1, with
Qj =

⋃Nj

k=1 Qj,k, such that for each k ∈ {1, . . . , Nj} there exists xj,k ∈ Qj,k with

1
2

`(Qj,k) ≤ ρ(xj,k) ≤ 2
√

nC0 `(Qj,k). (3.20)

We observe that this implies ρ(xj,k) ≈ ρ(xQj,k
) with constants depending only on n and

C0, where xQj,k
is the centre of the cube Qj,k. Indeed, since xj,k, xQj,k

∈ Qj,k then

xQj,k
∈ B

(
xj,k,

√
n

2
`(Qj,k)

)
⊆ √

nB
(
xj,k, ρ(xj,k)

)
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and hence by (2.3) we have ρ(xQj,k
) ≤ C2

0 (1 +
√

n)2ρ(xj,k). The other inequality can be
obtained similarly.

Now for each j and k we set Bj,k to be the ball concentric with Qj,k but with radius
(
√

n/2)`(Qj,k). That is, Bj,k is the smallest ball concentric with, and containing Qj,k.
We claim the following property holds, whose proof we defer to the end of this section.

Lemma 3.13. There exists α ≥ 1, depending only on n, η and C0, with the following
property : for every cube Qj,k for which Eλ ∩Qj,k is non-empty, one has

Eλ ∩Qj,k ⊂
{
x ∈ Qj,k : ML

η

(
F1αBj,k

)
(x) > Kλ

}
(3.21)

rαBj,k
> 12

√
nρ

(
xαBj,k

)
. (3.22)

Let us fix k and assume that Eλ ∩Qj,k is not empty, since otherwise there is nothing to
prove for the cube Qj,k. This implies that there exists a point x̃j,k ∈ Qj,k ⊂ αBj,k with

G
(
x̃j,k

) ≤ γ

2
λ. (3.23)

Let c1 be the weak (1, 1) bound of ML
η . Then (3.21) gives

|Eλ ∩Qj,k| ≤
∣∣{x ∈ Qj,k : ML

η

(
F1αBj,k

)
(x) > Kλ

}∣∣ ≤ c1

Kλ

∫

αBj,k

F

≤ c1

Kλ
|αBj,k| ψη(αBj,k)G(x̃j,k) ≤ C

γ

K
|Qj,k| . (3.24)

In the third inequality we have applied hypothesis (3.7)—since the ball αBj,k satisfies
(3.22)—and in the final inequality we used (3.23), the doubling property for the Lebesgue
measure, and that

ψη(αBj,k) ≤ αη ψη(Bj,k) ≤ C,

which follows from (3.20). We remark that the constant C in (3.24) depends only on n,
η, C0 and is independent of j and k.

In a similar fashion to estimate (3.12), we apply Lemma 3.3 to ν ∈ BL,θ
s′ and the

sets Eλ ∩Qj,k ⊂ Qj,k and evoke (3.24) to obtain

ν(Eλ ∩Qj,k) ≤ Cν ψθ(Qj,k)
( |Eλ ∩Qj,k|

|Qj,k|
)1/s

ν(Qj,k) ≤ C

(
γ

K

)1/s

ν(Qj,k)

where C depends on n, C0, η and ν. Summing this over k gives

ν(Eλ ∩Qj) ≤
Nj∑

k=1

ν(Eλ ∩Qj,k) ≤ C

(
γ

K

)1/s Nj∑

k=1

ν(Qj,k) ≤ C

(
ξq

Kq
+

γ

K

)1/s

ν(Qj)
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which gives (3.10) for j ∈ J∞. Note that when q = ∞ we end the estimate at the second
inequality. This concludes the proof of (3.10), and hence of (3.8).

Since (3.8) holds we may prove (3.9) using the same approach as the final part of
the proof of Theorem 3.1 from [6, pp. 20–21]. In fact the proof is identical but with ML

η

in place of the Hardy–Littlewood maximal operator M , and BL,θ
s′ in place of Bs′ . We

omit the details. ¤

We end this section with the proofs of the lemmata that were deferred during the
proof of Theorem 3.9.

Proof of Lemma 3.11. This proof is an adaptation of the localisation lemma
from [3]. Let x ∈ Eλ ∩ B̃. Then it follows that

G(x) ≤ γ

2
λ, (3.25)

ML
η F (x) > Kλ. (3.26)

The latter property ensures that there exists a ball B containing x such that

1
ψη(B)

∫

B

F > Kλ. (3.27)

Then we necessarily have

rB ≤ 12
√

nρ(xB). (3.28)

Suppose otherwise. Then hypothesis (3.7) applies to B. Combining this with (3.25) and
(3.27), we arrive at the statement

Kλ <
1

ψη(B)

∫

B

F ≤ G(x) ≤ γ

2
λ,

which is impossible, since K ≥ 1 and γ ∈ (0, 1). Therefore the ball B necessarily satisfies
(3.28).

From Lemma 2.1 and (3.28), since x ∈ B ⊂ 12
√

nB
(
xB , ρ(xB)

)
, we have

ρ(xB) ≤ C1 ρ(x), (3.29)

where C1 = C2
0 (1 + 12

√
n)2 > 1. This gives

ψη(B) ≥
(

1 +
rB

C1ρ(x)

)η

≥ (2C1)−η

(
1 +

2rB

ρ(x)

)η

= (2C1)−ηψη

(
B(x, 2rB)

)
.

Now note also that B ⊂ B(x, 2rB) ⊂ 3B so that |B| ≥ 3−n |B(x, 2rB)|.
Therefore
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∫

B(x,2rB)

F >

∫

B

F > Kλ |B| ψη(B) ≥ Kλ |B(x, 2rB)|
3n

ψη

(
B(x, 2rB)

)

(2C1)η
.

This implies

1
ψη(B(x, 2rB))

∫

B(x,2rB)

F >
K

K̃0

λ (3.30)

where K̃0 = 3n(2C1)η. Now since K ≥ K̃0, then in fact

1
ψη(B(x, 2rB))

∫

B(x,2rB)

F > λ

and this combined with the point x̃ from the hypothesis implies that x̃ /∈ B(x, 2rB), for
otherwise this contradicts ML

η F (x̃) ≤ λ. This final fact implies that B(x, 2rB) ⊂ 3B̃,
and combining this with (3.30) gives

1
ψη(B(x, 2rB))

∫

B(x,2rB)

F13 eB =
1

ψη(B(x, 2rB))

∫

B(x,2rB)

F >
K

K̃0

λ.

This last step ensures ML
η

(
F13 eB

)
(x) > (K/K̃0)λ. ¤

Proof of Lemma 3.13. Let x ∈ Eλ ∩ Qj,k. Then arguing as in the proof of
Lemma 3.11 we see that there exists a ball B containing x satisfying

1
ψη(B)

∫

B

F > Kλ, (3.31)

rB ≤ 12
√

nρ(xB), (3.32)

ρ(xB) ≤ C1 ρ(x) (3.33)

where C1 = C2
0 (1 + 12

√
n)2.

We claim now that there exists α ≥ 1, depending only on C0, n and η, such that
(3.22) holds and

B ⊂ αBj,k. (3.34)

Let us demonstrate this claim. This will involve repeated application of (2.3).
Since both x, xj,k ∈ Qj,k, then the distance between x and xj,k is at most the

diameter of Qj,k. That is,

|x− xj,k| ≤ diam(Qj,k) =
√

n `(Qj,k).

It follows that x ∈ B
(
xj,k,

√
n `(Qj,k)

) ⊂ 2
√

nB
(
xj,k, ρ(xj,k)

)
, and hence
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ρ(x) ≤ C2 ρ(xj,k) (3.35)

where C2 = C2
0 (1 + 2

√
n)2. We now combine (3.33) and (3.35) with (3.20) and (3.32) to

obtain

rB ≤ 12
√

nρ(xB) ≤ 12
√

nC1 ρ(x)

≤ 12
√

nC1 C2 ρ(xj,k) ≤ α0

√
n

2
`(Qj,k) = α0 rBj,k

,

where α0 = 48C0C1C2
√

n. Therefore it follows that B ⊂ (1 + 2α0)Bj,k. Next we set α̃

to be a number such that

reαBj,k
> 12

√
nρ

(
xQj,k

)
.

Note that this number exists because we recall that ρ(xQj,k
) ≈ ρ(xj,k) ≈ `(Qj,k) ≈ rBj,k

with constants depending on C0 and n. In fact, ρ(xQj,k
) ≥ C3ρ(xj,k) where C3 = C2

0 (1+√
n)2, so that α̃(

√
n/2)`(Qj,k) > 12

√
nC3 ρ(xj,k), which holds provided α̃ ≥ 43

√
nC0C3

by (3.20). On choosing α = max {1 + 2α0, α̃}, the estimate (3.22) and the claim (3.34)
both hold.

Finally to obtain the inclusion (3.21), we see that (3.34) with (3.31) implies

1
ψη(B)

∫

B

F1αBj,k
=

1
ψη(B)

∫

B

F > Kλ.

It necessarily follows that

ML
η (F1αBj,k

)(x) > Kλ,

and as a consequence (3.21) holds. This ends the proof of Lemma 3.13. ¤

Next we show how Theorem 3.9 may be applied to the study of operators in the
following result. It is inspired by and formalizes the method used in [7]. We shall apply
this tool to prove Theorem 1.1.

Theorem 3.14. Let 1 ≤ p0 < q0 ≤ ∞ and T be a linear operator. Assume that
for each q̃ ∈ (p0, q0) and η > 0 there exists a family of operators {AB}B indexed by balls
and a collection of scalars {αj}∞j=0 such that the following holds.

( i ) T is bounded on Lq̃(Rn).
( ii ) For every ball B with rB ≤ 12

√
nρ(xB), and every f ∈ L∞c (Rn) supported in B,

( ∫

Uj(B)

|ABf |q̃
)1/q̃

≤ αj

( ∫

B

|f |p0

)1/p0

, ∀j ≥ 0 (3.36)

( ∫

Uj(B)

|T (I −AB)f |q̃
)1/q̃

≤ αj

( ∫

B

|f |p0

)1/p0

, ∀j ≥ 2. (3.37)
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(iii) There exists C̃ > 0 such that for every ball B with rB > 12
√

nρ(xB) and f ∈
L∞c (Rn),

(
1

ψη(B)

∫

B

|T ∗f |q̃′
)1/q̃′

≤ C̃ML
η

(|f |q̃′)(x)1/q̃′ , ∀x ∈ B. (3.38)

(iv) The constants {αj} satisfy
∑

j αj2j(n+η) < ∞.

Let p ∈ (p0, q0) and w ∈ AL
p/p0

∩ BL
(q0/p)′ . Then T extends to a bounded operator on

Lp(w).

Proof of Theorem 3.14. The proof is an adaptation of the argument in [7],
[2]. We fix p ∈ (p0, q0) and w ∈ AL

p/p0
∩BL

(q0/p)′ . Denote by T ∗ the adjoint of T . Then it

will suffice to prove that T ∗ is bounded on Lp′(w1−p′), because this is equivalent to the
Lp(w) boundedness of T (see [6, Remark 4.5]). We shall apply Theorem 3.9 to T ∗.

Firstly, by Lemma 3.5 property (ix), there exists numbers p1 and q1 such that

p0 < p1 < p < q1 < q0 and w ∈ AL
p/p1

∩ BL
(q1/p)′ .

Then it follows from property (x) of Lemma 3.5 that

w1−p′ ∈ AL
p′/q′1

∩ BL
(p′1/p′)′ .

Then there also exists θ ≥ 0 such that

w1−p′ ∈ AL,θ
p′/q′1

.

We now apply Theorem 3.9 to the following datum. For each f ∈ L∞c (Rn) we set

s :=
p′1
p′

, q :=
p′1
q′1

, r :=
p′

q′1
, η := r′θ,

F := |T ∗f |q′1 , H := 0, ν := w1−p′ .

Let q̃ = q1. Take {AB}B and {αj}j to be as in the hypotheses. We shall show that
conditions (3.4)–(3.7) hold with

GB := 2q′1−1 |(I −AB)∗T ∗f |q′1 and HB := 2q′1−1 |A∗BT ∗f |q′1 ,

and G is a fixed constant multiple of ML
η

(|f |q′1) (with the constant to be specified later).
We first check condition (3.4). By noting that (I −A∗B) = (I −AB)∗, one has

F (x) = |T ∗f(x)|q′1 = |(I −AB)∗T ∗f(x) + A∗BT ∗f(x)|q′1

≤ 2q′1−1 |(I −A∗B)T ∗f(x)|q′1 + 2q′1−1 |A∗BT ∗f(x)|q′1
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= GB(x) + HB(x).

We now check condition (3.6). Let B be a ball with rB ≤ 12
√

nρ(xB). We first
write

( ∫

B

Hq
B

)1/q

=
( ∫

B

2p′1−p′1/q′1 |A∗BT ∗f |p′1
)q′1/p′1

.
( ∫

B

|A∗BT ∗f |p′1
)q′1/p′1

.

To estimate the integral we apply duality to T ∗ and A∗B with some g ∈ Lp1(B, dx/ |B|)
with norm 1, to obtain for each x ∈ B,

( ∫

B

Hq
B

)1/qq′1
.

( ∫

B

|A∗BT ∗f |p′1
)1/p′1

≤
∫

B

|T ∗f | |ABg| ≤
∞∑

j=0

2jn

∫

Uj(B)

|T ∗f | |ABg|

≤
∞∑

j=0

2jnψη(2jB)
(

1
ψη(2jB)

∫

2jB

|T ∗f |q′1
)1/q′1

×
(

1
ψη(2jB)

∫

Uj(B)

|ABg|q1

)1/q1

. ML
η

(|T ∗f |q′1)(x)1/q′1
∞∑

j=0

2j(n+η)

( ∫

Uj(B)

|ABg|q1

)1/q1

. (3.39)

In the last line we have used that since rB ≤ 12
√

nρ(xB), then

ψη(2jB) ≤ 2jη ψη(B) ≤ 2jη (1 + 12
√

n)η (3.40)

valid for every j ≥ 0. Now from (3.36) with exponent q̃ = q1, we have for each j ≥ 0,

( ∫

Uj(B)

|ABg|q1

)1/q1

≤ αj

( ∫

B

|g|p0

)1/p0

≤ αj

( ∫

B

|g|p1

)1/p1

= αj ,

where we have used Hölder’s inequality (with exponents p1/p0 and (p1/p0)′) and the
normalisation of g. Inserting this estimate into (3.39) gives, for each x ∈ B,

( ∫

B

Hq
B

)1/qq′1
. ML

η

(|T ∗f |q′1)(x)1/q′1
∞∑

j=0

αj2j(n+η) ≤ C1ML
η

(|T ∗f |q′1)(x)1/q′1

by hypothesis (iv). Hence (3.6) holds with H = 0 and ξ = C1.
Next we check condition (3.5). Let B be a ball with rB ≤ 12

√
nρ(xB). We first

write
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( ∫

B

GB

)1/q′1
=

( ∫

B

2q′1−1 |(I −AB)∗T ∗f |q′1 dx

)1/q′1
.

( ∫

B

|(I −AB)∗T ∗f |q′1 dx

)1/q′1
.

We apply duality again now with I and (I−AB)∗T ∗ with g ∈ Lq1(B, dx/ |B|) of norm 1.
Then for each x ∈ B,

( ∫

B

GB

)1/q′1
.

∫

B

|f | |T (I −AB)g| ≤
∞∑

j=0

2jn

∫

Uj(B)

|f | |T (I −AB)g|

≤
∞∑

j=0

2jnψη(2jB)
(

1
ψη(2jB)

∫

2jB

|f |q′1
)1/q′1

×
(

1
ψη(2jB)

∫

Uj(B)

|T (I −AB)g|q1

)1/q1

. ML
η

(|f |q′1)(x)1/q′1
∞∑

j=0

2j(n+η)

( ∫

Uj(B)

|T (I −AB)g|q1

)1/q1

. (3.41)

In the last line we applied (3.40) again. Now for each j ≥ 2, estimate (3.37) with exponent
q̃ = q1 gives

( ∫

Uj(B)

|T (I −AB)g|q1

)1/q1

≤ αj

( ∫

B

|g|p0

)1/p0

≤ αj

( ∫

B

|g|q1

)1/q1

= αj , (3.42)

where we have used Hölder’s inequality (with exponents q1/p0 and (q1/p0)′) and the
normalisation of g. For j = 0, 1 we use hypothesis (i) with q̃ = q1 to give

∫

Uj(B)

|T (I −AB)g|q1 . 1
|B|

∫

Rn

|(I −AB)g|q1

. 1
|B|

{∫

B

|g|q1 +
∞∑

k=0

∫

Uk(B)

|ABg|q1

}
.

For the summands we use the approach as before, namely applying (3.36) for k ≥ 0, and
Hölder’s inequality to get

( ∫

Uk(B)

|ABg|q1

)1/q1

≤ αk

( ∫

B

|g|p0

)1/p0

≤ αk

( ∫

B

|g|q1

)1/q1

= αk.

Collecting these estimates we have for j = 0, 1,

∫

Uj(B)

|T (I −AB)g|q1 .
∫

B

|g|q1 +
∞∑

k=0

2kn

∫

Uk(B)

|ABg|q1
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.
∫

B

|g|q1 +
∞∑

k=0

αq1
k 2kn, (3.43)

which is finite because the expression
∑

k αk2k(n+η) is finite. Inserting (3.42) and (3.43)
into (3.41) gives

( ∫

B

GB

)1/q′1
. ML

η

(|f |q′1)(x)1/q′1

{ ∞∑

j=2

αj2j(n+η) + C

}

≤ C2ML
η

(|f |q′1)(x)1/q′1 (3.44)

for each x ∈ B.
Now let G(x) := C3ML

η

(|f |q′1)(x)1/q′1 , where C3 = max
{
C̃, C2

}
. Here C̃ is the

constant from hypothesis (iii), and C2 is the constant from (3.44). With this choice of
G, firstly estimate (3.44) implies that (3.5) holds, and secondly estimate (3.38) implies
that (3.7) holds.

We have shown that (3.4)–(3.7) holds. Therefore, since ν ∈ BL
(p′1/p′)′ ≡ BL

s′ , then
Theorem 3.9 allows us to conclude that

∥∥ML
η

(|T ∗f |q′1)∥∥
Lr(ν)

≤ C
∥∥ML

η

(|f |q′1)∥∥
Lr(ν)

(3.45)

for some C > 0, depending only on ν, q, n, ξ, s, η, γ, C3, and hence only on w, p, p1,
q1, C1, C2, C̃. Recalling that r = p′/q′1 and ν = w1−p′ , we observe that the Lp′(w1−p′)
boundedness of T ∗ now follows, because

‖T ∗f‖q′1
Lp′ (ν)

≤ 2η
∥∥ML

η

(|T ∗f |q′1)∥∥
Lr(ν)

≤ C
∥∥ML

η

(|f |q′1)∥∥
Lr(ν)

≤ C ‖f‖q′1
Lp′ (ν)

. (3.46)

The first inequality in (3.46) holds by the pointwise control of the operator ML
η (see

(3.3)). The second inequality in (3.46) follows from the conclusion (3.45) above. The final

inequality in (3.46) follows from the boundedness of the maximal operator ML
η

(|·|q′1)1/q′1

on Lp′(ν). Indeed, Remark 3.8 applies in this situation because firstly p′ > q′1, secondly
ν = w1−p′ ∈ AL,θ

p′/q′1
, and lastly η = r′θ = (p′/q′1)

′θ.
By duality, (3.46) implies the boundedness of T on Lp(w). ¤

3.2. Proof of Theorem 1.1.
We first consider the operator ∇2L−1. We apply Theorem 3.14 to T = ∇2L−1,

p0 = 1, q0 = s, and AB = e−r2
BL. Fix q̃ ∈ (1, s) and η > 0. We shall show that

conditions (i)–(iv) of Theorem 3.14 hold. For simplicity we shall write q to denote q̃

throughout the rest of this proof.
Firstly the Lq(Rn) boundedness of T holds from Table 1 of Section 1, and so Theorem

3.14 (i) holds easily. Next we check conditions Theorem 3.14 (ii) and (iv). Fix a ball B

and a function f ∈ L∞c (Rn) supported in B. We have (via the bounds (2.4) on the heat
kernel of L):
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( ∫

Uj(B)

|ABf |q
)1/q

≤ C1e
−c14

j

∫

B

|f | , (3.47)

if j ≥ 0. Note that the constants C1, c1 depend on q and n only. Indeed, for each j ≥ 2,
x ∈ Uj(B), and y ∈ B, we observe that |x − y| ≥ 2jrB/4, and hence the bounds (2.4)
imply that

sup
x∈Uj(B)

∣∣e−r2
BLf(x)

∣∣ ≤ sup
x∈Uj(B)

∫

B

∣∣pr2
B
(x, y)

∣∣ |f(y)| dy . e−c4j

∫

B

|f |.

By Hölder’s inequality these bounds give for each j ≥ 2 and q ≥ 1

( ∫

Uj(B)

|ABf |q dx

)1/q

.
( ∫

Uj(B)

e−c4j

( ∫

B

|f |
)q

dx

)1/q

≤ e−c4j

∫

B

|f |.

The same approach gives for j = 0, 1

( ∫

Uj(B)

|ABf |q
)1/q

.
∫

B

|f |.

These two estimates give (3.47).
Next we recall from Lemma 2.8, and in particular estimate (2.24), that

( ∫

Uj(B)

∣∣∇2L−1(I − e−r2
BL)f

∣∣q
)1/q

≤ C2 e−c24
j

∫

B

|f | , ∀j ≥ 2. (3.48)

Let us take αj = Ce−c4j

for j ≥ 0, where C = max {C1, C2} and c = min {c1, c2}. Then
Theorem 3.14 (iv) is satisfied, and by (3.47) and (3.48), conditions (3.36) and (3.37) are
also satisfied. This proves (ii) and (iv).

Finally we turn to condition (iii) of Theorem 3.14. Let f ∈ L∞c (Rn) and fix a ball
B with rB > 12

√
nρ(xB). We write

f =
∞∑

j=0

f1Uj(B) =:
∞∑

j=0

fj .

Then

(
1

ψη(B)

∫

B

|T ∗f |q′
)1/q′

≤
∞∑

j=0

(
1

ψη(B)

∫

B

|T ∗fj |q
′
)1/q′

. (3.49)

To estimate the terms for j = 0, 1, we use that T ∗ is bounded on Lq′(Rn), and that
ψη(2B) ≤ 2η ψη(B) to obtain, for any x ∈ B,
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(
1

ψη(B)

∫

B

|T ∗fj |q
′
)1/q′

≤ C

(
1

ψη(B) |B|
∫

B

|fj |q
′
)1/q′

≤ C

(
ψη(2B) |2B|
ψη(B) |B|

)1/q′( 1
ψη(2B)

∫

2B

|f |q′
)1/q′

≤ CML
η

(|f |q′)(x)1/q′ . (3.50)

Note that C depends on n, q and η. To estimate the terms for j ≥ 2, we first write

|T ∗fj(y)| =
∣∣∣∣
∫ ∞

0

∫

Uj(B)

∇2
zpt(z, y) f(z) dz dt

∣∣∣∣

≤
(∫

Uj(B)

|f |q′
)1/q′ ∫ ∞

0

(∫

Uj(B)

∣∣∇2
zpt(z, y)

∣∣q dz

)1/q

dt (3.51)

by Hölder’s inequality. Next, using that ψη(2jB) ≤ 2jη ψη(B) we have for any x ∈ B,

(∫

Uj(B)

|f |q′
)1/q′

=
(
ψη(2jB)

∣∣2jB
∣∣)1/q′

(
1

ψη(2jB)

∫

Uj(B)

|f |q′
)1/q′

≤ (
ψη(B) |B|)1/q′ 2j(n+η)/q′ML

η

(|f |q′)(x)1/q′ . (3.52)

Therefore using (3.51) and (3.52) we obtain, for each j ≥ 2,

(
1

ψη(B)

∫

B

|T ∗fj |q
′
)1/q′

≤ 1
ψη(B)1/q′

(∫

Uj(B)

|f |q′
)1/q′( ∫

B

(∫ ∞

0

∥∥∇2pt(·, y)
∥∥

Lq(Uj(B))
dt

)q′

dy

)1/q′

≤ 2j(n+η)/q′ |B|1/q′ML
η

(|f |q′)(x)1/q′ I(j, q, B) (3.53)

where

I(j, q, B) :=
( ∫

B

(∫ ∞

0

∥∥∇2pt(·, y)
∥∥

Lq(Uj(B))
dt

)q′

dy

)1/q′

.

Now we estimate the final term in (3.53) by using the heat kernel bounds in Proposition
2.4 (c). For each j ≥ 2 and y ∈ B, we have |z − y| ≥ 2j−2rB . Hence for all t > 0 estimate
(2.8) gives

∥∥∇2pt(·, y)
∥∥

Lq(Uj(B))
=

∥∥∇2pt(·, y) eβq|·−y|2/t e−βq|·−y|2/t
∥∥

Lq(Uj(B))

≤ e−c4jr2
B/t

∥∥∇2pt(·, y) eβq|·−y|2/t
∥∥

Lq(Uj(B))
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≤ C

t1+n/2q′ e−c4jr2
B/t e−c(1+t/ρ(y)2)δ

≤ C

t1+n/2q′ e−c4jr2
B/t e−c(1+t/r2

B)δ

. (3.54)

In the last step we used that since rB > 12
√

nρ(xB), then for each y ∈ B, by Lemma
2.1,

ρ(y) ≤ C0ρ(xB)
(

1 +
rB

ρ(xB)

)
< C0

(
1

12
√

n
+ 1

)
rB = C ′rB .

Estimate (3.54) gives us

I(j, q, B) ≤ C

∫ ∞

0

e−c4jr2
B/te−c(1+t/r2

B)δ dt

t1+n/2q′ = C
{Ij + IIj

}
(3.55)

where

Ij :=
∫ 2jr2

B

0

e−c4jr2
B/te−c(1+t/r2

B)δ dt

t1+n/2q′ ,

IIj :=
∫ ∞

2jr2
B

e−c4jr2
B/te−c(1+t/r2

B)δ dt

t1+n/2q′ .

To estimate the first term we observe that since t ≤ 2jr2
B then e−c4jr2

B/t ≤ e−c2j

, so that

Ij ≤ Ce−c2j

∫ 2jr2
B

0

(
t

4jr2
B

)1+n/2q′
dt

t1+n/2q′

≤ Ce−c2j

4j(1+n/2q′)r
2+n/q′
B

∫ 2jr2
B

0

dt

=
Ce−c2j

2j(1+n/q′)r
n/q′
B

≤ Ce−c2jδ

r
n/q′
B

(3.56)

since 0 < δ < 1. To estimate the second term we observe now that t ≥ 2jr2
B implies that

e−c(1+t/r2
B)δ

≤ e−c2jδ

, and hence

IIj ≤
∫ ∞

2jr2
B

e−c(1+t/r2
B)δ dt

t1+n/2q′

≤ Ce−c2jδ

∫ ∞

2jr2
B

dt

t1+n/2q′ ≤
Ce−c2jδ

2jn/2q′r
n/q′
B

≤ Ce−c2jδ

r
n/q′
B

. (3.57)

By collecting (3.56) and (3.57) into (3.55), and then inserting the result into (3.53), gives
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for each j ≥ 2,

(
1

ψη(B)

∫

B

|T ∗fj |q
′
)1/q′

≤ C 2j(n+η)/q′ e−c2jδ ML
η

(|f |q′)(x)1/q′ (3.58)

for any x ∈ B. Finally on combining (3.58) with (3.50) into (3.49) we have, for every
x ∈ B,

(
1

ψη(B)

∫

B

|T ∗f |q′
)1/q′

≤ CML
η

(|f |q′)(x)1/q′
{

1 +
∞∑

j=2

2j(n+η)/q′e−c2jδ

}

≤ C4ML
η

(|f |q′)(x)1/q′

which gives us (3.38) with C̃ = C4.
Therefore Theorem 3.14 applies and we obtain the required result for T = ∇2L−1.

The proof of Theorem 1.1 is complete.

Remark 3.15. Finally we mention that the same approach used in the proof of
Theorem 1.1 can be applied to give new proofs of the weighted estimates for the operators
∇L1/2, V 1/2L−1/2, and V L−1. These estimates are known—see Table 2 in Section 1 and
the works [10], [33]. However we leave the details to the interested reader.

Acknowledgements. This paper forms part of the author’s doctoral thesis and
he wishes to express his gratitude to his advisor Xuan Duong for his constant support
and encouragement. The author also thanks Pierre Portal and Pascal Auscher for their
interest and advice, and to the referee for their careful reading of the manuscript.

After submitting his thesis, the author learned that the good-λ inequality in The-
orem 3.9 has also appeared in [35]. That article gives applications to spectral multipli-
ers, Littlewood–Paley type operators, and commutators. However our result concerning
∇2L−1 is still new.
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