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Abstract. We compute the norm of some bilinear forms on products
of weighted Besov spaces in terms of the norm of their symbol in a space of
pointwise multipliers related to a space of Carleson measures.

1. Introduction.

The object of this paper is the study of some bilinear forms on products of weighted
holomorphic Besov spaces on the unit disk D, and their relationship with Hankel opera-
tors and weak products.

In order to introduce our main results, we recall a classical theorem for small Hankel
operators on the Hardy space H2.

Let dσ = dγ/2π be the surface measure on T and denote by C the Cauchy projection
from L2 to H2. For b ∈ H1, let hb(f) := C(bf) be the small Hankel operator associated
to C, defined on the space of holomorphic functions on D, H(D). The duality (H2)′ ≡ H2

with respect to the pairing

〈f, h〉0 := lim
r→1−

∫ 2π

0

f(reiγ)h(reiγ)
dγ

2π

shows that hb(f) is bounded from H2 to H2 if and only if the bilinear form Λb(f, g) :=
〈fg, b〉0 is bounded on H2 ×H2. Since the strong product H2 ·H2 is H1 and (H1)′ ≡
BMOA (with respect to the pairing 〈·, ·〉0), we obtain that hb extends to a bounded
operator from H2 to H2 if and only if b ∈ BMOA, that is, if and only if the measure
dµ(z) = |b′(z)|2(1 − |z|2)dν(z) is a Carleson measure for H2. Here dν denotes the
normalized Lebesgue measure on D. Recall that a positive measure µ is a Carleson
measure for H2 if and only if H2 ⊂ L2(µ) and that it can be characterized in geometric
terms as follows: µ is a Carleson measure for H2 if and only if there exists a constant
Cµ > 0 such that µ(Sγ,r) ≤ Cµr for any sector Sγ,r := {z = ρeiη : r < ρ < 1, |γ−η| < r}.

The study of the boundedness of bilinear forms on other classical spaces, such as
Hardy spaces Hp or Besov spaces Bp

s , and its connection to the boundedness of Hankel
operators have been studied by several authors (see for instance [12], [14], [15], [8], [1],
[2], [7] and the references therein). Even for the unweighted case, there is not a complete

2010 Mathematics Subject Classification. Primary 47A07; Secondary 30H25, 47B35.

Key Words and Phrases. bilinear forms, weighted Besov spaces, Hankel operators, weak products.

This research was partially supported by DGICYT Grant MTM2014-51834-P and DURSI Grant

2014SGR289.

http://dx.doi.org/10.2969/jmsj/06810383


384 C. Cascante and J. Fàbrega

characterization for all the possible situations, as we will detail when stating our main
results.

Our interest is to extend some of these results to the context of holomorphic weighted
Besov spaces with weights in the Békollé class, which will be defined below. It is proved
in [6, Proposition 3.9] that such weighted Besov spaces can be represented as weighted
Besov spaces with weights in the Muckenhoupt classes. These last classes of weights
are very useful when studying boundedness of some operators (even for the unweighted
case), since the powerful extrapolation theorems reduce the general problem to a weighted
problem for the case p = 2.

In order to state our main theorems and to detail some of the well-known results
in this context, we introduce the following pairings. For t > 0, we write dνt(z) :=
t(1− |z|2)t−1dν(z). In order to unify the statement of our results we define dν0 := dσ.

If ϕ and ψ are measurable functions on D (on T if t = 0) such that ϕψ ∈ L1(dνt),
let

〈〈ϕ,ψ〉〉t :=
∫

D
ϕψdνt

(
〈〈ϕ,ψ〉〉0 :=

∫

T
ϕψdσ

)
. (1.1)

We also consider the pairings

〈h, b〉t := lim
r→1−

〈〈h(rz), b(rz)〉〉t, (1.2)

whose domain is the subset of H ×H for which the limit exists. In particular, if either
b ∈ B1

−t := H ∩ L1(dνt), t > 0, or b ∈ H1, t = 0, then we have that for any h ∈ H(D),
〈h, b〉t = 〈〈h, b〉〉t.

If 1 < p < ∞ and t > 0, the Békollé class Bp,t consists of non-negative functions
θ ∈ L1(dνt) such that the pair of measures dµt := θdνt and dµ′t := θ−p′/pdνt satisfy the
following condition

Bp,t(θ) := sup
z∈D

(
µt(Tz)
νt(Tz)

)1/p(
µ′t(Tz)
νt(Tz)

)1/p′

< ∞,

where p′ is the conjugate exponent of p,

Tz := {w ∈ D : |1− wz/|z|| < 2(1− |z|2)}, z 6= 0, and T0 := D.

If 1 ≤ p < ∞, s ∈ R, θ ∈ Bp,t and dµt = θdνt, then the Besov space Bp
s (µt) consists

of holomorphic functions f on D satisfying

‖f‖p
Bp

s (µt)
:=

∫

D

∣∣(1 + R)ksf(z)
∣∣p (1− |z|2)(ks−s)p dµt(z) < ∞.

Here, ks := min{k ∈ N : k > s} and R denotes the radial derivative.
As it happens for the unweighted case, if we replace ks by another non-negative

integer k > s we obtain equivalent norms (see for instance [6, Section 3]). In particular,
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if s < 0, then we can take k = 0, and thus we have that Bp
s (µt) = H ∩ Lp(µt−sp). More

properties of these spaces will be stated in Section 2.
The classical unweighted Besov space Bp

s corresponds to Bp
s (µ0), where dµ0(z) =

dν(z)/(1 − |z|2). Observe that this space is already included in the scale of weighted
Besov spaces that we have considered, simply because for any t > 0

Bp
s (µ0) = Bp

s+t/p(νt). (1.3)

In order to recover some well-known results for the unweighted case and the pairing 〈·, ·〉0,
we define Bp,0 := {1}.

The pairing 〈·, ·〉t can be used to identify the dual of Bp
s (µt) with Bp′

−s(µ
′
t) (see

Proposition 2.11).
Now we introduce a space of holomorphic functions related to the space of Carleson

measures for weighted Besov spaces, which plays an analogous role to the space BMOA

for the classical problem on H2.
The space CBp

s (µt) consists of the functions g ∈ Bp
s (µt) for which

‖g‖CBp
s (µt) := sup

0 6=f∈Bp
s (µt)

‖f(1 + R)ksg‖Bp
s−ks

(µt)

‖f‖Bp
s (µt)

is finite.
When t = 0, that is for the unweighted case, we simply denote the space CBp

s (µ0)
by CBp

s .
The space CBp

s (µt) can be described either in terms of Carleson measures or in
terms of pointwise multipliers. Indeed,

( i ) b ∈ CBp
s (µt) if and only if the measure

dµb(z) := |(1 + R)ksb(z)|p (1− |z|2)(ks−s)p dµt(z),

is a Carleson measure for Bp
s (dµt), that is, if and only if the embedding Bp

s (µt) ⊂
Lp(dµb) is continuous.

( ii ) b ∈ CBp
s (µt) if and only if (1 + R)ksb ∈ Mult(Bp

s (µt) → Bp
s−ks

(µt)), where
Mult(Bp

s (µt) → Bp
s−ks

(µt)) denotes the space of pointwise multipliers from Bp
s (µt)

to Bp
s−ks

(µt).

The spaces CBp
s appear naturally when dealing with some problems on operators

on Bp
s . For instance, it is well known that Mult(Bp

s ) = H∞∩CBp
s . In some special cases

it is not difficult to give a full description of the space CBp
s . For example, if s > 1/p,

the space Bp
s is a multiplicative algebra and consequently CBp

s = Bp
s . For s = 0 and

p = 2 we have CB2
0 = BMOA and if s < 0, then it is easy to check that CBp

s coincides
with the Bloch space B∞

0 . For 0 ≤ s ≤ 1/p there exist characterizations of these spaces
given in terms of capacities associated to the space. All these results can be found in
[13], [14], [16] and the references therein.

One of the main results of this paper is the following theorem.
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Theorem 1.1. Let 1 < p < ∞, 0 < s < 1, t ≥ 0 and θ ∈ Bp,t. For b ∈ H(D) the
following assertions are equivalent :

( i ) b ∈ CBp
s (µt).

( ii ) Γ1(b) := sup
0 6=f,g∈H(D)

|〈〈|fg|, |(1 + R)b|〉〉t+1|
‖f‖Bp

s (µt)‖g‖Bp′
−s(µ′t)

< ∞.

(iii) Γ2(b) := sup
0 6=f,g∈H(D)

|〈fg, b〉t|
‖f‖Bp

s (µt)‖g‖Bp′
−s(µ′t)

< ∞.

Moreover, ‖b‖CBp
s (µt) ≈ Γ1(b) ≈ Γ2(b).

The symbol ≈ means here that each term is bounded by constant times the other
term, with constants which do not depend on the function b.

If b ∈ L1(dνt), then the small Hankel operator ht
b, t ≥ 0, is defined on H(D) by

ht
b(f)(z) :=

∫

D
f(w)b(w)

dνt(w)
(1− wz)1+t

, t > 0, h0
b(f)(z) :=

∫

T

f(ζ)b(ζ)
1− ζz

dσ(ζ).

Notice that, by Fubini’s theorem, if f, g ∈ H(D), then
〈
g, ht

b(f)
〉

t
= 〈fg, b〉t. Thus,

we have Γ2(b) ≈ ‖ht
b‖L(Bp

s (µt)→Bp
s (µt))

.
For the unweighted case, the equivalence between (i) and (iii) in Theorem 1.1 has

been stated in other reformulations by different authors. See for instance [12], [15], [4]
and the references therein.

In [12], the authors study the small Hankel operators associated to the inner product
〈(1 + R)f, (1 + R)b〉2−2α in the Besov space B2

α, α < 1. For p = 2 the study of the
boundedness of such operator is equivalent to the study of the boundedness of the bilinear
form 〈fg, (1 + R)b〉2−2α in B2

α × B2
α−1. If α ≤ 1/2 it is easy to check (see Lemma 2.10

below) that this is equivalent to the boundedness of 〈fg, b〉1−2α in B2
α × B2

α−1. Since
B2

α = B1
1/2(ν1−2α) and B2

α−1 = B1
−1/2(ν1−2α) (see (1.3)), Theorem 1.1 for p = 2, s = 1/2

and t = 1 − 2α coincides with the one given in [12] and [14]. The case α > 1/2 follows
directly from duality. Indeed, since B2

α is a multiplicative algebra included in H∞, it is
easy to check that B2

α · B2
β = B2

β for any β ≤ α. Thus 〈fg, b〉t is bounded on B2
α × B2

β

if and only if b is in the dual of B2
β with respect to the pairing 〈·, ·〉t, that is if and only

if b ∈ B2
−β−t. This situation does not translate to the weighted case, because it is not

clear when B2(µt) is a multiplicative algebra.
The generalization of these results for small Hankel operators on Bp

α, α ≤ 1/p, can
be found in [4]. This corresponds to the case s = α + (1 − 2α)/p and t = 1 − 2α in
Theorem 1.1.

The fact that Theorem 1.1 involves two parameters, s and t, permits to obtain new
results, even for the unweighted case. For instance it extends to p 6= 2 some results in
[15], where it is studied the boundedness of the bilinear form (f, g) → 〈(1+R)(f g), (1+
R)b〉2−α−β on B2

α×B2
β , β < α ≤ 1/2. If α + β < 0, then B2

α×B2
β = B2

(α−β)/2(ν−α−β)×
B2

(β−α)/2(ν−α−β), which corresponds to the case s = (α − β)/2 and t = −α − β in
Theorem 1.1, provided s < 1.

The techniques used in [15] are different to the ones used in [12] and [4]. Both
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techniques do not seem to work when studying the above problem for the case 0 < α =
β ≤ 1/2. The only result that we know for this situation corresponds to the Dirichlet
case, that is α = β = 1/2 (see [1] and [7]).

In Theorem 1.1, we compute the norm of the bilinear forms on the product Bp
s (µt)×

Bp′
−s(µ

′
t). However, analogously to the unweighted case, using that the operator (1+R)s′

is a bijection from Bp
s (µt) to Bp

s−s′(µt), that Bp,t ⊂ Bp,t+t0 , t0 ≥ 0 and

Bp
s (µt) = Bp

s+t0/p(µt+t0), (1.4)

we can use Theorem 1.1 to compute norms of bilinear forms on products Bp
s0

(µt0) ×
Bp′

s1
(µ′t1) for some particular choices of the indexes s0, s1, t0 and t1. For instance, we

have:

Corollary 1.2. Let 1 < p < ∞, t0, t1 ≥ 0, θ ∈ Bp,t0 and s0 ∈ R. For s1 ∈ R
satisfying s0 + s1 < 0 and 0 < (s0/p′)− (s1/p) < 1, let t = t0 − s0 − s1.

Then we have

‖Rt−t1
1+t b‖CBp

s0/p′−s1/p
(µt) ≈ sup

0 6=f,g∈H(D)

|〈fg, b〉t1 |
‖f‖Bp

s0 (µt0 )‖g‖Bp′
s1 (µ′t0 )

,

where Rt−t1
1+t is a fractional differential operator of order t− t1 (see (2.6) below).

For s0, s1 < 0, we have the following result:

Theorem 1.3. If 1 < p < ∞, t ≥ 0, θ ∈ Bp,t and s0, s1 < 0, then

‖b‖B∞−s0−s1
≈ sup

0 6=f,g∈H(D)

|〈fg, b〉t|
‖f‖Bp

s0 (µt)‖g‖Bp′
s1 (µt)

.

Here, B∞
s := (1+R)−sB∞

0 . In particular, if s > 0, B∞
s is the holomorphic Lipschitz-

Zygmund space H ∩ Λs.

As it happens in the unweighted case (see for instance [14], [8] and [2] for p = 2),
Theorems 1.1 and 1.3 give the following duality result for weak products.

Recall that the weak product F ¯ G of two Banach spaces of functions F and G

consists of the completion of finite sums h =
∑

fjgj using the norm

‖h‖F¯G := inf
{ ∑

‖fj‖F ‖gj‖G :
∑

fjgj = h

}
.

Theorem 1.4. Let 1 < p < ∞, t ≥ 0 and θ ∈ Bp,t. If we consider the pairing
〈·, ·〉t, we then have:

( i ) If 0 < s < 1, then (Bp
s (µt)¯Bp′

−s(µ
′
t))
′ ≡ CBp

s (µt).
( ii ) If s0, s1 < 0, then

(
Bp

s0
(µt) ¯ Bp′

s1
(µ′t)

)′ ≡ B∞
−s0−s1

, and consequently, we have
Bp

s0
(µt) ¯Bp′

s1
(µ′t) = B1

s0+s1−t.
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The same arguments used to prove Corollary 1.2 from Theorem 1.1, combining the
above theorem with (1.4), give a description of the dual of Bp

s0
(µt0)¯Bp′

s1
(µ′t0) for s0, s1

and t0 satisfying the conditions in Corollary 1.2. This description covers some results
stated in [14] and in Section 5 in [8] for the unweighted case.

The paper is organized as follows. In Section 2 we give some definitions and we
state some properties of the class of weights in Bp,t and its corresponding weighted
Besov spaces. In Section 3 we obtain estimates of ‖b‖CBp

s (µt) which in particular give the
proof of Theorem 1.3. Section 4 is devoted to the proof of Theorem 1.1 and Corollary
1.2. In Section 5, we use our previous results to prove Theorem 1.4.

2. Notations and preliminaries.

Throughout this paper, the expression F . G means that there exists a positive
constant C independent of the essential variables and such that F ≤ CG. If F . G and
G . F we will write F ≈ G.

2.1. Differential and integral operators.
We denote the partial derivatives of first order by ∂ := ∂/∂z and ∂ := ∂/∂z respec-

tively . Let R := z∂ be the radial derivative.
For s, t ∈ R, t > 0 and k a non-negative integer, we consider the differential operator

Rk
t of order k defined by

Rk
t f :=

(
1 +

R

t + k − 1

)
· · ·

(
1 +

R

t

)
f.

If we need to specify the variable of differentiation, then we write ∂z, Rz and Rk
t,z,

respectively.
The operators Rk

t satisfy the following formula:

Rk
t

1
(1− zw)t

=
1

(1− zw)t+k
. (2.5)

Definition 2.1. For N > 0 and M ≥ 0, we consider the following integral opera-
tors:

PN,M (ϕ)(z) :=
∫

D
ϕ(w)PN,M (z, w)dν(w), where PN,M (z, w) := N

(1− |w|2)N−1

(1− zw)1+M
.

PN,M (ϕ)(z) :=
∫

D
ϕ(w)PN,M (z, w)dν(w), where PN,M (z, w) := |PN,M (z, w)|.

We extend the definition to the case N = 0 by writing

P0,M (ϕ)(z) :=
∫

T

ϕ(ζ)
(1− zζ)1+M

dσ(ζ), P0,M (ϕ)(z) :=
∫

T

ϕ(ζ)
|1− zζ|1+M

dσ(ζ).

If N = M , then we denote PN,N and PN,N by PN and PN , respectively.
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For N ≥ 0, we also define

KN (∂ϕ)(z) :=
∫

D
∂ϕ(w)KN (w, z)dν(w), where KN (w, z) :=

(1− |w|2)N

(1− zw)N

1
w − z

.

The weighted Cauchy-Pompeiu representation formula is given by:

Theorem 2.2. Let N ≥ 0 and ϕ ∈ C1(D). Then ϕ(z) = PN (ϕ)(z) +KN (∂ϕ)(z).

Since Rk
1+Nf = Rk

1+NPN (f) = PN,N+k(f), it is natural to extend the definition of
Rk

t for a non-integer order by considering

Rs
1+Nf := PN,N+s(f), s, N > 0. (2.6)

Note that by Theorem 2.2 we have

∫

D
PN+s,N (w, z)PN,N+s(u,w)dν(w) = PN (u, z).

Therefore, for s > 0 we can define the inverse of Rs
1+N by R−s

1+Nf := PN+s,N (f).
Let us recall the following estimate.

Lemma 2.3. If q < 2, N > 0, M 6= N − q and z ∈ D, then

∫

D

PN,M (w, z)
|w − z|q dν(w) . (1 + (1− |z|2)N−M−q).

Proof. The case q = 0 is well known (see for instance [17, Lemma 4.2.2]). The
case q 6= 0 can be reduced to q = 0 using the change of variables w = ϕz(u) := (z −
u)/(1− uz). Indeed, we have

∫

D

PN,M (w, z)
|w − z|q dν(w) = (1− |z|2)N−M−q

∫

D

(1− |u|2)N−1

|1− uz|1+2N−M−q

dν(u)
|u|q ,

which ends the proof. ¤

2.2. Békollé weights.
In this section we recall some properties of the Békollé weights Bp,t. We refer to [3]

for more details. Recall that if t > 0 and θ ∈ Bp,t, then dµt = θdνt and dµ′t = θ−p′/pdνt.
Since, for any w ∈ Tz, 1− |w|2 ≤ 4(1− |z|2), we have:

Lemma 2.4. If 1 < p < ∞, 0 < t0 < t1 and θ ∈ Bp,t0 , then Bp,t1(θ) . Bp,t0(θ).
Thus, Bp,t0 ⊂ Bp,t1 .

The next result was proved in [3, Theorem 1 and Propositions 3, 5]

Theorem 2.5. Let 1 < p < ∞, t > 0 and let θ be a positive locally integrable
function θ on D. Then, the following assertions are equivalent :
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( i ) θ ∈ Bp,t.
( ii ) The integral operator Pt is bounded on Lp(dµt).
(iii) The integral operator Pt is bounded on Lp(dµt).

It is well known that any weight in the Muckenhoupt class Ap satisfies a doubling
condition. Similarly to what happens for these classes of weights, any weight in Bp,t

satisfies a doubling type condition with respect to tents. We also have a characterization
of weights in Bp,t in terms of the kernels Pt,M , which is analogous to the one satisfied for
the weights in Ap (see [11], [5]). This is the content of the following proposition.

Proposition 2.6. Let 1 < p < ∞, t > 0 and θ ∈ Bp,t. We then have:

( i ) The measure µt satisfies the following doubling type condition:
if 0 < r1 < r2 < 1 and ζ ∈ T, then

µt(Tr1ζ)
µt(Tr2ζ)

≤ Bp,t(θ)p

(
νt(Tr1ζ)
νt(Tr2ζ)

)p

≈ Bp,t(θ)p

(
1− r1

1− r2

)(1+t)p

.

( ii ) If M > (1 + t)(max{p, p′} − 1), the following equivalence holds:

Bp,t(θ) . sup
z∈D

(1− |z|2)M
(
Pt,t+M (θ)(z)

)1/p(Pt,t+M (θ−p′/p)(z)
)1/p′ . Bp,t(θ)2.

Proof. Part (i) follows easily from Hölder’s inequality and the fact that θ ∈ Bp,t.
Indeed, the embedding Tr2ζ ⊂ Tr1ζ gives

νt(Tr2ζ) ≤
( ∫

Tr2ζ

dµt

)1/p( ∫

Tr1ζ

dµ′t

)1/p′

≤ µt(Tr2ζ)1/pBp,t(θ) νt(Tr1ζ)
(µt(Tr1ζ))1/p

.

Since νt(Trζ) ≈ (1− r)1+t, we conclude the proof.
In order to prove (ii) it is enough to prove the following estimates, valid for z ∈ D:

µt(Tz)
νt(Tz)

. (1− |z|2)MPt,t+M (θ)(z) . Bp,t(θ)p µt(Tz)
νt(Tz)

, (2.7)

µ′t(Tz)
νt(Tz)

. (1− |z|2)MPt,t+M (θ−p′/p)(z) . Bp,t(θ−p′/p)p′ µ
′
t(Tz)

νt(Tz)
. (2.8)

Observe that (2.8) follows from (2.7) since θ ∈ Bp,t if and only if θ−p′/p ∈ Bp′,t.
The estimate on the left hand side of (2.7) is valid for any M > 0 and t > 0, and

follows from

µt(Tz)
νt(Tz)

=
1

νt(Tz)

∫

Tz

θdνt . (1− |z|2)M

∫

Tz

θ(w)
|1− wz̄|1+t+M

dνt(w)

= (1− |z|2)MPt,t+M (θ)(z).
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Let us prove the estimate on the right hand side of (2.7). If z = 0 then T0 = D
and thus the result is clear. If z 6= 0 then let ζ = z/|z| and Jz the integer part of
− log2(1− |z|). Consider the sequence {zk} ⊂ D defined by

zk = (1− 2k(1− |z|))ζ if k = 0, 1, . . . , Jz, and zk = 0 if k > Jz.

Observe that z0 = z and that 1− |zk|2 ≈ |1− wz| for w ∈ Tzk
\ Tzk−1 . Therefore,

(1− |z|2)MPt,t+M (θ)(z) = (1− |z|2)M
Jz+1∑

k=0

∫

Tzk
\Tzk−1

θ(w) dνt(w)
|1− wz|1+t+M

.
Jz+1∑

k=0

(1− |z|2)M

(2k(1− |z|2))1+t+M
µt(Tzk

).

By the doubling property (i), we have

µt(Tzk
) . Bp,t(θ)p (1− |zk|)(1+t)p

(1− |z|)(1+t)p
µt(Tz) ≈ Bp,t(θ)p2k(1+t)pµt(Tz).

Since M > (1 + t)(p− 1) and νt(Tz) ≈ (1− |z|2)1+t we obtain

(1− |z|2)MPt,t+M (θ)(z) . Bp,t(θ)p µt(Tz)
νt(Tz)

,

which concludes the proof of the right hand side estimate in (2.7). ¤

As a consequence of the above proposition and the estimate 1 − |w|2 ≤ 2|1 − zw|,
we obtain:

Corollary 2.7. If 1 < p < ∞, t ≥ 0, N > 0, M > (1 + t + N)(max{p, p′} − 1)
and θ ∈ Bp,t, then

sup
z∈D

(1− |z|2)M
(
Pt+N,t+N+M (θ)(z)

)1/p (
Pt+N,t+N+M (θ−p′/p)(z)

)1/p′ . Bp,t(θ)2.

2.3. Weighted Besov spaces.
In this section we recall some properties of the weighted Besov spaces Bp

s (µt) intro-
duced in Section 1.

The next result is well known for the unweighted case (see for instance [18, Chapters
2, 6]). The proof for the weighted Besov spaces can be done following the same arguments
used to prove Theorem 3.1 in [6].

Proposition 2.8. Let 1 < p < ∞, s ∈ R, t ≥ 0 and θ ∈ Bp,t. If k > s is a
non-negative integer, then
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∫

D
|Dkf(z)|p(1− |z|2)(k−s)pdµt(z) and

k∑
m=0

∫

D
|∂kf(z)|p(1− |z|2)(k−s)pdµt(z)

provide equivalent norms on Bp
s (µt), where Dk is either (1 + R)k or Rk

L.

The next embedding relates weighted and unweighted Besov spaces.

Lemma 2.9. If 1 < p < ∞, s ∈ R, t ≥ 0 and θ ∈ Bp,t, then Bp
s (µt) ⊂ B1

s−t.

Proof. Since for any positive integer k we have Bp
s (µt) = (1+R)−kBp

s−k(µt) and
B1

s−t = (1 + R)−kB1
s−t−k, it is sufficient to prove the above embedding for s < 0.

In this case, Hölder’s inequality gives

‖f‖B1
s−t

≤
( ∫

D
|f |pdµt−sp

)1/p( ∫

D
dµ′t

)1/p′

,

which proves the result. ¤

In order to state a duality relation between weighted Besov spaces, we need the next
lemma.

Lemma 2.10. The pairing 〈·, ·〉δ defined in (1.2) satisfies that for f, g ∈ H(D):

( i ) 〈f, g〉δ = 〈f,Rk
δ+1g〉δ+k = 〈Rk

δ+1f, g〉δ+k.

( ii ) If τ ∈ R then we have 〈f, g〉δ = 〈(1 + R)τf, (1 + R)−τg〉δ.

Proof. Let us prove (i) for k = 1, that is

〈f, g〉δ =
〈

f,

(
1 +

R

δ + 1

)
g

〉

δ+1

=
〈(

1 +
R

δ + 1

)
f, g

〉

δ+1

.

Observe that the second equality can be deduced from the first one by conjugation.
If δ = 0, then Stokes’ theorem gives

〈f, g〉0 =
1

2πi
lim

r→1−

∫

T
f(rζ)g(rζ) ζdζ = lim

r→1−

∫

D
∂
(
zf(rz)g(rz)

)
dν(z)

= lim
r→1−

∫

D
f(rz)((1 + R)g)(rz) dν(z) = 〈f, (1 + R)g〉1.

The case δ > 0 follows from the identity

δ(1− |z|2)δ−1 = (δ + 1)(1− |z|2)δ − ∂(z(1− |z|2)δ),

and integration by parts.
A simple iteration of these identities gives (i).
Assertion (ii) follows from the facts that (1 + R)τzm = (1 + m)τzm and that
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〈zk, zm〉δ = 0, k 6= m. ¤

The next result extends the well known duality (Bp
s )′ ≡ Bp′

−s for the case t = 0 (see
[9]).

Proposition 2.11. Let 1 < p < ∞, t ≥ 0 and θ ∈ Bp,t. If s ∈ R, then, the dual
of Bp

s (µt) with respect to the pairing 〈·, ·〉t is the Besov space Bp′
−s(µ

′
t).

Proof. As in the unweighted case, from the duality (Lp(µt))′ ≡ Lp′(µ′t), with
respect to the pairing 〈〈·, ·〉〉t+1, Theorem 2.5 and the Hahn-Banach theorem, we obtain

(
Bp
−1/p(µt)

)′ = (H ∩ Lp(µt))′ ≡ H ∩ Lp′(µ′t) = Bp′

−1/p′(µ
′
t),

with respect to the pairing 〈〈·, ·〉〉t+1, and consequently with respect to the pairing
〈·, ·〉t+1.

Next, we use the above result and Lemma 2.10 to prove the general case.
If g ∈ Bp′

−s(µ
′
t) and f ∈ Bp

s (µt), then

|〈f, g〉t| = |〈R1
t f, g〉t+1| ≤ ‖g‖Lp′ (µ′

sp′+t
)‖R1

t f‖Lp(µ(1−s)p+t) ≈ ‖g‖
Bp′
−s(µ′t)

‖f‖Bp
s (µt).

Thus, the map g → 〈·, g〉t is an injective map from Bp′
−s(µ

′
t) to (Bp

s (µt))′.
Let us prove that this map is surjective. If Λ is a linear form on Bp

s (µt), then
Λ ◦ (1 + R)−s−1/p is also a linear form on Bp

−1/p(µt). Thus, there exists g ∈ Bp′

−1/p′(µ
′
t)

such that for any h ∈ Bp
−1/p(µt),

Λ ◦ (1 + R)−s−1/p(h) = 〈h, g〉t+1 = 〈(1 + R)−s−1/ph, (1 + R)s+1/pg〉t+1

= 〈(1 + R)−s−1/ph,R−1
1+t(1 + R)s+1/pg〉t,

where in the second identity we have used (ii) in Lemma 2.10 and in the last one (i) in
the same lemma.

Since for any f ∈ Bp
s (µt), we have that h = (1+R)s+1/p(f) ∈ Bp

−1/p(µt), we deduce

that Λ(f) = 〈f,G〉t with G := R−1
1+t(1 + R)s+1/pg ∈ Bp′

−s(µ
′
t). ¤

Corollary 2.12. Let 1 < p < ∞, t′ > t ≥ 0 and θ ∈ Bp,t. If s ∈ R, then
(Bp

s (µt))
′ = Bp′

−s+t−t′(µ
′
t) with respect to the pairing 〈·, ·〉t′ .

In particular, if t = 0, then (Bp
s )′ ≡ Bp′

−s−t′ , with respect to the pairing 〈·, ·〉0.

Proof. By the above proposition, we have

(Bp
s (µt))′ ≡

(
Bp

s+(t′−t)/p(µt′)
)′ ≡ (

Bp′

−s−(t′−t)/p(µ
′
t′)

)
=

(
Bp′

−s+t−t′(µ
′
t)

)

which ends the proof. ¤
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3. Estimates of ‖b‖CBp
s (µt) and proof of Theorem 1.3.

We introduce a variation in the definition of the constants Γ1(b) and Γ2(b) in The-
orem 1.1, which allow us to cover some general situations.

Definition 3.1. If 1 < p < ∞, s0, s1 ∈ R, t ≥ 0, θ ∈ Bp,t and b ∈ H, then

Γ3(b) = Γ(b, p, s0, s1, t) := sup
0 6=f,g∈H(B)

|〈fg, b〉t|
‖f‖Bp

s0 (µt) ‖g‖Bp′
s1 (µ′t)

.

We will start proving the following theorem.

Theorem 3.2. Let 1 < p < ∞, s0, s1 ∈ R, t ≥ 0 and θ ∈ Bp,t. Then ‖b‖B∞−s0−s1
.

Γ3(b).
If s0, s1 < 0, then the converse inequality holds.

The proof of this result will be a consequence of Lemmas 3.4 and 3.6.

Lemma 3.3. Let 1 < p < ∞, s0, s1 ∈ R, t ≥ 0 and θ ∈ Bp,t. Let

τ > λ := (1 + t)(max{p, p′} − 1) + max{0,−s0p,−s1p
′}. (3.9)

For z ∈ D, we consider the functions

fz(w) =
1

(1− wz)(1+t+τ)/p
and gz(w) =

1
(1− wz)(1+t+τ)/p′ .

Then

‖fz‖Bp
s0 (µt) ‖gz‖Bp′

s1 (µ′t)
. Bp,t(θ)2(1− |z|2)−τ−s0−s1 .

Proof. If m > s0 is a non-negative integer, then

‖fz‖p
Bp

s0 (µt)
≈

∫

D

(1− |w|2)t+(m−s0)p−1

|1− zw|1+t+τ+mp
θ(w)dν(w).

Analogously, if m > s1, then

‖gz‖p′

Bp′
s1 (µ′t)

≈
∫

D

(1− |w|2)t+(m−s1)p
′−1

|1− zw|1+t+τ+mp′ θ−p′/p(w)dν(w).

Therefore, if N, M satisfy 0 < N < min{(m − s0)p, (m − s1)p′} and (1 + t +
N)(max{p, p′}−1) < M < min{kτ +s0p, τ +s1p

′}, then the estimate 1−|z|2 ≤ 2|1−wz|
and Corollary 2.7 give



Bilinear forms on weighted Besov spaces 395

‖fz‖Bp
s0 (µt)‖gz‖Bp′

s1 (µ′t)

. (1− |z|2)M−τ−s0−s1(Pt+N,t+N+M (θ)(z))1/p
(
Pt+N,t+N+M (θ−p′/p)(z)

)1/p′

. Bp,t(θ)2(1− |z|2)−τ−s0−s1 ,

which ends the proof. ¤

Lemma 3.4. Let 1 < p < ∞, s0, s1 ∈ R, t ≥ 0, θ ∈ Bp,t and b ∈ H. Then
‖b‖B∞−s0−s1

. Γ3(b).

Proof. We want to prove that for some positive integer k, we have

‖b‖B∞−s0−s1
≈ sup

z∈D
(1− |z|2)k+s0+s1 |Rk

1+tb(z)| . Γ3(b).

By Cauchy formula, we have

Rk
1+tb(z) = t lim

r→1−
Rk

1+t

∫

D
b(rw)

(1− |w|2)t−1

(1− rzw)1+t
dν(w)

= t lim
r→1−

∫

D
b(rw)

(1− |w|2)t−1

(1− rzw)1+t+k
dν(w).

Assume that k is a positive integer satisfying (3.9), and let

fz(w) =
1

(1− wz)(1+t+k)/p
and gz(w) =

1
(1− wz)(1+t+k)/p′ .

Since |Rk
1+tg(z)| = |〈fzgz, b〉t|, Lemma 3.3 gives

|Rk
1+tb(z)| ≤ Γ3(b)‖fz‖Bp

s0 (µt) ‖gz‖Bp′
s1 (µ′t)

. Γ3(b)(1− |z|2)−k−s0−s1 ,

which concludes the proof. ¤

Corollary 3.5. Let 1 < p < ∞ and 0 < s < 1. If b satisfies condition (iii) in
Theorem 1.1, that is Γ3(b, p, s,−s, t) < ∞, then b ∈ Bp

s (µt) ∩B∞
0 .

Proof. The above lemma gives b ∈ B∞
0 . The fact that b ∈ Bp

s (µt) follows from
the estimate |〈g, b〉t| ≤ Cb‖1‖Bp

s (µt)‖g‖Bp′
−s(µ′t)

and the duality result in Proposition 2.11.
¤

Lemma 3.6. If 1 < p < ∞ and s0, s1 < 0, then Γ3(b) . ‖b‖B∞−s0−s1
.

Proof. Let k be a positive integer such that k > −s0 − s1. Then
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|〈fg, b〉t| = |〈fg, Rk
1+tb〉t+k| . ‖b‖B∞−s0−s1

‖fg‖L1(dνt−s0−s1 )

≤ ‖b‖B∞−s0−s1
‖f‖Lp(θdνt−s0p)‖g‖Lp′ (θ−p′/pdνt−s1p′ )

≈ ‖b‖B∞−s0−s1
‖f‖Bp

s0 (µt) ‖g‖Bp′
s1 (µ′t)

,

which ends the proof. ¤

Proof of Theorem 1.3. The proof is an immediate consequence of Lemmas 3.4
and 3.6. ¤

Theorem 3.7. Let 1 < p < ∞, s < 1, t ≥ 0 and θ ∈ Bp,t. Then, CBp
s (µt) ⊂

Bp
s (µt) ∩B∞

0 . If s < 0, then CBp
s (µt) = B∞

0 .

Proof. The first inclusion follows from the same arguments used to prove Lemma
3.4. For a non-negative integer k > s which we precise later, we have

|Rk
1+t+(1−s)p(I + R)b(z)| = |Rk

1+t+(1−s)pPt+(1−s)p((I + R)b)(z)|

= |Pt+(1−s)p,t+(1−s)p+k((I + R)b)(z)|

≤
( ∫

D

(1− |w|2)(1−s)p+t−1|(I + R)b(w)|p
|1− wz|1+t+(1−s)p+k

θ(w)dν(w)
)1/p

·
( ∫

D

(1− |w|2)(1−s)p+t−1

|1− wz|1+t+(1−s)p+k
θ−p′/p(w)dν(w)

)1/p′

. ‖b‖CBp
s (µt)

( ∫

D

(1− |w|2)(1−s)p+t−1

|1− wz|1+t+(1−s)p+k+p
θ(w)dν(w)

)1/p

·
( ∫

D

(1− |w|2)(1−s)p+t−1

|1− wz|1+t+(1−s)p+k
θ−p′/p(w)dν(w)

)1/p′

≤ ‖b‖CBp
s (µt)(1− |z|2)−1

(
Pt+(1−s)p,t+(1−s)p+k(θ)(z)

)1/p

· (Pt+(1−s)p,t+(1−s)p+k(θ−p′/p)(z)
)1/p′

.

If k > (1+ t+(1−s)p)(max{p, p′}−1), then Corollary 2.7 with N = (1−s)p and M = k,
gives |Rk

1+t+(1−s)p(I + R)b(z)| . ‖b‖CBp
s (µt)(1− |z|2)−1−k which proves that b ∈ B∞

0 .
Next, if s < 0, then we have ks = 1 and the inequality ‖b‖CBp

s (µt) . ‖b‖B∞0 follows
from

∫

D
|f(z)|p |(1 + R)b(z)|p (1− |z|2)(1−s)p dµt(z) . ‖b‖p

B∞0
‖f‖p

Bp
s (µt)

,

which concludes the proof. ¤
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Remark 3.8. Observe that if 0 < s < 1, 0 < ε < 1− s and ‖g‖B∞s+ε−1
< ∞, then

‖gf‖Bp
s−1(µt) . ‖g‖B∞s+ε−1

‖f‖Bp
−ε(µt) . ‖g‖B∞s+ε−1

‖f‖Bp
s (µt).

Therefore, g ∈ Mult(Bp
s (µt) → Bp

s−1(µt)). In particular,

B∞
0 ⊂ B∞

s+ε−1 ⊂ Mult(Bp
s (µt) → Bp

s−1(µt)).

This gives that g ∈ CBp
s (µt) if and only if for some (any) l > 0, (l + R)g ∈

Mult(Bp
s (µt) → Bp

s−1(µt)).

4. Proof of Theorem 1.1 and Corollary 1.2.

4.1. Proof of (i) =⇒ (ii) =⇒ (iii) in Theorem 1.1.
The fact that (i) =⇒ (ii) is a consequence of Hölder’s inequality. Indeed, since

0 < s < 1, we have

〈〈|fg|, |(1 + R)b|〉〉t+1 ≤ ‖g‖Lp′ (θ−p′/pdνsp′+t)
‖f(1 + R)b‖Lp(θdν(1−s)p+t)

≤ ‖g‖
Bp′
−s(µ′t)

‖f‖Bp
s (µt) ‖b‖CBp

s (µt).

Clearly (ii) =⇒ (iii) is a consequence of Lemma 2.10 (i). Indeed, if |〈〈|fg|, |(1 +
R)b|〉〉t+1| < ∞ for any f, g ∈ H(D), then by Corollary 3.5 (see also Remark 3.8) we have
|〈〈|fg|, |R1

t+1b|〉〉t+1| < ∞. Thus

|〈fg, b〉t| = |〈fg, R1
t+1b〉t+1| ≤ |〈〈|fg|, |R1

t+1b|〉〉t+1|.

which concludes the proof.
Observe that if b ∈ CBp

s (µt), the above estimates give

|〈fg, b〉t| ≤ ‖b‖CBp
s (µt)‖f‖Bp

s (µt)‖g‖Bp′
−s(µ′t)

. (4.10)

Thus we have Γ2(b) ≤ Γ1(b) ≤ ‖b‖CBp
s (µt).

4.2. Proof of (iii) =⇒ (i) in Theorem 1.1 for the unweighted case t = 0.
In the next proposition we use Corollary 3.5 and the weighted Cauchy-Pompeiu’s

formula, to give a simple proof of (iii) =⇒ (i) in Theorem 1.1 for the unweighted case
t = 0. This last case has been proved using different methods in [12] for p = 2 and in [4]
for any p > 1. Our approach follows the techniques in [15].

Proposition 4.1. Let 1 < p < ∞ and 0 < s < 1. Assume that b ∈ H satisfies
|〈fg, b〉0| ≤ Cb‖f‖Bp

s
‖g‖

Bp′
−s

for any f, g ∈ H(D). Then b ∈ CBp
s .

Proof. By Lemma 2.9 we have b ∈ Bp
s ⊂ B1

0 . Therefore, for f ∈ H(D), the
weighted Cauchy-Pompeiu’s representation formula in Theorem 2.2 gives
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(1 + R)b(z)f = P1((1 + R)bf) +K1((1 + R)b∂f). (4.11)

In order to prove this proposition it is enough to show that the Lp(dν(1−s)p)-norms of
the two terms in the right hand side in (4.11) are bounded by a constant times ‖f‖Bp

s
.

The first term h = P1((1+R)bf) is a holomorphic function on D. Thus, by Corollary
2.12, it suffices to prove that |〈h, g〉1| ≤ C‖f‖Bp

s
‖g‖

Bp′
−s

for any g ∈ H(D).

By Lemma 2.10, this follows from 〈h, g〉1 = 〈(1 + R)b, fg〉1 = 〈b, fg〉0 and the
hypotheses.

In order to estimate the Lp(dν(1−s)p)-norm of K1((1+R)b∂f), note that by Corollary
3.5 we have b ∈ B∞

0 . This fact, Hölder’s inequality and the estimates of Lemma 2.3, with
ε > 0 small enough to be chosen later on, we have

|K1((1 + R)b∂f)(z)|p ≤ ‖b‖p
B∞0

( ∫

D

|∂f(w)|
|1− zw||w − z|dν(w)

)p

≤ ‖b‖p
B∞0

∫

D

|∂f(w)|p(1− |w|2)(1−ε)p−1

|1− zw|(1−2ε)p|w − z| dν(w)
( ∫

D

(1− |w|2)εp′−1

|1− zw|2εp′ |w − z|dν(w)
)p/p′

. ‖b‖B∞0

∫

D

|∂f(w)|p(1− |w|2)(1−ε)p−1

|1− zw|(1−2ε)p|w − z| dν(w)(1− |z|2)−εp.

Therefore, if 0 < ε < min{s, 1− s}, then the above estimate, Fubini’s theorem and
Lemma 2.3 give

‖K1((1 + R)b∂f)‖Lp(dν(1−s)p) . ‖b‖B∞0 ‖∂f‖Lp(dν(1−s)p) . ‖b‖B∞0 ‖f‖Bp
s
,

which ends the proof. ¤

4.3. Proof of (iii) =⇒ (i) in Theorem 1.1 for the general case.
Observe that if we use the same arguments of the above section to prove the un-

weighted case, then in the estimate of Kt+1((1 + R)b ∂f) we will end up with integrals
of the type

∫

D

(1− |w|2)N−1

|1− zw|1+M |w − z| θ(w)dν(w),

which are difficult to estimate because we do not have precise information on θ near the
diagonal z = w. One method to avoid this difficulty is based in the use of the following
modification of the Cauchy-Pompeiu’s formula, which on one hand avoid the singularity
on the diagonal and in other hand increases the power of (1− |w|2).

Lemma 4.2. Let t > 0, b ∈ B∞
0 and f ∈ H(D). For any integer m ≥ 2, we have

Kt+1((1 + R)b∂f) = Kt+m
0 ((1 + R)b ∂2f) +Kt+m−1

1 ((1 + R)b ∂f)

+
m−1∑

j=1

Qt+j((1 + R)bRf),
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where

Kt+m
0 ((1 + R)b∂2f)(z) := −

∫

D

((1 + R)b∂2f)(w)
(1− zw)t+m

w − z

w − z
dνt+m+1(w),

Kt+m−1
1 ((1 + R)b∂f)(z) := (t + m)

∫

D

((1 + R)b∂f)(w) (w − z)
(1− zw)t+m+1

dνt+m(w),

Qt+j((1 + R)bRf)(z) :=
∫

D
((1 + R)bRf)(w)

dνt+j+1(w)
(1− zw)t+j+1

.

Proof. Recall that

Kt(w, z) =
(1− |w|2)t

(1− zw)t

1
w − z

.

Since 1 = (1− |w|2)/(1− zw) + (w(w − z))/(1− zw), we have

Kt+1((1 + R)b∂f)(z) = Kt+2((1 + R)b∂f)(z) + Qt+1((1 + R)bRf)(z).

Iterating this formula, we obtain

Kt+1((1 + R)b∂f)(z) = Kt+m((1 + R)b∂f)(z) +
m−1∑

j=1

Qt+j((1 + R)bRf)(z).

An easy computation shows that

Kt+m(w, z) =
(1− |w|2)t+m

(1− zw)t+m

1
w − z

= ∂w

(
(1− |w|2)t+m

(1− zw)t+m

w − z

w − z

)
+ (t + m)

(1− |w|2)t+m−1(w − z)
(1− zw)t+m+1

.

Fixed z ∈ D and 0 < ε < 1− |z|, let Ωz,ε := D \ {w ∈ D : |w − z| < ε}. If we apply
Stokes’ theorem to the region Ωz,ε and let ε → 0, we obtain

Kt+m((1 + R)b∂f)(z) = −
∫

D
((1 + R)b∂2f)(w)

(1− |w|2)t+m

(1− zw)t+m

w − z

w − z
dν(w)

+ (t + m)
∫

D
((1 + R)b∂f)(w)

(1− |w|2)t+m−1(w − z)
(1− zw)t+m+1

dν(w),

which concludes the proof. ¤

Proposition 4.3. Let 1 < p < ∞, 0 < s < 1, t > 0 , b ∈ B∞
0 , f ∈ H(D) and

ϕf (w) := |∂2f(w)|(1− |w|2)2−s + |∂f(w)|(1− |w|2)1−s.
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Then we have

|Kt+1((1 + R)b∂f)(z)| . ‖b‖B∞0 P
t+s,t+1(ϕf )(z). (4.12)

Therefore, if θ ∈ Bp,t, then

‖(1− |z|2)1−sKt+1((1 + R)b∂f)(z)‖Lp(µt) . ‖b‖B∞0 ‖f‖Bp
s (µt). (4.13)

Proof. The pointwise estimate (4.12) follows from Lemma 4.2. Since 1− |w|2 ≤
2|1− zw̄| and |z − w| ≤ |1− zw̄|, then for m ≥ 3, we have

|Kt+1((1 + R)b∂f)(z)|

. ‖b‖B∞0

(
Pt+m−2+s,t+m−1(ϕf )(z) +

m−1∑

j=1

Pt+j+s−1,t+j(ϕf )(z)
)

. ‖b‖B∞0 P
t+s,t+1(ϕf )(z).

In order to prove the Lp(µt)-norm estimate (4.13), from (4.12) we have

(1− |z|2)1−s|Kt+1((1 + R)b∂f)(z)| . ‖b‖B∞0 P
t+s(ϕf )(z)

and thus ‖Pt+s(ϕf )‖Lp(µt) . ‖ϕf‖Lp(µt) . ‖f‖Bp
s
(µt), which is a consequence of Theorem

2.5 and Proposition 2.8. ¤

Now we can prove (iii) =⇒ (i) in Theorem 1.1.

Proposition 4.4. If b satisfies condition (iii) in Theorem 1.1, then b ∈ CBp
s (µt).

Proof. We want to prove that

∫

D
|f(z)|p|R1

t+1b(z)|p(1− |z|2)(1−s)pdµt(z) . Cb‖f‖p
Bp

s (µt)
.

To do so, by the Cauchy-Pompeiu’s formula in Theorem 2.2,

R1
t+1b(z)f = Pt+1(R1

t+1bf) +Kt+1(R1
t+1b∂f), (4.14)

we will show that the two terms in the right hand side in (4.14) are both in
Lp(θdν(1−s)p+t) and that these norms are bounded up to a constant by ‖f‖Bp

s (µt).
Since h = Pt+1(f R1

t+1b) is a holomorphic function on D, the norm estimate of h is
similar to the one for the unweighted case. Indeed, for g ∈ H(D) Lemma 2.10 gives

|〈h, g〉t+1| = |〈R1
t+1b, fg〉t+1| = |〈b, fg〉t| ≤ Γ2(b)‖f‖Bp

s (µt)‖g‖Bp′
−s(µ′t)

which, by Corollary 2.12, proves that ‖h‖Lp(θdν(1−s)p+t) ≤ Γ2(b)‖f‖Bp
s (µt).
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Using the Lp(θdν(1−s)p+t)-norm estimate of Kt+1(R1
t b∂f) given in Proposition 4.3,

we conclude the proof. ¤

4.4. Proof of Corollary 1.2.
Using Bp

s (µδ) = Bp
s+τ/p(µδ+τ ), for τ > 0, we will deduce the result from Theorem

1.1.
Let 1 < p < ∞, s0, s1 ∈ R, t0 ≥ 0 and θ ∈ Bp,t0 . Then, for t = t0 − s0 − s1 > t0 we

have

Bp
s0

(µt0) = Bp
s0+(−s0−s1)/p(µt) = Bp

s0/p′−s1/p(µt), and

Bp′
s1

(µ′t0) = Bp′

s1/p−s0/p′(µ
′
t).

Moreover, since 〈fg, b〉t1 = 〈Pt(fg), b〉t1 = 〈fg,Pt1,tb〉t, we have

|〈fg, b〉t1 |
‖f‖Bp

s0 (µt0 ) ‖g‖Bp′
s1 (µ′t0 )

=
|〈fg,Pt1,tb〉t|

‖f‖Bp

s0/p′−s1/p
(µt) ‖g‖Bp′

s1/p−s0/p′ (µ
′
t)

.

Thus, Theorem 1.1, with 0 < s := s0/p′ − s1/p < 1, gives

‖Pt1,tb‖CBp

s0/p−s1/p′ (µt) ≈ sup
0 6=f,g∈H(D)

|〈fg, b〉t1 |
‖f‖Bp

s0 (µt0 )‖g‖Bp′
s1 (µt0 )

,

which concludes the proof.

5. Proof of Theorem 1.4.

We will determine the predual of CBp
s (µt) generalizing some results for the un-

weighted case (see for instance [12], [2], [8] and the references therein).

5.1. Weak products and the predual of CBp
s (µt).

Definition 5.1. Given two Banach spaces X and Y of holomorphic functions on
D, let X ¯ Y be the completion of finite sums h =

∑M
j=1 fjgj , fj ∈ X, gj ∈ Y , using the

norm

‖h‖X¯Y := inf
{ N∑

k=1

‖f̃k‖X‖g̃k‖Y :
N∑

k=1

f̃k g̃k = h

}
.

The following well-known proposition will be used to prove our duality results.

Proposition 5.2. The norm of a linear form Λ on X¯Y coincides with the norm
of the bilinear form on X × Y on defined by Λ̃(f, g) = Λ(fg).

5.2. Proof of Theorem 1.4.
Proof. The embedding i : Bp′

−s(µ
′
t) → Bp

s (µt) ¯ Bp′
−s(µ

′
t), shows that any linear

form Λ ∈ (Bp
s (µt)¯Bp′

−s(µ
′
t))
′ produces a linear form Λi = Λ ◦ i on Bp′

−s(µ
′
t), which by
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Proposition 2.11 can be expressed as Λi(f) = 〈f, b〉t, for some b ∈ Bp
s (µt).

Consequently, Λ(h) = 〈h, b〉t for h ∈ H(D). Since H(D) is dense in both spaces
Bp

s (µt) and Bp′
−s(µ

′
t), then it is also dense in Bp

s (µt) ¯ Bp′
−s(µ

′
t), and thus the norm of

Λ coincides with the norm of the bilinear form (f, g) → 〈fg, b〉t on Bp
s (µt) × Bp′

−s(µ
′
t).

Therefore, the equivalence between (i) and (iii) in Theorem 1.1 concludes the proof.
The same arguments used in the first part show that the norm of a linear form Λ on

Bp
s0

(µt)¯Bp′
s1

(µ′t) is equivalent to the norm of the bilinear form (f, g) → 〈fg, b〉t, where
b ∈ Bp

−s1
(µt). By Theorem 3.2 this norm is equivalent to ‖b‖B∞−s0−s1

which proves the
first statement.

The second statement follows from the computation by duality of the norms
‖h‖B1

s0+s1−t
and ‖h‖

Bp
s0 (µt)¯Bp′

s1 (µ′t)
. Indeed, if h ∈ H(D), then

‖h‖B1
s0+s1−t

≈ sup
0 6=b∈B∞−s0−s1

|〈h, b〉t|
‖b‖B∞−s0−s1

≈ ‖h‖
Bp

s0 (µt)¯Bp′
s1 (µ′t)

.

Since h ∈ H(D) is dense in both spaces, we obtain the result. ¤

5.3. Further remarks.
Combining Theorem 1.4 with (1.4) we can obtain characterizations of weak products

of type Bp
s0

(µt)¯Bp′
s1

(µt) which generalize some of the results stated in Section 5 in [8].
For instance, if 0 < s < p, then

(
Bp

0(µt)¯Bp′
−s(µt)

)′ =
(
Bp

s/p(µt+s)¯Bp′

−s/p(µt+s)
)′ ≡ CBp

s/p(µt+s) = CBp
0(µt),

with respect to the pairing 〈·, ·〉t+s.
Observe that in the particular case p = 2 and t = 0, we have CB2

0 = BMOA ≡
(H1

−s)
′, with respect to the pairing 〈·, ·〉s. Therefore, the above duality result and the

fact that B2
s = H2

s give H2 ¯H2
−s = H1

−s.
This unweighted weak factorization result can be generalized to the case 1 < p <

2. In this case Bp
0 ⊂ Hp, and we have that CBp

0 = F∞,p
0 , where F∞,p

0 denotes the
Triebel-Lizorkin space of holomorphic functions on D such that the measure dµg(z) =
|∂g(z)|p(1 − |z|2)p−1 is a Carleson measure for Hp, that is µg(Tz) . (1 − |z|2) for any
z ∈ D (see [10], p.178). Since F∞,p ≡ (F 1,p′

−s )′, with respect to the pairing 〈·, ·〉s, we have
Bp

0 ¯ Bp′
−s = F 1,p′

−s . Here, F 1,p′
−s is the Triebel-Lizorkin space of holomorphic functions g

on D satisfying

∫

T

( ∫

|1−ζw|<1−|w|2
|g(w)|p′(1− |w|2)sp′−2dν(w)

)1/p′

dσ(ζ) < ∞.
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