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Abstract. We consider the initial value problem for the Oseen system in
plane exterior domains and study the large time behavior of solutions. For the
space dimension n ≥ 3 the theory was well developed by [26], [10] and [11],
while 2D case has remained open because of difficulty arising from singularity
like log

√
λ + α2 of the Oseen resolvent, where λ is the resolvent parameter

and α is the Oseen parameter. In this paper we derive the local energy decay
of the Oseen semigroup and apply it to deduction of Lq-Lr estimates. The
dependence of estimates on the Oseen parameter α is also discussed. The
proof relies on detailed analysis of asymptotic structure of the fundamental
solution of the Oseen resolvent with respect to both λ and α.

1. Introduction.

Let Ω be an exterior domain in R2 with smooth boundary ∂Ω. We consider the
Navier–Stokes system





∂tu + u · ∇u = ∆u−∇p, div u = 0,

u|∂Ω = 0,

u → u∞ as |x| → ∞
(1.1)

which describes the motion of a viscous incompressible fluid past an obstacle R2\Ω (rigid
body) that moves with translational velocity −u∞, where u(x, t) = (u1, u2)T and p(x, t)
respectively denote unknown velocity and pressure of the fluid, while u∞ ∈ R2 \ {0} is
a given uniform velocity. Because of the Stokes paradox, we do need to consider the
problem around u∞, so that the Oseen linearization works well as an approximation
of the Navier–Stokes system. Since the Navier–Stokes system is rotationally invariant,
without loss of generality, one may take

u∞ = −2αe1 with α > 0 (Oseen parameter), e1 =
(

1
0

)
.

Then, by denoting u− u∞ by the same symbol u, (1.1) is reduced to
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



∂tu + u · ∇u = ∆u + 2α∂1u−∇p, div u = 0,

u|∂Ω = 2αe1,

u → 0 as |x| → ∞,

(1.2)

where ∂1 = ∂x1 . It is an open question to clarify the large time behavior of solutions
to the initial value problem for (1.2) even when α > 0 is small enough. Toward better
understanding of this problem, it is important to study: (i) steady flows with fine de-
cay/summability for |x| → ∞; and (ii) decay properties of solutions to the Oseen initial
value problem for t →∞. Concerning the first issue (i), it was proved by Finn and Smith
[14], [15], [34] and, later on, by Galdi [17], [18] that if α is nonzero but sufficiently small,
then (1.2) admits a steady flow (called a physically reasonable solution) u(x) = (u1, u2)T

that satisfies u(x) = O(|x|−1/2) as |x| → ∞ and exhibits a parabolic wake region behind
the body like the Oseen fundamenatal solution. To be precise, such an anisotropic decay
structure with wake is found only for u1, while u2 has no wake; as a consequence, we
have

u1 ∈ Lq(Ω) for ∀q > 3; u2 ∈ Lr(Ω) for ∀r > 2. (1.3)

So far, the stability/instablity of this flow is unsolved, while we know the stability of
physically reasonable solutions in 3D exterior domains as long as they are small, see
Shibata [32] and the references therein. The difficulty in 2D is due to less summability
(1.3), that is not enough to show the stablity.

In the present paper we study the second issue (ii) above, that is, the large time
behavior of solutions to the initial value problem for the Oseen system





∂tu−∆u− 2α∂1u +∇p = 0, div u = 0 in Ω× (0,∞),

u|∂Ω = 0,

u → 0 as |x| → ∞,

u(·, 0) = f.

(1.4)

Besides the motivation mentioned above, the linear analysis is of interest in itself. We
consider (1.4) in the standard solenoidal Lebesgue space Lq

σ(Ω), 1 < q < ∞, on which
we are able to show the generation of analytic semigroup (the Oseen semigroup) that
provides a solution operator f 7→ u(t), see section 2. Our aim is to show the Lq-Lr

estimates (with n = 2)

‖u(t)‖r ≤ C t−(n/q−n/r)/2‖f‖q (1 < q ≤ r ≤ ∞, q 6= ∞), (1.5)

‖∇u(t)‖r ≤ C t−(n/q−n/r)/2−1/2‖f‖q (1 < q ≤ r ≤ n) (1.6)

for t > 0, where n ≥ 2 is the space dimension, ‖ · ‖q stands for the norm of Lq(Ω),
∇ = (∂1, ∂2) and ∂j = ∂xj

. For the Stokes flow (case α = 0), these estimates were
deduced by Iwashita [25] (n ≥ 3), Dan and Shibata [8], [9] (n = 2), and Maremonti and
Solonnikov [28] (n ≥ 2). We cannot avoid the restriction r ≤ n for (1.6), see [28] and
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[23] (while it is not clear whether the same restriction is essential for the case α > 0).
As for the Oseen flow (case α > 0), (1.5) and (1.6) were established by Kobayashi and
Shibata [26] (n = 3) and Enomoto and Shibata [10], [11] (n ≥ 3), except the case of
plane exterior domains, where the constant C > 0 above can be taken uniformly with
respect to small α > 0; that is, for each M > 0, we have C = C(M ; Ω, q, r) provided
α ∈ (0,M ]. This is important in the proof of stability of 3D steady flows as an application
of (1.5)–(1.6), see [32].

Our main result is Theorem 2.3 in the next section. As a special case r = q,
we see that the Oseen semigroup is uniformly bounded in Lq

σ(Ω), which has not been
known until now. The large time behavior of the semigroup is definitely related to the
asymptotic behavior of the resolvent for λ → 0, where λ is the resolvent parameter. Look
at the fundamental solution Eα

λ (x) of the Oseen resolvent in the whole plane R2. It is of
the form (4.6) and involves the modified Bessel functions of the second kind. A typical
leading profile for small (λ, α) possesses the logarithmic singularity such as log

√
λ + α2

unlike 3D case. To be precise, the fundamental solution has even worse terms in the
sense that the derivative ∂λEα

λ (x) is a bit more singular (than ∂λ log
√

λ + α2) and that
the interaction between λ and α is more complicated (than log

√
λ + α2). Actually, those

terms arise from the pressure and it does not seem to be easy to control both parameters,
λ and α. In analyzing the fundamental solution, it would be fine if we could do so on
the Fourier side as in Kobayashi and Shibata [26] for 3D case, however, we face another
difficulty for small |ξ|; indeed, several integrals in their analysis [26] do not converge near
ξ = 0 for 2D case. To get around this difficulty, in this paper, we make full use of the
asymptotic expansion of the modified Bessel functions to find the asymptotic behavior
of the fundamental solution for small (λ, α). In doing so, we concentrate ourselves on
the analysis for λ ∈ C+ = {Re λ ≥ 0} with small |λ|. The asymptotic behavior along
the imaginary axis is of particular importance to justify the representation formula, see
(6.1), of the semigroup. The structure (4.19) of the fundamental solution also plays a
key role.

Besides the analysis of the fundamental solution mentioned above, as in [25], [26],
[10], [22] and [24], the essential step for the proof of Lq-Lr estimate is to show local
energy decay properties of the semigroup in ΩR = Ω ∩ BR = {x ∈ Ω; |x| < R}, see
Theorem 2.1 and Theorem 2.2, by means of spectral analysis; indeed, we adopt their
argument in principle. In order to analyze the regularity of the resolvent near λ = 0,
a parametrix of the resolvent is constructed with use of the Oseen resolvents in R2 and
in a bounded domain near the obstacle R2 \ Ω by a cut-off technique, however, the
standard compactness argument provides us little information about the dependence of
the resolvent on λ and α. So we have to reconstruct the resolvent especially near λ = 0.
From this point of view, a key ingredient of the proof is Proposition 6.2 on some estimate
of the remaining term arising from cut-off procedure for the case λ = 0 (purely Oseen
system) by use of the structure of the fundamental solution Eα

0 (x). This structure tells
us that we have the singularity like log α only in the degenerate part. A method based on
this observation was developed by Dan and Shibata [8], however, we need further analysis
with the aid of consideration of steady Stokes system, see Lemma 6.3. For the proof of
local energy decay properties, we employ a relation between the modulus of continuity
of a function and the rate of decay of its inverse Fourier transform, see Lemma 7.3.
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Unfortunately, our main result does not provide desirable situation in which the
constant C in (1.5)–(1.6) is independent of α ∈ (0,M ]. In [8] Dan and Shibata gave the
following remarkable insight into the case α = 0: So far as the behavior in the bounded
domain ΩR = Ω∩BR is concerned, the Stokes resolvent goes to the Stokes flow as λ → 0
in spite of the singularity like log

√
λ of the fundamental solution. This is because the

total net force of the Stokes resolvent exerted by the fluid to the obstacle R2 \ Ω tends
to zero as λ → 0 and, thus, the limit Stokes flow can be bounded at space infinity (the
Stokes paradox disappears). The similarity can be observed for the Oseen flow (λ = 0)
for α → 0, see [17, Chapter VII] and [30]. In order that our Lq-Lr estimate covers
the case of the Stokes semigroup (α = 0) discussed in [8], very probably, we have to
find analysis for small (λ, α), which includes those phonomena. I believe that such an
improvement should be done in the future.

In the next section we give three theorems: the first two are concerned with local
energy decay and then the third one is Lq-Lr estimate. In section 3 we prepare some
estimate of the semigroup in the whole plane R2. Section 4 is the most important part,
in which we construct the fundamental solution of the Oseen resolvent and carry out
analysis of its asymptotic structure. In section 5 we consider the Oseen resolvent system
in a bounded domain. Section 6 is devoted to construction of a parametrix of the resolvent
in exterior domains. In section 7 we investigate the regularity of the resolvent near λ = 0
to prove Theorem 2.1 and Theorem 2.2 on local energy decay estimates. We complete
the proof of Theorem 2.3 in the final section.

2. Results.

We start with introducing notation. The following subsets of the complex plane C
are often used:

C+ = {λ ∈ C; Re λ > 0}, ΣΛ = {λ ∈ C+ \ {0}; |λ| ≤ Λ} (2.1)

for Λ > 0. Given a domain D ⊂ R2, 1 ≤ q ≤ ∞ and integer k ≥ 0, we denote by Lq(D)
and by W k,q(D) the standard Lebesgue and Sobolev spaces, respectively. For the exterior
domain Ω under consideration, we simply write the norm ‖ · ‖q = ‖ · ‖Lq(Ω). For Banach
spaces X and Y we denote by L(X;Y ) the set of all bounded linear operators from X to
Y ; it is also a Banach space with norm ‖ · ‖L(X;Y ). We simply write L(X) = L(X;X).

Let us introduce the Oseen operator in the Lq space, 1 < q < ∞, of solenoidal vector
fields. Set

Lq
σ(Ω) = completion of C∞0,σ(Ω) in Lq(Ω)

= {u ∈ Lq(Ω); div u = 0, ν · u|∂Ω = 0}

where C∞0,σ(Ω) consists of all smooth and divergence free vector fields with compact
support, ν is the outer unit normal to the boundary ∂Ω and ν · u|∂Ω denotes the normal
trace of u. Here and hereafter, we use the same symbol for denoting spaces of vector and
scalar functions if there is no confusion. It is well known that the space Lq(Ω) of vector
fields admits the Helmholtz decomposition
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Lq(Ω) = Lq
σ(Ω)⊕ {∇p ∈ Lq(Ω); p ∈ Lq

loc(Ω)}

which was proved by Miyakawa [29] and by Simader and Sohr [33]. By using the pro-
jection P : Lq(Ω) → Lq

σ(Ω), the Oseen operator Lα is defined by

{
D(Lα) = {u ∈ W 2,q(Ω) ∩ Lq

σ(Ω); u|∂Ω = 0},
Lαu = −P [∆u + 2α∂1u].

As for the Stokes operator A = L0 = −P∆, we know the generation of analytic
semigroup (the Stokes semigroup) {e−tA}t≥0 in Lq

σ(Ω) due to Giga [19], Solonnikov [35],
Farwig and Sohr [13]. Furthermore, it is uniformly bounded ‖e−tAf‖q ≤ C‖f‖q by the
result of Borchers and Varnhorn [4]. Those results follow from the resolvent estimate:
For any ε ∈ (0, π/2] there is a constant C = C(ε, Ω, q) > 0 such that

‖(λ + A)−1f‖q ≤ C|λ|−1‖f‖q (2.2)

for | arg λ| ≤ π − ε and f ∈ Lq
σ(Ω). We also have

‖∇(λ + A)−1f‖q ≤ C|λ|−1/2‖f‖q (2.3)

for | arg λ| ≤ π − ε with |λ| ≥ 1 and f ∈ Lq
σ(Ω), which is a consequence of ‖∇u‖q ≤

C(‖Au‖q + ‖u‖q)1/2‖u‖1/2
q with u = (λ+A)−1f and (2.2). The condition |λ| ≥ 1 cannot

be removed if q > 2 = n; in fact, if it were possible, then ‖∇e−tAf‖q ≤ Ct−1/2‖f‖q

would hold for large t, which yields a contradiction ([28], [23]).
It follows from ‖u‖W 2,q(Ω) ≤ C(‖Au‖q + ‖u‖q) for u ∈ D(A) that

‖u‖W 2,q(Ω) ≤ C‖Lαu‖q + C(1 + α2)‖u‖q (2.4)

for u ∈ D(Lα) = D(A). As in Miyakawa [29], by a perturbation argument from the
Stokes operator, it is easily verified that the Oseen operator generates an analytic semi-
group (the Oseen semigroup) {e−tLα}t≥0 in Lq

σ(Ω), so that

‖Lαe−tLαf‖q ≤ Ct−1‖f‖q (0 < t < 2) (2.5)

for f ∈ Lq
σ(Ω). Thus the solution of (1.4) is given by u(·, t) = e−tLαf . In fact, by

λ + Lα =
[
1− 2αP∂1(λ + A)−1

]
(λ + A)

together with (2.3), there is a constant c0 = c0(ε, Ω, q) such that if |λ| ≥ max{c0α
2, 1}

as well as | arg λ| ≤ π − ε, then λ ∈ ρ(−Lα) and

(λ + Lα)−1 = (λ + A)−1
∞∑

k=0

[
2αP∂1(λ + A)−1

]k
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that enjoys

|λ| ‖(λ + Lα)−1f‖q + |λ|1/2‖∇(λ + Lα)−1f‖q ≤ C‖f‖q (2.6)

for λ as above and f ∈ Lq
σ(Ω). Concerning the resolvent set ρ(−Lα), we will show that

it contains C \ Sα, see Proposition 6.1, where

Sα = {λ ∈ C; 4α2Re λ + (Im λ)2 ≤ 0}. (2.7)

Actually, one can construct the resolvent concretely for every λ ∈ C \ Sα by using a cut-
off argument developed by Koboyashi and Shibata [26, Theorem 4.4] (n = 3), Enomoto
and Shibata [10, Theorem 4.4] (n ≥ 3). Among ingredients of their proof, the only point
which depends on the space dimension n is the uniqueness for the exterior problem (6.2),
and it will be provided in Lemma 6.1 for n = 2. There is further information due to
Farwig and Neustupa [12, Theorem 1.2], which proves that Sα is exactly the essential
spectrum of −Lα for all α > 0 and q ∈ (1,∞). Although they gave a proof in the case
of exterior of 3D rotating obstacle around the e1-axis, it seems to work in 2D without
rotation as well. In this paper we will show that the semigroup is uniformly bounded,
see (2.15) with r = q.

Set BR = {x ∈ R2; |x| < R}. We fix R0 > 0 such that R2 \ Ω ⊂ BR0 throughout
this paper. For 1 < q < ∞ and R ≥ R0 + 1 we set

Lq
[R](Ω) = {f ∈ Lq(Ω); f(x) = 0 a.e. |x| ≥ R} (2.8)

from which the initial data are taken in the following theorem on local energy decay
properties of the Oseen semigroup in ΩR = Ω ∩BR.

Theorem 2.1. Let 2 ≤ q < ∞, R ≥ R0 + 1, M > 0 and 0 ≤ θ ≤ 1. Then there is
a constant C = C(M, θ; Ω, q, R) > 0 such that

‖e−tLαPf‖W 1,q(ΩR) ≤
C

α1+2θ
t−(1+θ) (log t)θ‖f‖q (2.9)

for all t ≥ 2, f ∈ Lq
[R](Ω) and α ∈ (0,M ].

For the Stokes semigroup, the rate of local energy decay shown by Dan and Shibata
[8] is t−1 (log t)−2. Therefore, one can expect no singular behavior with respect to α in
(2.9) at least for the case θ = 0, however, we could not remove α−1. When we fix α > 0
and take θ = 1 in Theorem 2.1, we find that the rate of local energy decay of the Oseen
semigroup is t−2 log t, which is better than that of the Stokes semigroup.

Remark 2.1. The reason why we have the restriction q ∈ [2,∞) is that we are
forced to employ L2-theory in a part of the proof. But, even for the case 1 < q < 2, it is
obvious that Theorem 2.1 yields

‖e−tLαPf‖W 1,q(ΩR) ≤
C

α1+2θ
t−(1+θ) (log t)θ‖f‖2 (2.10)
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for f ∈ L2
[R](Ω), which is enough to proceed to the next stage (Theorem 2.2) on account

of smoothing effect of analytic semigroups. But the use of L2-theory causes unpleasant
behavior α−1, see Lemma 7.2, while the essential part from spectral analysis yields less
singular behavior like log α, see Lemma 7.1.

Let 1 < q < ∞. By (2.5) together with (2.4) it is easily seen that

‖e−tLαPf‖W 1,q(Ω) ≤ C
{‖Lαe−tLαPf‖q + (1 + α2)‖e−tLαPf‖q

}1/2‖e−tLαPf‖1/2
q

≤ C(1 + α) t−1/2‖f‖q (2.11)

for 0 < t < 2 and f ∈ Lq(Ω). It is convenient to write

‖e−tLαPf‖W 1,q(ΩR) ≤
C

α1+2θ
t−1/2(e + t)−(1/2+θ)

(
log (e + t)

)θ‖f‖max{q,2} (2.12)

for all t > 0, f ∈ L
max{q,2}
[R] (Ω) and α ∈ (0,M ], by combining (2.11) with (2.9) and (2.10).

In the next step, we still consider the local energy decay, however, for general data
from Lq

σ(Ω). By using (2.12) with arbitrary small θ > 0 together with Lq-Lr estimate
(3.3) of the Oseen semigroup in the whole plane R2, see (3.1), we will show the following
theorem.

Theorem 2.2. Let 1 < q < ∞, R ≥ R0 + 1 and M > 0. Suppose ε > 0 is
arbitrarily small. Then there is a constant C = C(M, ε; Ω, q, R) > 0 such that

‖e−tLαf‖W 1,q(ΩR) ≤
C

α1+ε
t−1/q‖f‖q (2.13)

for all t ≥ 2, f ∈ Lq
σ(Ω) and α ∈ (0,M ].

In view of (1.5) with n = 2 and r = ∞, we formally observe that the decay rate
t−1/q is reasonable. Note that this rate cannot be improved even though we use (2.12)
with θ = 1. On the other hand, if we used (2.12) with θ = 0, the decay rate in (2.13)
would be t−1/q log t, however, this is not enough to show Theorem 2.3 below. For the
Stokes semigroup as well, the rate t−1(log t)−2 of local energy decay for f ∈ Lq

[R](Ω) is
important in [8] since it is summable for large t. As an immediate consequence of (2.13),
we obtain

‖e−tLαf‖W 1,q(ΩR) + ‖∂te
−tLαf‖Lq(ΩR) ≤

C

α1+ε
(1 + t)−1/q

(‖Lαf‖q + ‖f‖q

)
(2.14)

for all t ≥ 0, f ∈ D(Lα) and α ∈ (0,M ]. In fact, (2.13) yields

‖∂te
−tLαf‖Lq(ΩR) = ‖e−tLαLαf‖Lq(ΩR) ≤

C

α1+ε
t−1/q‖Lαf‖q

for t ≥ 2. On the other hand, by (2.4) we have
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‖e−tLαf‖W 1,q(ΩR) + ‖∂te
−tLαf‖Lq(ΩR) ≤ ‖e−tLαf‖W 2,q(Ω) + ‖e−tLαLαf‖Lq(Ω)

≤ C
(‖Lαf‖q + ‖f‖q

)

for 0 ≤ t < 2. These estimates imply (2.14).
The main result on Lq-Lr estimate of the Oseen semigroup reads as follows.

Theorem 2.3. Let α > 0. Then

‖e−tLαf‖r ≤ C t−1/q+1/r‖f‖q (1 < q ≤ r < ∞), (2.15)

‖e−tLαf‖∞ ≤ C t−1/q
(
log(e + t)

)‖f‖q (1 < q < r = ∞), (2.16)

‖∇e−tLαf‖r ≤ C t−1/q+1/r−1/2‖f‖q (1 < q ≤ r < 2 = n), (2.17)

‖∇e−tLαf‖2 ≤ C t−1/q
(
log(e + t)

)‖f‖q (1 < q ≤ r = 2 = n) (2.18)

for all t > 0 and f ∈ Lq
σ(Ω). Concerning the constant C > 0, given arbitrary large

M > 0 and small ε > 0, there is a constant C̃ = C̃(M, ε; Ω, q, r) > 0 such that C ≤ C̃/αρ

provided α ∈ (0,M ], where

ρ =

{
1 + ε, 1/q − 1/r ≤ 1/2

2 + ε, 1/q − 1/r > 1/2
for (2.15),

ρ =

{
1 + ε, q > 2

2 + ε, q ≤ 2
for (2.16),

ρ =

{
1 + ε, q = r

2 + ε, q < r
for (2.17) and (2.18).

(2.19)

Remark 2.2. For the marginal cases, the rate of decay given in (2.16) and (2.18)
does not seem to be sharp. In fact, the Stokes semigroup e−tA satisfies

‖e−tAf‖∞ ≤ C t−1/q‖f‖q (1 < q < ∞), (2.20)

‖∇e−tAf‖2 ≤ C t−1/q‖f‖q (1 < q ≤ 2) (2.21)

for t > 0 and f ∈ Lq
σ(Ω), see [8], [9] and [28]. It is worth while noting that (2.21) with

q = 2 can be deduced by a simple weighted energy method. One can also apply the
energy method to the Oseen system (1.4) to obtain

‖∇e−tLαf‖2 ≤ C
(√

α t−1/4 + t−1/2
)‖f‖2 (2.22)

with some C > 0 independent of α.
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3. The Oseen semigroup in the whole plane.

In this section we give estimates of the Oseen semigroup in the whole plane R2,
which solves

∂tu−∆u− 2α∂1u = 0, u(·, 0) = f in R2 × (0,∞).

It is of the explicit form

u(x, t) =
(
Uα(t)f

)
(x) =

∫

R2
G(x + 2αte1 − y, t)f(y) dy (3.1)

where G(x, t) denotes the heat kernel

G(x, t) =
1

4πt
e−|x|

2/4t. (3.2)

If in particular the vector field f satisfies div f = 0, then div u = 0 as well as ∂tu−∆u−
2α∂1u +∇p = 0 with arbitrary function p that depends only on time t.

Let 1 ≤ q ≤ r ≤ ∞. Obviously there is a constant C = C(j, q, r) independent of α

such that

‖∇jUα(t)f‖Lr(R2) ≤ Ct−j/2−1/q+1/r‖f‖Lq(R2) (3.3)

for all t > 0, f ∈ Lq(R2) and integer j ≥ 0. One can also deduce a kind of local energy
decay easily.

Lemma 3.1. Let 1 < q ≤ r < ∞ and R > 0. Then there is a constant C =
C(q, r, R) > 0 such that

‖Uα(t)f‖W 2,r(BR) + ‖∂tUα(t)f‖Lr(BR)

≤ C(1 + α2) t−1/q+1/r(1 + t)−1/r‖f‖W 2,q(R2) (3.4)

for all t > 0 and f ∈ W 2,q(R2).

Proof. By the equation we have

‖∂tUα(t)f‖Lr(BR) ≤ ‖∆Uα(t)f‖Lr(BR) + 2α‖∂1Uα(t)f‖Lr(BR).

From (3.3) we obtain

‖∇jUα(t)f‖Lr(BR) ≤ C‖∇jUα(t)f‖L∞(R2) ≤ Ct−j/2−1/q‖f‖Lq(R2)

for all t > 0 and integer j ≥ 0. By LR2,α = −∆ − 2α∂1 we denote the generator of
the semigroup Uα(t); then, it has the same estimate as in (2.4). Since f ∈ W 2,q(R2) =
D(LR2,α), we have
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‖Uα(t)f‖W 2,r(BR) ≤ ‖Uα(t)f‖W 2,r(R2)

≤ C‖LR2,αUα(t)f‖Lr(R2) + C(1 + α2)‖Uα(t)f‖Lr(R2)

≤ Ct−1/q+1/r
{‖LR2,αf‖Lq(R2) + (1 + α2)‖f‖Lq(R2)

}

for all t > 0. Summing up the estimates above, we conclude (3.4). ¤

Let PR2 = (δjk + RjRk)1≤j,k≤2 be the Helmholtz projection in the whole plane,
where Rj denotes the Riesz transform. Then the operator PR2 is bounded on Lr(R2)
for every r ∈ (1,∞). Set Lr

σ(R2) = PR2Lr(R2) for 1 < r < ∞, which consists of all
u ∈ Lr(R2) satisfying div u = 0. We note the duality relation L

r/(r−1)
σ (R2) = Lr

σ(R2)∗.
Although PR2 is not bounded on L1(R2), we have the following lemma, which will be
needed in the last section.

Lemma 3.2. Let r ∈ (1,∞). Then, for each t > 0, the operator Uα(t)PR2 on
C∞0 (R2) extends uniquely to a bounded operator from L1(R2) to Lr

σ(R2). Furthermore,
for r ∈ (1,∞] there is a constant C = C(r) independent of α such that

‖∇jUα(t)PR2f‖Lr(R2) ≤ Ct−j/2−1+1/r‖f‖L1(R2) (3.5)

for all t > 0, f ∈ L1(R2) and integer j ≥ 0.

Proof. Let r ∈ (1,∞) and f ∈ C∞0 (R2). Since Uα(t)∗ = U−α(t) also satisfies
(3.3), we have

|〈Uα(t)Pf, ϕ〉| = |〈f, U−α(t)ϕ〉| ≤ ‖f‖L1(R2)‖U−α(t)ϕ‖L∞(R2)

≤ Ct−1+1/r‖f‖L1(R2)‖ϕ‖Lr/(r−1)(R2)

for all ϕ ∈ L
r/(r−1)
σ (R2). By duality we find that Uα(t)Pf ∈ Lr

σ(R2) with

‖Uα(t)Pf‖Lr(R2) ≤ Ct−1+1/r‖f‖L1(R2)

for some C = C(r) > 0 independent of t, α and f . By density Uα(t)PR2 extends uniquely
to a bounded operator from L1(R2) to Lr

σ(R2) together with the same estimate as above.
We have also (3.5) even for r = ∞ and/or j ≥ 1 on account of semigroup property and
(3.3). This completes the proof. ¤

4. Fundamental solution of the Oseen resolvent.

In this section we consider the solution

u = Aα
λf = Eα

λ ∗ f, p = Πf =
x

2π|x|2 ∗ f (4.1)

of the resolvent equation in the whole plane
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λu−∆u− 2α∂1u +∇p = f, div u = 0 in R2 (4.2)

for suitable external force f , where Eα
λ (x) is the fundamental solution of the Oseen

resolvent. Indeed we can derive the standard estimate |λ|‖u‖Lq(R2) ≤ C‖f‖Lq(R2) for
large |λ| with | arg λ| ≤ 3π/4 (say) and all f ∈ Lq(R2) (1 < q < ∞), yielding the
generation of analytic semigroup, but the point here is to analyze the resolvent for small
(λ, α) under the assumption that the support of f is compact. This section is devoted
to such analysis especially for λ ∈ C+ = {λ ∈ C; Re λ ≥ 0}.

Everything relies upon the fundamental solution, which is given by

Eα
λ (x) = F−1

[ |ξ|2I− ξ ⊗ ξ

(λ + |ξ|2 − 2αiξ1)|ξ|2
]
(x)

=
∫ ∞

0

e−λt(G I+ H)(x + 2αte1, t) dt (4.3)

where

I = (δjk)1≤j,k≤2, ξ ⊗ ξ = (ξjξk)1≤j,k≤2

and F−1 denotes the inverse Fourier transform. In (4.3)2, G(x, t) is the heat kernel given
by (3.2) and

H(x, t) =
∫ ∞

t

∇2G(x, s) ds =
∫ ∞

t

e−|x|
2/4s

4πs

(
x⊗ x

4s2
− I

2s

)
ds

=
−1

2π|x|2
(
1− e−|x|

2/4t
)
I+

[
1

π|x|2
(
1− e−|x|

2/4t
)− e−|x|

2/4t

4πt

]
x⊗ x

|x|2 . (4.4)

Note that (G I + H)(x, t) and (G I + H)(x + 2αte1, t) are, respectively, fundamental
solutions of unsteady Stokes and Oseen systems. In (4.3)1 we have

λ + |ξ|2 − 2αiξ1 6= 0 for all ξ ∈ R2 and λ ∈ C \ Sα, (4.5)

where Sα is given by (2.7). As shown in [26, Lemma 3.1] and [10, Lemma 3.1], the
Fourier multiplier theorem leads us to the first assertion of the following lemma. The
remaining assertions are easily implied by the Hardy-Littlewood-Sobolev inequality and
embedding relations.

Lemma 4.1. Let α > 0 and 1 < q < ∞.

1. Let λ ∈ C \ Sα. Then Aα
λ is a bounded operator from Lq(R2) to W 2,q(R2). Further-

more, the function C \ Sα 3 λ 7→ Aα
λ ∈ L(Lq(R2);W 2,q(R2)) is analytic.

2. The operator ∇Π is bounded on Lq(R2). If 1 < q < 2, then Π is bounded from Lq(R2)
to Lq∗(R2), where 1/q∗ = 1/q − 1/2.

3. Let λ ∈ C \ Sα. If f ∈ Lq(R2) satisfies f(x) = 0 a.e. |x| ≥ R for some R > 0, then
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∇2Aα
λf, ∇Πf ∈ Lr(R2), ∀r ∈ (1, q]; Aα

λf ∈ Lr(R2), ∀r ∈ (1,∞),

∇Aα
λf ∈ Lr(R2),

{
∀r ∈ (1, q∗] if q ∈ (1, 2),

∀r ∈ (1,∞) if q ∈ [2,∞),

Πf ∈ Lr(R2),

{
∀r ∈ (2, q∗] if q ∈ (1, 2),

∀r ∈ (2,∞) if q ∈ [2,∞),

where 1/q∗ = 1/q−1/2 for q ∈ (1, 2). All of them in Lr(R2) are estimated from above
by CR‖f‖Lq(R2).

To derive a representation of Eα
λ (x), following [20, Appendix] by Guenther and

Thomann, we use the Laplace transform (4.3)2 rather than (4.3)1. Then, by a lengthy
but elementary calculation, we obtain

Eα
λ (x) =

5∑

j=1

Eα
j,λ(x)

=
I

2π
e−αx1 K0

(√
λ + α2 |x|)

− I
4π

∫ 1

0

e−αx1s K0

(√
s(λ + α2s) |x|) ds

+
x⊗ x

4π|x|
∫ 1

0

e−αx1s
√

s(λ + α2s) K1

(√
s(λ + α2s) |x|) ds

+
α(x⊗ e1 + e1 ⊗ x)

4π

∫ 1

0

se−αx1s K0

(√
s(λ + α2s) |x|) ds

+
α2|x|e1 ⊗ e1

4π

∫ 1

0

s2e−αx1s

√
s(λ + α2s)

K1

(√
s(λ + α2s) |x|) ds (4.6)

for Re λ ≥ 0 and α > 0, where the branch of
√· is chosen so that Re

√· > 0 (thus
arg

√
λ + α2 < π/4 and so on) and

K0(z) =
1
2

∫ ∞

0

exp
[−z

2

(
t +

1
t

)]
dt

t
,

K1(z) = −K ′
0(z) =

1
2

∫ ∞

0

exp
[−z

2

(
t +

1
t

)]
dt

t2

(4.7)

are modified Bessel functions of the second kind (order 0/order 1, respectively); these
integral representations are valid for z ∈ C+. For the representation (4.7), see for instance
Watson [36, 6.22].

In fact, by using the simple relation (1−e−σ)/σ =
∫ 1

0
e−σsds, the Laplace transform

of the coefficient of I in H(x + 2αte1, t), see (4.4), is
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−1
2π

∫ ∞

0

e−λt

|x + 2αte1|2
(
1− e−|x+2αte1|2/4t

)
dt

=
−1
8π

∫ ∞

0

e−λt

∫ 1

0

e−|x+2αte1|2 s/4t ds
dt

t

=
−1
8π

∫ 1

0

e−αx1s

∫ ∞

0

e−s(λ+α2s)|x|2t/4 e−1/t dt

t
ds

which implies the second term Eα
2,λ(x) since (1/2)

∫∞
0

exp[−(z2t/4+1/t)](dt/t) coincides
with the RHS of (4.7)1 for z > 0 and, therefore, for | arg z| < π/4 by unicity theorem
for holomorphic functions. The derivation of the first term Eα

1,λ(x) is even easier and
classical. Using the relation

1
σ

(
1− e−σ

σ
− e−σ

)
=

∫ 1

0

se−σs ds

we can rewrite the Laplace transform of the remaining part of H(x + 2αte1, t) as

∫ ∞

0

e−λt

[
1− e−|x+2αte1|2/4t

π|x + 2αte1|2 − e−|x+2αte1|2/4t

4πt

]
(x + 2αte1)⊗ (x + 2αte1)

|x + 2αte1|2 dt

=
∫ ∞

0

e−λt

∫ 1

0

se−|x+2αte1|2 s/4t ds
(x + 2αte1)⊗ (x + 2αte1)

16πt2
dt

=: I3 + I4 + I5

with

I3 =
x⊗ x

16π

∫ ∞

0

e−λt

∫ 1

0

se−|x+2αte1|2 s/4t ds
dt

t2

=
x⊗ x

4π|x|2
∫ 1

0

e−αx1s

∫ ∞

0

e−s(λ+α2s)|x|2t/4 e−1/t dt

t2
ds,

I4 =
α(x⊗ e1 + e1 ⊗ x)

8π

∫ ∞

0

e−λt

∫ 1

0

se−|x+2αte1|2 s/4t ds
dt

t

=
α(x⊗ e1 + e1 ⊗ x)

8π

∫ 1

0

se−αx1s

∫ ∞

0

e−s(λ+α2s)|x|2t/4 e−1/t dt

t
ds,

I5 =
α2e1 ⊗ e1

4π

∫ ∞

0

e−λt

∫ 1

0

se−|x+2αte1|2 s/4t ds dt

=
α2|x|2e1 ⊗ e1

16π

∫ 1

0

s2e−αx1s

∫ ∞

0

e−s(λ+α2s)|x|2t/4 e−1/t dt ds.

By the same reasoning as in the second term, we obtain Eα
4,λ(x) from I4. Since we have
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1
z

∫ ∞

0

exp
[
−

(
z2t

4
+

1
t

)]
dt

t2
=

z

4

∫ ∞

0

exp
[
−

(
z2t

4
+

1
t

)]
dt = K1(z)

for z > 0, see (4.7)2, it follows from unicity theorem for holomorphic functions that the
same relation holds for | arg z| < π/4, and thus I3 and I5 respectively yield Eα

3,λ(x) and
Eα

5,λ(x).
The representation (4.6) also covers the case λ = 0 (the Oseen fundamental solution),

which was derived by Guenther and Thomann [20]; in this case, another representation
of Eα

0 (x) without s-integral is also available (even standard), see [17], [27] and [30].
Indeed (4.6) can be regarded as a generalization of the result in [20], but to the best of
my knowledge it is not found in any other literature.

Remark 4.1. The representation (4.6) itself covers the case α = 0 (fundamental
solution of the Stokes resolvent) as well. Actually, E0

λ(x) of our form coincides with
the fundamental solution given by Borchers and Varnhorn [4]. This is verified by the
relations

∫ 1

0

K0(
√

s z) ds =
2
z2
− 2

z
K1(z),

∫ 1

0

√
sK1(

√
s z) ds =

4
z3
− 4

z2
K1(z)− 2

z
K0(z).

But (4.6) never covers the case (λ, α) = (0, 0), in which the Stokes fundamental solution
is given by

E0
0(x) =

1
4π

[(
log

1
|x|

)
I+

x⊗ x

|x|2
]
. (4.8)

As clarified in [20], one needs the centering technique to recover E0
0(x) from the funda-

mental solution (GI+ H)(x, t) of unsteady Stokes system.

Remark 4.2. If λ ∈ C \ Sα, see (2.7), that is equivalent to Re
√

λ + α2 > α, then
the fundamental solution Eα

λ (x) decays exponentially as |x| → ∞ by the asymptotic
behavior of the modified Bessel functions (4.7) for |z| → ∞, see [36, 7.23]. This gives
another interpretation of boundedness of the operator Aα

λ on Lq(R2), 1 < q < ∞, for
such λ, see Lemma 4.1.

We also provide the representation of ∂k
λEα

λ (x) (k = 1, 2) for later use:

∂λEα
λ (x) =

5∑

j=1

∂λEα
j,λ(x)

=
−|x| I

4π
e−αx1

K1

(√
λ + α2 |x|)√
λ + α2

+
|x| I
8π

∫ 1

0

e−αx1s

√
s

λ + α2s
K1

(√
s(λ + α2s) |x|) ds
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+
x⊗ x

8π|x|
∫ 1

0

e−αx1s

{√
s

λ + α2s
K1

(√
s(λ + α2s) |x|)

+ |x|sK ′
1

(√
s(λ + α2s) |x|)

}
ds

− α|x|(x⊗ e1 + e1 ⊗ x)
8π

∫ 1

0

s3/2e−αx1s

√
λ + α2s

K1

(√
s(λ + α2s) |x|) ds

+
α2|x|e1 ⊗ e1

8π

∫ 1

0

e−αx1s

{
−

(
s

λ + α2s

)3/2

K1

(√
s(λ + α2s) |x|)

+
|x|s2

λ + α2s
K ′

1

(√
s(λ + α2s) |x|)

}
ds, (4.9)

∂2
λEα

λ (x) =
5∑

j=1

∂2
λEα

j,λ(x)

=
|x| I
8π

e−αx1

{
K1

(√
λ + α2 |x|)

(λ + α2)3/2
− |x| K ′

1

(√
λ + α2 |x|)

λ + α2

}

+
|x| I
16π

∫ 1

0

e−αx1s

{ −√s

(λ + α2s)3/2
K1

(√
s(λ + α2s) |x|)

+
|x|s

λ + α2s
K ′

1

(√
s(λ + α2s) |x|)

}
ds

+
x⊗ x

16π|x|
∫ 1

0

e−αx1s

{ −√s

(λ + α2s)3/2
K1

(√
s(λ + α2s) |x|)

+
|x|s

λ + α2s
K ′

1

(√
s(λ + α2s) |x|)

+
|x|2s3/2

√
λ + α2s

K ′′
1

(√
s(λ + α2s) |x|)

}
ds

− α|x|(x⊗ e1 + e1 ⊗ x)
16π

∫ 1

0

e−αx1s

{
−

(
s

λ + α2s

)3/2

K1

(√
s(λ + α2s) |x|)

+
|x|s2

λ + α2s
K ′

1

(√
s(λ + α2s) |x|)

}
ds

+
α2|x|e1 ⊗ e1

16π

∫ 1

0

e−αx1s

{
3s3/2

(λ + α2s)5/2
K1

(√
s(λ + α2s) |x|)

− 3|x|s2

(λ + α2s)2
K ′

1

(√
s(λ + α2s) |x|)

+
|x|2s5/2

(λ + α2s)3/2
K ′′

1

(√
s(λ + α2s) |x|)

}
ds.

(4.10)
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We recall the asymptotic expansion of the modified Bessel functions ([30, Lemma
2.7])

K0(z) = − log z + log 2− γ − z2

4
(log z − log 2 + γ − 1) + (log z)O(z4),

K1(z) =
1
z

+
z

2

(
log z − log 2 + γ − 1

2

)
+ (log z)O(z3)

(4.11)

as C+ 3 z → 0, where γ = limm→∞
( ∑m

k=1(1/k)−log m
)

is the Euler constant. Through-
out this paper, log z is understood as the principal branch so that Im log z ∈ (−π/2, π/2)
for z ∈ C+.

By making full use of (4.11), one can find the following pointwise estimates of the
fundamental solution. We observe that the local energy decay like t−2 is hopeless in
Theorem 2.1 because of the behavior |λ|−1 near λ = 0 in (4.14) below. This is not the
case for the model operator ∆+2α∂1 without pressure, for which faster local energy decay
of the associated semigroup is obtained. In fact, the worst term comes from Eα

2,λ(x) and
Eα

5,λ(x) in (4.6) (see also Remark 4.3 below).

Lemma 4.2. Let R > 0, Λ > 0 and M > 0. Then there is a constant C =
C(R, Λ,M) > 0 such that

|Eα
λ (x)| ≤ C

(∣∣∣∣ log
1

|λ|+ α2

∣∣∣∣ +
∣∣∣∣ log

1
|x|

∣∣∣∣ + 1
)

, x ∈ BR \ {0}, (4.12)

sup
|x|≤R

|∂λEα
λ (x)| ≤ C

α2
log

(
α2

|λ| +

√
1 +

α4

|λ|2
)

, (4.13)

sup
|x|≤R

|∂2
λEα

λ (x)| ≤ C

|λ|(|λ|+ α2)
(4.14)

for λ ∈ ΣΛ and α ∈ (0,M ], where ΣΛ is given by (2.1). The case λ = 0 is also covered
only for (4.12).

Proof. We first look at (4.9) to show (4.13). Set

Lα
1,λ(x) =

−e−αx1

4π(λ + α2)
I,

Lα
2,λ(x) =

I
8π

∫ 1

0

e−αx1s

λ + α2s
ds,

Lα
3,λ(x) =

x⊗ x

8π

∫ 1

0

se−αx1s log
√

λ + α2s ds,

Lα
4,λ(x) =

−α(x⊗ e1 + e1 ⊗ x)
8π

∫ 1

0

se−αx1s

λ + α2s
ds,

Lα
5,λ(x) =

−α2e1 ⊗ e1

4π

∫ 1

0

se−αx1s

(λ + α2s)2
ds,
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which are respectively dominant parts (that is, the most singular parts) of ∂λEα
j,λ(x)

(j = 1, . . . , 5) for small (λ, α) on account of (4.11). Concerning ∂λEα
3,λ(x), the leading

term of modified Bessel function does not contribute to Lα
3,λ(x) by some cancellation and

thus it is less singular for small (λ, α). Since

|λ + α2s|2 = |λ|2 + 2α2sRe λ + α4s2 ≥ |λ|2 + α4s2,

we get

∫ 1

0

ds

|λ + α2s| ≤
∫ 1

0

ds√
|λ|2 + α4s2

=
1
α2

log

(
α2

|λ| +

√
1 +

α4

|λ|2
)

,

∫ 1

0

s

|λ + α2s| ds ≤
∫ 1

0

s√
|λ|2 + α4s2

ds =
1√

|λ|2 + α4 + |λ| ≤
1√

|λ|2 + α4
,

∫ 1

0

s

|λ + α2s|2 ds ≤
∫ 1

0

s

|λ|2 + α4s2
ds =

1
2α4

log
(

1 +
α4

|λ|2
)

.

When |λ| and α are so small that |λ|+ α2 ≤ e−π/4, we have

∣∣ log
√

λ + α2s
∣∣2 =

(
log |

√
λ + α2s|)2 +

(
arg

√
λ + α2s

)2 ≤ 2
{

log(|λ|2 + α4s2)1/4
}2

where arg (·) is understood as the principal branch so that | arg
√

λ + α2s| ≤ π/4. Hence

∫ 1

0

s
∣∣ log

√
λ + α2s

∣∣ ds ≤ −1
2
√

2

∫ 1

0

s log (|λ|2 + α4s2) ds

=
1

4
√

2

(
1 + log

1
|λ|2 + α4

)
− |λ|2

4
√

2 α4
log

(
1 +

α4

|λ|2
)

≤ 1
4
√

2

(
1 + log

1
|λ|2 + α4

)

for small (λ, α) as mentioned above. Let λ ∈ ΣΛ, α ∈ (0,M ] and |x| ≤ R, and the
constants C below depend on Λ,M and R. We then obtain

|Lα
1,λ(x)| ≤ C√

|λ|2 + α4
, |Lα

2,λ(x)| ≤ C

α2
log

(
α2

|λ| +

√
1 +

α4

|λ|2
)

,

|Lα
3,λ(x)| ≤ C

(
1 +

∣∣∣∣ log
1

|λ|2 + α4

∣∣∣∣
)

, |Lα
4,λ(x)| ≤ Cα√

|λ|2 + α4
,

|Lα
5,λ(x)| ≤ C

α2
log

(
1 +

α4

|λ|2
)
≤ 2C

α2
log

(
α2

|λ| +

√
1 +

α4

|λ|2
)

.

Since 1/
√

t2 + 1 ≤ c0 log (1/t +
√

1 + (1/t2)) for all t > 0, we put t = |λ|/α2 to find
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1√
|λ|2 + α4

≤ c0

α2
log

(
α2

|λ| +

√
1 +

α4

|λ|2
)

. (4.15)

Thus, collecting the estimates above yields (4.13). Similarly (4.12) is verified by using
(4.11) and so omitted. Finally, the worst term of ∂2

λEα
λ (x) given by (4.10) comes from

∂λLα
2,λ(x) and ∂λLα

5,λ(x) (no other parts cause the behavior |λ|−1 below near λ = 0).
The essential parts are respectively given by

∫ 1

0

ds

|λ + α2s|2 ≤
∫ 1

0

ds

|λ|2 + α4s2
=

1
α2|λ| tan−1 α2

|λ| ≤
π

2|λ|
√
|λ|2 + α4

,

α2

∫ 1

0

s

|λ + α2s|3 ds ≤ α2

∫ 1

0

s

(|λ|2 + α4s2)3/2
ds =

α2

|λ|
√
|λ|2 + α4

(|λ|+
√
|λ|2 + α4

)

≤ 1
|λ|

√
|λ|2 + α4

.

We thus conclude (4.14). ¤

Remark 4.3. By (4.15) the RHS of (4.13) is bounded from below (away from zero)
like

1
c0

√
Λ2 + M4

≤ 1
α2

log

(
α2

|λ| +

√
1 +

α4

|λ|2
)

as long as α ∈ (0,M ] and |λ| ≤ Λ. Note also that the RHS of (4.13) goes to C/|λ|
as α → 0. The reason why the RHS of (4.13) is not related to that of (4.12) can be
interpreted as follows. The leading term of Eα

2,λ(x) for small (λ, α) is essentially given
by

Eα
2,λ(x) ∼

∫ 1

0

log (λ + α2s) ds = log (λ + α2)−
∫ 1

0

α2s

λ + α2s
ds ∼ Eα

1,λ(x) + Eα
5,λ(x).

This behaves like Eα
1,λ(x) because the leading term of Eα

5,λ(x) is bounded for small (λ, α).
However, look at the leading term of ∂λEα

2,λ(x):

∂λEα
2,λ(x) ∼

∫ 1

0

1
λ + α2s

ds =
1

λ + α2
+

∫ 1

0

α2s

(λ + α2s)2
ds ∼ ∂λEα

1,λ(x) + ∂λEα
5,λ(x)

which behaves like ∂λEα
5,λ(x); actually, it is singular for λ → 0 even for fixed α > 0,

unlike ∂λEα
1,λ(x).

As a consequence of Lemma 4.2, we have the estimate of the solution operator (4.1).

Proposition 4.1. Let 1 < q < ∞, R > 0, Λ > 0 and M > 0. Then there is a
constant C = C(q, R, Λ,M) > 0 such that
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‖Aα
λf‖W 1,q(BR) ≤ C

(∣∣∣∣ log
1

|λ|+ α2

∣∣∣∣ + 1
)
‖f‖Lq(R2), (4.16)

‖∂λAα
λf‖W 1,q(BR) ≤

C

α2
log

(
α2

|λ| +

√
1 +

α4

|λ|2
)
‖f‖Lq(R2), (4.17)

‖∂2
λAα

λf‖W 1,q(BR) ≤
C

|λ|(|λ|+ α2)
‖f‖Lq(R2) (4.18)

for λ ∈ ΣΛ, α ∈ (0,M ] and f ∈ Lq(R2) with f(x) = 0 a.e. |x| ≥ R, where ΣΛ is given
by (2.1). The case λ = 0 is also covered only for (4.16).

Proof. By the assumption on f and (4.12), we have

|Aα
λf(x)| ≤

∫

|y|<R

|Eα
λ (x− y)||f(y)| dy

≤ C

(∣∣∣∣ log
1

|λ|+ α2

∣∣∣∣ + 1
)
‖f‖L1(BR) + C

∥∥∥∥ log
1

|x− · |

∥∥∥∥
Lq/(q−1)(B2R(x))

‖f‖Lq(BR)

for x ∈ BR with C = C(2R, Λ,M), where B2R(x) = {y ∈ R2; |y − x| < 2R}. We thus
find

‖Aα
λf‖Lq(BR) ≤ C‖Aα

λf‖L∞(BR) ≤ C

(∣∣∣∣ log
1

|λ|+ α2

∣∣∣∣ + 1
)
‖f‖Lq(R2).

To consider ∇Aα
λf , we give the representation of ∂mEα

λ (x) (m = 1, 2), where ∂m = ∂xm :

∂mEα
1,λ(x) = − I

2π
e−αx1

{
xm

|x|
√

λ + α2 K1

(√
λ + α2 |x|)− αδ1m K0

(√
λ + α2 |x|)

}
,

∂mEα
2,λ(x) =

I
4π

∫ 1

0

e−αx1s

{
xm

|x|
√

s(λ + α2s) K1

(√
s(λ + α2s) |x|)

+ αδ1m s K0

(√
s(λ + α2s) |x|)

}
ds,

∂mEα
3,λ(x) =

(
em ⊗ x + x⊗ em

4π|x| − xm(x⊗ x)
4π|x|3

)

×
∫ 1

0

e−αx1s
√

s(λ + α2s) K1

(√
s(λ + α2s) |x|) ds

+
x⊗ x

4π|x|
∫ 1

0

e−αx1s

{
xm

|x| s(λ + α2s) K ′
1

(√
s(λ + α2s) |x|)

− αδ1m s
√

s(λ + α2s) K1

(√
s(λ + α2s) |x|)

}
ds,
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∂mEα
4,λ(x) =

α(em ⊗ e1 + e1 ⊗ em)
4π

∫ 1

0

se−αx1s K0

(√
s(λ + α2s) |x|) ds

+
α(x⊗ e1 + e1 ⊗ x)

4π

∫ 1

0

e−αx1s

{−xm

|x| s
√

s(λ + α2s) K1

(√
s(λ + α2s) |x|)

− αδ1m s2 K0

(√
s(λ + α2s) |x|)

}
ds,

∂mEα
5,λ(x) =

α2xm e1 ⊗ e1

4π|x|
∫ 1

0

s2e−αx1s

√
s(λ + α2s)

K1

(√
s(λ + α2s) |x|) ds

+
α2|x|e1 ⊗ e1

4π

∫ 1

0

e−αx1s

{
xm

|x| s
2 K ′

1

(√
s(λ + α2s) |x|)

− αδ1m s3

√
s(λ + α2s)

K1

(√
s(λ + α2s) |x|)

}
ds.

Note that ∇Aα
λf involves the term

(Jf)(x) =
∫

R2

(x− y)⊗ f(y)
|x− y|2 dy,

however, it is harmless by the Hardy-Littlewood-Sobolev inequality. In fact, when q ∈
(2,∞), we take r ∈ (1, 2) such that 1/r = 1/q+1/2 to obtain ‖Jf‖Lq(R2) ≤ C‖f‖Lr(BR) ≤
C‖f‖Lq(BR). When q ∈ (1, 2), we take r ∈ (2,∞) such that 1/r = 1/q − 1/2 to get
‖Jf‖Lq(BR) ≤ C‖Jf‖Lr(BR) ≤ C‖f‖Lq(R2). The case q = 2 is treated similarly. Since
the asymptotic behavior of ∇∂k

λEα
λ (x) (k = 0, 1, 2) for small (λ, α) is respectively better

than (4.12)–(4.14), we obtain (4.16)–(4.18). ¤

The following structure of the fundamental solution (4.6) plays an important role to
construct a parametrix of the resolvent in exterior domains, see section 6.

Lemma 4.3. We have the decomposition

Eα
λ (x) = E0

0(x) +
1
4π

[(
log

1
α

)
I+ J

]
+ Fα(x)

︸ ︷︷ ︸
=Eα

0 (x)

+Sα
λ (x), (4.19)

where E0
0(x) is the Stokes fundamental solution (4.8), J is the constant matrix given by

J = (log 2− γ − 1) I+ (e1 ⊗ e1),

and

sup
|x|≤R

|Fα(x)|+ ‖∇Fα‖L1(BR) = O

(
α log

1
α

)
as α → 0, (4.20)



Lq-Lr estimate of the Oseen flow in plane exterior domains 315

sup
|x|≤R

|∇kSα
λ (x)| ≤ ρ

( |λ|
α2

)
, α ∈ (0,M ], λ ∈ ΣΛ, k = 0, 1, (4.21)

with a function ρ = ρ
R,Λ,M

satisfying ρ(ε) = O(ε log 1
ε ) as ε → +0 for given R, Λ, M > 0

arbitralily, where ΣΛ is given by (2.1).

Proof. We first derive the structure of the Oseen fundamental solution Eα
0 (x)

given by (4.6) with λ = 0, which was already shown by [30, (2.19)–(2.21)]. By Dα
j,0(x)

we denote the part of Eα
j,0(x) (j = 1, . . . , 5) which is never small even if α is small, while

the remaining term (together with its spatial gradient) goes to zero as α → 0 as in (4.20)
(note that ∇Fα(x) possesses the logarithmic singularity at x = 0). By (4.11) we find

Dα
1,0(x) =

1
2π

(
log

1
α|x|

)
I+

log 2− γ

2π
I,

Dα
2,0(x) =

−1
4π

(
log

1
α|x|

)
I+

−(log 2− γ + 1)
4π

I,

Dα
3,0(x) =

x⊗ x

4π|x|2 , Dα
4,0(x) = 0, Dα

5,0(x) =
e1 ⊗ e1

4π
.

We collect these terms to obtain the decomposition of Eα
0 (x) in (4.19).

We next estimate the difference

Sα
j,λ(x) := Eα

j,λ(x)− Eα
j,0(x) (j = 1, . . . , 5).

Given R, Λ, M > 0, let |x| ≤ R, λ ∈ ΣΛ and α ∈ (0,M ]. Since

K0

(√
λ + α2 |x|)−K0

(
α |x|) =

∫ 1

0

∂tK0

(√
λt + α2 |x|) dt

it follows from (4.11)2 that

∣∣K0

(√
λ + α2 |x|)−K0

(
α |x|)

∣∣ ≤ |λ||x|
2

∫ 1

0

∣∣K1

(√
λt + α2 |x|)∣∣

|λt + α2|1/2
dt ≤ C|λ|

∫ 1

0

dt

|λt + α2|

which yields

|Sα
1,λ(x)| ≤ C|λ|

α2
. (4.22)

Similarly, we have

∣∣K0

(√
s(λ + α2s) |x|)−K0

(
αs |x|)

∣∣ ≤ C|λ|
∫ 1

0

dt

|λt + α2s|

and
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∣∣√s(λ + α2s) K1

(√
s(λ + α2s) |x|)− αs K1

(
αs |x|)∣∣ ≤ C|λ|

|x|
∫ 1

0

dt

|λt + α2s|

which together with |λt + α2s|2 ≥ |λ|2t2 + α4s2 imply

|Sα
2,λ(x)|+ |Sα

3,λ(x)|

≤ C|λ|
∫ 1

0

∫ 1

0

dt√
|λ|2t2 + α4s2

ds

=
C|λ|
α2

∫ α2/|λ|

0

log
(

1
s

+

√
1 +

1
s2

)
ds

= C log
( |λ|

α2
+

√
1 +

|λ|2
α4

)
+

C|λ|
α2

log
( |λ|/α2 +

√
1 + |λ|2/α4 + 1

|λ|/α2 +
√

1 + |λ|2/α4 − 1

)
. (4.23)

We also find

|Sα
4,λ(x)| ≤ Cα|λ|

∫ 1

0

s

∫ 1

0

dt

|λt + α2s| ds ≤ C|λ|
α

. (4.24)

Finally, using

∣∣∣∣
K1

(√
s(λ + α2s) |x|)√
s(λ + α2s)

− K1

(
αs |x|)

αs

∣∣∣∣ ≤
C|λ|
s|x|

∫ 1

0

dt

|λt + α2s|2

we obtain

|Sα
5,λ(x)| ≤ Cα2|λ|

∫ 1

0

s

∫ 1

0

dt

|λ|2t2 + α4s2
ds =

C|λ|
α2

∫ α2/|λ|

0

tan−1 1
s

ds

= C tan−1 |λ|
α2

+
C|λ|
α2

log
(

1 +
α4

|λ|2
)

. (4.25)

Collecting (4.22), (4.23), (4.24) and (4.25), we are led to (4.21) for k = 0.
Concerning ∇Sα

j,λ(x), we should use some cancellation (with respect to x) in the
leading term. For instance, for j = 5 (a delicate case), it follows from (4.11) that

Sα
5,λ(x) =

α2|x|e1 ⊗ e1

4π

∫ 1

0

s2e−αx1s

×
{

1√
s(λ + α2s)

(
1√

s(λ + α2s)|x| + · · ·
)
− 1

αs

(
1

αs|x| + · · ·
)}

ds

=: Iα
λ (x) + (remainder)

with
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Iα
λ (x) =

−λe1 ⊗ e1

4π

∫ 1

0

e−αx1s

λ + α2s
ds.

Then we have

|∂mIα
λ (x)| ≤ Cα|λ|δ1m

∫ 1

0

s

|λ + α2s| ds ≤ C|λ|δ1m

α

for m = 1, 2, where ∂m = ∂xm . Since ∇(remainder) can be easily treated (as in the
argument above for Sα

λ (x)) to obtain better estimate |∇(remainder)| ≤ C|λ|, we find

|∇Sα
5,λ(x)| ≤ C|λ|

α
.

The other terms ∇Sα
j,λ(x) for 1 ≤ j ≤ 4 are also discussed in the similar way. This

completes the proof. ¤

Remark 4.4. We note that the structure of Eα
0 (x) with respect to α in the first

three terms of (4.19) is essentially the same as that of E0
λ(x) (fundamental solution of

the Stokes resolvent) with respect to λ, see [8, (2.7)].

By (4.19) one can write Aα
λf = Aα

0 f + Sα
λ ∗ f with

Aα
0 f = A0

0f +
1
4π

[(
log

1
α

)
I+ J

]
Γf + Fα ∗ f (4.26)

where

A0
0f = E0

0 ∗ f, Γf =
∫

R2
f(y) dy.

Let f ∈ Lq(R2) fulfill f(x) = 0 a.e. |x| ≥ R. Then (4.20) together with

‖Fα ∗ f‖L∞(BR) ≤ ‖Fα‖L∞(B2R)‖f‖L1(BR),

‖(∇Fα) ∗ f‖Lq(BR) ≤ ‖∇Fα‖L1(B2R)‖f‖Lq(BR)

implies (4.27) in the following proposition. Similarly, (4.28) follows from (4.21).

Proposition 4.2. Let 1 < q < ∞, R > 0, Λ > 0 and M > 0. Then

‖Fα ∗ f‖W 1,q(BR) = O

(
α log

1
α

)
as α → 0, (4.27)

‖Aα
λf −Aα

0 f‖W 1,q(BR) ≤ πR2 ρ

( |λ|
α2

)
‖f‖Lq(R2), α ∈ (0,M ], λ ∈ ΣΛ, (4.28)

for f ∈ Lq(R2) with f(x) = 0 a.e. |x| ≥ R, where ΣΛ is given by (2.1) and ρ = ρ2R,Λ,M
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is the function as in Lemma 4.3.

In the remaining part of this section, let λ = 0. The following lemma on the
continuity of Aα

0 f with respect to α > 0 is needed in section 6.

Lemma 4.4. Let 1 < q < ∞ and R > 0. Suppose that f ∈ Lq(R2) satisfies f(x) = 0
a.e. |x| ≥ R. Then the function α 7→ Aα

0 f with values in W 1,q(BR) is continuous on
(0,∞).

Proof. For α > β > 0, it follows from (4.19) that

Eα
0 (x)− Eβ

0 (x) =
1
4π

(
log

β

α

)
I+ Fα(x)− F β(x)

has no singularity at x = 0. As in the proof of Proposition 4.1, we find

sup
|x|≤R

|Aα
0 f(x)−Aβ

0f(x)| ≤ sup
|x|≤2R

|Eα
0 (x)− Eβ

0 (x)|‖f‖L1(BR).

Since (α, x) 7→ Eα
0 (x) is uniformly continuous in any compact set of (0,∞) × R2, we

conclude that the RHS of the estimate above goes to zero when (α − β) → 0. In
view of the representation of ∇Eα

0 (x) given in the proof of Proposition 4.1, concerning
∇(

Eα
0 (x)− Eβ

0 (x)
)

= ∇(
Fα(x)− F β(x)

)
, one can divide Fα(x) into Fα,1(x) + Fα,2(x)

such that ∇(
Fα,1(x)−F β,1(x)

)
has no singularity at x = 0, while ∇(

Fα,2(x)−F β,2(x)
)

possesses the logarithmic singularity at x = 0 whose coefficient is proportional to (α−β).
Therefore, as in the proof of Proposition 4.1 again, we have

sup
|x|≤R

|∇(
Aα

0 f(x)−Aβ
0f(x)

)| ≤ sup
|x|≤2R

|∇(
Fα,1(x)− F β,1(x)

)|‖f‖L1(BR)

+ C (α− β)
∥∥∥∥ log

1
|x− ·|

∥∥∥∥
Lq/(q−1)(B2R(x))

‖f‖Lq(BR).

By the same reasoning as above, we obtain the assertion. ¤

For later use, we finally summarize some other knowledge of the case λ = 0, in
particular, asymptotic behavior of the Oseen fundamental solution

Eα
0 (x) =

(
Eα

0,11(x) Eα
0,12(x)

Eα
0,21(x) Eα

0,22(x)

)

for large |x| and Lq-estimate of the solution operator Aα
0 . The details are found in the

book by Galdi [17, Chapter VII]. Let α > 0 and R > 0. Then

|Eα
0 (x)| ≤ C|x|−1/2 = C|x|−(n−1)/2 for |x| ≥ R,

Eα
0 ∈ Lr(R2 \BR) for ∀ r > 3 = (n + 1)/(n− 1),

(4.29)
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where n is the space dimension. To be precise, the only component having anisotropic
decay structure (slow decay in the wake region) is Eα

0,11(x), while the other components
have better decay and summability properties. We have also

|∇Eα
0 (x)| ≤ C|x|−1 = C|x|−n/2 for |x| ≥ R,

∇Eα
0 (x) ∈ Lr(R2 \BR) for ∀ r > 3/2 = (n + 1)/n.

(4.30)

The worst one is actually ∂2E
α
0,11(x) and the other derivatives have better decay and

summability properties. By the Fourier multiplier theorem we find

‖∇2Aα
0 f‖Lq(R2) + α‖∂1A

α
0 f‖Lq(R2) + ‖∇Πf‖Lq(R2) ≤ C‖f‖Lq(R2) (4.31)

for α ≥ 0, 1 < q < ∞ and f ∈ Lq(R2); moreover, we have ∇(Aα
0 f)2 ∈ Lq(R2) as well

for the second component (Aα
0 f)2 and this is a particular feature of the 2-dimensional

case (although we don’t need it in this paper). By using (4.29), (4.30) and (4.31), we
conclude this section with the following lemma, which corresponds to the third assertion
of Lemma 4.1 for λ ∈ C \ Sα. Since the pressure is the same as in Lemma 4.1, it is
omitted.

Lemma 4.5. Let α > 0 and 1 < q < ∞. If f ∈ Lq(R2) satisfies f(x) = 0 a.e.
|x| ≥ R for some R > 0, then

∇2Aα
0 f ∈ Lr(R2), ∀r ∈ (1, q],

∇Aα
0 f ∈ Lr(R2),

{
∀r ∈ (3/2, q∗] if q ∈ (1, 2),

∀r ∈ (3/2,∞) if q ∈ [2,∞),

Aα
0 f ∈ Lr(R2), ∀r ∈ (3,∞),

where q∗ ∈ (2,∞) is determined by 1/q∗ = 1/q−1/2 for q ∈ (1, 2). All of them in Lr(R2)
are estimated from above by CR‖f‖Lq(R2).

Proof. The first assertion is obvious. We will show the assertion only for ∇Aα
0 f

since the last one can be discussed similarly by using (4.29). We fix r ∈ (3/2,∞).
Suppose f ∈ Lq(R2) satisfies f(x) = 0 a.e.|x| ≥ R, and consider

|∇Aα
0 f(x)|r ≤

(∫

BR

|(∇Eα
0 )(x− y)||f(y)| dy

)r

≤ ‖f‖r−1
1

∫

BR

|(∇Eα
0 )(x− y)|r|f(y)| dy.

For |x| ≥ 2R and |y| ≤ R, we have |x− y| ≥ R and, therefore,

‖∇Aα
0 f‖Lr(R2\B2R) ≤ ‖∇Eα

0 ‖Lr(R2\BR)‖f‖1
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follows from (4.30). On the other hand, by embedding relation we have

∇Aα
0 f ∈ Lr

loc(R2),

{
∀r ∈ (1, q∗] if q ∈ (1, 2),

∀r ∈ (1,∞) if q ∈ [2,∞).

The proof is complete. ¤

5. The interior problem.

Let D be a bounded domain in R2 with smooth boundary ∂D (but the space di-
mension n = 2 does not play any role in this section). We will construct a solution of
the interior problem for the Oseen resolvent system

{
λu−∆u− 2α∂1u +∇p = f, div u = 0 in D,

u|∂D = 0
(5.1)

and investigate its asymptotic behavior with respect to λ and α. Of course, one can
obtain the resolvent estimate like (2.6) for large |λ|, however, this is not our aim. What
we need is not the behavior for |λ| → ∞ but the estimate near (λ, α) = (0, 0). Indeed
our result for the interior problem is covered by [26] and [10], but we give it in our
convenient form for completeness.

We fix a subdomain D0 ⊂ D with |D0| > 0 (positive Lebesgue measure) and, we
find a solution of (5.1) subject to

∫

D0

p(x) dx = 0. (5.2)

In the next section we will take the pressure with
∫

D0
p(x) dx = c0 for a specified constant

c0, however, this general case can be easily reduced to the case (5.2) by subtracting the
constant c0|D0|, see (6.7). The only thing by this reduction is lack of the Poincaré
inequality ‖p‖Lq(D) ≤ C‖∇p‖Lq(D).

Let 1 < q < ∞. The solenoidal space Lq
σ(D) and the Stokes operator AD = −PD∆

on that space are defined in the same way as in section 2, where PD denotes the Helmholtz
projection (Fujiwara and Morimoto [16], Simader and Sohr [33]). Then u = M0

0 f :=
A−1

D PDf together with the associated pressure p = N0
0 f solves the Stokes problem

−∆u +∇p = f, div u = 0 in D, u|∂D = 0 (5.3)

subject to (5.2) and satisfies (Cattabriga [5], Galdi [17, Chapter IV])

‖M0
0 f‖W 2,q(D) + ‖N0

0 f‖W 1,q(D) ≤ C‖f‖Lq(D) (5.4)

from which we see that M0
0 and ∇M0

0 are compact operators in Lq(D) by the Rellich
theorem.
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We will show the following proposition.

Proposition 5.1. Let α ≥ 0, λ ∈ (C\Sα)∪{0} and 1 < q < ∞, where Sα is given
by (2.7) for α > 0 and S0 = (−∞, 0]. Then there exist operators Mα

λ and Nα
λ from Lq(D)

into W 2,q(D) × W 1,q(D) such that the pair (Mα
λ f,Nα

λ f) provides a unique solution of
(5.1) subject to (5.2) for all f ∈ Lq(D) and that it is analytic in (C \ Sα)∪ {|λ| < ρ} for
some ρ > 0. It also enjoys the following properties.

1. Let M > 0 and let K be a compact subset of (C \ Sα) ∪ {0}. Then, for every integer
j ≥ 0, there is a constant C = C(j, M, K;D, q) > 0 such that

‖∂j
λMα

λ f‖W 2,q(D) + ‖∂j
λNα

λ f‖W 1,q(D) ≤ C‖f‖q (5.5)

for α ∈ [0,M ], λ ∈ K and f ∈ Lq(D).
2. Let α0 ≥ 0 and let K be a compact subset of (C \ Sα) ∪ {0}. Then

sup
λ∈K

(‖Mα
λ f −Mα0

λ f‖W 2,q(D) + ‖Nα
λ f −Nα0

λ f‖W 1,q(D)

)
= O(|α− α0|),

as (0,∞) 3 α → α0 (5.6)

for f ∈ Lq(D).
3. Let λ0 ∈ (C \ Sα) ∪ {0} and M > 0. Then

sup
0≤α≤M

(‖Mα
λ f −Mα

λ0
f‖W 2,q(D) + ‖Nα

λ f −Nα
λ0

f‖W 1,q(D)

)
= O(|λ− λ0|),

as C \ Sα 3 λ → λ0 (5.7)

for f ∈ Lq(D).

Proof. We intend to find the solution of the form (u, p) = (M0
0 g, N0

0 g) with a
suitable g ∈ Lq(D). Since

λu−∆u− 2α∂1u +∇p = g + λM0
0 g − 2α∂1M

0
0 g, div u = 0 in D, u|∂D = 0

and since M0
0 and ∂1M

0
0 are compact, in order to prove that 1 + λM0

0 − 2α∂1M
0
0 is

invertible in Lq(D), it suffices to show the injectivity by the Fredholm alternative. Let
g ∈ Lq(D) satisfy (1 + λM0

0 − 2α∂1M
0
0 )g = 0. Then the pair (u, p) = (M0

0 g, N0
0 g) obeys

(5.1)–(5.2) with f = 0. Since we have u ∈ H2(D) and p ∈ H1(D) (even though q is close
to 1) by bootstrap argument with the aid of regularity theory for the Stokes system, we
multiply the equation by u, integrate and take the real and imaginary parts to find

(Re λ)‖u‖2L2(D) + ‖∇u‖2L2(D) = 0, (Im λ)‖u‖2L2(D) − 2α Im
∫

D

(∂1u) · u dx = 0.

When Re λ ≥ 0, we get u = ∇p = 0 at once (by (5.2), p = 0). Even if λ ∈ C \ Sα with
Re λ < 0, the equalities above imply that
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(Im λ)2‖u‖4L2(D) ≤ 4α2‖∇u‖2L2(D)‖u‖2L2(D) = −4α2(Re λ)‖u‖4L2(D).

Thus the condition 4α2Re λ + (Im λ)2 > 0 yields u = ∇p = 0; in any case, we obtain
g = 0. We thus find that the pair

u = Mα
λ f := M0

0 (1 + λM0
0 − 2α∂1M

0
0 )−1f ∈ W 2,q(D),

p = Nα
λ f := N0

0 (1 + λM0
0 − 2α∂1M

0
0 )−1f ∈ W 1,q(D)

(5.8)

provides a unique solution of (5.1) subject to (5.2) for all α ≥ 0, λ ∈ (C \ Sα) ∪ {0} and
f ∈ Lq(D). Since (λ, α) 7→ 1+λM0

0 −2α∂1M
0
0 is continuous from (C\Sα)∪{0}× [0,∞)

to L(Lq(D)), so is (λ, α) 7→ (1 + λM0
0 − 2α∂1M

0
0 )−1. In fact, for any (λ0, α0) ∈ (C \

Sα) ∪ {0} × [0,∞), if

|λ− λ0|‖M0
0 ‖L(Lq(D)) + 2|α− α0|‖∂1M

0
0 ‖L(Lq(D))

≤ 1
2 ‖(1 + λ0M0

0 − 2α0∂1M0
0 )−1‖L(Lq(D))

(5.9)

then we obtain the Neumann series representation

(1 + λM0
0 − 2α∂1M

0
0 )−1

= (1 + λ0M
0
0 − 2α0∂1M

0
0 )−1

×
∞∑

k=0

[− {
(λ− λ0)M0

0 − 2(α− α0)∂1M
0
0

}
(1 + λ0M

0
0 − 2α0∂1M

0
0 )−1

]k (5.10)

which implies

∥∥(1 + λM0
0 − 2α∂1M

0
0 )−1 − (1 + λ0M

0
0 − 2α0∂1M

0
0 )−1

∥∥
L(Lq(D))

≤ 2
∥∥(1 + λ0M

0
0 − 2α0∂1M

0
0 )−1

∥∥2

L(Lq(D))

× (|λ− λ0|‖M0
0 ‖L(Lq(D)) + 2|α− α0|‖∂1M

0
0 ‖L(Lq(D))

)
. (5.11)

Therefore, for any M > 0 and compact set K ⊂ (C \ Sα) ∪ {0} we have

∥∥(1 + λM0
0 − 2α∂1M

0
0 )−1

∥∥
L(Lq(D))

≤ CM,K (5.12)

provided α ∈ [0,M ] and λ ∈ K. As a consequence, for such α and λ, (5.4) yields

‖Mα
λ f‖W 2,q(D) + ‖Nα

λ f‖W 1,q(D) ≤ CM,K‖f‖q (5.13)

for f ∈ Lq(D). Furthermore, (5.11) and (5.12) together with (5.4) imply both (5.6) and
(5.7) immediately. We next fix α0 ≥ 0 and λ0 ∈ (C\Sα0)∪{0}, and set α = α0 in (5.10).
Then we find the analyticity of (1 + λM0

0 − 2α0∂1M
0
0 )−1 with respect to λ and, hence,
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so is (Mα0
λ , Nα0

λ ).
Finally, for any M > 0 and compact set K ⊂ (C \ Sα) ∪ {0}, let us show (5.5) for

α ∈ [0,M ], λ ∈ K and f ∈ Lq(D). Since we already know (5.13), we will consider the case
j ≥ 1. By taking the differentiation of (5.1), we find that the pair (∂λMα

λ f, ∂λNα
λ f) ∈

W 2,q(D)×W 1,q(D) is a solution of (5.1)–(5.2) with f replaced by −Mα
λ f ∈ Lq(D). By

uniqueness of solutions, we see that

∂λMα
λ f = −(Mα

λ )2f, ∂λNα
λ f = −Nα

λ Mα
λ f.

By induction we find

∂j
λMα

λ f = (−1)jj! (Mα
λ )j+1f, ∂j

λNα
λ f = (−1)jj!Nα

λ (Mα
λ )jf.

Thus, (5.13) implies (5.5) for every j ≥ 1 as well. We have completed the proof. ¤

6. Construction of the resolvent in exterior domains.

For the proof of Theorem 2.1 we need spectral analysis. We have the Dunford
integral representation formula of the semigroup in terms of the resolvent (λ + L)−1.
Here and in what follows we simply write L = Lα. In Proposition 6.1 below it is proved
that the spectrum of −L is contained in Sα given by (2.7) along the same argument as
in Kobayashi and Shibata [26, Theorem 4.4]. It thus seems to be impossible to take the
same path of integration as in Dan and Shibata [8] for the Stokes semigroup (α = 0).
Let f ∈ Lq

[R](Ω), see (2.8). What we need is then to study the asymptotic behavior of
∂λ(λ + L)−1Pf for λ → 0 (and α → 0 as well) which ensures its summability near the
origin, see Lemma 7.1 in the next section. This enables us to justify the representation
formula (which was also used in [26], [22] and [24])

e−tLPf =
−1
2πit

∫ ∞

−∞
eiτt ∂τ (iτ + L)−1Pf dτ (6.1)

in W 1,q(ΩR) provided f ∈ Lq
[R](Ω), when we perform integration by parts and then move

the path of integration to the imaginary axis. When we derive faster decay than t−1, we
have to study further regularity of ∂λ(λ + L)−1Pf near λ = 0, see Lemma 7.4.

In order to carry out this strategy, given f ∈ Lq
[R](Ω), we construct a parametrix of

solutions to the problem

{
λu−∆u− 2α∂1u +∇p = f, div u = 0 in Ω,

u|∂Ω = 0
(6.2)

where λ ∈ (C\Sα)∪{0}. The behavior along the imaginary axis is particularly important
for us. Let {Aα

λ ,Π} be the solution operator (4.1) for (4.2) in the whole plane R2,
and {Mα

λ , Nα
λ } that for (5.1)–(5.2) given by Theorem 5.1 with the bounded domain

D = ΩR0+2 = Ω ∩BR0+2 and
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D0 = {x ∈ R2;R0 < |x| < R0 + 1}. (6.3)

We take a cut-off function ψ ∈ C∞(R2; [0, 1]) such that

ψ(x) =

{
1, |x| ≤ R0,

0, |x| ≥ R0 + 1
(6.4)

and employ the Bogovskii operator B in the annulus D0, that is, the function w = Bg ∈
C∞0 (D0)2 is a solution specified by Bogovskii [1] among many solutions to

div w = g in D0, w|∂D0 = 0

for given g ∈ C∞0 (D0) with
∫

D0
g(x)dx = 0. Note that B extends uniquely to a bounded

operator from W k,q
0 (D0) to W k+1,q

0 (D0)2 on account of estimate

‖∇k+1Bg‖Lq(D0) ≤ C‖∇kg‖Lq(D0), (1 < q < ∞, k = 0, 1, . . .), (6.5)

see [3] and [17].
Given f ∈ Lq

[R](Ω), we set

v = Rα
λf := (1− ψ)Aα

λf + ψMα
λ f + B

[
(Aα

λf −Mα
λ f) · ∇ψ

]
,

σ = Qα
λf := (1− ψ)Πf + ψÑα

λ f
(6.6)

where f is understood as its zero extension (resp. restriction) to R2 (resp. ΩR0+2) and
the pressure Ñα

λ f in ΩR0+2 is chosen in such a way that

Ñα
λ f := Nα

λ f + |D0|
∫

D0

(Πf)(x) dx. (6.7)

Because of this choice, we have the Poincaré inequality

∥∥Πf − Ñα
λ f

∥∥
Lq(D0)

≤ C
∥∥∇(Πf − Ñα

λ f)
∥∥

Lq(D0)
= C‖∇(Πf −Nα

λ f)‖Lq(D0). (6.8)

When α > 0, it follows from Lemma 4.1, Lemma 4.5, Proposition 5.1 and embedding
relations that

∇2Rα
λf, ∇Qα

λf ∈ Lr(Ω) ∀r ∈ (1, q],

Qα
λf ∈ Lr(Ω)

{
∀r ∈ (2, q∗] if q ∈ (1, 2),

∀r ∈ (2,∞) if q ∈ [2,∞),
(6.9)

∇Rα
λf ∈ Lr(Ω)

{
∀r ∈ (1, q∗] if q ∈ (1, 2)

∀r ∈ (1,∞) if q ∈ [2,∞)
if λ ∈ C \ Sα, (6.10)
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∇Rα
0 f ∈ Lr(Ω)

{
∀r ∈ (3/2, q∗] if q ∈ (1, 2),

∀r ∈ (3/2,∞) if q ∈ [2,∞)
(6.11)

where 1/q∗ = 1/q − 1/2 for q ∈ (1, 2), and

Rα
λf ∈ Lr(Ω) ∀r ∈ (1,∞) if λ ∈ C \ Sα; Rα

0 f ∈ Lr(Ω) ∀r ∈ (3,∞). (6.12)

The pair (v, σ) should obey

{
λv −∆v − 2α∂1v +∇σ = f + Tα

λ f, div v = 0 in Ω,

v|∂Ω = 0
(6.13)

where

Tα
λ f = 2∇ψ · ∇(Aα

λf −Mα
λ f) + (∆ψ + 2α∂1ψ)(Aα

λf −Mα
λ f)

−∆B
[
(Aα

λf −Mα
λ f) · ∇ψ

]
+ λB

[
(Aα

λf −Mα
λ f) · ∇ψ

]

− 2α∂1B
[
(Aα

λf −Mα
λ f) · ∇ψ

]− (∇ψ)(Πf − Ñα
λ f). (6.14)

Note that the operator Tα
λ is bounded (even compact) from Lq

[R](Ω) into itself provided
R ≥ R0 + 1.

In order to show that 1 + Tα
λ is bijective in Lq

[R](Ω), we begin with uniqueness of
solutions to (6.2) under weak assumptions at space infinity.

Lemma 6.1. Let α > 0, λ ∈ (C \ Sα) ∪ {0} and 1 < q < ∞. Suppose that
(u, p) ∈ W 2,q

loc (Ω) × W 1,q
loc (Ω) solves (6.2) with f = 0 in the sense of distributions. If

u ∈ Lr(Ω) and ∇p ∈ Ls(Ω) for some r, s ∈ (1,∞), then u = 0 and p is a constant.

Proof. By regularity theory for the Stokes system we may assume (u, p) ∈
H2

loc(Ω) × H1
loc(Ω) (even though q is close to 1). We first show that (u,∇p) enjoys

better decay/summability properties (like the fundamental solution) for |x| → ∞ than
those we have assumed. We use a cut-off technique. Consider

ũ = (1− ψ)u + B[u · ∇ψ], p̃ = (1− ψ)p

which obey (4.2) in the whole plane R2 with

f = 2∇ψ · ∇u + (∆ψ + 2α∂1ψ)u−∆B[u · ∇ψ]

+ λB[u · ∇ψ]− 2α∂1B[u · ∇ψ]− (∇ψ)p,

where the cut-off function ψ is as in (6.4) and B is the Bogovskii operator in the annulus
D0, see (6.3). Set v = Aα

λf and σ = Πf , see (4.1). Since f ∈ L2(R2) satisfies f(x) = 0
for |x| ≥ R0 + 1, the pair (v, σ) belongs to the class specified in Lemma 4.1 or Lemma
4.5 (with q = 2). We note that w = ũ − v and τ = p̃ − σ are tempered distributions



326 T. Hishida

(see Chemin [7, Proposition 1.2.1], from which ∇τ ∈ S ′(R2) implies τ ∈ S ′(R2)) which
satisfy (4.2) without external force. For λ ∈ C \ Sα, we see from (4.5) that w and τ are
polynomials. This is also the case for λ = 0 since |ξ|2 − 2αiξ1 6= 0 for ξ ∈ R2 \ {0}. The
summability assumptions on u and ∇p imply that w = 0 and τ = p0 with some constant
p0. Since u(x) = ũ(x) = v(x) and p(x) = p̃(x) = σ(x) + p0, for |x| ≥ R0 + 1, we find
that (u, p− p0) has the same summability as in (6.9)–(6.12) (with q = 2). We now take
ϕ ∈ C∞0 (R2; [0, 1]) satisfying ϕ(x) = 1 for |x| ≤ 1 and ϕ(x) = 0 for |x| ≥ 2, and set
ϕR(x) = ϕ(x/R). We multiply λu−∆u− 2α∂1u +∇(p− p0) = 0 by ϕRu and integrate
to obtain

λ

∫

Ω2R

ϕR|u|2 dx +
∫

Ω2R

ϕR|∇u|2 dx +
∫

R<|x|<2R

(∇ϕR · ∇u) · u dx

− 2α

∫

Ω2R

ϕR(∂1u) · u dx−
∫

R<|x|<2R

(p− p0)(u · ∇ϕR) dx = 0

where (∇ϕR · ∇u) · u =
∑

j,k(∂jϕR)(∂juk)uk. Note that

Re
∫

Ω2R

ϕR(∂1u) · u dx =
−1
2

∫

R<|x|<2R

(∂1ϕR)|u|2 dx.

When Re λ ≥ 0, we take the real part and let R →∞ to obtain ‖∇u‖22 = 0 because

lim
R→∞

1
R

∫

R<|x|<2R

|u(x)|2 dx = 0, (6.15)

lim
R→∞

1
R

∫

R<|x|<2R

(|∇u(x)|+ |p(x)− p0|
)|u(x)| dx = 0 (6.16)

which follow from the summability of (u, p − p0) deduced above. This implies (u, p) =
(0, p0). When λ ∈ C \ Sα with Re λ < 0, we have u ∈ L2(Ω) as well. Thus, taking the
real and imaginary parts, letting R →∞ and using (6.15), (6.16), we get

(Re λ)‖u‖22 + ‖∇u‖22 = 0, (Im λ)‖u‖22 − 2α Im
∫

Ω

(∂1u) · u dx = 0.

As in the proof of Proposition 5.1, we obtain (u, p) = (0, p0). This completes the proof.
¤

Using Lemma 6.1 together with compactness argument, we construct a solution of
(6.2) for f ∈ Lq

[R](Ω).

Lemma 6.2. Let α > 0, λ ∈ (C \ Sα)∪ {0}, 1 < q < ∞ and R ≥ R0 + 1. Then the
operator 1 + Tα

λ has a bounded inverse (1 + Tα
λ )−1 on Lq

[R](Ω) and thereby

u = Rα
λ(1 + Tα

λ )−1f, p = Qα
λ(1 + Tα

λ )−1f (6.17)
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provides a unique solution of (6.2) for every f ∈ Lq
[R](Ω).

Proof. When λ ∈ C\Sα, it follows from Lemma 4.1, (5.5) (with (6.7)), (6.5) and
(6.8) together with the Rellich theorem that the operator Tα

λ is compact from Lq
[R](Ω) into

itself. For λ = 0, we have only to replace Lemma 4.1 by (4.16) and (4.31). Let f ∈ Lq
[R](Ω)

fulfill (1 + Tα
λ )f = 0, so that the support of f is contained in D0, see (6.3). By the class

(6.9)–(6.12) of (v, σ) = (Rα
λf,Qα

λf), one can apply Lemma 6.1 to get (v, σ) = (0, 0) (by
(6.9) we have σ = 0 as well). In view of (6.6) we observe that (Aα

λf,Πf) = (0, 0) for
|x| ≥ R0 + 1 and that (Mα

λ f, Ñα
λ f) = (0, 0) for |x| ≤ R0. Therefore, both pairs are

solutions of the Oseen resolvent system in BR0+2 with homogeneous boundary condition
on ∂BR0+2, and so they should coincide on account of uniqueness for this interior problem
under the assumption λ ∈ (C \Sα)∪ {0}. Consequently, (Aα

λf,Πf) = (0, 0) in the whole
plane R2 and, therefore, f = 0. By the Fredholm alternative, 1 + Tα

λ is bijective and
thereby (6.17) provides a solution, that is unique within the class specified in Lemma
6.1. ¤

By means of a cut-off procedure due to [26] with the aid of Lemma 6.2, we will
construct the resolvent for λ ∈ C \ Sα.

Proposition 6.1. Let α > 0 and 1 < q < ∞. Then C\Sα ⊂ ρ(−L), where ρ(−L)
is the resolvent set in Lq

σ(Ω).

Proof. Let λ ∈ C \ Sα and let u ∈ D(L) satisfy (λ + L)u = 0 in Lq
σ(Ω). Then,

for some associated pressure p satisfying ∇p ∈ Lq(Ω), the pair (u, p) satisfies (6.2), so
that Lemma 6.1 yields u = 0. As a consequence, λ + L is injective. We next construct a
solution of (6.2) for given f ∈ Lq(Ω). Set

v = (1− ψ)Aα
λf + B[(Aα

λf) · ∇ψ], σ = (1− ψ)(Πf − σ0)

where f is understood as its zero extension to R2, ψ is the same cut-off function as in
(6.4), B is the Bogovskii operator in the annulus (6.3) and σ0 = |D0|−1

∫
D0

Πf dx. We
intend to find a solution of the form u = v + w and p = σ + τ ; then (w, τ) should obey
(6.2) with f replaced by

g = ψf − 2∇ψ · ∇Aα
λf − (∆ψ + 2α∂1ψ)Aα

λf + ∆B[(Aα
λf) · ∇ψ]− λB[(Aα

λf) · ∇ψ]

+ 2α∂1B[(Aα
λf) · ∇ψ] + (∇ψ)(Πf − σ0)

that belongs to Lq
[R](Ω), where R ≥ R0 + 1. Thus Lemma 6.2 provides a solution

w = Rα
λ(1 + Tα

λ )−1g and τ = Qα
λ(1 + Tα

λ )−1g. From Lemma 4.1, (6.9), (6.10) and (6.12)
we find u = v +w ∈ D(L) together with (λ+L)u = Pf . Hence, Range (λ + L) = Lq

σ(Ω)
and thereby (λ + L)−1 ∈ L(Lq

σ(Ω)) since L is closed. This completes the proof. ¤

Combining Proposition 6.1 with Lemma 6.2, we conclude a representation of the
resolvent in terms of (6.6) and (6.14) (by uniqueness of the resolvent) when f ∈ Lq

[R](Ω).

Corollary 6.1. Let α > 0, λ ∈ C \ Sα, 1 < q < ∞ and R ≥ R0 + 1. Then we
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have

(λ + L)−1Pf = Rα
λ (1 + Tα

λ )−1f (6.18)

provided that f ∈ Lq
[R](Ω).

Our aim is to derive the asymptotic behavior of the resolvent (6.18) for small (λ, α).
The main theorem of this section reads as follows.

Theorem 6.1. Let 1 < q < ∞, R ≥ R0 + 1 and M > 0. There are constants
δ = δ(M ; Ω, q, R) > 0 and C = C(M ; Ω, q, R) > 0 such that if λ ∈ C+ satisfies |λ| ≤ δα2

then the bounded inverse (1 + Tα
λ )−1 obtained in Lemma 6.2 satisfies

‖(1 + Tα
λ )−1‖L(Lq

[R](Ω)) ≤ C (6.19)

for all α ∈ (0,M ]; as a consequence, for such α and λ (except λ = 0) we have

‖(λ + L)−1Pf‖W 1,q(ΩR) ≤ C

(∣∣∣∣ log
1

|λ|+ α2

∣∣∣∣ + 1
)
‖f‖q (6.20)

for f ∈ Lq
[R](Ω).

Remark 6.1. Even if λ = 0, the estimate (6.20) for Rα
0 (1 + Tα

0 )−1f as well as
(6.19) holds true.

The compactness argument in Lemma 6.2 provides us little information about the
dependence of (1 + Tα

λ )−1 on (λ, α). We thus need another construction of (1 + Tα
λ )−1

especially near λ = 0. The strategy is first to consider (1 + Tα
0 )−1 and then to estimate

Tα
λ − Tα

0 . Let us consider the case λ = 0. In view of (4.26) we have the logarithmic
singularity only in the degenerate part of Aα

0 , that enables us to show the following
proposition.

Proposition 6.2. Let 1 < q < ∞ and R ≥ R0 + 1. Then, for any M > 0, there
is a positive constant C = C(M ; Ω, q, R) such that

‖(1 + Tα
0 )−1‖L(Lq

[R](Ω)) ≤ C (6.21)

for α ∈ (0,M ].

For the proof, the following lemma on nonexistence of solutions of the Stokes problem
under a certain condition (what is called the Stokes paradox) plays a crucial role.

Lemma 6.3. Let u∗ ∈ R2 \ {0} be a constant vector. Then the Stokes problem

−∆u +∇σ = 0, div u = 0 in Ω, u|∂Ω = u∗, u → 0 as |x| → ∞ (6.22)

has no solution.
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Proof. This was essentially proved by Chang and Finn [6], but we give the proof
for completeness. In view of the asymptotic expansion of solutions at infinity of the
Stokes system with no external force (without assuming any boundary condition on ∂Ω)
due to [6], the necessity for the decay is that the total net force exerted by the fluid to
the obstacle vanishes:

∫

∂Ω

ν · T (u, σ) ds = 0,

where T (u, σ) = Du − σI denotes the Cauchy stress tensor and Du = ∇u + (∇u)T .
This is because the net force is the coefficient of the fundamental solution (4.8) in that
asymptotic expansion. We have also better decay properties

u(x) = O(|x|−1), ∇u(x) = O(|x|−2), σ(x)− σ∞ = O(|x|−2) as |x| → ∞

for some constant σ∞ ∈ R. Then we multiply the equation −div T (u, σ − σ∞) = −∆u+
∇(σ − σ∞) = 0 by u and integrate over ΩR for any R > R0 to obtain

1
2

∫

ΩR

|Du|2 dx =
∫

∂ΩR

u · (ν · T (u, σ − σ∞)) dsx =
1
R

∫

∂BR

u · (x · T (u, σ − σ∞)) dsx

which goes to zero as R →∞ due to |u · (x · T (u, σ − σ∞))| ≤ C/|x|2. We thus conclude
Du = 0 in Ω, so that u is a rigid motion and, hence, u = 0 since it decays at infinity.
Thus the inhomogeneous boundary condition u|∂Ω = u∗ 6= 0 is impossible in (6.22). This
completes the proof. ¤

Proof of Proposition 6.2. In the proof of Lemma 6.2, we see that (0,∞) 3
α 7→ (1 + Tα

0 )−1 ∈ L(Lq
[R](Ω)) is continuous (by means of the Neumann series argument

around each α0 > 0) because so is α 7→ Tα
0 , see Lemma 4.4, (5.6), (6.5) and (6.7).

Therefore, it is essential to show the boundedness (6.21) near α = 0. To this end,
we reconstruct (1 + Tα

0 )−1 for small α > 0 by following the argument developed by
Dan and Shibata [8]. But their argument is not enough to conclude (6.21), and what
is particularly new here is (6.30) below, which is proved by use of Lemma 6.3. It is
convenient to introduce notation

〈ej , f〉 =
∫

R2
ej · f(y) dy (j = 1, 2), e1 =

(
1
0

)
, e2 =

(
0
1

)

so that Γf = 〈e1, f〉e1 + 〈e2, f〉e2 and

1
4π

[(
log

1
α

)
I+ J

]
Γf =

log 2
α − γ

4π
〈e1, f〉e1 +

log 2
α − γ − 1

4π
〈e2, f〉e2.

By (4.26), (4.27), (5.6) and (6.7) the remaining term Tα
0 f can be written as
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Tα
0 f = T 0

0 f + Y (α)f + Z(α)f (6.23)

with

Y (α)f = (log α− log 2 + γ)〈e1, f〉w1 + (log α− log 2 + γ + 1)〈e2, f〉w2, (6.24)

‖Z(α)‖L(Lq
[R](Ω)) = O

(
α log

1
α

)
as α → 0, (6.25)

where

wj =
1
4π
{(−∆ψ)ej + ∆B[∂jψ]} (j = 1, 2), (6.26)

and f is understood as its zero extension to R2 in (6.24). Concerning the operator
T 0

0 , see (6.14) with (λ, α) = (0, 0) which consists of solution operators for the Stokes
problem in R2 and in ΩR0+2, we recall the following result due to [8, Lemma 3.2–3.5].
It is a compact operator from Lq

[R](Ω) into itself and 1 + T 0
0 is injective on the subspace

{f ∈ Lq
[R](Ω); Γf = 0} together with dimker(1 + T 0

0 ) ≤ 2. By the Fredholm theory
one can take m1, m2 ∈ Lq

[R](Ω) such that m1, m2 /∈ Range (1 + T 0
0 ) and Lq

[R](Ω) =
Range (1 + T 0

0 )⊕ Span {m1,m2}; furthermore, the operator

Λ(0)f = (1 + T 0
0 )f + 〈e1, f〉m1 + 〈e2, f〉m2 (6.27)

is bijective with bounded inverse Λ(0)−1 on Lq
[R](Ω). When dim ker(1 + T 0

0 ) ≤ 1, m1

and/or m2 should be understood as zero. By (6.23) and (6.27) we have

(1 + Tα
0 )f = Λ(α)f + Ỹ (α)f

with

Λ(α)f = Λ(0)f + Z(α)f =
[
1 + Z(α)Λ(0)−1

]
Λ(0)f,

Ỹ (α)f = Y (α)f − 〈e1, f〉m1 − 〈e2, f〉m2.
(6.28)

By (6.25) there is a constant α0 > 0 such that if α ∈ (0, α0], then Λ(α) is invertible as
the Neumann series Λ(α)−1 = Λ(0)−1

∑∞
k=0{−Z(α)Λ(0)−1}k with

C∗
2
≤ ‖Λ(α)−1‖L(Lq

[R](Ω)) ≤ 2C∗ (6.29)

where C∗ = ‖Λ(0)−1‖L(Lq
[R](Ω)) > 0. Let us consider the degenerate (that is, finite

rank) operator Ỹ (α). A key observation is that w1 and w2 given by (6.26) are linearly
independent, which follows from



Lq-Lr estimate of the Oseen flow in plane exterior domains 331

det

(
〈e1,Λ(0)−1w1〉 〈e1,Λ(0)−1w2〉
〈e2,Λ(0)−1w1〉 〈e2,Λ(0)−1w2〉

)
6= 0. (6.30)

We postpone the proof of (6.30). Set N = dim{Ỹ (α)f ; f ∈ Lq
[R](Ω)}. Then we know

2 ≤ N ≤ 4 and take a basis {wj}N
j=1 by adding w3 or {w3, w4} to {w1, w2} if necessary.

We set −mk =
∑N

j=1 ak
j wj (k = 1, 2), then (6.24) and (6.28)2 lead us to

Ỹ (α)f =
N∑

j=1

〈φj , f〉wj

where φj = φj(α) is given by

φ1 = (log α− log 2 + γ + a1
1)e1 + a2

1e2,

φ2 = a1
2e1 + (log α− log 2 + γ + 1 + a2

2)e2,

φ3 = a1
3e1 + a2

3e2, φ4 = a1
4e1 + a2

4e2.

(6.31)

One can regard 1 + Tα
0 as

(1 + Tα
0 )f = Λ(α)[1 + Λ(α)−1Ỹ (α)]f (6.32)

with

Λ(α)−1Ỹ (α)f =
N∑

j=1

〈φj , f〉Λ(α)−1wj .

Set N ×N matrix M by

M =M(α) = I+
(〈φj ,Λ(α)−1wk〉

)
1≤j,k≤N

(6.33)

which satisfies detM 6= 0 for all α > 0. In fact, suppose the contrary, then one can take
c = (cj)N

j=1 6= 0 such that

cj +
N∑

k=1

〈φj ,Λ(α)−1wk〉ck = 0

for 1 ≤ j ≤ N . Since Λ(α)−1wk (1 ≤ k ≤ N) are linearly independent, we have

g :=
N∑

k=1

ckΛ(α)−1wk 6= 0.

On the other hand, we find
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Λ(α)−1Ỹ (α)g =
N∑

j=1

〈
φj ,

N∑

k=1

ckΛ(α)−1wk

〉
Λ(α)−1wj = −

N∑

j=1

cjΛ(α)−1wj = −g,

so that (1 + Tα
0 )g = 0 by (6.32). We already know, however, that 1 + Tα

0 is invertible
on Lq

[R](Ω) and, therefore, g = 0, which leads us to a contradiction. By using the inverse
matrix M−1 = (bjk) with bjk = bjk(α), we define the degenerate operator V (α) by

V (α)f =
N∑

j,k=1

〈φk, f〉 bjk Λ(α)−1wj

for f ∈ Lq
[R](Ω). Then we find that 1 + Λ(α)−1Ỹ (α) is invertible and

[
1 + Λ(α)−1Ỹ (α)

]−1 = 1− V (α).

Hence it follows from (6.32) that

(1 + Tα
0 )−1f = (1− V (α))Λ(α)−1f = Λ(α)−1f −

N∑

j,k=1

〈φk,Λ(α)−1f〉 bjk Λ(α)−1wj .

For each j, look at

N∑

k=1

〈φk, · 〉 bjk =
N∑

k=1

〈φk, · 〉 M̃kj

detM

where M̃kj denotes (k, j)-cofactor of M. By (6.31) and (6.33) the order of singulari-
ties of both detM and

∑N
k=1〈φk, · 〉M̃kj are at most (log α)2. One can write detM =∑2

j=0 Cj(α)(log α)j , where Cj(α) has no singularity for α → 0; then, it is easy to verify

C2(α) = det

(
〈e1,Λ(α)−1w1〉 〈e1,Λ(α)−1w2〉
〈e2,Λ(α)−1w1〉 〈e2,Λ(α)−1w2〉

)

no matter what N ∈ {2, 3, 4} is. Since C2(α) → C2(0) as α → 0, (6.30) together with
(6.29) implies (6.21).

It remains to prove (6.30). Suppose the contrary. Then there is a constant c 6= 0
such that ΓΛ(0)−1w1 + cΓΛ(0)−1w2 = 0. We consider (R0

0, Q
0
0) defined by (6.6) with

(λ, α) = (0, 0), and set vj = R0
0Λ(0)−1wj and σj = Q0

0Λ(0)−1wj (j = 1, 2). Then (6.27)
implies

−∆vj +∇σj = (1 + T 0
0 )Λ(0)−1wj = wj − 〈e1,Λ(0)−1wj〉m1 − 〈e2,Λ(0)−1wj〉m2

subject to div vj = 0 and vj |∂Ω = 0. Therefore, v = v1 + cv2 and σ = σ1 + cσ2 obey
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−∆v +∇σ = w1 + cw2

subject to div v = 0 and v|∂Ω = 0. For |x| ≥ R0 + 1, we find

v = A0
0Λ(0)−1(w1 + cw2) = E0

0 ∗ [Λ(0)−1(w1 + cw2)] = O(|x|−1),

see (4.8), because ΓΛ(0)−1(w1 + cw2) =
∫
R2 Λ(0)−1(w1 + cw2) = 0. Set

g(x) =
1
4π

{
− ψ

(
1
c

)
+ B[∂1ψ + c∂2ψ]

}
.

Since div g = 0, the pair of u = v + g and σ solves (6.22) with the constant vector
u∗ = (−1/4π)

(
1
c

)
, however, solutions cannot exist by Lemma 6.3. We have completed

the proof. ¤

Remark 6.2. It is reasonable to expect that lim infα→0 ‖(1+Tα
0 )−1‖L(Lq

[R](Ω)) = 0
because of nonexistence of (1 + T 0

0 )−1. The results of [8] and [30] suggest that ‖(1 +
Tα

0 )−1‖L(Lq
[R](Ω)) = O(| log α|−1) (however, I could not find the proof).

Proof of Theorem 6.1. We now regard 1 + Tα
λ as

1 + Tα
λ =

[
1 + (Tα

λ − Tα
0 )(1 + Tα

0 )−1
]
(1 + Tα

0 ).

Since

‖(Tα
λ − Tα

0 )f‖q ≤ C‖(Aα
λ −Aα

0 )f‖W 1,q(D0) + C‖(Mα
λ −Mα

0 )f‖W 1,q(D0)

+ C|λ|‖Aα
λf‖Lq(D0) + C|λ|‖Mα

λ f‖Lq(D0) + C‖(Ñα
λ − Ñα

0 )f‖Lq(D0)

for f ∈ Lq
[R](Ω) and α ∈ (0,M ], we collect (4.28), (4.16) (with R = R0 + 1), (5.7) with

λ0 = 0, (6.7) and (5.5) together with Proposition 6.2 to find a constant δ > 0 such that
if λ ∈ C+ satisfies |λ| ≤ δα2 as well as α ∈ (0,M ], then

‖(Tα
λ − Tα

0 )(1 + Tα
0 )−1‖L(Lq

[R](Ω)) ≤
1
2

which yields the representation

(1 + Tα
λ )−1 = (1 + Tα

0 )−1
[
1 + (Tα

λ − Tα
0 )(1 + Tα

0 )−1
]−1

= (1 + Tα
0 )−1

∞∑

k=0

{− (Tα
λ − Tα

0 )(1 + Tα
0 )−1

}k
.

This combined with (6.21) implies (6.19). Finally, the desired estimate follows from
(6.19), (4.16) and (5.5). This completes the proof. ¤
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7. Local energy decay.

In this section we will prove Theorem 2.1 and Theorem 2.2. The proof of Theorem
2.1 is based on the representation

∂τ (iτ + L)−1Pf = (∂τRα
iτ )(1 + Tα

iτ )−1Pf

−Rα
iτ (1 + Tα

iτ )−1(∂τTα
iτ )(1 + Tα

iτ )−1Pf (7.1)

and (7.18) below, which follow from (6.18). By Proposition 4.1, (5.5) and (6.19) we find

‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR)

≤ C

(∣∣∣∣ log
1

|τ |+ α2

∣∣∣∣ + 1
)

1
α2

log
(

α2

|τ | +

√
1 +

α4

τ2

)
‖f‖q (7.2)

for α ∈ (0,M ], 0 < |τ | ≤ δα2 and f ∈ Lq
[R](Ω). In fact, the worst part arises from the

product of (4.16) and (4.17). As a consequence, we have the following lemma.

Lemma 7.1. Let 1 < q < ∞, R ≥ R0 + 1 and M > 0. Suppose δ is the constant
as in Theorem 6.1. Then there is a constant C = C(M ; Ω, q, R) > 0 such that

∫

|τ |≤δα2
‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR) dτ ≤ C(| log α|+ 1)‖f‖q (7.3)

for f ∈ Lq
[R](Ω) and α ∈ (0,M ].

Due to Lemma 7.1 the representation (6.1) of the semigroup makes sense in W 1,q(ΩR)
for f ∈ Lq

[R](Ω).
On the other hand, (2.6) implies that there is a constant c1 = c1(Ω, q) > 0 indepen-

dent of α such that

‖∂τ (iτ + L)−1Pf‖W 1,q(Ω) = ‖(iτ + L)−2Pf‖W 1,q(Ω) ≤ c1|τ |−3/2‖f‖q (7.4)

for |τ | ≥ max{c0α
2, 1} and f ∈ Lq(Ω), where c0 = c0(π/2,Ω, q) > 0 is the constant for

which (2.6) holds as long as |λ| ≥ max{c0α
2, 1} and λ ∈ C+. We thus have (7.4) for

|τ | ≥ 2 when α ≤
√

2/c0. In the subsequent argument it suffices to consider the case
when α > 0 is small.

It remains to estimate the integral for δα2 ≤ |τ | ≤ 2, which is worse than (7.3).
In fact, we cannot use any knowledge from spectral analysis and are forced to employ
L2-theory.

Lemma 7.2. Let 1 < q < ∞ and R ≥ R0 + 1. Given δ > 0, there is a constant
C = C(Ω, q, R, δ) > 0 such that

∫

δα2≤|τ |≤2

‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR) dτ ≤ C

α
‖f‖2 (7.5)
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for f ∈ L2(Ω) and α ∈ (0,
√

2/δ).

Proof. We employ the standard energy method. Let λ = iτ (∈ iR) and f ∈
L2(Ω). We write (6.2) as (iτ + L)u = (iτ + A − 2αP∂1)u = Pf in L2

σ(Ω), where
A = −P∆ denotes the Stokes operator. We take the scalar product in L2(Ω) with u to
obtain

‖∇u‖22 ≤ ‖f‖2‖u‖2, |τ |‖u‖2 ≤ 2α‖∂1u‖2 + ‖f‖2

from the real and imaginary parts. They imply

‖(iτ + L)−1Pf‖2 ≤ 2
(

1
|τ | +

2α2

τ2

)
‖f‖2 (7.6)

which was already observed in [2]. We also have

‖∇(iτ + L)−1Pf‖2 ≤
{

2
(

1
|τ | +

2α2

τ2

)}1/2

‖f‖2. (7.7)

Let g ∈ L2
σ(Ω). For (iτ + L)u = g, we take the scalar product in L2(Ω) with Au to get

‖Au‖22 ≤ 8α2‖∂1u‖22 + 2‖g‖22

which together with ‖∇2u‖2 ≤ C(‖Au‖2 + ‖∇u‖2), see [21], as well as (7.7) implies

‖∇2(iτ + L)−1g‖2 + ‖∇(iτ + L)−1g‖2 ≤ C

(
1
|τ | +

α2

τ2

)1/2

‖g‖2 (7.8)

as long as |τ | ≤ 2. In ΩR we have the Poincaré inequality ‖u‖L2(ΩR) ≤ CR‖∇u‖L2(ΩR)

since u|∂Ω = 0, by which combined with the Sobolev inequality in 2D we find

‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR) ≤ C‖(iτ + L)−2Pf‖H2(ΩR)

≤ C
(‖∇2(iτ + L)−2Pf‖2 + ‖∇(iτ + L)−2Pf‖2

)
(7.9)

for f ∈ L2(Ω). We collect (7.6), (7.8) with g = (iτ + L)−1Pf and (7.9) to conclude

‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR) ≤ C

(
1
|τ | +

α2

τ2

)3/2

‖f‖2 (7.10)

for |τ | ≤ 2, which leads us to (7.5). ¤

It follows from Lemma 7.1, (7.4) and Lemma 7.2 that

∫ ∞

−∞
‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR) dτ ≤ C

α
‖f‖q (7.11)
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for q ∈ [2,∞) and f ∈ Lq
[R](Ω), and that

∫ ∞

−∞
‖∂τ (iτ + L)−1Pf‖W 1,q(ΩR) dτ ≤ C

α
‖f‖2

for q ∈ (1, 2) and f ∈ L2
[R](Ω). As a consequence, we obtain (2.9) (q ≥ 2) and (2.10)

(q < 2), respectively, with θ = 0.
We take a cut-off function η ∈ C∞(R; [0, 1]) such that η(τ) = 1 for |τ | ≤ 1 and

η(τ) = 0 for |τ | ≥ 2, and divide the integral (6.1) into

−1
2πit

∫ ∞

−∞
eiτt η(τ)∂τ (iτ + L)−1Pf dτ (7.12)

and the other part which decays like t−2 by integration by parts once more since (2.6)
yields

‖∂2
τ (iτ + L)−1Pf‖W 1,q(Ω) = 2‖(iτ + L)−3Pf‖W 1,q(Ω) ≤ c|τ |−5/2‖f‖q

for |τ | ≥ max{c0α
2, 1} (thus, for |τ | ≥ 1 when α ≤

√
1/c0) and f ∈ Lq(Ω), where c0 is

as in (7.4). For notational simplicity, we set

v(τ) = η(τ)w(τ), w(τ) = ∂τ (iτ + L)−1Pf. (7.13)

For further decay of (7.12), we use the following lemma with E = W 1,q(ΩR), which tells
us a relation between the modulus of continuity of v and the rate of decay of the (inverse)
Fourier transform of v.

Lemma 7.3. Let E be a Banach space with norm ‖ · ‖ and v ∈ L1(R;E). Then

V (t) =
∫ ∞

−∞
eiτt v(τ) dτ

enjoys

‖V (t)‖ ≤ C

∫ ∞

−∞

∥∥∥∥v

(
τ +

1
t

)
− v(τ)

∥∥∥∥ dτ (7.14)

for t ∈ R \ {0}.

Proof. The proof is very simple by using the representation

V (t) =
eiht

1− eiht

∫ ∞

−∞
eiτt

(
v(τ + h)− v(τ)

)
dτ

for h ∈ R satisfying ht 6= 0 (mod. 2π). Given t 6= 0, we take h = 1/t to obtain (7.14). ¤
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Remark 7.1. The idea of the proof above is found first in [22], however, the
origin of this lemma goes back to Shibata [31]. But estimate of the form (7.14) is more
straightforward for applications when h 7→ ∫∞

−∞ ‖v(τ + h) − v(τ)‖dτ is not simple (this
is just the case in Lemma 7.4 below).

In order to apply (7.14) to (7.12), we show the following lemma on further regularity
of the resolvent near τ = 0 along the imaginary axis.

Lemma 7.4. Suppose v(τ) is the function given by (7.13). Let 2 ≤ q < ∞, R ≥
R0 + 1 and M > 0. Then there is a constant C = C(M ; Ω, q, R) > 0 such that

∫ ∞

−∞
‖v(τ + h)− v(τ)‖W 1,q(ΩR) dτ ≤ C

( | log α|+ 1
α2

∣∣∣∣ log
α2

h

∣∣∣∣ +
1
α3

)
h ‖f‖q (7.15)

for f ∈ Lq
[R](Ω), α ∈ (0,M ] and h ∈ (0, 1/2].

Proof. Let δ be the constant as in Theorem 6.1. Suppose h ∈ (0, δα2/3) and
consider

∫ ∞

−∞
η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ =

∫

|τ |≤2h

+
∫

|τ |>2h

.

It follows from (7.2) that

∫

|τ |≤2h

η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ

≤ 2
∫

|τ |≤3h

‖w(τ)‖W 1,q(ΩR) dτ

≤ C

[
(| log α|+ 1)

∫ 3h/α2

0

log
(

1
σ

+

√
1 +

1
σ2

)
dσ

+
∫ 3h/α2

0

log (1 + σ) log
(

1
σ

+

√
1 +

1
σ2

)
dσ

]
‖f‖q.

Since 3h/α2 < δ, the dominant integral is the first one. Although it is exactly calculated
as in (4.23), it is easier to find

∫ 3h/α2

0

log
(

1
σ

+

√
1 +

1
σ2

)
dσ ≤

∫ 3h/α2

0

log
(

1 +
2
σ

)
dσ

=
3h

α2
log

(
1 +

2α2

3h

)
+ 2 log

(
1 +

3h

2α2

)
.

Since 2 log (1 + 3h/2α2) ≤ 3h/α2, we obtain
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∫

|τ |≤2h

η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ

≤ C
(| log α|+ 1

)
h

α2

{
log

(
1 +

2α2

3h

)
+ 1

}
‖f‖q (7.16)

for f ∈ Lq
[R](Ω). To estimate the other integral we use

‖w(τ + h)− w(τ)‖W 1,q(ΩR) ≤
∫ τ+h

τ

‖∂2
s (is + L)−1Pf‖W 1,q(ΩR) ds. (7.17)

Let 2h < |τ | ≤ 2δα2/3, so that |τ |/2 < |τ + h| < δα2. Then, for s ∈ (τ, τ + h), we have
the relation

∂2
s (is + L)−1Pf

= (∂2
sRα

is)(1 + Tα
is)
−1Pf − 2 (∂sR

α
is)(1 + Tα

is)
−1(∂sT

α
is)(1 + Tα

is)
−1Pf

+ 2 Rα
is (1 + Tα

is)
−1(∂sT

α
is)(1 + Tα

is)
−1(∂sT

α
is)(1 + Tα

is)
−1Pf

−Rα
is (1 + Tα

is)
−1(∂2

sTα
is)(1 + Tα

is)
−1Pf (7.18)

as well as (7.1); thus, Proposition 4.1, (5.5) combined with (6.19) implies that

‖∂2
s (is + L)−1Pf‖W 1,q(ΩR) ≤ C

(∣∣∣∣ log
1

|s|+ α2

∣∣∣∣ + 1
)

1
|s| (|s|+ α2)

‖f‖q

for f ∈ Lq
[R](Ω). Note that

1
α4

{
log

(
α2

|s| +

√
1 +

α4

s2

)}2

≤ c1

|s|(|s|+ α2)

since
{

log
(
1/t +

√
1 + 1/t2

)}2 ≤ c1/t(t + 1) for all t > 0. Let τ > 2h. Then we have by
(7.17)

∫ 2δα2/3

2h

η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ

≤
[
C

(| log α|+ 1
)

α2

∫ 2δα2/3

2h

∫ (τ+h)/α2

τ/α2

1
σ(σ + 1)

dσ dτ

+
C

α2

∫ 2δα2/3

2h

∫ (τ+h)/α2

τ/α2

log (1 + σ)
σ(σ + 1)

dσ dτ

]
‖f‖q.

The dominant integral is the first one and it is estimated as
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∫ 2δα2/3

2h

∫ (τ+h)/α2

τ/α2

1
σ(σ + 1)

dσ dτ ≤ h

∫ 2δα2/3

2h

dτ

τ
= h log

δα2

3h
.

The case τ < −2h is also discussed similarly. We thus obtain

∫

2h<|τ |≤2δα2/3

η(τ)‖w(τ+h)−w(τ)‖W 1,q(ΩR) dτ ≤ C
(| log α|+ 1

)
h

α2
log

δα2

3h
‖f‖q (7.19)

for f ∈ Lq
[R](Ω). It remains to estimate of the integral over 2δα2/3 < |τ | ≤ 2, in which

we have no longer (7.18). We are thus forced to rely on L2-theory an in Lemma 7.2;
indeed, by (7.6), (7.8) with g = (iτ + L)−2Pf and (7.9) in which (iτ + L)−2 should be
replaced by (iτ + L)−3 we have

‖∂2
τ (iτ + L)−1Pf‖W 1,q(ΩR) ≤ C

(
1
|τ | +

α2

τ2

)5/2

‖f‖2

for |τ | ≤ 2 and f ∈ L2(Ω). Consequently,

∫

2δα2/3<|τ |≤2

η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ ≤ Ch

α3
‖f‖2 (7.20)

for f ∈ L2(Ω). Collecting (7.16), (7.19) and (7.20) leads us to

∫ ∞

−∞
η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ ≤ C

{ | log α|+ 1
α2

∣∣∣∣ log
α2

h

∣∣∣∣ +
1
α3

}
h‖f‖q (7.21)

for q ∈ [2,∞), f ∈ Lq
[R](Ω) and h ∈ (0, δα2/3). When δα2/3 ≤ h ≤ 1/2 (that is not the

important case), one needs a small modification. In fact, by (7.3) and (7.10) we replace
(7.16) by

∫

|τ |≤3h

‖w(τ)‖W 1,q(ΩR) dτ =
∫

|τ |≤δα2
+

∫

δα2≤|τ |≤3h

≤ C
(| log α|+ 1

)‖f‖q +
C

α
‖f‖2

for q ∈ [2,∞) and f ∈ Lq
[R](Ω), but the RHS can be written as (Ch/α3)‖f‖q because of

h ≥ δα2/3. And also we don’t have (7.19), but instead we see

∫

|τ |>2h

η(τ)‖w(τ + h)− w(τ)‖W 1,q(ΩR) dτ ≤
∫

2δα2/3<|τ |≤2

≤ Ch

α3
‖f‖2

as in (7.20). After all, we have (7.21) even for h ∈ (0, 1/2]. On the other hand, from
(7.11) we obtain

∫ ∞

−∞
|η(τ + h)− η(τ)| ‖w(τ + h)‖W 1,q(ΩR) dτ ≤ Ch

∫ ∞

−∞
‖w(τ)‖W 1,q(ΩR) dτ ≤ Ch

α
‖f‖q
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which combined with (7.21) implies (7.15). This completes the proof. ¤

We are now in a position to show Theorem 2.1 and Theorem 2.2.

Proof of Theorem 2.1. In view of (6.1) and (7.11), estimate (2.9) with θ = 0
has been already proved. Given t ≥ 2, we take h = 1/t in Lemma 7.4. We then apply
Lemma 7.3 to (7.12) to accomplish the proof of (2.9) with θ = 1. ¤

Proof of Theorem 2.2. Given f ∈ Lq
σ(Ω), we set g = e−Lf ∈ D(L) ⊂ W 2,q(Ω)

and consider the decay property of v(t) := e−tLg = e−(t+1)Lf for t ≥ 1. Let ψ be the
same cut-off function as in (6.4) and B the Bogovskii operator in the annulus (6.3). Set

g̃ = (1− ψ)g + B[g · ∇ψ],

then it follows from (6.5) and (2.4) that g̃ ∈ W 2,q(R2) and div g̃ = 0 with

‖g̃‖W 2,q(R2) ≤ C‖g‖W 2,q(Ω) ≤ C
(‖Lg‖q + ‖g‖q

) ≤ C‖f‖q. (7.22)

Let U(t) = Uα(t) be the Oseen semigroup in the whole plane R2 given by (3.1). We need
another cut-off function φ ∈ C∞(R2; [0, 1]) such that φ(x) = 0 for |x| ≥ R0 and φ(x) = 1
in a neighborhood of the obstacle R2 \Ω. By B′ we denote the Bogovskii operator in the
bounded domain ΩR0 . We set

w(t) = (1− φ)U(t)g̃ + B′[(U(t)g̃) · ∇φ].

Since div g̃ = 0, we have div (U(t)g̃) = 0, so that div w(t) = 0. We fix R ≥ R0 + 1.
By (3.4) (with r = q) and (6.5) for B′ (in which D0 is replaced by ΩR0) together with
(7.22), we have

‖w(t)‖W 1,q(ΩR) ≤ C‖U(t)g̃‖W 1,q(BR) ≤ C(1 + t)−1/q‖g̃‖W 2,q(R2) ≤ C(1 + t)−1/q‖f‖q

for t > 0. Our main task is thus to derive the decay property of the difference u(t) :=
v(t)− w(t), which together with the pressure p associated with v = e−tLg satisfies





∂tu−∆u− 2α∂1u +∇p = F, div u = 0 in Ω× (0,∞),

u|∂Ω = 0,

u(·, 0) = ψg −B[g · ∇ψ] =: h

where

F = −∂tw + ∆w + 2α∂1w

= −2∇φ · ∇U(t)g̃ − (∆φ + 2α∂1φ)U(t)g̃ −B′[(∂tU(t)g̃) · ∇φ]

+ ∆B′[(U(t)g̃) · ∇φ] + 2α∂1B
′[(U(t)g̃) · ∇φ].
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Set q̃ = max{q, 2}. Then h ∈ Leq[R](Ω) (h ∈ L2
[R](Ω) by embedding even if q < 2) and

‖h‖eq ≤ C‖g‖Leq(ΩR) ≤ C‖g‖W 1,q(ΩR) ≤ C‖e−Lf‖W 1,q(Ω) ≤ C‖f‖q. (7.23)

In view of Lemma 3.1 with r = q̃ = max{q, 2} and (7.22) we observe F (t) ∈ Leq[R](Ω)
subject to

‖F (t)‖eq ≤ C
(‖U(t)g̃‖W 1,eq(BR0 ) + ‖∂tU(t)g̃‖Leq(BR0 )

)

≤ Ct−1/q+1/eq(1 + t)−1/eq‖g̃‖W 2,q(R2)

≤ Ct−1/q+1/eq(1 + t)−1/eq‖f‖q (7.24)

for t > 0. Since div F (t) = 0 and F (t)|∂Ω = 0, we have F (t) ∈ Leqσ(Ω) as well (so that
PF (t) = F (t)). In order to estimate

u(t) = e−tLh +
∫ t

0

e−(t−τ)LF (τ) dτ

we employ (2.12) together with (7.23) and (7.24) to find

‖e−tLh‖W 1,q(ΩR) ≤
C

α1+2θ
t−(1+θ)

(
log (e + t)

)θ‖f‖q

and

∫ t

0

‖e−(t−τ)LF (τ)‖W 1,q(ΩR)dτ

≤ C‖f‖q

α1+2θ

∫ t

0

(t− τ)−1/2(e + t− τ)−(1/2+θ)
(
log (e + t− τ)

)θ
τ−1/q+1/eq(1 + τ)−1/eq dτ

=
C‖f‖q

α1+2θ
(I1 + I2)

where I1 =
∫ t/2

0
and I2 =

∫ t

t/2
. We easily see that

I1 ≤ (t/2)−1/2(e + t/2)−(1/2+θ)
(
log (e + t)

)θ
∫ t/2

0

τ−1/q+1/eq(1 + τ)−1/eq dτ

≤ Ct−(1/q+θ)
(
log (e + t)

)θ

and that
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I2 ≤ (t/2)−1/q

∫ t

t/2

(t− τ)−1/2(e + t− τ)−(1/2+θ)
(
log (e + t− τ)

)θ
dτ

≤ (t/2)−1/q

∫ ∞

0

σ−1/2(e + σ)−(1/2+θ)
(
log (e + σ)

)θ
dσ = Ct−1/q

as long as θ > 0. The proof is complete. ¤

8. Lq-Lr estimate.

In this section we conclude the paper with the proof of Lq-Lr estimate of the Oseen
semigroup by using local energy decay properties.

Proof of Theorem 2.3. We fix R ≥ R0 + 1. By virtue of Theorem 2.2, our
main task is to deduce the decay property in the other region Ω \ΩR. Given f ∈ Lq

σ(Ω),
1 < q < ∞, as in the proof of Theorem 2.2, we set g = e−Lf and v(t) = e−tLg =
e−(t+1)Lf . We denote by p the pressure associated with v satisfying

∫
D0

p = 0, where
D0 is the annulus given by (6.3). Then we have the inequality ([17, Chapter III], [22,
Remark 4.1])

‖p(t)‖Lq(D0) ≤ C‖∇p(t)‖W−1,q(D0) (8.1)

where W−1,q(D0) denotes the dual space of W
1,q/(q−1)
0 (D0), that is the completion of

C∞0 (D0) in W 1,q/(q−1)(D0). Let us consider

w(t) = (1− ψ)v(t) + B[v(t) · ∇ψ], σ(t) = (1− ψ)p(t)

where ψ is the cut-off function as in (6.4) and B denotes the Bogovskii operator in D0.
Since w = v for |x| ≥ R, we have only to estimate w for t > 0. Since (w, σ) obeys

{
∂tw −∆w − 2α∂1w +∇σ = K, div w = 0 in R2 × (0,∞),

w(·, 0) = (1− ψ)g + B[g · ∇ψ] =: g̃

where

K = 2∇ψ · ∇v + (∆ψ + 2α∂1ψ)v + B[(∂tv) · ∇ψ]

−∆B[v · ∇ψ]− 2α∂1B[v · ∇ψ]− (∇ψ)p,

we are going to estimate

w(t) = U(t)g̃ +
∫ t

0

U(t− τ)PR2K(τ) dτ

where U(t) = Uα(t) is the semigroup in the whole plane R2 given by (3.1). By (7.22)
and (3.3) we obtain
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‖∇jU(t)g̃‖Lr(R2) ≤ Ct−j/2−1/q+1/r‖g̃‖Lq(R2) ≤ Ct−j/2−1/q+1/r‖f‖q (8.2)

for t > 0, r ∈ [q,∞] and j = 0, 1. We fix both M > 0 and ε > 0, and put cα = C/α1+ε

for simplicity of notation, where C = C(M, ε) is the constant in (2.14). By (8.1) we
observe

‖p(t)‖Lq(D0) ≤ C‖∂tv(t)−∆v(t)− 2α∂1v(t)‖W−1,q(D0)

≤ C‖∂tv(t)‖Lq(D0) + C‖v(t)‖W 1,q(D0)

which combined with (2.14) implies

‖K(t)‖L1(R2) + ‖K(t)‖Lq(R2) ≤ C‖K(t)‖Lq(D0) ≤ C‖v(t)‖W 1,q(ΩR) + C‖∂tv(t)‖Lq(ΩR)

≤ Ccα(1 + t)−1/q
(‖Lg‖q + ‖g‖q

)

≤ Ccα(1 + t)−1/q‖f‖q. (8.3)

It follows from (3.3), (3.5) and (8.3) that

∫ t

0

‖∇jU(t− τ)PR2K(τ)‖Lr(R2) dτ

≤ Ccα‖f‖q

∫ t

0

(t− τ)−j/2−1/q+1/r(1 + t− τ)−1+1/q(1 + τ)−1/q dτ

=: Ccα‖f‖q

(
I
(j)
1 + I

(j)
2

)
(8.4)

for all t > 0 and j = 0, 1, where I
(j)
1 =

∫ t/2

0
and I

(j)
2 =

∫ t

t/2
. Then

I
(j)
1 ≤ Ct−j/2−1+1/r

∫ t/2

0

(1 + τ)−1/q dτ ≤ Ct−j/2−1/q+1/r (8.5)

for t > 0 and r ∈ [q,∞], while

I
(j)
2 ≤ Ct−1/q

∫ t

t/2

(t− τ)−j/2−1/q+1/r(1 + t− τ)−1+1/q dτ

= Ct−1/q

∫ t/2

0

σ−j/2−1/q+1/r(1 + σ)−1+1/q dσ

which yields

I
(0)
2 ≤

{
Ct−1/q+1/r, 1 < q ≤ r < ∞,

Ct−1/q log(e + t), 1 < q < r = ∞ (8.6)



344 T. Hishida

and

I
(1)
2 ≤

{
Ct−1/2−1/q+1/r, 1 < q ≤ r < 2,

Ct−1/q log(e + t), 1 < q ≤ r = 2
(8.7)

for t > 0. We collect (8.2), (8.4), (8.5), (8.6) and (8.7) to obtain

‖e−(t+1)Lf‖Lr(Ω\ΩR) ≤ ‖w(t)‖Lr(R2)

≤
{

Ccα t−1/q+1/r‖f‖q, 1 < q ≤ r < ∞,

Ccα t−1/q
(
log(e + t)

)‖f‖q, 1 < q < r = ∞ (8.8)

and

‖∇e−(t+1)Lf‖Lr(Ω\ΩR) ≤ ‖∇w(t)‖Lr(R2)

≤
{

Ccα t−1/2−1/q+1/r‖f‖q, 1 < q ≤ r < 2,

Ccα t−1/q
(
log(e + t)

)‖f‖q, 1 < q ≤ r = 2
(8.9)

for t > 0. We first consider the following cases:

case (i) 1 < q < 2, q ≤ r ≤ q∗,

case (ii) 2 ≤ q ≤ r < ∞,

case (iii) 2 < q < r = ∞

where 1/q∗ = 1/q − 1/2. For those cases, it follows from Theorem 2.2 that

‖e−tLf‖Lr(ΩR) + ‖∇e−tLf‖Lq(ΩR) ≤ Ccα t−1/q‖f‖q

for t ≥ 2, which combined with (8.8) and (8.9) furnishes

‖e−tLf‖r ≤
{

Ccα t−1/q+1/r‖f‖q, for case (i), case (ii),

Ccα t−1/q
(
log(e + t)

)‖f‖q, for case (iii)
(8.10)

and

‖∇e−tLf‖r ≤
{

Ccα t−1/2‖f‖r, 1 < r < 2,

Ccα t−1/2
(
log(e + t)

)‖f‖r, r = 2
(8.11)

for t ≥ 2. Concerning the estimate for 0 < t < 2, we employ the interpolation inequality
with use of (2.4), (2.5) and (2.11) to obtain the desired estimate of ‖∇je−tLf‖r from
above by t−j/2−1/q+1/r‖f‖q. Hence, we conclude (2.15) for case (i) and case (ii), (2.16)
for case (iii), and (2.17) and (2.18) for q = r. All the other cases then follow from the
semigroup property. The proof is complete. ¤
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Remark 8.1. From the proof of (8.11), we observe that if r > 2, then ‖∇e−tLf‖r ≤
Ccα t−1/r‖f‖r for t ≥ 2, which does not seem to be sharp. According to consideration by
[23], there is no contradiction even if we have the optimal decay estimate ‖∇e−tLf‖r ≤
C t−1/2‖f‖r for t ≥ 2 and r < 6.
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