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Abstract. The notion of the weighted degree of a polynomial is a basic
tool in Affine Algebraic Geometry. In this paper, we study the properties of
the weighted multidegrees of polynomial automorphisms by a new approach
which focuses on stable coordinates. We also present some applications of the
generalized Shestakov-Umirbaev theory.

1. Introduction.

Throughout this paper, k denotes an arbitrary domain unless otherwise stated. Let
k[x] = k[x1, . . . , xn] be the polynomial ring in n variables over k, where n is a positive
integer. The automorphism group Autk k[x] of the k-algebra k[x] is a central object in
Affine Algebraic Geometry. The purpose of this paper is to study the properties of the
weighted multidegrees of elements of Autk k[x].

Let Γ be a totally ordered additive group, i.e., an additive group equipped with a
total ordering such that α ≤ β implies α + γ ≤ β + γ for each α, β, γ ∈ Γ. We denote
Γ+ = {γ ∈ Γ | γ > 0} and Γ≥0 = {γ ∈ Γ | γ ≥ 0}. Let w = (w1, . . . , wn) be an n-tuple
of elements of Γ. We define the w-weighted Γ-grading

k[x] =
⊕

γ∈Γ

k[x]γ

by setting k[x]γ to be the k-submodule of k[x] generated by xa1
1 · · ·xan

n for a1, . . . , an ∈
N0 with

∑n
i=1 aiwi = γ for each γ ∈ Γ. Here, N0 denotes the set of nonnegative integers.

Write f ∈ k[x] \ {0} as f =
∑

γ∈Γ fγ , where fγ ∈ k[x]γ for each γ ∈ Γ. Then, we define
the w-weighted degree (w-degree, for short) of f by

degw f = max{γ ∈ Γ | fγ 6= 0}.

We define the w-weighted initial form (w-initial form, for short) of f by fw = fδ, where
δ := degw f . When f = 0, we define fw = 0 and degw f = −∞. Here, −∞ is a symbol
which is less than any element of Γ. To denote elements of Autk k[x], we often use the
notation F = (f1, . . . , fn), G = (g1, . . . , gn), etc, where each fi and gi represent the
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images of xi by F and G, respectively. We define the w-weighted degree and w-weighted
multidegree (w-degree and w-multidegree, for short) of F by

degw F =
n∑

i=1

degw fi and mdegw F = (degw f1, . . . ,degw fn),

respectively. When Γ = Z and w = (1, . . . , 1), we denote “degw” and “mdegw” simply
by “deg” and “mdeg”, respectively.

This paper consists of three parts. In the first part (Sections 2 through 5), we prove
basic properties of the w-degrees and w-multidegrees of elements of Autk k[x]. Take any
F ∈ Autk k[x] and ∅ 6= I ⊂ {1, . . . , n}, and define J to be the set of 1 ≤ j ≤ n such that
fj belongs to k[{xi | i ∈ I}], and I0 to be the set of i0 ∈ I such that degw fj belongs to∑

i∈I\{i0}N0wi for each j ∈ J . Here, for Ni ⊂ Z and di ∈ Γ for i = 1, . . . r with r ≥ 1,
we define

N1d1 + · · ·+ Nrdr = {a1d1 + · · ·+ ardr | ai ∈ Ni for i = 1, . . . , r}.

We note that J = {1, . . . , n} if I = {1, . . . , n}, and I0 = I if J = ∅.
With this notation, we have the following theorem.

Theorem 1.1. Assume that n ≥ 1 and k is a domain. Then, for any w ∈ Γn,
F ∈ Autk k[x] and ∅ 6= I ⊂ {1, . . . , n}, the following assertions hold.

( i ) We have either (a) or (b) as follows:
(a) There exists a bijection σ : J → I such that degw fj = wσ(j) for each j ∈ J .
(b) We have

∑
j∈J degw fj >

∑
i∈I wi or #I > #J . For each v ∈ Γn, there exists

i ∈ I0 such that xi does not divide (fw
j )v for any j ∈ J .

( ii ) Assume that #I > #J . Then, for each f ∈ k[{fj | j ∈ J}] \ {0} and v ∈ Γn, there
exists i ∈ I0 such that xi does not divide (fw)v.

For example, when n = 1, we have f1 = ax1 + b for some a ∈ k× and b ∈ k, and
I = J = {1}. Then, (a) of Theorem 1.1 (i) holds if and only if w1 ≥ 0 or b = 0. We
prove Theorem 1.1 in Sections 4 and 5 with the aid of a recent result of the author [15].

As will be shown in Theorem 3.3 (i), we have

degw F ≥ w1 + · · ·+ wn =: |w|

for each F ∈ Autk k[x] and w ∈ Γn. Detailed properties of the automorphisms satisfying
degw F = |w| are given in Theorem 3.3 (ii). The following corollary is obtained by
applying Theorem 1.1 (i) with I = J = {1, . . . , n}, since degw F > |w| implies (b), and
hence implies I0 6= ∅.

Corollary 1.2. Assume that n ≥ 1 and k is a domain. Let F ∈ Autk k[x] and
w ∈ Γn be such that degw F > |w|. Then, there exists 1 ≤ i ≤ n such that degw fj

belongs to
∑

l 6=i N0wl for j = 1, . . . , n.
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We call f ∈ k[x] a coordinate of k[x] over k if f = fi for some F ∈ Autk k[x] and
1 ≤ i ≤ n, and a stable coordinate of k[x] over k if f is a coordinate of k[x1, . . . , xm] over
k for some m ≥ n (cf. [18]). Clearly, a coordinate of k[x] over k is a stable coordinate
of k[x] over k. However, the converse does not hold in general (cf. [2, Example 4.1]; see
also [15, Section 3]).

In the situation of Theorem 1.1 (i), assume that #I ≥ 2. Then, for each j ∈ J ,
there exists i ∈ I such that degw fj belongs to

∑
l∈I\{i}N0wl in both cases (a) and (b).

From this observation, we see that the following theorem holds.

Theorem 1.3. Assume that n ≥ 2 and k is a domain. Let f be a stable coordinate
of k[x] over k. Then, for each w ∈ Γn, there exists 1 ≤ i ≤ n such that degw f belongs
to

∑
l 6=i N0wl.

In fact, let m ≥ n and F ∈ Autk k[x1, . . . , xm] be such that f = f1, and J the
set of 1 ≤ j ≤ m such that fj belongs to k[x]. Then, for each j ∈ J , there exists
i ∈ {1, . . . , n} =: I such that degw fj belongs to

∑
l∈I\{i}N0wl by the remark.

Next, let C(w, k) be the set of the w-degrees of stable coordinates of k[x] over k,
and let C(w) be the set of d ∈ Γ for which there exist 1 ≤ i ≤ n and aj ∈ N0 for each
j 6= i such that d ≥ wi and d =

∑
j 6=i ajwj . Since

d = degw

(
xi +

∏

j 6=i

x
aj

j

)

holds for such d, we see that C(w) is contained in C(w, k). Clearly, {w1, . . . , wn} is
contained in C(w, k). Therefore, C(w) ∪ {w1, . . . , wn} is contained in C(w, k).

With the notation above, we have the following theorem.

Theorem 1.4. Assume that n ≥ 1 and k is a domain. Then, we have C(w, k) =
C(w) ∪ {w1, . . . , wn} for any w ∈ (Γ≥0)n.

We can derive Theorem 1.4 from Theorem 1.3 as follows. First, note that degw f <

wj implies f ∈ k[{xi | i 6= j}] for each f ∈ k[x] and 1 ≤ j ≤ n by the choice of w.
Hence, f belongs to k[{xi | i ∈ I}], where I := {i | degw f ≥ wi}. Now, assume that
f is a stable coordinate of k[x] over k. Then, f is a stable coordinate of k[{xi | i ∈ I}]
over k. If I = {i} for some 1 ≤ i ≤ n, then f is a linear polynomial in xi over k. Since
wi ≥ 0, we have degw f = wi. If #I ≥ 2, then we know by Theorem 1.3 that there exists
i ∈ I for which degw f belongs to

∑
l∈I\{i}N0wl, and hence to

∑
l 6=i N0wl. Since i is an

element of I, we have degw f ≥ wi. Thus, degw f belongs to C(w). Therefore, C(w, k)
is contained in C(w) ∪ {w1, . . . , wn}.

Next, we discuss tameness of automorphisms. Recall that F ∈ Autk k[x] is said to
be affine if deg fi = 1 for i = 1, . . . , n, and elementary if there exist 1 ≤ l ≤ n, a ∈ k× and
p ∈ k[{xi | i 6= l}] such that fl = axl + p and fi = xi for each i 6= l. The subgroup Tn(k)
of Autk k[x] generated by all the affine automorphisms and elementary automorphisms of
k[x] is called the tame subgroup. Then, the Tame Generators Problem asks whether every
element of Autk k[x] is tame, i.e., belongs to Tn(k). This is one of the difficult problems
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in Affine Algebraic Geometry. At present, it is known that the answer is affirmative if
n = 1, or if n = 2 and k is a field by Jung [6] and van der Kulk [10], while negative if
n = 2 and k is not a field by Nagata [21], or if n = 3 and k is of characteristic zero by
Shestakov-Umirbaev [24].

For each subset S of Autk k[x] and w ∈ Γn, we define

mdegw S := {mdegw F | F ∈ S}.

The following result is due to Karaś [7, Proposition 2.2], where N denotes the set of
positive integers throughout this paper.

Proposition 1.5 (Karaś). Let d1, . . . , dn ∈ N be such that d1 ≤ · · · ≤ dn, where
n ≥ 2. If di belongs to

∑i−1
j=1 N0dj for some 2 ≤ i ≤ n, then (d1, . . . , dn) belongs to

mdeg Tn(C).

The second part of this paper (Sections 6, 7 and 8) is aimed at generalizing this
proposition. For this purpose, we introduce the following notation. Let κ be any com-
mutative ring. Here, a “commutative ring” means one with a nonzero identity element.
We remark that

degw fg = degw f + degw g and (fg)w = fwgw (1.1)

hold for each f, g ∈ κ[x] and w ∈ Γn if fw or gw is a nonzero divisor of κ[x]. Let
Autw

κ κ[x] be the set of F ∈ Autκ κ[x] such that fw
1 , . . . , fw

n are nonzero divisors of κ[x],
let En(κ) be the subgroup of Autκ κ[x] generated by all the elementary automorphisms
of κ[x], and let Ew

n (κ) = En(κ) ∩Autw
κ κ[x]. Then, we define

|Ew
n | :=

⋂
κ

mdegw Ew
n (κ) =

⋂

m∈N0\{1}
mdegw Ew

n (Z/mZ),

where κ runs through all the commutative rings.
As mentioned later, every stable coordinate of k[x1, x2] over k is a coordinate of

k[x1, x2] over k if k is an integrally closed domain (Theorem 7.1). Using this fact, we
prove the following two theorems in Section 7.

Theorem 1.6. Assume that n = 3 and k is a domain. Let w ∈ (Γ+)3 and
(d1, d2, d3) ∈ mdegw(Autk k[x]) be such that at least two of d1, d2 and d3 are not greater
than max{w1, w2, w3}. Then, (d1, d2, d3) belongs to |Ew

3 |.

For each w ∈ Γn, and F ∈ Autκ κ[x] and F ′ ∈ Autκ′ κ
′[x] with κ and κ′ any

commutative rings, we denote F ∼w F ′ if mdegw F = mdegw F ′, for simplicity. Then,
Theorem 1.6 can be restated as follows: Let F ∈ Autk k[x] and w ∈ (Γ+)3 be such
that at least two of degw f1, degw f2 and degw f3 are not greater than max{w1, w2, w3}.
Then, for any commutative ring κ, there exists G ∈ Ew

3 (κ) such that G ∼w F .
We note that En(k) = Tn(k) when k is a field. In this case, we have the following

theorem.
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Theorem 1.7. Assume that n = 3 and k is a field. If F ∈ Autk k[x] satisfies one
of the following conditions for some w ∈ (Γ+)3, then F belongs to T3(k):
(1) degw fi ≤ max{w1, w2, w3} for i = 1, 2.
(2) degw f2 −max{w1, w2, w3} < degw f1 < max{w1, w2, w3}.

In Section 8, we prove two kinds of sufficient conditions for elements of
mdegw(Autk k[x]) to belong to |Ew

n | which can be viewed as generalizations of Proposi-
tion 1.5.

The third part of this paper (Section 9) is devoted to applications of the generalized
Shestakov-Umirbaev theory. For F ∈ Autk k[x] and w ∈ Γn, we say that F admits
an elementary reduction for the weight w if degw F ◦ E < degw F for some elementary
automorphism E of k[x]. Since degw F ≥ |w| as mentioned, F admits no elementary
reduction for the weight w if degw F = |w|.

Nagata [21] conjectured that a certain element of Autk k[x] for n = 3 does not
belong to T3(k). Shestakov-Umirbaev solved this famous conjecture in the affirmative
using the following criterion [24, Corollary 8].

Theorem 1.8 (Shestakov-Umirbaev). Let k be a field of characteristic zero. If
deg F > 3 holds for F ∈ T3(k) with f3 = x3, then F admits an elementary reduction.

Here, we simply say “elementary reduction” when Γ = Z and w = (1, . . . , 1). It is
natural to ask whether a similar statement holds for general weights. We define S(w, k)
to be the set of F ∈ Autk k[x] for n = 3 such that degw F > |w|, and f3 = αx3 + p for
some α ∈ k\{0} and p ∈ k[x1, x2] with degw p ≤ w3. By definition, we have degw f3 = w3

and fw
3 = αx3 + p′ for such F , where p′ := pw if degw p = w3, and p′ := 0 otherwise.

Recently, the author [12], [13] generalized the Shestakov-Umirbaev theory. By
means of this theory, we prove the following theorem in Section 9. This gives an af-
firmative answer to the question above.

Theorem 1.9. Assume that k is a field of characteristic zero, and w is an element
of (Γ+)3. Then, every element of S(w, k) ∩ T3(k) admits an elementary reduction for
the weight w.

The following theorem is also proved in Section 9. Part (i) of this theorem is a
generalization of Proposition 1.5, while (ii) is a necessary condition for tameness of
automorphisms obtained from Theorem 1.9.

Theorem 1.10. Assume that n = 3 and k is a domain. Then, the following
assertions hold for each w ∈ (Γ+)3 and F ∈ S(w, k) with mdegw F = (d1, d2, d3), where
d3 = w3 as mentioned :

( i ) If di belongs to
∑

j 6=i N0dj for some 1 ≤ i ≤ 3, then there exists G ∈ Ew
3 (κ) such

that g3 = x3 and mdegw G = (d1, d2, d3) for each commutative ring κ.
( ii ) If k is of characteristic zero and F belongs to T3(k), then di belongs to

∑
j 6=i N0dj

for some 1 ≤ i ≤ 3.

The author would like to thank Professors Amartya K. Dutta and Neena Gupta
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for helpful discussions on stable coordinates, and for pointing out that Theorem 7.1 is
implicit in [1]. He is grateful to the referee for careful reading of the paper.

2. Initial principle.

Throughout this section, let n ∈ N and w ∈ Γn be arbitrary. For given elements
of k[x], we know what are the w-degree and w-initial form of their product thanks to
(1.1), whereas those for the sum is unclear in general. The purpose of this section is to
introduce basic techniques for treating the w-degree and w-initial form of the sum of
polynomials.

The principle stated in the following lemma lies behind useful results proved in this
and the next section. We omit the proof of this lemma, since the statement is obvious.

Lemma 2.1. For (0, . . . , 0) 6= (f1, . . . , fl) ∈ k[x]l with l ≥ 1, we set

δ = max{degw fi | i = 1, . . . , l} and S = {i | degw fi = δ}.

Then, the following assertions hold :

( i ) degw (f1 + · · ·+ fl) ≤ δ.
( ii ) degw (f1 + · · ·+ fl) = δ if and only if

∑
i∈S fw

i 6= 0.
(iii) If the equivalent conditions in (ii) are satisfied, then we have

(f1 + · · ·+ fl)w =
∑

i∈S

fw
i .

For an r-tuple F = (f1, . . . , fr) of elements of k[x] with r ∈ N , we define the
substitution map

k[x1, . . . , xr] 3 p(x1, . . . , xr) 7→ p(f1, . . . , fr) ∈ k[x].

As in the case of automorphisms, we denote this map by the same symbol F . When
fi 6= 0 for i = 1, . . . , r, we define

Fw = (fw
1 , . . . , fw

r ) and wF = (degw f1, . . . ,degw fr).

As a consequence of Lemma 2.1, we obtain the following proposition.

Proposition 2.2. For each F ∈ (k[x] \ {0})r and g ∈ k[x1, . . . , xr] \ {0}, the
following assertions hold :

( i ) degw F (g) ≤ degwF
g.

( ii ) degw F (g) = degwF
g if and only if Fw(gwF ) 6= 0.

(iii) If the equivalent conditions in (ii) are satisfied, then we have F (g)w = Fw(gwF ).

Proof. Write g =
∑

i1,...,ir
ai1,...,ir

xi1
1 · · ·xir

r with ai1,...,ir
∈ k, and set
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qi = ai1,...,ir
xi1

1 · · ·xir
r and pi = ai1,...,ir

f i1
1 · · · f ir

r

for each i = (i1, . . . , ir). Then, we have g =
∑

i qi and F (g) =
∑

i pi. Define δ =
max{degw pi | i} and S = {i | degw pi = δ}. By applying Lemma 2.1 to (pi)i, we obtain
the following statements:

(i′) degw F (g) ≤ δ.
(ii′) degw F (g) = δ if and only if h :=

∑
i∈S pw

i is nonzero.
(iii′) If the equivalent conditions in (ii′) are satisfied, then we have F (g)w = h.

Hence, it suffices to show that degwF
g = δ and Fw(gwF ) = h. Note that

degw pi =
r∑

l=1

il degw fl =
r∑

l=1

il degwF
xl = degwF

qi (2.1)

Fw(qi) = ai1,...,ir
(fw

1 )i1 · · · (fw
r )ir = (ai1,...,ir

f i1
1 · · · f ir

r )w = pw
i (2.2)

for each i = (i1, . . . , ir) with ai1,...,ir
6= 0. Hence, we have

degwF
g = max{degwF

qi | i} = max{degw pi | i} = δ

by (2.1). Thus, i belongs to S if and only if degwF
qi = degwF

g. This implies that
gwF =

∑
i∈S qi. Therefore, we conclude that

Fw(gwF ) = Fw

( ∑

i∈S

qi

)
=

∑

i∈S

Fw(qi) =
∑

i∈S

pw
i = h

by (2.2). ¤

For each k-subalgebra A of k[x] and w ∈ Γn, we define Aw to be the k-submodule
of k[x] generated by {fw | f ∈ A}. In view of (1.1), we see that Aw is a k-subalgebra
of k[x]. We call Aw the initial algebra of A for the weight w. For g1, . . . , gl ∈ k[x], it is
clear that

k[g1, . . . , gl]w ⊃ k[gw
1 , . . . , gw

l ],

but the equality does not hold in general. We mention that the k-algebra Aw is not
always finitely generated even if A is finitely generated (see e.g. [11]).

We note that f1, . . . , fr are algebraically independent over k if and only if the substi-
tution map F : k[x1, . . . , xr] → k[x] is injective. The following corollary is a consequence
of Proposition 2.2.

Corollary 2.3. Let F ∈ (k[x] \ {0})r be such that Fw is injective. Then, the
following assertions hold:

( i ) degw F (g) = degwF
g and F (g)w =Fw(gwF ) hold for each g∈k[x1, . . . , xr].

( ii ) F is injective.
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(iii) k[f1, . . . , fr]w = k[fw
1 , . . . , fw

r ].

Proof. (i) The assertion is obvious if g = 0. So assume that g 6= 0. Then, we
have gwF 6= 0, and so Fw(gwF ) 6= 0 by the injectivity of Fw. Hence, we get degw F (g) =
degwF

g and F (g)w = Fw(gwF ) by Proposition 2.2 (ii) and (iii).
(ii) If F (g) = 0 for g ∈ k[x1, . . . , xr], then we have degwF

g = degw F (g) = −∞ by
(i). This implies that g = 0. Therefore, F is injective.

(iii) “⊃” is clear as mentioned above. To show “⊂”, it suffices to check that fw

belongs to k[fw
1 , . . . , fw

r ] for each f ∈ k[f1, . . . , fr]. Let g ∈ k[x1, . . . , xr] be such that
f = F (g). Then, fw is equal to Fw(gwF ) by (i), and hence belongs to k[fw

1 , . . . , fw
r ].

This proves “⊂”. ¤

We remark that, if w1, . . . , wn are linearly independent over Z, then any distinct
monomials have distinct w-degrees. Hence, fw is a monomial for each f ∈ k[x] \ {0}.
Therefore, we have the following corollary to Proposition 2.2.

Corollary 2.4. If F ∈ (k[x]\{0})r is such that degw f1, . . . ,degw fr are linearly
independent over Z, then Fw is injective.

Proof. Put G = Fw. Take any p ∈ k[x1, . . . , xr] \ {0}. Then, pwG is a monomial
by the remark, since wG = (degw f1, . . . ,degw fr) and degw f1, . . . ,degw fr are linearly
independent over Z. Since Gw(xi) = (fw

i )w 6= 0 for each i, it follows that Gw(pwG) 6= 0.
Thus, we get G(p)w = Gw(pwG) 6= 0 by Proposition 2.2 (iii). This implies that G(p) 6= 0.
Therefore, G is injective. ¤

3. Degrees of polynomial automorphisms.

Throughout this section, let n ∈ N be arbitrary. We prove basic properties of the
weighted degrees and multidegrees of elements of Autk k[x].

Lemma 3.1. Let F ∈ Autk k[x] and w ∈ Γn be such that

degw f1 ≤ · · · ≤ degw fn and w1 ≤ · · · ≤ wn. (3.1)

Then, the following assertions hold :

( i ) If degw fi < wj for i, j ∈ {1, . . . , n}, then we have i < j.
( ii ) Assume that w1 ≥ 0 and let 1 ≤ i < n be an integer. If degw fi < wi+1, then we

have k[f1, . . . , fi] = k[x1, . . . , xi]. If furthermore degw fi+1 < wi+2 or i + 1 = n,
then fi+1 = αxi+1 + p for some α ∈ k× and p ∈ k[x1, . . . , xi].

(iii) Assume that w1 > 0 and let i, j ∈ {1, . . . , n} be such that degw fi = wj. Set
j0 = min{l | wl = wj} and j1 = max{l | wl = wj}. Then, we have

fi = g + aj0xj0 + · · ·+ aj1xj1

for some g ∈ k[x1, . . . , xj0−1] and aj0 , . . . , aj1 ∈ k.
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Proof. (i) Let f ′l be the linear part of fl for each l. Then, the Jacobian of
(f ′1, . . . , f

′
n) is equal to that of F , and hence is an element of k×. Thus, f ′1, . . . , f

′
n are

linearly independent over k. Note that degw f ′l ≤ degw fl for each l, since the monomials
appearing in (f ′l )

w also appear in fl. Since degw fi < wj by assumption, it follows that
degw f ′i′ < wj′ for each i′ ≤ i and j′ ≥ j by (3.1). Thus, f ′1, . . . , f

′
i belong to the k-

module kx1 + · · ·+ kxj−1. Since f ′1, . . . , f
′
i are linearly independent over k, we conclude

that i ≤ j − 1 < j.
(ii) Since degw fi < wi+1 by assumption, we have degw fi′ < wj′ for each i′ ≤ i

and j′ ≥ i + 1 by (3.1). Since wl’s are nonnegative, it follows that f1, . . . , fi belong
to k[x0] := k[x1, . . . , xi]. This implies that k[f1, . . . , fi] = k[x0]. Next, assume that
degw fi+1 < wi+2 or i + 1 = n. Then, we have k[x0][xi+1] = k[f1, . . . , fi+1] similarly.
Since k[f1, . . . , fi] = k[x0], it follows that k[x0][xi+1] = k[x0][fi+1]. Therefore, fi+1 has
the required form.

(iii) By the maximality of j1, we have degw fi = wj < wj1+1 or j1 = n. Since
wl’s are positive, fi belongs to k[x1, . . . , xj1 ] in either case. Write fi = g + h, where
g ∈ k[x1, . . . , xj0−1] and h ∈ ∑j1

l=j0
xlk[x1, . . . , xj1 ]. It remains only to show that deg h =

1 when h 6= 0. Let xj′m be any monomial appearing in h, where j0 ≤ j′ ≤ j1 and
m ∈ k[x1, . . . , xj1 ]. Then, we have degw xj′m ≤ degw h ≤ degw fi = wj . Since

degw xj′m = degw xj′ + degw m ≥ degw xj′ = wj′ = wj ,

it follows that degw m = 0. This implies that m belongs to k \ {0} by the positivity of
wl’s. Therefore, we conclude that deg h = 1 if h 6= 0. ¤

We say that F ∈ Autk k[x] is triangular if fi belongs to k[x1, . . . , xi] for i = 1, . . . , n.
The following proposition can be proved similarly to Lemma 3.1 (ii).

Proposition 3.2. Assume that F ∈ Autk k[x] and w ∈ (Γ≥0)n satisfy (3.1). If
degw fi < wi+1 for i = 1, . . . , n− 1, then F is triangular.

In the study of polynomial automorphisms, the notion of the w-degree of a differ-
ential form is important. Let Ωk[x]/k be the module of differentials of k[x] over k, and ω

an element of the r-th exterior power
∧r Ωk[x]/k of the k[x]-module Ωk[x]/k for r ∈ N .

Then, we can uniquely write

ω =
∑

1≤i1<···<ir≤n

fi1,...,ir
dxi1 ∧ · · · ∧ dxir

,

where fi1,...,ir
∈ k[x] for each i1, . . . , ir. Here, df denotes the differential of f for each

f ∈ k[x]. We define the w-degree of ω by

degw ω = max{degw(fi1,...,irxi1 · · ·xir ) | 1 ≤ i1 < · · · < ir ≤ n}.

Let f1, . . . , fr be elements of k[x] \ {0}. Then, df1 ∧ · · · ∧ dfr 6= 0 implies that f1, . . . , fr

are algebraically independent over k (cf. [19, Section 26]). By definition, we have
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degw df1 ∧ · · · ∧ dfr

= max
{

degw

(∣∣∣∣
∂(f1, . . . , fr)

∂(xi1 , . . . , xir )

∣∣∣∣xi1 · · ·xir

) ∣∣∣∣ 1 ≤ i1 < · · · < ir ≤ n

}

≤
r∑

i=1

degw fi, (3.2)

in which the equality holds if and only if dfw
1 ∧ · · · ∧ dfw

r 6= 0.
Now, let Sn be the symmetric group of {1, . . . , n}. Then,

wσ := (wσ(1), . . . , wσ(n))

belongs to |Ew
n | for each σ ∈ Sn. Hence, mdegw F belongs to |Ew

n | for each F ∈ Autk k[x]
with degw F = |w| by (ii) of the following theorem.

Theorem 3.3. For each F ∈ Autk k[x] and w ∈ Γn, the following assertions hold :

( i ) There exists σ ∈ Sn such that degw fi ≥ wσ(i) for i = 1, . . . , n. Hence, we have
degw F ≥ |w|.

( ii ) The following conditions are equivalent :
(a) mdegw F = wσ for some σ ∈ Sn;
(b) degw F = |w|;
(c) Fw is injective, i.e., fw

1 , . . . , fw
n are algebraically independent over k;

(d) Fw belongs to Autk k[x].
(iii) If mdegw F = w, then we have mdegw F−1 = w.

Proof. (i) Let τ, ρ ∈ Sn be such that

degw fτ(1) ≤ · · · ≤ degw fτ(n) and wρ(1) ≤ · · · ≤ wρ(n).

Then, we have degw fτ(i) ≥ wρ(i) for each i by Lemma 3.1 (i). Put σ = ρ ◦ τ−1. Then,
degw fi ≥ wσ(i) holds for each i. The last statement is clear.

(ii) Clearly, (a) implies (b). By (i), we see that (b) implies (a). So we show that (b),
(c) and (d) are equivalent. Let JF be the Jacobi matrix of F . Then, det JF belongs to
k×. Hence, we know by (3.2) that

degw F ≥ degw df1 ∧ · · · ∧ dfn = degw (detJF )dx1 ∧ · · · ∧ dxn = |w|,

in which the equality holds if and only if η := dfw
1 ∧· · ·∧dfw

n 6= 0. Thus, (b) is equivalent
to η 6= 0. Since η 6= 0 implies that fw

1 , . . . , fw
n are algebraically independent over k, we

see that (b) implies (c). By Corollary 2.3 (iii), (c) implies

k[fw
1 , . . . , fw

n ] = k[f1, . . . , fn]w = k[x]w = k[x],

and hence implies (d). Since η = (det JFw)dx1 ∧ · · · ∧ dxn, (d) implies η 6= 0, and hence
implies (b). Therefore, (b), (c) and (d) are equivalent.
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(iii) Set gi = F−1(xi) for i = 1, . . . , n. Then, we have F (gi) = xi, and hence
degw F (gi) = wi. Since mdegw F = w by assumption, Fw is injective by (ii). Thus,
we get degwF

gi = degw F (gi) = wi by Corollary 2.3 (i). Since wF = mdegw F = w, it
follows that degw gi = degwF

gi = wi, proving mdegw F−1 = w. ¤

We note that Theorem 3.3 (ii) and Corollary 2.4 imply the following statement:
For any w ∈ Γn and (d1, . . . , dn) ∈ mdegw(Autk k[x]) such that d1, . . . , dn are linearly
independent over Z, we have d1 + · · ·+ dn = |w|.

Theorem 3.4. Let F be an element of Autk k[x]. If degw F = |w| holds for some
w ∈ (Γ+)n, then F belongs to Tn(k).

Proof. Without loss of generality, we may assume that F and w satisfy (3.1).
Since degw F = |w| by assumption, we have mdegw F = wσ for some σ ∈ Sn by Theorem
3.3 (ii). Because of (3.1), this implies that degw fi = wi for i = 1, . . . , n. We prove the
assertion by induction on r := #{w1, . . . , wn}. When r = 1, we have w = (w, . . . , w)
for some w ∈ Γ+. Since w deg fi = degw fi = wi = w, we know that deg fi = 1 for each
i. Thus, F is an affine automorphism. Therefore, F belongs to Tn(k). Assume that
r ≥ 2. Then, there exists 1 < l ≤ n such that wl−1 < wl = · · · = wn. Since degw fl−1 =
wl−1 < wl, we know by Lemma 3.1 (ii) that F0 := (f1, . . . , fl−1) is an automorphism
of k[x1, . . . , xl−1]. Set v = (w1, . . . , wl−1). Then, we have degv fi = degw fi = wi

for i = 1, . . . , l − 1, and so degv F0 = |v|. Hence, F0 belongs to Tl−1(k) by induction
assumption. For i = l, . . . , n, we have

wl−1 < degw fi = wl = · · · = wn.

Hence, we may write fi =
∑n

j=l ai,jxj + gi by Lemma 3.1 (iii), where ai,j ∈ k for each j,
and gi ∈ k[x1, . . . , xl−1]. Define H ∈ Tn(k) by

H = (F−1
0 , xl − F−1

0 (gl), . . . , xn − F−1
0 (gn)).

Then, F ◦H = (x1, . . . , xl−1, fl − gl, . . . , fn − gn) is an affine automorphism. Therefore,
F belongs to Tn(k). ¤

Clearly, F does not necessary belong to Tn(k) even if degw F = |w| for some w ∈
Γn \ (Γ+)n, since degw F = |w| holds for any F for w = (0, . . . , 0).

4. Proof of Theorem 1.1.

In this and the next section, we prove Theorem 1.1. The following theorem is due
to the author.

Theorem 4.1 ([15, Corollary 1.7]). Let m ≥ n and f1, . . . , fm ∈ k[x1, . . . , xm]
be such that k[f1, . . . , fm] = k[x1, . . . , xm] and k[x] = k[x1, . . . , xn] is not contained in
k[f2, . . . , fm], and let S ⊂ k[x] \ {0} be such that trans.degk k[S] = n. Then, for each
w ∈ Γn, there exists g ∈ S which satisfies the following condition: g does not divide fw

for any f ∈ k[f2, . . . , fm] ∩ k[x] \ {0}.
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Clearly, the conclusion of Theorem 4.1 holds for S = {x1, . . . , xn}. We mention that
the case m = n of Theorem 4.1 is implicit in [3]. When m = n, Theorem 4.1 implies
that, for each coordinate f of k[x] over k and w ∈ Γn, there exists 1 ≤ i ≤ n such that
xi does not divide fw.

The following lemma seems to be well known to the experts, but we give a proof in
the next section for lack of a suitable reference.

Lemma 4.2. For any f1, . . . , fr ∈ k[x] \ {0} with r ≥ 1, and any totally ordered
additive group Γ 6= {0}, the following assertions hold:

( i ) There exists w ∈ Γn such that fw
i is a monomial for i = 1, . . . , n.

( ii ) For any w1, . . . ,ws ∈ Γn with s ≥ 1, there exists w ∈ Γn such that

(· · · (fw1
i )w2 · · · )ws = fw

i

for i = 1, . . . , r. If w1 belongs to (Γ+)n, then we can take w from (Γ+)n.

Now, we prove Theorem 1.1. Without loss of generality, we may assume that Γ 6=
{0}. First, we show (ii). Set f0 = f . By Lemma 4.2 (i) and (ii), there exist v′,w′ ∈ Γn

such that ((fw
j )v)v′ is a monomial and is equal to fw′

j for each j ∈ J ∪ {0}. In the
next paragraph, we show that there exists i0 ∈ I for which xi0 does not divide fw′

j for
any j ∈ J ∪ {0}. Then, it follows that xi0 does not divide (fw

0 )v. Moreover, degw fj =
degw((fw

j )v)v′ belongs to
∑

i∈I\{i0}N0wi for each j ∈ J . Hence, i0 belongs to I0. Thus,
the proof of (ii) will be completed.

Set Al = k[{fj | j 6= l}] for each l ∈ Jc := {1, . . . , n} \ J . Since #I > #J

by assumption, k[xI ] := k[{xi | i ∈ I}] is not contained in k[{fj | j ∈ J}] =
⋂

l∈Jc Al.
Hence, k[xI ] is not contained in Aj0 for some j0 ∈ Jc. By Theorem 4.1, there exists i0 ∈ I

such that xi0 does not divide fw′
for any f ∈ Aj0 ∩ k[xI ] \ {0}. Since k[{fj | j ∈ J}]

is contained in Aj0 by the choice of j0, and in k[xI ] by the definition of J , we have
k[{fj | j ∈ J}] ⊂ Aj0 ∩ k[xI ]. Thus, fj belongs to Aj0 ∩ k[xI ] for each j ∈ J ∪ {0}.
Therefore, xi0 does not divide fw′

j for any j ∈ J ∪ {0}.
Next, we show (i). First, we prove (b) when #I > #J . Since

∏
j∈J fj is an element

of k[{fj | j ∈ J}] \ {0}, there exists i ∈ I0 such that xi does not divide ((
∏

j∈J fj)w)v =∏
j∈J(fw

j )v by (ii). Then, xi does not divide (fw
j )v for each j ∈ J , proving (b). It

remains only to consider the case where #I = #J . Since k[xI ] = k[{fj | j ∈ J}], we may
assume that I = J = {1, . . . , n}. Thanks to Theorem 3.3 (i) and (ii), it suffices to show
that (b) holds when degw F > |w|. By Lemma 4.2 (i) and (ii), there exist v′,w′ ∈ Γn

such that ((fw
j )v)v′ is a monomial and is equal to fw′

j for each j ∈ J . In the next
paragraph, we show that there exists 1 ≤ i0 ≤ n for which xi0 does not divide fw′

j for
each j ∈ J . Then, it follows that i0 belongs to I0, and xi0 does not divide (fw

j )v for each
j ∈ J as in the proof of (ii). Thus, the proof will be completed.

Suppose the contrary. Then, fw′
1 · · · fw′

n is divisible by x1, . . . , xn. We claim that
there exists σ ∈ Sn for which fw′

j = αjx
uj

σ(j) for j = 1, . . . , n, where αj ∈ k\{0} and uj ≥
1. In fact, if not, there exists j0 such that fw′

j0
belongs to k\{0}, or fw′

j0
is divisible by xi1

and xi2 for some i1 6= i2. In either case, there exists l such that (
∏

j 6=l fj)w′
=

∏
j 6=l f

w′
j
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is divisible by x1, . . . , xn, contradicting Theorem 4.1 when m = n. Since degw F > |w|
by assumption, fw

1 , . . . , fw
n are algebraically dependent over k by Theorem 3.3 (ii). By

Corollary 2.3 (ii), it follows that (fw
j )v’s are also algebraically dependent over k, and

hence so are ((fw
j )v)v′ ’s. This contradicts that ((fw

j )v)v′ = fw′
j = αjx

uj

σ(j) for each j.

5. Approximation of a weight.

The goal of this section is to prove Lemma 4.2. For each a = (a1, . . . , an) ∈ Zn and
w ∈ Γn, we define a ·w = a1w1 + · · ·+ anwn ∈ Γ.

Lemma 5.1. Let S be a finite subset of Zn for which there exists w ∈ Γn such that
a ·w > 0 for each a ∈ S. Then, there exists v ∈ Zn such that a · v > 0 for each a ∈ S.

Proof. Let C be the set of v ∈ Rn such that a·v > 0 for each a ∈ S. We show that
C 6= ∅. Then, it follows that C∩Qn 6= ∅, since C is an open subset of Rn for the Euclidean
topology. Since C is a cone, this implies that C ∩Zn 6= ∅. Thus, the proof is completed.
We define P = {∑a∈S λaa | (λa)a ∈ (R≥0)S}, where R≥0 := {λ ∈ R | λ ≥ 0}. Then,
F := P ∩ {−a | a ∈ P} is a face of P , i.e., there exists v ∈ Rn such that a · v = 0 and
b ·v > 0 for each a ∈ F and b ∈ P \F (cf. [22, Proposition A5]). We show that v belongs
to C. By the choice of v, it suffices to check that S is contained in P \ F . Suppose the
contrary. Then, we have S ∩ F 6= ∅, since S is contained in P . Hence, there exist a ∈ S

and (λb)b ∈ (R≥0)S such that a = −∑
b∈S λbb. Since S is a subset of Zn, we may take

(λb)b from (Q ∩R≥0)S . Choose l ∈ N so that (lλb)b belongs to (N0)S . Then, we have
0 < l(a ·w) = −∑

b∈S lλb(b ·w) ≤ 0 by the assumption that b ·w > 0 for each b ∈ S.
This is a contradiction. Therefore, v belongs to C. ¤

Let Γ and Γ′ be totally ordered additive groups. For w ∈ Γn, w′ ∈ (Γ′)n and
S ⊂ Zn, we define w ∼S w′ if, for each a, b ∈ S, we have a · w ≥ b · w if and only if
a ·w′ ≥ b ·w′. For

f =
∑

i1,...,in

αi1,...,in
xi1

1 · · ·xin
n ∈ k[x]

with αi1,...,in
∈ k, we define supp f to be the set of (i1, . . . , in) ∈ (N0)n such that

αi1,...,in
6= 0. Then, we have fw = fw′

if w ∼S w′ for S = supp f . More generally,
set S =

⋃r
i=1 supp fi for f1, . . . , fr ∈ k[x] with r ≥ 1. Then, we have fw

i = fw′
i for

i = 1, . . . , r if w ∼S w′.

Proposition 5.2 (Approximation of a weight). For any finite subset S of Zn and
w ∈ Γn, there exists v ∈ Zn such that w ∼S v.

Proof. Let T0 (resp. T1) be the set of a − b for a, b ∈ S such that a ·w = b ·w
(resp. a · w > b · w). It suffices to construct v ∈ Zn such that a · v = 0 and b · v > 0
for each a ∈ T0 and b ∈ T1. Since Γ is torsion-free, the Z-submodule Γ′ of Γ generated
by w1, . . . , wn is a free Z-module of finite rank. Take a Z-basis u1, . . . , ur of Γ′, and put
u = (u1, . . . , ur). Then, we may write w = uU , where U is an r× n matrix with integer
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entries. Let U ′ be the transposition of U . Then, we have (aU ′) ·u = a · (uU) = a ·w = 0
for each a ∈ T0. Since u1, . . . , ur are linearly independent over Z, it follows that aU ′ = 0
for each a ∈ T0. Since (aU ′) · u = a · w > 0 for each a ∈ T1, and {aU ′ | a ∈ T1} is
a finite subset of Zr, there exists v′ ∈ Zr such that (aU ′) · v′ > 0 for each a ∈ T1 by
Lemma 5.1. Then, v := v′U is an element of Zn such that a · v = (aU ′) · v′ = 0 and
b · v = (bU ′) · v′ > 0 for each a ∈ T0 and b ∈ T1. Therefore, v satisfies the required
condition. ¤

Under the assumption of Proposition 5.2, there exists v = (v1, . . . , vn) ∈ Zn with
w ∼S v such that vi > 0 (resp. vi = 0, vi < 0) if and only if wi > 0 (resp. wi = 0, wi < 0)
for i = 1, . . . , n for the following reason. Let e1, . . . ,en be the coordinate unit vectors of
Rn, and let S′ = S ∪ {0, e1, . . . ,en}. By Proposition 5.2, there exists v ∈ Zn such that
w ∼S′ v. Then, this v has the property stated above, since vi = ei · v is greater (resp.
less) than or equal to 0 = 0 · v if and only if wi = ei ·w is greater (resp. less) than or
equal to 0 = 0 ·w for each i. In particular, if w is an element of (Γ+)n, then we can take
v from Nn.

Now, let us prove Lemma 4.2. To show (i), take any u ∈ Rn whose components are
linearly independent over Q. Then, fu

i is a monomial for each i. Set S =
⋃r

i=1 supp fi.
Then, there exists v = (v1, . . . , vn) ∈ Zn such that v ∼S u by Proposition 5.2. Since
Γ 6= {0} by assumption, we may find w ∈ Γ+. Then, w := (v1w, . . . , vnw) is an element
of Γn such that w ∼Zn v. Since v ∼S u, we get w ∼S u. Therefore, fw

i = fu
i is a

monomial for each i, proving (i).
Next, we prove (ii) by induction on s. When s = 1, the assertion is clear. As-

sume that s ≥ 2. Then, by induction assumption, there exists w′ ∈ Γn such that
(· · · (fw1

i )w2 · · · )ws−1 = fw′
i for i = 1, . . . , r. By Proposition 5.2, there exist v′,v′′ ∈ Zn

such that w′ ∼S v′ and ws ∼S v′′. Then, we have

hi := ((· · · (fw1
i )w2 · · · )ws−1)ws = (fw′

i )ws = (fv′
i )v′′

for i = 1, . . . , r. We define v(t) = v′ + tv′′ ∈ Rn for each t ∈ R. Then, we have

(a− b) · v(t) = (a− b) · v′ + (a− b) · (tv′′) = t
(
(a− b) · v′′)

for each a, b ∈ Ti := supp fv′
i , since a · v′ = b · v′ = degv′ fi. Hence, if t > 0, then we

have v(t) ∼Ti v′′, and so (fv′
i )v(t) = (fv′

i )v′′ . Since degv(t) fv′
i and degv(t) (fi − fv′

i ) are
continuous functions in t satisfying

degv(0) fv′
i = degv′ f

v′
i > degv′ (fi − fv′

i ) = degv(0) (fi − fv′
i ),

there exists t0 > 0 such that degv(t) fv′
i > degv(t) (fi − fv′

i ) for i = 1, . . . , r for any
0 < t < t0. Here, we regard degv(t) (fi − fv′

i ) as a constant function with value −∞ if
fv′

i = fi. Then, for any 0 < t < t0, we have

f
v(t)
i =

(
fv′

i + (fi − fv′
i )

)v(t) = (fv′
i )v(t) = (fv′

i )v′′ = hi
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for i = 1, . . . , r. Now, take any w ∈ Γ+ and t ∈ Q with 0 < t < t0. Let u ∈ N be such
that (u1, . . . , un) := uv(t) belongs to Zn. Then, w := (u1w, . . . , unw) is an element of
Γn such that w ∼Zn v(t), and hence fw

i = f
v(t)
i = hi for i = 1, . . . , r.

If w1 is an element of (Γ+)n, then we can take w′ from (Γ+)n by induction as-
sumption. Then, v′ can be taken from Nn as mentioned after Proposition 5.2. In this
case, all the components of v(t) become positive for sufficiently small t > 0. For such t,
the element w of Γn constructed above belongs to (Γ+)n. This completes the proof of
Lemma 4.2.

6. Van der Kulk’s theorem.

Assume that n = 2 and k is a field. Then, deg f1 | deg f2 or deg f2 | deg f1 holds
for each F ∈ Autk k[x] by van der Kulk [10]. If di := degxi

f > 0 for i = 1, 2 for a
coordinate f of k[x] over k, then the following statements hold by Makar-Limanov [17]
(see also Dicks [4]):

( i ) d1 | d2 or d2 | d1.
( ii ) (d1, 0) and (0, d2) belong to supp f .
(iii) supp f is contained in the convex hull of (0, 0), (d1, 0) and (0, d2) in R2.

In this section, we revisit the well-known results stated above. For each f1, f2 ∈ k[x],
we denote f1 ≈ f2 if f1 and f2 are linearly dependent over k. Clearly, f1 ≈ f2 implies
degw f1 = degw f2 for any w ∈ Γn.

The following lemma is a weighted version of van der Kulk’s theorem, which is proved
by using Makar-Limanov’s theorem.

Lemma 6.1. Assume that n = 2 and k is a field. Let F ∈ Autk k[x] and w ∈ (Γ≥0)2

be such that degw F > |w|. Then, degw f1 and degw f2 are positive, and fw
1 ≈ (fw

2 )u or
fw
2 ≈ (fw

1 )u holds for some u ≥ 1.

Proof. Since degw F > |w|, we have w1 > 0 and w2 ≥ 0, or w1 ≥ 0 and
w2 > 0. First, assume that f1 and f2 do not belong to k[x1] ∪ k[x2]. Then, degw f1 and
degw f2 are positive. Since degw F > |w|, we know by Theorem 3.3 (ii) that fw

1 and fw
2

are algebraically dependent over k. Hence, degw f1 and degw f2 are linearly dependent
over Z by Corollary 2.4. Since degw fi > 0 for i = 1, 2, there exist u1, u2 ∈ N such
that gcd(u1, u2) = 1 and u1 degw f1 = u2 degw f2. We show that (fw

1 )u1 ≈ (fw
2 )u2 .

Consider the Γ-grading k[x][1/fw
2 ] =

⊕
γ∈Γ k[x][1/fw

2 ]γ induced from the w-weighted
Γ-grading of k[x]. Since h := (fw

1 )u1/(fw
2 )u2 belongs to k[x][1/fw

2 ]0, and degw fw
2 > 0,

we see that k[h][fw
2 ] is the polynomial ring in fw

2 over k[h]. Because h and fw
2 are

algebraically dependent over k, it follows that h is algebraic over k. Thus, h belongs
to k, since k is algebraically closed in the field of fractions of k[x]. Therefore, we get
(fw

1 )u1 = h(fw
2 )u2 ≈ (fw

2 )u2 . It remains only to show that u1 = 1 or u2 = 1. Set
gi = F−1(xi) for i = 1, 2. Then, we have

degwF
g1 + degwF

g2 = degwF
F−1 ≥ |wF | = degw F > |w| = w1 + w2

by Theorem 3.3 (i). Hence, degwF
gl > wl = degw xl = degw F (gl) holds for some
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l ∈ {1, 2}. Then, we have Fw(gwF

l ) = 0 by Proposition 2.2 (ii). This implies that gwF

l

is not a monomial. We claim that gl does not belong to k[x1] ∪ k[x2]. In fact, if so,
xl = F (gl) belongs to k[f1]∪k[f2]. Then, f1 or f2 must be a linear polynomial in xl, and
thus belongs to k[x1] ∪ k[x2], a contradiction. Consequently, we have di := degxi

gl > 0
for i = 1, 2. Therefore, the statements (i), (ii) and (iii) above hold for f = gl. Since wF

belongs to (Γ+)2, and gwF

l is not a monomial, we see from (ii) and (iii) that (d1, 0) ·wF

and (0, d2) · wF are both equal to degwF
gl. Hence, we have d1 degw f1 = d2 degw f2.

Since u1 degw f1 = u2 degw f2 and gcd(u1, u2) = 1, we conclude from (i) that u1 = 1 or
u2 = 1.

Next, assume that fi1 belongs to k[xj1 ] for some i1, j1 ∈ {1, 2}. Then, we may write
fi1 = α1xj1 +β and fi2 = α2xj2 +p. Here, α1, α2 ∈ k×, β ∈ k and p ∈ k[xj1 ], and i2, j2 ∈
{1, 2} are such that i2 6= i1 and j2 6= j1. If wj1 = 0, then degw F = degw fi2 = wj2 = |w|,
a contradiction. Hence, we have wj1 > 0, and so fw

i1
= α1xj1 . Since degw fi1 = wj1 and

degw F > |w|, we know that degw fi2 > wj2 . This implies that fw
i2

= pw ≈ xu
j1

for some
u ≥ 1. Since fw

i1
≈ xj1 , it follows that fw

i2
≈ (fw

i1
)u. ¤

We mention that the author [12, Corollary 4.4] proved a statement similar to Lemma
6.1 as an application of the generalized Shestakov-Umirbaev inequality when Γ = Z and
k is a field of characteristic zero.

Now, assume that n ≥ 2 and k is a domain. Let us consider the following conditions
for F ∈ Autk k[x] and w ∈ (Γ≥0)n:

(a) fw
1 and fw

2 belong to k[x1, x2].
(b) degw f1 + degw f2 > w1 + w2.
(c) degw fi = wi for i = 3, . . . , n.
(d) k[x1, x2, f3, . . . , fn] = k[x].

Then, we have the following theorem. Here, we recall that G ∼w F denotes that
mdegw G = mdegw F .

Theorem 6.2. Assume that n ≥ 2 and k is a domain. If F ∈ Autk k[x] and
w ∈ (Γ≥0)n satisfy (a) through (d), then the following assertions hold:

( i ) fw
1 ≈ (fw

2 )u or fw
2 ≈ (fw

1 )u for some u ≥ 1.
( ii ) degw fl > 0 for l = 1, 2.
(iii) For any commutative ring κ, there exists G ∈ Ew

n (κ) such that gi = xi for i =
3, . . . , n and G ∼w F . In particular, mdegw F belongs to |Ew

n |.

Proof. By replacing k with the field of fractions of k, we may assume that k is a
field. We may also assume that fi = xi for each i ≥ 3 for the following reason. By (d),
we can define an element of Autk k[x] by (x1, x2, f3, . . . , fn), whose multidegree is equal
to w by (c). The inverse of this automorphism has the form H = (x1, x2, h3, . . . , hn) for
some h3, . . . , hn ∈ k[x], and satisfies

H ◦ F = (H(f1),H(f2), x3, . . . , xn).

By Theorem 3.3 (iii), we have wH = mdegw H = w. Hence, we know by Theorem 3.3
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(ii) and Corollary 2.3 (i) that H(f)w = Hw(fwH ) = Hw(fw) for each f ∈ k[x]. Since
Hw = (x1, x2, h

w
3 , . . . , hw

n ) fixes x1 and x2, we have Hw(fw
i ) = fw

i for i = 1, 2 by (a).
Thus, H(fi)w = fw

i holds for i = 1, 2. Therefore, by replacing F with H ◦ F , we may
assume that fi = xi for each i ≥ 3.

Set w̃ = (w1, w2), w′ = (w1, w2, 0, . . . , 0) and K = k(x3, . . . , xn). Then, degw̃ f

and f w̃ can be defined for each f ∈ k[x] as an element of K[x1, x2]. We note that
degw̃ f = degw′ f and f w̃ = fw′

by definition. Since wi ≥ 0 for each i, we have
fw

l = fw′
l and degw fl = degw′ fl for l = 1, 2 in view of (a). Hence, f w̃

l = fw
l and

degw̃ fl = degw fl hold for l = 1, 2. Since fi = xi for i = 3, . . . , n by assumption, we can
define F̃ ∈ AutK K[x1, x2] by F̃ = (f1, f2). Then, we have

degw̃ F̃ = degw̃ f1 + degw̃ f2 = degw f1 + degw f2 > w1 + w2 = |w̃|

by (b). Thus, we obtain the following statements by virtue of Lemma 6.1:

(i′) f w̃
i = c(f w̃

j )u for some (i, j) ∈ {(1, 2), (2, 1)}, c ∈ K× and u ≥ 1.
(ii′) degw̃ fl > 0 for l = 1, 2.

Since f w̃
l = fw

l for l = 1, 2, we know by (i′) that fw
i = c(fw

j )u. Hence, c belongs
to k(x1, x2) by (a), and thus to k(x1, x2) ∩K× = k×. Therefore, we get (i). Similarly,
(ii) follows from (ii′). We show (iii). By Lemma 4.2 (i) and (ii), there exist v,w′ ∈ Γn

such that (fw
j )v is a monomial and is equal to fw′

j . Because of (a), we may write
(fw

j )v = αxl1
1 xl2

2 , where α ∈ k× and l1, l2 ∈ N0. Since (l1, l2) · w = degw fj > 0
by (ii), we have (l1, l2) 6= (0, 0). We claim that l1 = 0 or l2 = 0. In fact, if not,
(fjx3 · · ·xn)w′

= αxl1
1 xl2

2 x3 · · ·xn is divisible by x1, . . . , xn, contradicting Theorem 4.1.
Let r, s ∈ {1, 2} be such that lr ≥ 1 and ls = 0. Then, we have degw fj = lrwr, and so

degw fi = u degw fj = ulrwr ≥ wr

by (i). First, assume that degw fj ≥ ws. Then, we have degw fj = degw(xs + xlr
r ) and

degw fi = degw(xs + xlr
r )u. When degw fi > wr, we define G ∈ En(κ) by

gi = xr +
(
xs + xlr

r

)u
, gj = xs + xlr

r

and gl = xl for l = 3, . . . , n. Then, G belongs to Ew
n (κ) and satisfies G ∼w F . If

degw fi = wr, then G ∼w F holds for G ∈ Ew
n (κ) defined by gi = xr, gj = xs + xlr

r

and gl = xl for l = 3, . . . , n. Next, assume that degw fj < ws. Then, fj belongs to
K[xr]. Since fj is a coordinate of K[x1, x2] over K, this implies that degxr

fj = 1.
Since fw

j belongs to K[xr] ∩ k[x1, x2] = k[xr], we get degw fj = degw fw
j = wr, and

so degw fi = uwr. In view of (b), we have degw fi > ws. Hence, G ∼w F holds for
G ∈ Ew

n (κ) defined by gi = xs + xu
r , gj = xr and gl = xl for l = 3, . . . , n. ¤

In the case of n = 2, the conditions (a), (c) and (d) are obvious. Hence, if
degw F > |w| for F ∈ Autk k[x] and w ∈ (Γ≥0)2, then degw F belongs to |Ew

2 | by
Theorem 6.2 (iii). The same holds when degw F = |w| as remarked before Theorem 3.3.
Therefore, mdegw(Autk k[x]) is contained in |Ew

2 |. Since |Ew
2 | is contained in the subset
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mdegw E2(k) of mdegw(Autk k[x]), we conclude that mdegw(Autk k[x]) = |Ew
2 |.

Corollary 6.3. Assume that n = 3 and k is a domain. Then, the following
assertions hold for each F ∈ Autk k[x]:

( i ) If fi1 and fi2 belong to k[xj1 , xj2 ] for some 1 ≤ i1 < i2 ≤ 3 and 1 ≤ j1 < j2 ≤ 3,
then mdegw F belongs to |Ew

3 | for any w ∈ (Γ≥0)3.
( ii ) Assume that fj belongs to k[xi] for some i, j ∈ {1, 2, 3}. Then, for any commutative

ring κ and w ∈ (Γ≥0)3 with wi = 0, there exists G ∈ Ew
3 (κ) such that gj = xi and

G ∼w F .

Proof. (i) We may assume that (i1, i2) = (j1, j2) = (1, 2). Then, we have
k[f1, f2] = k[x1, x2]. Hence, we get k[x1, x2][f3] = k[x1, x2][x3], and so f3 = αx3 + p

for some α ∈ k× and p ∈ k[x1, x2]. Set v = (w1, w2) and take any commutative ring κ.
Then, there exists (g1, g2) ∈ Ev

2 (κ) such that (g1, g2) ∼v (f1, f2) by the discussion above.
Define q ∈ κ[x1, x2] by q = 0 if p = 0, and q = xl1

1 xl2
2 if p 6= 0, where l1, l2 ∈ N0 are such

that degw p = l1w1 + l2w2. Then, G := (g1, g2, x3 + q) is an element of Ew
3 (κ) such that

G ∼w F . Therefore, mdegw F belongs to |Ew
3 |.

(ii) We may assume that i = j = 3. Set v = (w1, w2). Then, degw fl is equal to the
v-degree of fl as a polynomial in x1 and x2 over k′ := k[x3] for each l. Since f3 belongs
to k′ by assumption, we have k′[f1, f2] = k′[x1, x2]. Hence, there exists (g1, g2) ∈ Ev

2 (κ)
such that (g1, g2) ∼v (f1, f2) by the discussion above. Then, G = (g1, g2, x3) is an
element of Ew

3 (κ) such that G ∼w F . ¤

7. Proofs of Theorems 1.6 and 1.7.

The goal of this section is to prove Theorems 1.6 and 1.7. For this purpose, we use
the following theorem which is implicit in Asanuma [1] (cf. [15, Section 3]).

Theorem 7.1. If k is an integrally closed domain, then every stable coordinate of
k[x1, x2] over k is a coordinate of k[x1, x2] over k.

We mention that Shpilrain-Yu [20] showed Theorem 7.1 when k is a field of charac-
teristic zero in a different manner.

We use the following proposition to prove Theorems 1.6, 1.7 and 1.10 (i).

Proposition 7.2. Assume that n = 3 and k is a domain. Let F ∈ Autk k[x] be
such that f1 belongs to k[x1, x2], and f3 = ax3 +p for some a ∈ k \{0} and p ∈ k[x1, x2].

( i ) If k is a field, then F belongs to T3(k).
( ii ) Let w ∈ (Γ≥0)3 be such that degw p ≤ w3. Then, for any commutative ring κ,

there exists G ∈ Ew
3 (κ) such that g3 = x3 and G ∼w F . In particular, mdegw F

belongs to |Ew
3 |.

Proof. By replacing k with the field of fractions of k, we may assume that k is a
field. Then, we can define ψ ∈ T3(k) by ψ(xi) = xi for i = 1, 2 and ψ(x3) = f3. Since f1

belongs to k[x1, x2] by assumption, there exists φ ∈ Autk k[x1, x2] such that φ(x1) = f1

by Theorem 7.1. By Jung [6] and van der Kulk [10], we have Autk k[x1, x2] = T2(k).
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Hence, we can extend φ to an element of T3(k) by setting φ(x3) = x3. Then, we have
ψ(φ(xi)) = fi for i = 1, 3, and so

φ−1 ◦ ψ−1 ◦ F = (x1, (φ−1 ◦ ψ−1)(f2), x3) (7.1)

is elementary. Since φ and ψ are elements of T3(k), it follows that F belongs to T3(k).
This proves (i).

Next, we show (ii). Since a 6= 0 and degw p ≤ w3, we have degw f3 = w3, and
fw
3 depends on x3. If degw F = |w|, then mdegw F = wσ holds for some σ ∈ S3 by

Theorem 3.3 (ii). Since w3 = degw f3 = wσ(3), we may assume that σ(3) = 3. Then,
G = (xσ(1), xσ(2), x3) satisfies the required conditions. Assume that degw F > |w|. Then,
we have degw f1 + degw f2 > w1 + w2. If fw

2 belongs to k[x1, x2], then the conditions
(a) through (d) before Theorem 6.2 are fulfilled. In this case, the assertion follows from
Theorem 6.2 (iii). Hence, we may assume that fw

2 does not belong to k[x1, x2]. By (7.1),
we have

(φ−1 ◦ ψ−1)(f2) = bx2 + q(x1, x3)

for some b ∈ k× and q(x1, x3) ∈ k[x1, x3]. Write

q(x1, x3) = q1(x1) + x3q2(x1, x3),

where q1(x1) ∈ k[x1] and q2(x1, x3) ∈ k[x1, x3]. Set

h1 = bφ(x2) + q1(f1), h2 = f3q2(f1, f3).

Then, h1 belongs to k[x1, x2], h2 belongs to k[f1, f3], and

f2 = (ψ ◦ φ)
(
bx2 + q(x1, x3)

)
= bφ(x2) + q(f1, f3) = h1 + h2.

Since k[f1, f2, f3] = k[f1, f2−h2, f3] = k[f1, h1, f3], and f1 and h1 belong to k[x1, x2], we
know that k[f1, h1] = k[x1, x2]. By the remark before Corollary 6.3, there exists (g1, g2) ∈
Ev

2 (κ) such that (g1, g2) ∼v (f1, h1), where v := (w1, w2). If degw h1 = degw f2, then
G ∼w F holds for G := (g1, g2, x3) ∈ Ew

3 (κ). Assume that degw h1 6= degw f2. Then,
we have h2 6= 0. Hence, hw

2 = fw
3 q2(f1, f3)w depends on x3. Since fw

2 does not belong
to k[x1, x2] by assumption, and h1 is an element of k[x1, x2] with degw h1 6= degw f2,
it follows that degw f2 = degw h2 and degw f2 > degw h1 = degw g2. We claim that
degw h2 belongs to N0 degw f1 + N0 degw f3. In fact, since fw

1 ∈ k[x1, x2] \ k and
fw
3 ∈ k[x]\k[x1, x2] are algebraically independent over k, we have k[f1, f3]w = k[fw

1 , fw
3 ]

by Corollary 2.3 (iii). Hence, we may write

degw f2 = degw h2 = l1 degw f1 + l3 degw f3 = l1 degw f1 + l3w3,

where l1, l3 ∈ N0. Define G ∈ E3(κ) by G = (g1, g2 + gl1
1 xl3

3 , x3). Then, G belongs to
Ew

3 (κ) and satisfies G ∼w F , since degw f2 > degw g2. This proves (ii). ¤
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We note that Proposition 7.2 can be proved without using Theorem 7.1, since we
can directly verify that f1 is a coordinate of k[x1, x2] over k as follows. Write F−1 ◦ψ =
(g1, g2, g3). Then, we have

xi = ψ−1(F (gi)) = gi

(
ψ−1(f1), ψ−1(f2), ψ−1(f3)

)
= gi(f1, ψ

−1(f2), x3)

for i = 1, 2, 3. Let f ′2 be the element of k[x1, x2] obtained from ψ−1(f2) by the substitution
x3 7→ 0. Then, we have xi = gi(f1, f

′
2, 0) for i = 1, 2. Hence, we get k[f1, f

′
2] = k[x1, x2].

Now, let us prove Theorems 1.6 and 1.7. First, we show Theorem 1.6 and the case
(1) of Theorem 1.7. By replacing k with the field of fractions of k, we may assume that
k is a field. Take any F ∈ Autk k[x] such that at least two of degw fi’s are not greater
than max{w1, w2, w3}. We show that F belongs to T3(k) and mdegw F belongs to |Ew

3 |.
By changing the indices of fi’s, wi’s and xi’s if necessary, we may assume that F and w

satisfy (3.1). Then, we have

degw f1 ≤ degw f2 ≤ w3. (7.2)

When f1 and f2 belong to k[x1, x2], we have k[f1, f2] = k[x1, x2], and so f3 = ax3 + p

for some a ∈ k× and p ∈ k[x1, x2]. Since Autk k[x1, x2] = T2(k), this implies that
F belongs to T3(k). Moreover, mdegw F belongs to |Ew

3 | by Corollary 6.3 (i). Thus,
we may assume that f1 or f2 does not belong to k[x1, x2]. If degw f1 < w3, then f1

belongs to k[x1, x2], since w1, w2 and w3 are positive by assumption. Hence, f2 does not
belong to k[x1, x2]. Because of (7.2), we may write f2 = ax3 + p, where a ∈ k×, and
p ∈ k[x1, x2] is such that degw p ≤ w3. Thus, the assertion follows from Proposition 7.2
(i) and (ii). So assume that degw f1 ≥ w3. Then, we have degw fi = w3 for i = 1, 2 by
(7.2). Write fi = aix3 + pi for i = 1, 2, where ai ∈ k, and pi ∈ k[x1, x2] is such that
degw pi ≤ w3. Since f1 or f2 does not belong to k[x1, x2], we may assume that a2 6= 0.
Then, f ′ := f1 − a1a

−1
2 f2 = p1 − a1a

−1
2 p2 belongs to k[x1, x2]. Hence, F ′ := (f ′, f3, f2)

belongs to T3(k) by Proposition 7.2 (i), and thus so does F . Take any commutative ring
κ. Then, there exists (g1, g2, x3) ∈ Ew

3 (κ) such that (g1, g2, x3) ∼w F ′ by Proposition
7.2 (ii). By the choice of p1 and p2, we have degw g1 = degw f ′ ≤ w3. Define G ∈ E3(κ)
by G = (g1 + x3, x3, g2) if degw g1 < w3, and by G = (g1, x3, g2) if degw g1 = w3. Then,
G is an element of Ew

3 (κ) such that G ∼w F . Therefore, degw F belongs to |Ew
3 |. This

completes the proof of Theorem 1.6 and the case (1) of Theorem 1.7.
Next, we prove the case (2) of Theorem 1.7. Without loss of generality, we may

assume that w1 ≤ w2 ≤ w3 as before. Then, the conditions in (2) implies that

degw f1 < w3 and degw f2 < w3 + degw f1 < 2w3. (7.3)

Hence, f1 belongs to k[x1, x2]. Thus, if f2 belongs to k[x1, x2], then F belongs to T3(k)
as before. Assume that f2 does not belong to k[x1, x2]. Since f1 is a coordinate of
k[x1, x2] over k by Theorem 7.1, there exists g ∈ k[x1, x2] such that k[f1, g] = k[x1, x2].
Then, we have k′[g, x3] = k′[f2, f3], where k′ := k[f1]. Hence, there exists a coordinate
p = p(y, z) of the polynomial ring k′[y, z] over k′ such that f2 = p(g, x3). Since g is an
element of k[x1, x2], and since f2 does not belong to k[x1, x2] by assumption, we see that
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degz p = degx3
f2 ≥ 1. On the other hand, we have w3 degx3

f2 ≤ degw f2 < 2w3 by
(7.3), and hence degx3

f2 < 2. Thus, we conclude that degz p = 1. Write p = h1z + h0,
where h0, h1 ∈ k′[y] with h1 6= 0. Then, (7.3) yields that

w3 + degw f1 > degw f2 = degw (h1(g)x3 + h0(g)) ≥ degw h1(g)x3,

and so degw h1(g) < degw f1. We show that h1 belongs to k′. Put d = degy h1. Take
any integer l > degy h0−d, and define v = (1, l) ∈ Z2. Then, we have degv h1z = d+ l >

degv h0, and so

pv = (h1z + h0)v = (h1z)v = hv
1z = aydz,

where a ∈ k′ \ {0} is the leading coefficient of h1. Since p is a coordinate of k′[y, z] over
k′, we know that d = 0 by the remark after Theorem 4.1. Thus, h1 belongs to k′ = k[f1].
Since degw h1 = degw h1(g) is less than degw f1 as mentioned, it follows that h1 belongs
to k. Therefore, f2 = h1x3 + h0(g) has the same form as f3 in Proposition 7.2. Since
f1 belong to k[x1, x2], we conclude that F belongs to T3(k) by Proposition 7.2 (i). This
completes the proof of the case (2) of Theorem 1.7.

8. Tameness of weighted multidegrees.

In this section, we give two kinds of sufficient conditions for elements of
mdegw(Autk k[x]) to belong to |Ew

n |, which can be viewed as generalizations of Proposi-
tion 1.5.

Lemma 8.1. Let κ be any commutative ring, and let w ∈ Γn and di, ei ∈ Γ for
i = 1, . . . , n. Assume that there exist σ, τ ∈ Sn and 0 ≤ r ≤ n such that

dσ(i) ∈
i−1∑

j=1

N0dσ(j) +
n∑

j=i+1

N0eτ(j) and dσ(i) ≥ eτ(i) (8.1)

for i = 1, . . . , r, and dσ(i) = eτ(i) for i = r + 1, . . . , n. If mdegw ψ = (e1, . . . , en) for
some ψ ∈ Autw

κ κ[x], then there exists φ ∈ En(κ) such that ψ ◦ φ belongs to Autw
κ κ[x]

and mdegw ψ ◦ φ = (d1, . . . , dn).

Proof. Set s = (xσ(1), . . . , xσ(n)). Then, it suffices to show that ψ ◦ (φ ◦ s−1)
belongs to Autw

κ κ[x] and mdegw ψ ◦ (φ ◦ s−1) = (d1, . . . , dn) for some φ ∈ En(κ), since
φ belongs to En(κ) if and only if so does φ ◦ s−1. Note that ψ ◦ φ ◦ s−1 belongs to
Autw

κ κ[x] if and only if so does ψ ◦ φ, and mdegw ψ ◦ φ ◦ s−1 = (d1, . . . , dn) if and only
if mdegw ψ ◦ φ = (dσ(1), . . . , dσ(n)). Hence, we are reduced to proving that ψ ◦ φ belongs
to Autw

κ κ[x] and mdegw ψ ◦ φ = (dσ(1), . . . , dσ(n)) for some φ ∈ En(κ). Therefore, we
may assume that σ = id by changing the indices of d1, . . . , dn if necessary. Next, set
t = (xτ(1), . . . , xτ(n)). Then, it suffices to show that ψ ◦ (t ◦ φ) belongs to Autw

κ κ[x]
and mdegw ψ ◦ (t ◦ φ) = (d1, . . . , dn) for some φ ∈ En(κ) similarly. Since mdegw ψ ◦ t =
(eτ(1), . . . , eτ(n)), we may assume that τ = id by replacing ψ with ψ ◦ t and changing the
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indices of e1, . . . , en if necessary.
We prove the lemma by induction on r. When r = 0, we have di = ei for each

i. Since ψ is an element of Autw
κ κ[x], the assertion holds for φ = idκ[x]. Assume that

r ≥ 1. Then, the assumption of the lemma is satisfied even if (d1, . . . , dn) is replaced by
(d1, . . . , dr−1, er, . . . , en), since (8.1) holds for any i < r, and di = ei for i ≥ r. Since r is
reduced by one in this case, there exists φ′ ∈ En(κ) such that ψ ◦φ′ belongs to Autw

κ κ[x]
and

mdegw ψ ◦ φ′ = (d1, . . . , dr−1, er, . . . , en) (8.2)

by induction assumption. By (8.1) with i = r, we have dr ≥ er and

dr = a1d1 + · · ·+ ar−1dr−1 + ar+1er+1 + · · ·+ anen

for some aj ∈ N0 for each j. Set f = (ψ ◦ φ′)(xa1
1 · · ·xan

n ) and g = (ψ ◦ φ′)(xr), where
ar = 0. Then, we have degw f = dr and degw g = er in view of (8.2). Since ψ ◦ φ′ is
an element of Autw

κ κ[x], we see that fw and gw are nonzero divisors of κ[x]. Define
φ′′ ∈ En(κ) by φ′′(xr) = xr + αxa1

1 · · ·xan
n and φ′′(xi) = xi for each i 6= r, where α = 1

if dr > er, and α = 0 if dr = er. Then, we have (ψ ◦ φ′ ◦ φ′′)(xr) = g + αf . Since
degw g = er and degw f = dr, we get degw(ψ ◦ φ′ ◦ φ′′)(xr) = dr by the definition of α.
Moreover, (ψ ◦φ′ ◦φ′′)(xr)w is equal to fw or gw, and hence is a nonzero divisor of κ[x].
If i 6= r, then we have (ψ ◦φ′ ◦φ′′)(xi) = (ψ ◦φ′)(xi), for which (ψ ◦φ′)(xi)w is a nonzero
divisor of κ[x]. Thus, ψ ◦ φ′ ◦ φ′′ belongs to Autw

κ κ[x]. Moreover, we have

mdegw ψ ◦ φ′ ◦ φ′′ = (d1, . . . , dr, er+1, . . . , en)

by (8.2). Therefore, the assertion holds for φ = φ′ ◦ φ′′. ¤

Let us discuss the case of n = 3. For w ∈ Γ3, d1, d2, d3 ∈ Γ and σ, τ ∈ S3, consider
the following conditions:

(1) dσ(i) ≥ wτ(i) for i = 1, 2, 3.
(2) dσ(1), dσ(2) and dσ(3) belong to N0wτ(2)+N0wτ(3), N0dσ(1)+N0wτ(3) and N0dσ(1)+

N0dσ(2), respectively.
(3) dσ(i) ≥ wτ(i) for i = 1, 2 and dσ(3) = wτ(3).
(4) dσ(1) and dσ(2) belong to N0wτ(2) + N0wτ(3) and N0dσ(1) + N0wτ(3), respectively.

If (1) and (2) are satisfied, then the assumption of Lemma 8.1 holds for ψ = idκ[x]

and r = 3. Hence, for any commutative ring κ, there exists φ ∈ Ew
3 (κ) such that

mdegw φ = (d1, d2, d3) by Lemma 8.1. Therefore, (d1, d2, d3) belongs to |Ew
3 |. The same

holds when (3) and (4) are satisfied, since the assumption of Lemma 8.1 is fulfilled for
ψ = idκ[x] and r = 2.

With the aid of Theorems 1.4 and 1.6, we can derive the following theorem from
Lemma 8.1.

Theorem 8.2. Let w ∈ (Γ+)3 and (d1, d2, d3) ∈ mdegw(Autk k[x]) for n = 3 be
such that
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d1 ∈ N0w2 + N0w3, d2 ∈ N0d1 + N0w3, d3 ∈ N0d1 + N0d2. (8.3)

If one of the following conditions holds, then (d1, d2, d3) belongs to |Ew
3 |:

(a) d1 ≤ d2. (b) d2 ≥ w2. (c) d2 = w3. (d) d1 ∈ (N0w3) ∪ (N0w2 + N0d2).

Proof. Thanks to Theorem 1.6, we may assume that two of d1, d2 and d3 are
greater than w := max{w1, w2, w3}. Since d3 6= 0 belongs to N0d1 + N0d2 by (8.3), we
have d3 ≥ d1 or d3 ≥ d2. Hence, we may assume that d3 > w. Similarly, we may assume
that d2 > w if (a) holds, and d1 > w otherwise. In the following, we check that (1) and
(2), or (3) and (4) hold for some σ, τ ∈ S3. We note that (2) and (4) are clear from (8.3)
if σ = τ = id.

First, assume that (a) holds. Then, we have

di > w ≥ wj for i = 2, 3 and j = 1, 2, 3. (8.4)

Hence, if d1 ≥ w1, then (1) holds for σ = τ = id. Since (2) holds for σ = τ = id
as mentioned, we may assume that d1 < w1. By Theorem 1.4, d1 belongs to C(w) or
{w1, w2, w3}. Hence, there exists 1 ≤ i ≤ 3 such that d1 ≥ wi and d1 ∈

∑
j 6=i N0wj ,

or d1 = wi. Since d1 < w1, it follows that d1 ≥ wρ(2) and d1 ∈ N0wρ(3), or d1 = wρ(3)

for some ρ ∈ {id, (2, 3)}. We show that (1) and (2) hold for σ = (1, 2) and τ = ρ

when d1 ≥ wρ(2) and d1 ∈ N0wρ(3). Since dσ(2) ≥ wρ(2), we have (1) due to (8.4). By
(8.3), dσ(1) belongs to N0d1 + N0w3. Since d1 ∈ N0wρ(3) and 3 ∈ {ρ(2), ρ(3)}, we have
N0d1 + N0w3 ⊂ N0wρ(2) + N0wρ(3). Thus, we get dσ(1) ∈ N0wρ(2) + N0wρ(3). Since
d1 ∈ N0wρ(3), we have dσ(2) ∈ N0dσ(1) + N0wρ(3). Since d3 ∈ N0d1 + N0d2 by (8.3),
and σ = (1, 2), we have dσ(3) ∈ N0dσ(1) + N0dσ(2). Therefore, (2) is satisfied. Next,
we show that (3) and (4) hold for σ = (1, 2, 3) and τ = ρ when d1 = wρ(3). Since
dσ(3) = wρ(3), we have (3) due to (8.4). Since N0d1 + N0w3 ⊂ N0wρ(2) + N0wρ(3) and
N0d1 + N0d2 = N0wρ(3) + N0dσ(1), (4) follows from (8.3).

Next, assume that (a) does not hold. Then, we have di > w ≥ wj for i = 1, 3 and
j = 1, 2, 3 as remarked. Hence, if (b) is satisfied, then (1) and (2) hold for σ = τ = id as
before. In the case of (c), (3) and (4) hold for σ = (2, 3) and τ = id, since dσ(2) belongs
to N0d1 + N0d2 = N0d1 + N0w3. Finally, we consider the case (d). In view of (b) and
(c), we may assume that d2 < w2 and d2 6= w3. We claim that d2 ≥ w1. In fact, if not,
we have d2 < wi for i = 1, 2. This implies that d2 = degw f for a coordinate f of k[x]
over k belonging to k[x3], and so d2 = w3, a contradiction. Hence, (1) holds for σ = id
and τ = (1, 2), and for σ = (1, 2) and τ = (2, 3). If d1 belongs to N0w3, then (2) holds
for σ = id and τ = (1, 2) by (8.3). We check that (2) holds for σ = (1, 2) and τ = (2, 3)
when d1 6∈ N0w3. Since dσ(1) belongs to N0d1 +N0w3 by (8.3), and (a) does not hold by
assumption, dσ(1) belongs to N0w3, and hence to N0wτ(2) +N0wτ(3). Since d1 6∈ N0w3,
we know by (d) that dσ(2) = d1 belongs to N0w2 + N0d2 = N0dσ(1) + N0wτ(3). Since
d3 ∈ N0d1+N0d2 by (8.3), and σ = (1, 2), we have dσ(3) ∈ N0dσ(1)+N0dσ(2). Therefore,
(2) is satisfied. ¤

Next, we give another kind of generalization of Proposition 1.5. Assume that n ≥ 2.
Take any d1, . . . , dn ∈ Γ+ and w ∈ (Γ+)n. For d ∈ Γ+, 1 ≤ l ≤ n and 2 ≤ m ≤ n,
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consider the following conditions:

(a) d1, . . . , dn belong to Nd.
(b) d = wl, or d > wl and d belongs to

∑
j 6=l N0wj .

(c) dm belongs to
∑m−1

j=1 N0dj .
(d) If l < m, then di ≥ wi+1 for each l ≤ i < m.

Then, we have the following lemma.

Lemma 8.3. Let w ∈ (Γ+)n and (d1, . . . , dn) ∈ mdegw(Autk k[x]) for n ≥ 2 be
such that w1 ≤ · · · ≤ wn and d1 ≤ · · · ≤ dn. If there exist d ∈ Γ+, 1 ≤ l ≤ n and
2 ≤ m ≤ n which satisfy (a) through (d), then (d1, . . . , dn) belongs to |Ew

n |.

Proof. We remark that di ≥ wi for i = 1, . . . , n by Theorem 3.3 (i). Take any
commutative ring κ. We define g ∈ κ[x] by g = xl if d = wl. If d 6= wl, then we
have d > wl and d =

∑
j 6=l ajwj for some aj ∈ N0 by (b). In this case, we define

g = xl +
∏

j 6=l x
aj

j . Then, gw is a nonzero divisor of κ[x] and degw g = d in either case.
By (a), we may write di = eid for i = 1, . . . , n, where ei ∈ N . We define φ ∈ En(κ) by

φ(xi) =





g if i = m

xi + αig
ei if i < min{l, m} or i > max{l, m}

xi−1 + βig
ei if m < i ≤ l

xi+1 + γig
ei if l ≤ i < m,

where αi = 1 if di > wi, and αi = 0 otherwise, where βi = 1 if di > wi−1, and βi = 0
otherwise, and where γi = 1 if di > wi+1, and γi = 0 otherwise. Then, each φ(xi)w is a
power of gw or one of xi, xi−1 and xi+1. Hence, φ(xi)w is a nonzero divisor of κ[x] for
each i. We show that degw φ(xi) = di for each i 6= m. This is clear in the cases where
αi = 1, βi = 1 and γi = 1, since degw gei = di is greater than wi, wi−1 and wi+1 in
the respective cases. If αi = 0, then we have φ(xi) = xi and di ≤ wi. Since di ≥ wi as
remarked, it follows that degw φ(xi) = wi = di. If βi = 0, then we have φ(xi) = xi−1 and
di ≤ wi−1. Since di ≥ wi ≥ wi−1, we get degw φ(xi) = wi−1 = di. If γi = 0, then we have
φ(xi) = xi+1 and di ≤ wi+1. Since di ≥ wi+1 by (d), we get degw φ(xi) = wi+1 = di.
Thus, degw φ(xi) = di holds for each i 6= m. By (c), we may write dm =

∑m−1
j=1 cjdj ,

where cj ∈ N0 for each j. Set f = φ(xc1
1 · · ·xcm−1

m−1 ). Then, fw is a nonzero divisor of κ[x]
and degw f = dm = emd ≥ d. Define ψ ∈ En(κ) by ψ(xm) = xm + δxc1

1 · · ·xcm−1
m−1 and

ψ(xi) = xi for each i 6= m, where δ = 1 if dm > d, and δ = 0 if dm = d. Then, we have
(φ ◦ψ)(xm) = g + δf . Since degw g = d and degw f = dm, we get degw(φ ◦ψ)(xm) = dm

by the definition of δ. Moreover, (φ ◦ ψ)(xm)w is equal to fw or gw, and hence is a
nonzero divisor of κ[x]. If i 6= m, then we have (φ ◦ ψ)(xi) = φ(xi), for which φ(xi)w is
a nonzero divisor of κ[x] and degw φ(xi) = di. Thus, φ ◦ ψ is an element of Ew

n (κ) and
satisfies mdegw φ ◦ ψ = (d1, . . . , dn). Therefore, (d1, . . . , dn) belongs to |Ew

n |. ¤

Let us discuss the case of n = 3. For d1, d2, d3, d ∈ Γ+ and w ∈ (Γ+)3, consider the
following conditions:
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(A) d1, d2 and d3 belong to Nd.
(B) d belongs to N0wi + N0w3 for some i ∈ {1, 2}, or d ≥ w3 and d belongs to Nw1 +

Nw2.

The following theorem is a refinement of Lemma 8.3 in the case of n = 3. In fact,
(a) is equivalent to (A). If (b) holds for some 1 ≤ l ≤ 3, then we have (B). We have (c)
for some 2 ≤ m ≤ 3 if and only if d2 ∈ Nd1 or d3 ∈ N0d1 + N0d2.

Theorem 8.4. Let w ∈ (Γ+)3 and (d1, d2, d3) ∈ mdegw(Autk k[x]) for n = 3 be
such that w1 ≤ w2 ≤ w3, d1 ≤ d2 ≤ d3, and d2 ∈ Nd1 or d3 ∈ N0d1 + N0d2. If (A) and
(B) hold for some d ∈ Γ+, then (d1, d2, d3) belongs to |Ew

3 |.

Proof. Thanks to Theorem 1.6, we may assume that two of d1, d2 and d3 are
greater than max{w1, w2, w3}. Then, we have d3 ≥ d2 > w3 ≥ w2 ≥ w1. Since d 6= 0, we
have d ≥ w1 by (B).

First, assume that d1 < w2. Then, we have d1 = degw f for some coordinate f of
k[x] over k belonging to k[x1]. Hence, we know that d1 = w1. By (A), we may write
di = eid for i = 1, 2, 3, where ei ∈ N . Since d ≥ w1 as mentioned, we get d1 = d = w1.
Take any commutative ring κ, and define φ ∈ Ew

3 (κ) by φ(x1) = x1 and φ(xi) = xi + xei
1

for i = 2, 3. Then, we have mdegw φ = (d1, d2, d3), since di > wi for i = 2, 3. Therefore,
(d1, d2, d3) belongs to |Ew

3 |.
Next, assume that d1 ≥ w2. We show that (d1, d2, d3) belongs to |Ew

3 | using Lemma
8.3. Since d2 ∈ Nd1 or d3 ∈ N0d1 +N0d2 by assumption, (c) holds for some 2 ≤ m ≤ 3.
Since d1 ≥ w2 and d2 > w3, (d) holds for any 1 ≤ l ≤ 3. If d belongs to Nw1, then d1,
d2 and d3 belong to Nw1. When this is the case, (a) and (b) are satisfied if we take d

to be w1. Assume that d does not belong to Nw1. If the first part of (B) holds, then d

belongs to N0w1 + Nw3 or N0w2 + N0w3. In the first case, we have d ≥ w3 ≥ w2, and
so (b) holds for l = 2. Since d ≥ w1 as mentioned, (b) holds for l = 1 in the second case.
The last part of (B) implies that (b) holds for l = 3. Thus, (B) implies (b). Clearly, (A)
implies (a). Therefore, we conclude that (d1, d2, d3) belongs to |Ew

3 | by Lemma 8.3. ¤

9. Shestakov-Umirbaev reductions.

The goal of this section is to prove Theorems 1.9 and 1.10. To prove Theorem
1.9, we use the generalized Shestakov-Umirbaev theory [12], [13]. For the convenience
of the reader, we give a short introduction to this theory. Assume that n = 3. For
F, G ∈ Autk k[x], we say that the pair (F, G) satisfies the Shestakov-Umirbaev condition
for the weight w if the following conditions hold (cf. [13]).

(SU1) g1 = f1 + af2
3 + cf3 and g2 = f2 + bf3 for some a, b, c ∈ k, and g3 − f3 belongs to

k[g1, g2].
(SU2) degw f1 ≤ degw g1 and degw f2 = degw g2.
(SU3) (gw

1 )2 ≈ (gw
2 )s for some odd number s ≥ 3.

(SU4) degw f3 ≤ degw g1, and fw
3 does not belong to k[gw

1 , gw
2 ].

(SU5) degw g3 < degw f3.
(SU6) degw g3 < degw g1 − degw g2 + degw dg1 ∧ dg2.
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Here, we recall that f1 ≈ f2 denotes that f1 and f2 are linearly dependent
over k for each f1, f2 ∈ k[x]. For each F ∈ Autk k[x] and σ ∈ S3, we define
Fσ = (fσ(1), fσ(2), fσ(3)). We say that F ∈ Autk k[x] admits a Shestakov-Umirbaev
reduction for the weight w if there exist σ ∈ S3 and G ∈ Autk k[x] such that (Fσ, Gσ)
satisfies the Shestakov-Umirbaev condition for the weight w.

The following theorem is the main result of [13].

Theorem 9.1 ([13, Theorem 2.1]). Assume that k is a field of characteristic zero.
If degw F > |w| holds for F ∈ T3(k) and w ∈ (Γ+)3, then F admits an elementary
reduction or a Shestakov-Umirbaev reduction for the weight w.

Thanks to Theorem 9.1, the proof of Theorem 1.9 is reduced to the proof of the
following lemma.

Lemma 9.2. Assume that k is a field of characteristic zero, and w is an element
of (Γ+)3. Then, no element of S(w, k) admits a Shestakov-Umirbaev reduction for the
weight w.

We note that, if (F, G) satisfies the Shestakov-Umirbaev condition for the weight
w, then (F, G) satisfies the “weak Shestakov-Umirbaev condition” for the weight w, and
has the following properties (cf. [13, Theorem 4.2]). Here, we regard Γ as a subgroup of
Q⊗Z Γ which has a structure of totally ordered additive group induced from Γ:

(P1) (gw
1 )2 ≈ (gw

2 )s for some odd number s ≥ 3, and so δ := (1/2) degw g2 belongs to Γ.
(P5) If degw f1 < degw g1, then s = 3, gw

1 ≈ (fw
3 )2, degw f3 = (3/2)δ and

degw f1 ≥ 5
2
δ + degw dg1 ∧ dg2.

(P6) degw G < degw F .
(P7) degw f2 < degw f1, degw f3 ≤ degw f1, and δ < degw fi ≤ sδ for i = 1, 2, 3.

Now, let us prove Lemma 9.2 by contradiction. Suppose that F admits a Shestakov-
Umirbaev reduction for the weight w for some F ∈ S(w, k). Then, there exist σ ∈ S3

and G ∈ Autk k[x] such that (Fσ, Gσ) satisfies the Shestakov-Umirbaev condition for the
weight w. Moreover, we have f3 = αx3 + p for some α ∈ k× and p ∈ k[x1, x2] with
degw p ≤ w3, and so degw f3 = w3.

First, assume that σ(1) = 3. Then, we have degw fσ(1) = degw f3 = w3. Since
degw fσ(1) > degw fσ(2) by (P7), and degw fσ(2) = degw gσ(2) by (SU2), it follows that
degw fσ(2) and degw gσ(2) are less than w3. Hence, fσ(2) and gσ(2) belong to k[x1, x2].

When degw fσ(1) = degw gσ(1), we have degw gσ(1) = w3. Hence, gσ(1)−gw
σ(1) belongs

to k[x1, x2], since degw(gσ(1)− gw
σ(1)) < w3. By (SU3), (gw

σ(1))
2 ≈ (gw

σ(2))
s holds for some

odd number s ≥ 3. Since gσ(2) belongs to k[x1, x2], it follows that gw
σ(1) also belongs to

k[x1, x2]. Thus, gσ(1) belongs to k[x1, x2]. Therefore, we can define G′ ∈ Autk k[x1, x2]
by G′ = (gσ(1), gσ(2)). Since gw

σ(1) and gw
σ(2) are algebraically dependent over k, we have

degv G′ > |v| by Theorem 3.3 (ii), where v := (w1, w2). Hence, we have gw
σ(1) ≈ (gw

σ(2))
u

or gw
σ(2) ≈ (gw

σ(1))
u for some u ≥ 1 by Lemma 6.1. This contradicts that (gw

σ(1))
2 ≈ (gw

σ(2))
s
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with s ≥ 3 an odd number.
When degw fσ(1) 6= degw gσ(1), we have degw fσ(1) < degw gσ(1) in view of (SU2).

From (P5) and (SU2), it follows that

degw fσ(3) =
3
2
δ =

3
2

1
2

degw gσ(2) =
3
4

degw fσ(2),

and hence 4 degw fσ(3) = 3degw fσ(2). Thus, we get degw fσ(3) < degw fσ(2). Since
degw fσ(2) < w3 as mentioned, it follows that fσ(3) belongs to k[x1, x2]. Hence, we can
define F ′ ∈ Autk k[x1, x2] by F ′ = (fσ(2), fσ(3)). Since

w3 + degv F ′ = degw fσ(1) + degv F ′ = degw Fσ > degw Gσ ≥ |w| = |v|+ w3

by (P6) and Theorem 3.3 (i), we have degv F ′ > |v|. Thus, we know by Lemma 6.1 that
fw

σ(2) ≈ (fw
σ(3))

u or fw
σ(3) ≈ (fw

σ(2))
u for some u ≥ 1. This contradicts that 4 degw fσ(3) =

3degw fσ(2).
Next, assume that σ(1) 6= 3. Due to (SU1), we can define H ∈ Autk k[x] by

H = (gσ(1), gσ(2), fσ(3)). In the following, we show that H and w satisfy the conditions (a)
through (d) before Theorem 6.2. Then, it follows that gw

σ(1) ≈ (gw
σ(2))

u or gw
σ(2) ≈ (gw

σ(1))
u

for some u ≥ 1 by Theorem 6.2 (i). Since (gw
σ(1))

2 ≈ (gw
σ(2))

s with s ≥ 3 an odd number,
we are led to a contradiction.

Since (1/2) degw gσ(2) = δ < degw f3 = w3 by (P7), we have degw gσ(2) < 2w3.
This implies that degx3

gw
σ(2) ≤ 1. Since (gw

σ(1))
2 ≈ (gw

σ(2))
s with s ≥ 3 an odd number,

it follows that degx3
gw

σ(1) = degx3
gw

σ(2) = 0. Hence, gw
σ(1) and gw

σ(2) belong to k[x1, x2],
proving (a). We show that fσ(3) = βx3 + q for some β ∈ k× and q ∈ k[x1, x2] with
degw q ≤ w3. Then, we get (c) and (d) immediately. Since degw gσ(3) < degw fσ(3) by
(SU5), and degw fσ(3) = w3 by (c), we have

degw gσ(1) + degw gσ(2) = degw G− degw gσ(3)

> degw G− degw fσ(3) ≥ |w| − degw fσ(3) = w1 + w2.

Hence, (b) is also proved.
Since σ(1) 6= 3, we have σ(2) = 3 or σ(3) = 3. Recall that f3 = αx3 + p for some

α ∈ k× and p ∈ k[x1, x2] with degw p ≤ w3. Hence, the assertion is clear if σ(3) = 3.
Assume that σ(2) = 3. Then, we have degw gσ(2) = degw fσ(2) = degw f3 = w3 by
(SU2). Since gw

σ(2) belongs to k[x1, x2] as shown above, this implies that gσ(2) belongs to
k[x1, x2]. By (SU1), there exists b ∈ k such that

gσ(2) = fσ(2) + bfσ(3) = αx3 + p + bfσ(3).

Since gσ(2) and p belong to k[x1, x2] and α 6= 0, it follows that b 6= 0 and

fσ(3) = −αb−1x3 + b−1(gσ(2) − p).
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Since gσ(2) and p are elements of k[x1, x2] with degw gσ(2) = w3 and degw p ≤ w3, we see
that fσ(3) has the required form. This completes the proof of Lemma 9.2, and thereby
completing the proof of Theorem 1.9.

The rest of this section is devoted to the proof of Theorem 1.10. To prove (ii)
of this theorem, we need the following version of the Shestakov-Umirbaev inequality
(see [13, Section 3] for detail). Let S = {f, g} be a subset of k[x] such that f and g

are algebraically independent over k, and p a nonzero element of k[S]. Then, we can
uniquely express p =

∑
i,j ci,jf

igj , where ci,j ∈ k for each i, j ∈ N0. We define degS
w p

to be the maximum among degw f igj for i, j ∈ N0 with ci,j 6= 0. We note that, if pw

does not belong to k[fw, gw], then degS
w p is greater than degw p.

With the notation and assumption above, the following lemma holds (see [13, Lem-
mas 3.2 (i) and 3.3 (ii)] for the proof).

Lemma 9.3. Assume that k is a field of characteristic zero. If degw p < degS
w p,

then there exist l, m ∈ N with gcd(l, m) = 1 such that (gw)l ≈ (fw)m and

degw p ≥ m degw f − degw f − degw g + degw df ∧ dg.

Now, let us prove Theorem 1.10. Let k0 be the field of fractions of k. Then, we
may regard F as an element of S(w, k0). Hence, in proving (i), we may assume that
k is a field by replacing k with k0 if necessary. Similarly, since T3(k) is regarded as a
subset of T3(k0), we may assume that k is a field in proving (ii). In both (i) and (ii),
we may also assume that f3 = x3 for the following reason. Since k is a field, we can
define H ∈ T3(k) by H = (x1, x2, f3). Put G = H−1. Then, we have mdegw G = w

by Theorem 3.3 (iii), since mdegw H = w. By Theorem 3.3 (ii) and Corollary 2.3 (i),
this implies that degw G(f) = degwG

f for each f ∈ k[x]. Since wG = mdegw G = w, it
follows that degw G(f) = degw f for each f ∈ k[x]. Thus, we get G◦F ∼w F . Therefore,
by replacing F with G ◦ F if necessary, we may assume that f3 = x3.

First, we show (i). It suffices to construct G ∈ Ew
3 (κ) such that g3 = x3 and G ∼w F .

Assume that f1 or f2 belongs to k[xi, xj ] for some 1 ≤ i < j ≤ 3. Since both cases are
similar, we only consider the case of f1. If (i, j) = (1, 2), then the assertion follows from
Proposition 7.2 (ii). Assume that (i, j) 6= (1, 2). Then, we have j = 3. Since f1 belongs
to k[xi, x3] and f3 = x3, we get k[f1, f3] = k[xi, x3], and so

k[x3][f1] = k[f3, f1] = k[x3][xi] and k[xi, x3][f2] = k[f1, f3, f2] = k[xi, x3][xl],

where l ∈ {1, 2} is such that l 6= i. Hence, we may write f1 = α1xi+p1 and f2 = α2xl+p2,
where α1, α2 ∈ k×, p1 ∈ k[x3] and p2 ∈ k[xi, x3]. Define p′1 ∈ κ[x3] by p′1 = 0 if
p1 = 0, and p′1 = xd

3 if d := degx3
p1 ≥ 0, and p′2 ∈ κ[xi, x3] by p′2 = 0 if p2 = 0, and

p′2 = xui
i xu3

3 if p2 6= 0, where ui, u3 ∈ N0 are such that degw p2 = uiwi + u3w3. Then,
G := (xi + p′1, xl + p′2, x3) is an element of Ew

3 (κ) such that G ∼w F .
Assume that f1 and f2 do not belong to k[xi, xj ] for any 1 ≤ i < j ≤ 3. Then,

di = degw fi is not less than max{w1, w2, w3} for i = 1, 2. By assumption, di belongs to∑
j 6=i N0dj for some 1 ≤ i ≤ 3. If i = 3, then it follows that dl ≤ d3 for l = 1 or l = 2.

Since both cases are similar, we assume that l = 1. Then, we have max{w1, w2, w3} ≤
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d1 ≤ d3 = w3, and so d1 = w3. Hence, we may write f1 = α1x3 + p1, where α1 ∈ k×,
and p1 ∈ k[x1, x2] is such that degw p1 ≤ w3. Then, we have k[f1, f2, f3] = k[p1, f2, f3]
since f3 = x3. By Proposition 7.2 (ii), there exists G′ = (g1, g2, x3) ∈ Ew

3 (κ) such that
G′ ∼w (p1, f2, f3). Then, we have degw g1 = degw p1 ≤ w3 = d1. Define G ∈ E3(κ) by
G = G′ if degw g1 = d1, and by G = (g1 + x3, g2, x3) if degw g1 < d1. Then, G is an
element of Ew

3 (κ) such that G ∼w F . Next, assume that i = 1 or i = 2. Since both cases
are similar, we assume that i = 1. Write d1 = l2d2+l3d3 = l2d2+l3w3, where l2, l3 ∈ N0.
Recall that degw F > |w| by the definition of S(w, k). Hence, (b) of Theorem 1.1 (i)
holds for I = J = {1, 2, 3}. Since (fw

3 )v = x3 is divisible by x3 for v = 0, it follows
that I0 ∩ {1, 2} 6= ∅. Hence, there exists s ∈ {1, 2} such that d2 belongs to

∑
l 6=s N0wl.

Write d2 = awr + bw3, where a, b ∈ N0 and r ∈ {1, 2} \ {s}. Since d1 and d2 are at least
max{w1, w2, w3}, we have d1 ≥ wr and d2 ≥ ws. Define G ∈ E3(κ) by

G =
(
xr + α(xs + βxa

rxb
3)

l2xl3
3 , xs + βxa

rxb
3, x3

)
,

where α = 1 if d1 > wr, and α = 0 if d1 = wr, and where β = 1 if d2 > ws, and β = 0 if
d2 = ws. Then, G is an element of Ew

3 (κ) such that G ∼w F . This completes the proof
of (i).

Finally, we show (ii). By Theorem 1.9, F admits an elementary reduction for the
weight w. Hence, we have degw(fi− h) < degw fi for some 1 ≤ i ≤ 3 and h ∈ k[fi1 , fi2 ],
where i1, i2 ∈ {1, 2, 3} \ {i} are such that i1 < i2. Then, fw

i belongs to k[fi1 , fi2 ]
w, since

fw
i = hw. If fw

i belongs to k[fw
i1

, fw
i2

], then di belongs to N0di1 + N0di2 . Assume that
fw

i does not belong to k[fw
i1

, fw
i2

]. Then, we have k[fi1 , fi2 ]
w 6= k[fw

i1
, fw

i2
]. Hence, fw

i1

and fw
i2

are algebraically dependent over k by Corollary 2.3 (iii). If i 6= 3, then we have
i2 = 3. Since f3 = x3, it follows that fw

i1
belongs to k[fw

i2
] = k[fw

3 ] = k[x3]. Hence,
di1 belongs to N0di2 . Assume that i = 3. Then, there exists h ∈ k[f1, f2] such that
hw = fw

3 . Since fw
3 does not belong to k[fw

1 , fw
2 ] by assumption, degS

w h > degw h holds
for S = {f1, f2} as remarked before Lemma 9.3. By Lemma 9.3, there exist l1, l2 ∈ N

with gcd(l1, l2) = 1 such that (fw
2 )l1 ≈ (fw

1 )l2 and

w3 = degw h ≥ l2d1 − d1 − d2 + degw df1 ∧ df2 > (l1l2 − l1 − l2)
1
l1

d1,

where the last inequality is because d2 = (l2/l1)d1 and degw df1 ∧ df2 > 0. Assume
that fw

1 or fw
2 does not belong to k[x1, x2]. Then, we have degx3

fw
j = ljd for j = 1, 2

for some d ∈ N , since l1 degx3
fw
2 = l2 degx3

fw
1 and gcd(l1, l2) = 1. Hence, we get

d1 = degw f1 ≥ l1dw3 ≥ l1w3. By the preceding inequality, it follows that l1l2−l1−l2 < 1.
Since gcd(l1, l2) = 1, this implies that l1 = 1 or l2 = 1. Thus, we know that fw

2 ≈ (fw
1 )l2

or (fw
2 )l1 ≈ fw

1 . Therefore, d2 belongs to N0d1 or d1 belongs to N0d2. If fw
1 and fw

2

belong to k[x1, x2], then the conditions (a) through (d) before Theorem 6.2 are fulfilled,
since degw F > |w| and f3 = x3. Hence, we have fw

1 ≈ (fw
2 )u or fw

2 ≈ (fw
1 )u for some

u ≥ 1 by Theorem 6.2 (i). Therefore, d1 belongs to N0d2 or d2 belongs to N0d1. This
completes the proof of (ii).

To conclude this paper, we mention Takurou Kanehira’s master’s thesis [8], where
he generalized Karaś–ZygadÃlo [9, Theorem 2.1] by means of the generalized Shestakov–
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Umirbaev theory as follows (cf. [5, Theorem 3.1]; see also [14] for further generalizations,
and [25] and [16] for related results).

Theorem 9.4 (Kanehira). Assume that k is a field of characteristic zero. Let
d3 ≥ d2 > d1 ≥ 3 be integers such that d1 and d2 are mutually prime odd numbers. If
there exist w ∈ N3 and F ∈ T3(k) such that mdegw F = (d1, d2, d3) and degw F > |w|,
then d3 belongs to N0d1 + N0d2.

Because of this result, Kanehira studied the following problem and gave some partial
results.

Problem 9.5 (Kanehira). Assume that k is a field of characteristic zero. Find
sufficient conditions on w ∈ N3 under which the following statement holds: (d1, d2, d3)
belongs to mdegw T3(k) for any mutually prime odd numbers

d1, d2 ∈
⋃

1≤i<j≤3

(wiN0 + wjN0),

and d3 ∈ N0d1 + N0d2 such that 3 ≤ d1 < d2 ≤ d3 and d1 + d2 + d3 > |w|.

The results presented in this paper may be applicable to such a problem.
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