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Abstract. Let X be a metric space with doubling measure and L be
an operator which satisfies Davies–Gaffney heat kernel estimates and has a
bounded H∞ functional calculus on L2(X). In this paper, we develop a the-
ory of Musielak–Orlicz Hardy spaces associated to L, including a molecular de-
composition, square function characterization and duality of Musielak–Orlicz
Hardy spaces HL,ω(X). Finally, we show that L has a bounded holomor-
phic functional calculus on HL,ω(X) and the Riesz transform is bounded from

HL,ω(X) to L1(ω).

1. Introduction.

The introduction and study of classical real-variable Hardy and BMO spaces on the
Euclidean space Rn began in the 1960s with the initial paper of Stein and Weiss [34].
This theory was developed further by Fefferman and Stein [19] and studied extensively
in [10], [33] as well as many others. Since then these function spaces have played an
important role in modern harmonic analysis and partial differential equations, especially
in the study of boundedness of singular integrals. It is well known that there are various
equivalent characterizations of functions in the classical Hardy space. For instance, the
Hardy space H1(Rn) can be viewed as the set of functions f ∈ L1(Rn) such that the
Riesz transform ∇∆−1/2f belongs to L1(Rn). We also have alternative characterizations
of H1(Rn) via the atomic decomposition or by the square function and the non-tangential
maximal function associated to the Poisson semigroup generated by the Laplacian. The
standard theory of Hardy spaces is intimately connected with the Laplacian and harmonic
functions. However, in the study of boundedness of singular integrals, there are cases in
which the classical Hardy spaces are not the most appropriate spaces. For example, one
considers a general elliptic operator in divergence form with complex bounded measurable
coefficients. Let A be an n× n matrix with entries

ajk : L∞(Rn) → C, j = 1, . . . , n, k = 1, . . . , n,

satisfying the elliptic condition
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λ|ξ|2 ≤ <Aξ.ξ and |Aξ.ζ| ≤ Λ|ξ‖ζ|, ∀ξ, ζ ∈ Cn,

for some constants 0 < λ ≤ Λ < ∞. Then the second order divergence form operator is
given by

Lf := −div(A∇f), (1.1)

interpreted in the weak sense via a sesquilinear form. It is well known that the Riesz
transform∇L−1/2 is bounded on L2(Rn) but could be unbounded from H1(Rn) to L1(Rn)
(see for example [21]). The need for investigating new Hardy spaces other than the Hardy
space H1(Rn) thus naturally arises for the study of singular integrals.

In recent years, function spaces, especially Hardy spaces and BMO spaces, associated
with operators have been studied extensively; see, for example, [4], [6], [7], [15], [17],
[18], [20], [21], [37] and references therein. Here we shall only recall a number of works
in this topic.

Auscher, Duong and McIntosh [4] first introduced the Hardy space H1
L(Rn) asso-

ciated with an operator L whose heat kernel satisfies a pointwise Poisson type upper
bound by using the area integrals, and established its molecular characterization.

Duong and Yan [17], [18] introduced its dual space BMOL(Rn) and established
the dual relation between H1

L(Rn) and BMOL(Rn). Yan [37] further generalized these
results to the Hardy spaces Hp

L(Rn) with certain p ≤ 1 and their dual spaces.
Auscher and Russ [7] studied the Hardy space H1

L on strongly Lipschitz domains
associated with a divergence form elliptic operator L with an appropriate heat kernel
bound. Recently, Auscher, McIntosh and Russ [6] treated the Hardy space Hp with
p ∈ [1,∞] associated to Hodge Laplacian on a Riemannian manifold with doubling
measure.

Hofmann and Mayboroda [21] further studied the Hardy space H1
L(Rn) and its dual

space adapted to a second order divergence form elliptic operator L on Rn with bounded
complex coefficients (such an operator L may not have the pointwise heat kernel bounds).
Hofmann et al. [20] introduced the new Hardy spaces Hp

L, 1 ≤ p < ∞, on a metric
space X associated to a non-negative self-adjoint operator L satisfying Davies–Gaffney
estimates.

As a generalization of Hardy spaces Hp(Rn), the class of Orlicz–Hardy spaces on
Rn and their dual spaces have received considerable attention as well. In particular,
Strömberg [35] and Janson [24] introduced generalized Hardy spaces Hω(Rn), via re-
placing the norm ‖ · ‖Lp(Rn) by the Orlicz-norm ‖ · ‖L(ω) in the definition of Hp(Rn),
where ω is an Orlicz function on [0,∞) satisfying some control conditions. Viviani [36]
further characterized these spaces Hω on spaces of homogeneous type via atoms. The
dual spaces of these spaces were also investigated in [35], [24], [36], [23]. More re-
cently, Jiang and Yang [25], [26] introduced the new Orlicz–Hardy spaces associated to
divergence form elliptic operators and to non-negative self-adjoint operators satisfying
Davies–Gaffney estimates.

In this article, we study a generalized form of Orlicz–Hardy spaces, the so-called
Musielak–Orlicz Hardy spaces HL,ω(X) associated to operators and their dual spaces,
under the assumptions that the operators have bounded H∞ functional calculi and satisfy
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Davies–Gaffney estimates. We remark that our assumption that the operator having a
bounded H∞ functional calculus is much weaker than the usual assumption that L being
non-negative self adjoint which played an important role in a number of the previous
works, see for example [20], [25], [26]. For example, a non-negative self-adjoint operator
L with Davies–Gaffney estimates would satisfy the finite speed propagation property for
solutions of the corresponding wave equation, see [32] (see also [20]), and allows us to
construct the Hardy space via (ω, M)-atoms, see [20], [25], [26].

There are two key generalizations in this article.
First, we replace the assumption that L is a non-negative self adjoint operator by

the weaker assumption that L has a bounded H∞ functional calculus on L2(X). This
would allow a much larger class of applicable operators L. For example, it is well known
that in general the second order divergence form operator L defined by (1.1) is not a
self-adjoint operator, but L has a bounded H∞ functional calculus on L2(X), see for
example [8]. For another example, one considers the operator L = b(x)∆, a special
case of a second order elliptic operator in non-divergence form with bounded measurable
complex coefficients, where ∆ denotes the Laplacian in Rn and b denotes an ω-accretive
function on Rn, ω ∈ [0, π/2), with bounded reciprocal, meaning that b and 1

b belong to
L∞(Rn,C) and |argb(x)| ≤ ω for almost all x ∈ Rn. The operator L = b(x)∆ is clearly
not self-adjoint in general and it has a bounded H∞ functional calculus on L2(X), see
[29, Proposition 1.1]. Furthermore, if <b(x) ≥ δ > 0 for almost all x ∈ Rn, then the
semigroup {e−tL}t>0 satisfies the Davies–Gaffney estimate (2.5), see [14].

Second, the Orlicz functions ϕ(t) appearing in many of previous works are replaced
by more general functions ω(x, t), the so-called Musielak–Orlicz functions (cf. [30], [12]),
that may vary in the spatial variables and possess some control conditions. In the par-
ticular case when ω = tp, p ∈ (0, 1], our results are in line with those in [13]. In another
special case, if ω is an Orlicz function on R+ with pω ∈ (0, 1], which is continuous, strictly
increasing and concave then by Jensen’s inequality it can be verified that Assumption
(C) on the function ω holds (see Section 2). In this sense, this paper is an extension to
[1].

Recently, the authors in [38] investigated the Musielak–Orlicz Hardy spaces associ-
ated with operators. However, our approach, which is strongly motivated by [21] and
[25], differs from the approach in [38]. More precisely, we use the weaker assumption on
the operator L that the operator L has a bounded H∞ functional calculus on L2(X), in-
stead of L being non-negative self adjoint in [38]. In addition, Musielak–Orlicz functions
ω considered in [38] are assumed to be growth functions and satisfy the uniformly reverse
Hölder condition. We do not make such assumptions but assume different conditions on
ω. (See Subsection 2.4).

The paper is organized as follows. In Section 2, we shall give some preliminaries on
a metric space X with a doubling measure and give some assumptions on the operator
L and the Musielak–Orlicz function ω. In Sections 3, we shall introduce Musielak–Orlicz
Hardy spaces HL,ω(X). We show that each function in HL,ω(X) can be represented
as a decomposition of (ω, ε, M)-molecules and more importantly, the space of all finite
linear combinations of (ω, ε, M)-molecule is dense in HL,ω(X). Then the dual spaces of
HL,ω(X) are investigated. In the last section, we consider applications of the holomorphic
functional calculus of the operator L and certain Riesz transforms associated to L. By
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using the molecular decomposition associated to the operator L and the Musielak–Orlicz
function, we shall show that L has a bounded holomorphic functional calculus on the
Musielak–Orlicz Hardy spaces HL,ω(X) and the Riesz transforms are bounded from
HL,ω(X) to L(ω).

Throughout the paper, the letters C, c will denote (possibly different) constants that
are independent of the essential variables. The symbol X . Y means that there exists a
positive constant C such that X ≤ CY .

2. Preliminaries.

In this section, we first recall some notions and notations on metric spaces and then
describe some basic assumptions on the operator L studied in this paper; finally we
present some basic properties on Musielak–Orlicz functions.

2.1. Doubling measures on metric spaces.
Let X be a metric space, with a distance d and µ is a nonnegative, Borel, doubling

measure on X. Throughout this paper, we assume that µ(X) = ∞.
Denote by B(x, r) the open ball of radius r > 0 and center x ∈ X, and by V (x, r)

its measure µ(B(x, r)). The doubling property of µ means that there exists a constant
C > 0 so that

V (x, 2r) ≤ CV (x, r) (2.1)

for all x ∈ X and r > 0.
Notice that the doubling property (2.1) implies the following property that

V (x, λr) ≤ CλnV (x, r), (2.2)

for some positive constant n uniformly for all λ ≥ 1, x ∈ X and r > 0. There also exists
a constant 0 ≤ N ≤ n such that

V (x, r) ≤ C

(
1 +

d(x, y)
r

)N

V (y, r), (2.3)

uniformly for all x, y ∈ X and r > 0.
To simplify notation, we will often use B for B(xB , rB). Also given λ > 0, we will

write λB for the λ-dilated ball, which is the ball with the same center as B and with
radius rλB = λrB . For each ball B ⊂ X we set

S0(B) := B and Sj(B) := 2jB\2j−1B for j ∈ N.

2.2. Holomorphic functional calculus.
We now recall some notions on holomorphic functional calculi as introduced by

McIntosh [28].
Let 0 ≤ θ < ν < π. We define the closed sector in the complex plane C
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Sθ := {z ∈ C : | arg z| ≤ θ}

and denote the interior of Sθ by S0
θ .

We present the following subspaces of the space H(S0
ν) of all holomorphic functions

on S0
ν :

H∞(S0
ν) := {b ∈ H(S0

ν) : ‖b‖∞ < ∞},

where ‖b‖∞ := sup{|b(z)| : z ∈ S0
ν}, and

Ψ(S0
ν) := {ψ ∈ H(S0

ν) : ∃s > 0, |ψ(z)| ≤ c|z|s(1 + |z|2s)−1}.

Recall that a closed operator L in L2(X) is said to be of type θ if σ(L) ⊂ Sθ, and for
each ν > θ there exists a constant cν such that

‖(L− λI)−1‖ ≤ cν |λ|−1, λ /∈ Sν .

If L is of type θ and ψ ∈ Ψ(S0
ν), for f ∈ L2(X), we define ψ(L) ∈ L(L2(X), L2(X)) by

putting

ψ(L)f =
1

2πi

∫

Γ

(L− λI)−1fψ(λ)dλ,

where Γ is the contour {z = re±iξ : r > 0} parametrized clockwise around Sθ, and
θ < ξ < ν. Since

∥∥∥∥
∫

Γ

(L− λI)−1fψ(λ)dλ

∥∥∥∥
L2(X)

≤
∫ ∞

0

‖(L− λI)−1f‖L2(X)|ψ(λ)|d|λ|

≤ ‖f‖L2(X)

∫ ∞

0

c1c2|λ|s
|λ|(1 + |λ|2s)

d|λ| < ∞,

the integral above is absolutely convergent and defines ψ(L) as a bounded operator from
L2(X) into L2(X). It is straightforward to show, using Cauchy’s theorem, that the
definition is independent of the choice of ξ ∈ (θ, ν). If, in addition, L is one-one and has
dense range and if b ∈ H∞(S0

ν), then b(L) can be defined by

b(L) = [ψ(L)]−1(bψ)(L),

where ψ(z) = z(1 + z)−2. It can be shown that b(L) is a well-defined linear operator
in L2(X), see [28]. We say that L has a bounded H∞ calculus in L2(X) if there exists
cν,2 > 0 such that b(L) ∈ L(L2(X), L2(X)), and for b ∈ H∞(S0

ν),

‖b(L)‖ ≤ cν,2‖b‖∞.
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In [28] it was proved that L has a bounded H∞-calculus in L2(X) if and only if for any
non-zero function ψ ∈ Ψ(S0

ν), L satisfies the square function estimate and its reverse

c1‖g‖2 ≤
( ∫ ∞

0

‖ψt(L)g‖22
dt

t

)1/2

≤ c2‖g‖2 (2.4)

for some 0 < c1 ≤ c2 < ∞, where ψt(x) = ψ(tx). As noted in [28], positive self-adjoint
operators satisfy the quadratic estimate (2.4). So do normal operators with spectra in a
sector, and maximal accretive operators. We refer the reader to [39] for precise definitions
of these classes of operators. For detailed study on operators which have holomorphic
functional calculi, see the work of [28].

2.3. Assumptions on operators L.
Let L be a linear operator of type θ on L2(X) with θ < π/2, hence L generates a

holomorphic semigroup ezL, | arg(z)| < π/2−θ. Throughout the whole paper, we always
suppose that the operator L satisfies the following assumptions.

( i ) The operator L has a bounded H∞-calculus on L2(X).
( ii ) The operator L generates an analytic semigroup {e−tL}t>0 which satisfies the

Davies–Gaffney estimates, i.e., there exist positive constants C2 and C3 such that
for all closed sets E and F in X, t ∈ (0,∞) and f ∈ L2(X) supported in E,

‖e−tLf‖L2(F ) ≤ C2 exp
{
− d(E, F )2

C3t

}
‖f‖L2(E), (2.5)

where d(E, F ) is the distance between E and F in X.

Remark 2.1. We now give a list of examples of differential operators which satisfy
assumptions (i) and (ii):

(α) Second order elliptic divergence form operators defined by (1.1) in the introduction,
acting on the Euclidean space Rn. Note that these operators in general are neither
self adjoint nor having Gaussian heat kernel bounds. See [8] and Section 2 of [5].

(β) The operators L = b(x)∆ as described in Section 1, page 3 of this article.
(γ) Schrödinger operators with non-negative potentials and magnetic Schrödinger oper-

ators. These operators are self adjoint and possess Gaussian upper bounds on heat
kernels. See for example Section 1 and 3 of [16].

(δ) Laplace–Beltrami operators on all complete Riemannian manifolds. These operators
are self adjoint and satisfy the Davies–Gaffney estimates (but not Gaussian heat
kernel bounds) in general setting. See [3, Section 3.1].

Lemma 2.1 ([22]). Assume that the families of operators {St}t>0 and {Tt}t>0

satisfy Davies–Gaffney estimates (2.5). Then there exist two constants C ≥ 0 and c > 0
such that, for every t > 0, every closed subsets E and F of X and every function f

supported in E, one has
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‖SsTtf‖L2(F ) ≤ C exp
{
− d(E, F )2

cmax{s, t}
}
‖f‖L2(E).

Lemma 2.2. Let L satisfy assumptions (i) and (ii). Then for any fixed k ∈ N, the
following family of operators {(tL)ke−tL}t>0 satisfies Davies–Gaffney estimates (2.5).

Proof. The proof of this lemma is similar to one in [20] and hence we omit the
details here. ¤

2.4. Musielak–Orlicz type functions.
Let us first present here some notions on Musielak–Orlicz type functions.
A function ω : [0,∞) → [0,∞) is called an Orlicz function if it is nondecreasing,

ω(0) = 0, ω(t) > 0 for t > 0 and limt→∞ ω(t) = ∞.
A function ω : X × [0,∞) → [0,∞) is called a Musielak–Orlicz function if the

function ω(x, ·) : [0,∞) → [0,∞) is an Orlicz function for each x ∈ X and the function
ω(·, t) is a measurable function for each t ∈ [0,∞).

Let ω be a Musielak–Orlicz function. The function ω is said to be of uniformly upper
type p (resp. uniformly lower type p) for certain p ∈ [0, ∞), if there exists a positive
constant C such that for all x ∈ X, t ≥ 1 (resp. t ∈ (0, 1]) and s ∈ (0,∞),

ω(x, st) ≤ Ctpω(x, s). (2.6)

If ω is of both uniformly upper type p1 and lower type p0, then ω is said to be of type
(p0, p1). A typical example of such ω is

ω(x, t) := f(x)g(t)

for x ∈ X and t ∈ [0,∞), where f is a positive measurable function on X and g is
an Orlicz function on [0,∞) of upper type p1 and lower type p0. Another example of
Musielak–Orlicz function ω of uniformly upper type p ∈ (0, 1] is, for instance,

ω(x, t) =
tp

f(x) + [log(e + t)]α
,

where α ∈ [0, 1] and f is a positive measurable function on X. It is also interesting to
observe that if

ω(x, t) =
tp

f(x) + g(t)
,

where f is a positive measurable function on X and g is a decreasing positive function
on [0,∞) then ω is a Musielak–Orlicz function of uniformly lower type p.

Let

p+
ω ≡ inf{p > 0 : ∃C > 0 such that (2.6) holds for all x ∈ X, t ∈ [1,∞), s ∈ (0,∞)},

and
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p−ω ≡ sup{p > 0 : ∃C > 0 such that (2.6) holds for all x ∈ X, t ∈ (0, 1], s ∈ (0,∞)}.

The function ω is said to be of strictly uniformly lower type p if for all x ∈ X, t ∈ (0, 1)
and s ∈ (0,∞), ω(x, st) ≤ tpω(x, s). One then defines

pω ≡ sup{p > 0 : ω(x, st) ≤ tpω(x, s) holds for all x ∈ X, s ∈ (0,∞) and t ∈ (0, 1)}.

It is easy to see that pω ≤ p−ω ≤ p+
ω for all ω. In what follows, pω, p−ω and p+

ω are called
the strictly critical lower type index, the critical lower type index and the critical upper
type index of ω, respectively.

In the sequel, we assume that ω satisfies the following assumptions.

Assumption (A). Suppose that ω is a Musielak–Orlicz function which is of uni-
formly upper type 1 and with pω ∈ (0, 1]. In addition, for every x ∈ X, ω(x, ·) is
continuous, strictly increasing on R+.

Note that if ω satisfies Assumption (A) then it has the following properties; see [27,
Lemma 4.1] for its proof.

Lemma 2.3. ( i ) ω is uniformly σ-quasi-subadditive on X×[0,∞), namely, there
exists a positive constant C such that for all (x, tj) ∈ X × [0,∞) with j ∈ Z+,
ω(x,

∑∞
j=1 tj) ≤ C

∑∞
j=1 ω(x, tj).

( ii ) Let ω̃(x, t) :=
∫ t

0
(ω(x, s)/s)ds for all (x, t) ∈ X × [0,∞). Then ω̃ is equivalent to

ω; moreover, ω̃ also satisfies Assumption (A).

Convention (B). From Assumption (A), it follows that 0 < pω ≤ p−ω ≤ p+
ω ≤ 1.

In what follows, if (2.6) holds for p+
ω with t ∈ [1,∞), then we choose p̃ω ≡ p+

ω ; otherwise
p+

ω < 1 and we choose p̃ω ∈ (p+
ω , 1) to be close enough to p+

ω .

Let ω satisfy Assumption (A). A measurable function f on X is said to be in the
Lebesgue type space L(ω) if

∫

X

ω(x, |f(x)|) dµ(x) < ∞.

Moreover, for any f ∈ L(ω), define

‖f‖L(ω) = inf
{

λ > 0 :
∫

X

ω

(
x,
|f(x)|

λ

)
dµ(x) ≤ 1

}
.

The function ρ defined below plays an important role in this paper.

Definition 2.1. For each x ∈ X, we define the function ω−1(x, ·) and ρ(x, ·) on
R+ as follows

ω−1(x, t) ≡ sup{s ≥ 0 : ω(x, s) ≤ t} (2.7)
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and

ρ(x, t) ≡ t−1

ω−1(x, t−1)
. (2.8)

Then it is easy to see that ω−1(x, ·) is continuous, strictly increasing and for every
x ∈ X,

ω−1(x, ω(x, t)) = t

and

ω(x, ω−1(x, t)) = t.

Moreover, the types of ω and ω−1 have the following relation.

Lemma 2.4. Let 0 < p ≤ q ≤ 1. If ω is of type (p, q) then ω−1 is of type (q−1, p−1).

Proof. By the symmetry, it suffices to show that if ω is of uniformly lower type
p then ω−1 is of uniformly upper type p−1. Suppose that there exists a constant C ≥ 1
such that for all x ∈ X, s ≥ 0, t ≤ 1,

ω(x, st) ≤ Ctpω(x, s). (2.9)

Then for any x ∈ X, s ≥ 0, t ≥ 1 and u ≥ 0 such that ω(x, u) ≤ st, it follows from (2.9)
that

ω

(
x,

u

t1/p

)
≤ Cω(x, u)

t
≤ Cs.

This implies that

u ≤ t1/pω−1(x,Cs)

and hence

ω−1(x, st) ≤ t1/pω−1(x,Cs). (2.10)

On the other hand, observe that

ω−1(x,Cs) = sup
{

λ ≥ 0 :
ω(x, λ)

C
≤ s

}

and, by (2.9), for any λ ≥ 0,

ω

(
x,

λ

C2/p

)
≤ ω(x, λ)

C
,
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then we deduce that

ω−1(x,Cs) ≤ C2/pω−1(x, s), (2.11)

which together with (2.10) completes the proof of Lemma 2.4. ¤

Hereafter, we shall assume the following condition on the function ω.

Assumption (C). Let ω satisfy Assumption (A) and the following conditions:

( i ) there exist positive constants C1, C2 such that for any x ∈ X, C1 ≤ ω(x, 1) ≤ C2;
( ii ) there exists a positive constant C such that for any locally integrable positive

function f on X, for any ball B in X,

1
|B|

∫

B

ω(x, f(x))dµ(x) ≤ C inf
x∈X

ω

(
x,

1
|B|

∫

B

f(y)dµ(y)
)

.

Remark 2.2. A typical example of Musielak–Orlicz function ω that satisfies As-
sumption (C) is ω(x, t) = h(x)ϕ(t) for all x ∈ X and t ∈ [0,∞), where h is a measurable
function on X so that there exist positive constants C1, C2 such that for any x ∈ X,
C1 ≤ h(x) ≤ C2 and ϕ is an increasing, continuous and concave Orlicz function on [0,∞)
with pϕ ∈ (0, 1].

3. Musielak–Orlicz Hardy spaces associated to operators.

3.1. Tent spaces on spaces of homogeneous type.
Given x ∈ X and α > 0, the cone of aperture α and vertex x is the set

Γα(x) := {(y, t) ∈ X × (0,∞) : d(y, x) < αt}.

For any closed subset F ⊂ X, define a saw-tooth region Rα(F ) =
⋃

x∈F Γα(x). For
simplicity, we will often write R(F ) instead of R1(F ). If O is an open subset of X, and
we denote by Ec the complement of a set E, then the tent over O, denoted by Ô, is
defined as

Ô := [R(Oc)]c := {(x, t) ∈ X × (0,∞) : d(x,Oc) ≥ t}.

For each measurable function g on X × (0,∞) and x ∈ X, define

A(g)(x) :=
( ∫

Γ(x)

|g(y, t)|2 dµ(y)
V (x, t)

dt

t

)1/2

.

When X = Rn Coifman, Meyer and Stein [10] introduced the tent spaces T p
2 (Rn+1

+ )
for p ∈ (0,∞). The tent spaces T p

2 (X) on spaces of homogeneous type were studied
by Russ [31]. The function g is said to belong to the space T p

2 (X) with p ∈ (0,∞) if
‖g‖T p

2 (X) = ‖A(g)‖Lp < ∞. Then, Harbourne, Salinas and Viviani [23] introduced the
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tent spaces Tω(Rn+1
+ ) associated to ω. Now let ω satisfy Assumption (A). Then we define

Tω(X) as the space of all measurable functions g on X × (0,∞) such that A(g) ∈ L(ω),
and for any g ∈ Tω(X), one defines

‖g‖Tω(X) = ‖A(g)‖L(ω).

Definition 3.1. Let ω satisfy Assumption (C) and ρ be the function defined by
(2.8) in Definition (2.1). A function a on X × (0,∞) is called a Tω(X)-atom if

( i ) there exists a ball B ⊂ X such that supp a ⊂ B̂;
( ii ) ‖a‖T 2

2 (X) ≤ [V (B)]−1/2 inf
x∈B

[ρ(x, V (B))]−1.

Remark 3.1. ( i ) It is not difficult to verify that for a function ω satisfying
Assumption (C), there exist positive constants K1, K2 such that for any x ∈ X,
K1 ≤ ω−1(x, 1) ≤ K2 and hence inf

x∈B
[ρ(x, V (B))]−1 is strictly positive.

( ii ) In addition, for all Tω(X)-atoms a, we have ‖a‖Tω(X) . 1.

For the functions in the space Tω(X), we have the following atomic decomposition.

Proposition 3.1. Let ω satisfy Assumption (C). Then for any f ∈ Tω(X), there
exist Tω(X)-atoms {aj}∞j=1 and {λj}∞j=1 ⊂ C such that for almost every (x, t) ∈ X ×
(0,∞)

f(x, t) =
∞∑

j=1

λjaj(x, t). (3.1)

Moreover, there exists a positive constant C such that for all f ∈ Tω(X),

Λ({λj}) = inf
{

λ > 0 :
∞∑

j=1

V (Bj) inf
x∈X

ω

(
x,

|λj |
λV (Bj) sup

y∈Bj

ρ(y, V (Bj))
≤ 1

)}

≤ C‖f‖Tω(X), (3.2)

where B̂j appears as the support of aj.

Proof. The proof of Proposition 3.1 is similar to those of [10, Theorem 1], [31,
Theorem 1.1], [25, Theorem 3.1] and [26, Theorem 3.1] with minor modifications, thus
we omit the details. ¤

The following proposition on the convergence of (3.1) plays a significant role in the
remaining part of this paper. The proof of it is analogous to that of [25, Proposition 3.1]
and we omit the details.

Proposition 3.2. Let ω satisfy Assumption (C). If f ∈ Tω(X)∩ T 2
2 (X), then the

decomposition (3.1) holds in both Tω(X) and T 2
2 (X).
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3.2. Musielak–Orlicz Hardy spaces associated to L.
For all functions f ∈ L2(X), the Lusin-area function SL(f) is defined by setting,

SLf(x) :=
( ∫ ∫

Γ(x)

|t2Le−t2Lf(y)|2 dµ(y)
V (x, t)

dt

t

)1/2

, x ∈ X.

The Musielak–Orlicz Hardy space HL,ω(X) is defined as the completion of

{f ∈ L2(X) : ‖SLf‖L(ω) < ∞}

with the norm

‖f‖HL,ω(X) = ‖SLf‖L(ω).

Noting that if ω(t) = t, t ∈ (0,∞) then the space HL,ω(X) turns to be the space H1
L(X)

in [20]. Furthermore, if ω(t) = tp, t ∈ (0,∞) and p ∈ (0, 1], the space HL,ω(X) is just
the space Hp

L(X) considered in [13]. We now introduce the notions of (ω, M, ε)-molecule
as follows.

Let us denote by D(T ) the domain of an unbounded operator T and by T k = T · · ·T
the k-fold composition of T with itself.

Definition 3.2. A function m ∈ L2(X) is called an (ω, M, ε)-molecule associated
to the operator L if there exist a function b ∈ D(LM ) and a ball B such that

( i ) m = LMb;
( ii ) for every k = 0, 1, . . . , M , and j ∈ Z+

‖(r2
BL)kb‖L2(Sj(B)) . r2M

B 2−jε[V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1.

Theorem 3.1. Let L satisfy assumptions (i) and (ii), ω satisfy Assumption (C),
M > (n/2)(1/pω − 1/2) and 0 < ε < 2M − n(1/pω − 1/2). Then for all f ∈ HL,ω(X) ∩
L2(X), there exist (ω, ε, M)-molecules {αj}∞j=1 and {λj}∞j=1 ⊂ C such that

f =
∞∑

j=1

λjαj

in both HL,ω(X) and L2(X). Moreover, there exists a positive constant C such that for
all f ∈ HL,ω(X) ∩ L2(X),

Λ({λjaj}j) = inf
{

λ > 0 :
∞∑

j=1

V (Bj) inf
x∈X

ω

(
x,

|λj |
λV (Bj) sup

y∈Bj

ρ(y, V (Bj))
≤ 1

)}

≤ C‖f‖HL,ω(X),

where Bj is the ball associated with (ω, ε, M)-molecule αj.
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Before giving a proof of Theorem 3.1, we consider the following operator

πL,M (F )(x) =
∫ ∞

0

(t2Le−t2L)M (F (·, t))(x)
dt

t
,

for all F ∈ L2(X × (0,∞)) with bounded support. The bound

‖πL,M (F )‖L2(X) ≤ C‖F‖T 2
2 (X), ∀M ≥ 1 (3.3)

follows readily by duality and the L2 quadratic estimate (2.4). Moreover, we have the
following proposition.

Proposition 3.3. Let a be a Tω(X)-atom associated to a ball B ⊂ X and M >

(n/2)(1/pω − 1/2). Then, πL,Ma is an (ω, ε, M)-molecule (up to a harmless constant);
moreover, πL,Ma ∈ HL,ω(X).

Proof. Setting

b =
∫ ∞

0

t2M (e−t2L)Ma(·, t)dt

t
.

Since a is a Tω(X)-atom associated to a ball B ⊂ X, supp a ⊂ B̂ = {(x, t) ∈ X× (0,∞) :
d(x,Bc) ≥ t} ⊂ B × [0, rB ]. Thus, the integral b =

∫∞
0

t2M (e−t2L)Ma(·, t)(dt/t) is well
defined and πL,Ma = LMb.

For any h ∈ L2(Sj(B)) with norm 1 and k ∈ {0, 1, . . . , M}, one has

∣∣∣∣
∫

X

(r2
BL)kb(x)h(x)dµ(x)

∣∣∣∣

=
∣∣∣∣
∫

X

∫ ∞

0

t2M (r2
BL)k(e−t2L)Ma(x, t)h(x)

dt

t
dµ(x)

∣∣∣∣

≤
∣∣∣∣
∫ ∫

bB
t2(M−k)(r2

B)ka(x, t)(e−t2L∗)M−k(t2L∗e−t2L∗)kh(x)
dt

t
dµ(x)

∣∣∣∣

≤ r2M
B ‖a‖T 2

2 (X)

( ∫ ∫
bB

∣∣(e−t2L∗)M−k(t2L∗e−t2L∗)kh(x)
∣∣2 dt

t
dµ(x)

)1/2

≤ r2M
B [V (B)]−1/2 inf

x∈B
[ρ(x, V (B))]−1

×
( ∫ ∫

bB

∣∣(e−t2L∗)M−k(t2L∗e−t2L∗)kh(x)
∣∣2 dt

t
dµ(x)

)1/2

.

If j ≥ 3 then we have
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( ∫ ∫
bB

∣∣(e−t2L∗)M−k(t2L∗e−t2L∗)kh(x)
∣∣2 dt

t
dµ(x)

)1/2

≤ C

( ∫ rB

0

e−d(B,Sj(B))2/ct2 dt

t

)1/2

≤ C

( ∫ rB

0

(
t

2jrB

)4M
dt

t

)1/2

≤ C2−2Mj .

If j = 0, 1, 2, it is simple to see that

( ∫ ∫
bB

∣∣(e−t2L∗)M−k(t2L∗e−t2L∗)kh(x)
∣∣2 dt

t
dµ(x)

)1/2

≤ C2−2Mj .

All in all, one has

∣∣∣∣
∫

X

(r2
BL)kb(x)h(x)dµ(x)

∣∣∣∣ ≤ Cr2M
B 2−2Mj [V (B)]−1/2 inf

x∈B
[ρ(x, V (B))]−1

which implies

‖(r2
BL)kb‖L2(Sj(B)) ≤ Cr2M

B 2−2Mj [V (B)]−1/2 inf
x∈B

[ρ(x, V (B))]−1.

Since ω is of uniformly lower type pω, ρ is of uniformly upper type 1/pω − 1 by Lemma
2.4. Then we have

‖(r2
BL)kb‖L2(Sj(B))

≤ Cr2M
B 2−2Mj [V (B)]−1/2 inf

x∈B
[ρ(x, V (B))]−1

≤ Cr2M
B 2−2Mj2(n/2)j

(
V (2jB)
V (B)

)1/pω−1

[V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1

≤ Cr2M
B 2(−2M+n/2+n/pω−n+ε)j2−jε[V (2jB)]−1/2 inf

x∈B
[ρ(x, V (2jB))]−1

≤ Cr2M
B 2(−2M−n/2+n/pω+ε)j2−jε[V (2jB)]−1/2 inf

x∈B
[ρ(x, V (2jB))]−1.

Due to (−2M − n/2 + n/pω + ε) < 0, we obtain that

‖(r2
BL)kb‖L2(Sj(B)) ≤ Cr2M

B 2−jε[V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1.

Therefore, πL,Ma is an (ω, ε, M)-molecule.
It remains to show that α = πL,Ma ∈ HL,ω(X). Write
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∫

X

ω(x, SL(λα)(x))dµ(x) =
∞∑

j=0

∫

X

ω(x, SL(λαχSj(B))(x))dµ(x) =
∞∑

j=0

Aj

for all j ∈ N.
By Assumption (C) and the Hölder inequality, for each j ∈ N, one obtains

Aj ≤
∞∑

k=0

∫

Sk(2jB)

ω(x, SL(λαχSj(B))(x))dµ(x)

≤
∞∑

k=0

V (2k+jB) inf
x∈X

ω

(
x,
|λ| ∫

Sk(2jB)
|SL(αχSj(B))(y)|dµ(y)

V (2k+jB)

)

≤
∞∑

k=0

V (2k+jB) inf
x∈X

ω

(
x,
|λ|‖SL(αχSj(B))‖L2(Sk(2jB))

V (2k+jB)1/2

)
.

For k = 0, 1, 2, one has

‖SL(αχSj(B))‖L2(Sk(2jB)) ≤ C‖α‖L2(Sj(B))

≤ C2−jε[V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1.

For k ≥ 3, write

‖SL(αχSj(B))‖2L2(Sk(2jB))

=
∫

Sk(2jB)

( ∫ d(x,xB)/4

0

+
∫ ∞

d(x,xB)/4

) ∫

d(x,y)<t

|t2Le−t2Lα|2 dµ(y)
V (x, t)

dt

t
dµ(x)

= Ij + IIj .

To estimate Ij , we set Ukj(B) := {y ∈ X : d(x, y) ≤ d(x, xB)/4 for certain x ∈ Sk(2jB)}.
Then, for each z ∈ Sj(B) and y ∈ Ukj(B), we have d(y, z) ≥ 2k+j−2rB . It follows from
the fact that

∫

d(x,y)<t

V (x, t)−1dµ(x) ≤ C

and α = LMb that

Ij ≤ C

∫ 2k+j+1rB

0

∫

Sj(B)

|(t2L)M+1e−t2LbχSj(B)(y)|2dµ(y)
dt

t4M+1

≤ C‖b‖2L2(Sj(B))

∫ 2k+j+1rB

0

exp
(
− d(Ukj(B), Sj(B))2

ct2

)
dt

t4M+1
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≤ C‖b‖2L2(Sj(B))

∫ 2k+j+1rB

0

exp
(
− (2k+j−2rB)2

ct2

)
dt

t4M+1

≤ C‖b‖2L2(Sj(B))

∫ 2k+j+1rB

0

(
t

2k+jrB

)4M+4
dt

t4M+1

≤ C‖b‖2L2(Sj(B))

2−4(k+j)M

(rB)4M
≤ C2−4(k+j)M2−2εj [V (2jB)]−1 inf

x∈B
[ρ(x, V (2jB))]−2.

Finally, for the term IIj we obtain

IIj ≤ C

∫ ∞

2k+j−1rB

∫

Sj(B)

|(t2L)M+1e−t2LbχSj(B)(y)|2dµ(y)
dt

t4M+1

≤ C‖b‖2L2(Sj(B))

∫ ∞

2k+j−1rB

dt

t4M+1

≤ C2−4(k+j)M2−2εj [V (2jB)]−1 inf
x∈B

[ρ(x, V (2jB))]−2.

It therefore, from the estimates for Ij , IIj above, the uniformly lower type pω of ω

together with the fact that −2Mpω + n(1− pω/2) < 0, implies that

∫

Sj(B)

ω(x, SL(α)(x))dµ(x)

≤ C
∞∑

k=0

2(−2(k+j)M−jε)pωV (2k+jB)

× inf
x∈X

ω

(
x,

|λ|
[V (2k+jB)]1/2[V (2jB)]1/2sup

y∈B
ρ(y, V (2jB))

)

≤ C
∞∑

k=0

2(−2(k+j)M−jε)2kn(1−pω/2)pωV (2jB) inf
x∈X

ω

(
x,

|λ|
[V (2jB)]sup

y∈B
ρ(y, V (2jB))

)
.

Note that we can choose p̃ω as in Convention (B) such that n(1/pω − 1/p̃ω) < ε. It
therefore, together with the uniformly lower type 1/p̃ω − 1 of ρ by Lemma 2.4, yields

∞∑

j=0

∫

Sj(B)

ω(x, SL(λα)(x))dµ(x)

≤ C
∞∑

j=0

2−εpωjV (2jB)
(

V (B)
V (2jB)

)pω/epω

inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)

≤ C
∞∑

j=0

2−εpωj2(1−pω/epω)njV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
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≤ CV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
,

which completes the proof of Proposition 3.3. ¤

Proof of Theorem 3.1. Since f ∈ L2(X) and T has a bounded holomorphic
functional calculus on L2(X), there exists a constant CM,L such that

f = CM,L

∫ ∞

0

(t2Le−t2L)M+1f
dt

t
.

By definition of HL,ω(X) and the quadratic estimate (2.4), t2Le−t2Lf ∈ Tω(X)∩T 2
2 (X).

Thanks to Proposition 3.2 and Proposition 3.3, we easily deduce

f = CM,LπL,M (t2Le−t2Lf) = CM,L

∞∑

j=0

λjπL,M (aj)

in both L2(X) and HL,ω(X) and Λ({λjaj}j) ≤ C‖f‖HL,ω(X), which completes the proof
of Theorem 3.1. ¤

By density of HL,ω(X) ∩ L2(X) in HL,ω(X), we conclude the following corollaries.

Corollary 3.1. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy
Assumption (C) and M > (n/2)(1/pω − 1/2). Then for all f ∈ HL,ω(X) there exist a
sequence of (ω, ε, M)-molecules {αj}∞j=1 and {λj}∞j=1 ∈ C such that f =

∑∞
j=1 λjαj in

HL,ω(X). Moreover, there exists a positive constant C independent of f such that

Λ({λjaj}j) ≤ C‖f‖HL,ω(X).

Corollary 3.2. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy
Assumption (C) and M > (n/2)(1/pω − 1/2). Then for all 0 < ε < 2M −n(1/pω − 1/2),
the spaces Hmol,ε,M

ω,fin are dense in HL,ω(X) where Hmol,ε,M
ω,fin denote the spaces of finite

linear combinations of (ω, ε, M).

3.3. Dual spaces of Musielak–Orlicz Hardy spaces.
In this subsection, we study the dual space of the Musielak–Orlicz Hardy spaces

HL,ω(X). Let φ = LMv be a function in L2(X), where v ∈ D(LM ). Following [21], [20]
for ε > 0, M ∈ N and fixed x0 ∈ X we introduce the norm

‖φ‖MM,ε
ω (L) = sup

j∈Z+

{
2jε[V (x0, 2j)]1/2 sup

x∈B(x0,2j)

ρ(x, V (x0, 2j))
M∑

k=0

‖Lkv‖L2(Sj(B(x0,1)))

}

where

MM,ε
ω (L) :=

{
φ = LMv ∈ L2(X) : ‖φ‖MM,ε

ω (L) < ∞}
.
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Let (MM,ε
ω (L))∗ be the dual of MM,ε

ω (L) and denote either (I + t2L)−1 or e−t2L by
At. Then for any f ∈ (MM,ε

ω (L))∗, (I − A∗t )
Mf belongs to L2

loc(X) in the sense of
distributions, see [21], [20].

For any M ∈ N, one defines

MM
ω,L∗(X) :=

⋂

ε>n(1/pω−1/p+
ω )

(MM,ε
ω (L))∗.

Definition 3.3. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy
Assumption (C) and M > (n/2)(1/pω − 1/2). A functional f ∈ MM

ω,L∗(X) is said to be
in BMOM

ρ,L(X) if

‖f‖BMOM
ρ,L(X) = sup

B⊂X

1
sup
x∈B

ρ(x, V (B))

[
1

V (B)

∫

B

|(I − e−r2
BL)Mf(x)|2dµ(x)

]1/2

< ∞,

where the supremum is taken over all balls B in X.

We have the following characterizations of the spaces BMOM
ρ,L(X).

Proposition 3.4. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy
Assumption (C) and M > (n/2)(1/pω − 1/2). Then f ∈ BMOM

ρ,L(X) if and only if
f ∈MM

ω,L∗(X) and

sup
B⊂X

1
sup
x∈B

ρ(x, V (B))

[
1

V (B)

∫

B

|(I − (I + r2
BL)−1)Mf(x)|2dµ(x)

]1/2

< ∞.

Moreover,

‖f‖BMOM
ρ,L(X) ≈ sup

B⊂X

1
sup
x∈B

ρ(x, V (B))

[
1

V (B)

∫

B

|(I − (I + r2
BL)−1)Mf(x)|2dµ(x)

]1/2

.

Proposition 3.5. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy
Assumption (C) and ε > n(1/pω − 1/p+

ω ). Then there exists a positive constant C such
that for all f ∈ BMOM

ρ,L(X),

sup
B⊂X

1
sup
x∈B

ρ(x, V (B))

[
1

V (B)

∫
bB
|(t2L)Me−t2Lf(x)|2 dµ(x)dt

t

]1/2

≤ C‖f‖BMOM
ρ,L(X).

The proofs of two above propositions are similar to Lemmas 8.1 and 8.3 in [21] and
hence we omit the details.

We are now in position to obtain the main result in this subsection.
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Theorem 3.2. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy As-
sumption (C). Then (HL,ω(X))∗, the dual space of HL,ω(X), coincides with BMOM

ρ,L∗(X)
in the following sense:

(i) For any functional f ∈ BMOM
ρ,L∗(X) and M > max{(n/2)(1/pω − 1) + 1, n/4},

the linear functional given by

`(g) := 〈f, g〉,

which is initially defined on Hmol,ε,2fM
ω,fin with M̃ > M + (N/2)(1/pω − 1/2) and M̃ −

(n/2)(1/pω − 1) > ε > (N/2)(1/pω − 1/2) (N is a constant appearing in (2.3)), has a
unique extension to HL,ω(X) with

‖`‖(HL,ω(X))∗ ≤ C‖f‖BMOM
ρ,L∗ (X),

where C is a positive constant independent of f .
(ii) Conversely, for any ` ∈ (HL,ω(X))∗ and M > (n/2)(1/pω − 1/2) there exists a

function f ∈ BMOM
ρ,L∗(X) such that

`(g) = 〈f, g〉

for all g ∈ Hmol,M,ε
ω,fin and ‖f‖BMOM

ρ,L∗(X)
≤ C‖`‖(HL,ω(X))∗ , where C is a positive constant

independent of `.

Before coming to the proof of Theorem 3.2, we need the following results.

Lemma 3.1. There exists a collection of open sets {Qk
α ⊂ X : k ∈ Z, α ∈ Ik}, where

Ik denotes certain (possibly finite) index set depending on k, and constants δ ∈ (0, 1),
a0 ∈ (0, 1) and C1 ∈ (0,∞) such that

( i ) µ(X\ ∪α Qk
α) = 0 for all k ∈ Z;

( ii ) if i ≥ k, then either Qi
α ⊂ Qk

β or Qi
α ∩Qk

β = ∅;
(iii) for (k, α) and each i < k, there exists a unique β such Qk

α ⊂ Qi
β ;

(iv) the diameter of Qk
α ≤ C1δ

k;
( v ) each Qk

α contains certain ball B(zk
α, a0δ

k).

Proof. The proof of this lemma can be found in [9]. ¤

Theorem 3.3. Let M > max{(n/2)(1/pω − 1/2) + 1, n/4} and 0 < ε < 2M −
n(1/pω − 1/2). Suppose that f =

∑l
i=1 λiai where {ai}l

i=1 is a family of (ω, ε, 2M)-
molecules and

∑l
i=1 |λi| < ∞. Then there exists a representation f =

∑K
i=1 µimi, where

the m′
is are (ω, ε, M)-molecules and

K∑

i=1

|µi| ≤ C‖f‖HL,ω(X),

with C = C(ε,M).
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Proof. Indeed, we can adapt the ideas in the proof of Theorem 5.3 in [20] with
minor modifications to obtain the proof of Theorem 3.3. Instead of dealing with atoms
as in [20], we work on molecules by decomposing the underline space X into annuli
according to the balls associated with the molecules. We therefore omit the details. ¤

Proof of Theorem 3.2. Let m be an (ω, ε, M̃)-molecule associated with a ball
B ⊂ X. Then there exists a function b such that the conditions (i) and (ii) in Definition
3.2 hold. Then we have,

r2fM
B m = (r2

BL)fMb = (I − (I + r2
BL)−1)M (I + r2

BL)M (r2
BL)fM−Mb

=
M∑

k=0

Ck
M (I − (I + r2

BL)−1)M (r2
BL)fM−kb.

Therefore,

|〈f,m〉| = r−2fM
B |〈f, (r2

BL)fMb〉|

≤ Cr−2fM
B

M∑

k=0

∣∣∣∣
∫

X

(I − (I + r2
BL∗)−1)Mf(x)(r2

BL)fM−kb(x)dµ(x)
∣∣∣∣

≤ Cr−2fM
B

M∑

k=0

∞∑

j=0

( ∫

Sj(B)

∣∣(I − (I + r2
BL∗)−1)Mf(x)

∣∣2dµ(x)
)1/2

× ‖(r2
BL)fM−kb‖L2(Sj(B))

≤ C
∞∑

j=0

2−εj [V (2jB)]−1/2sup
x∈B

[ρ(x, V (2jB))]−1

×
( ∫

Sj(B)

∣∣(I − (I + r2
BL∗)−1)Mf(x)

∣∣2dµ(x)
)1/2

. (3.4)

With notations as in Lemma 3.1 we choose an integer kj , for each j ∈ Z, such that
C1δ

kj ≤ 2jrB < C1δ
kj−1. Set

Mj = {β ∈ Ik0 : Qk0
β ∩B(xB , C1δ

kj−1) 6= ∅}.

Then, for each j ∈ Z,

Sj(B) ⊂ B(xB , C1δ
kj−1) ⊂

⋃

β∈Mj

Qk0
β ⊂ B(xB , 2C1δ

kj−1).

From (ii) in Lemma 3.1 we can assume that the sets Qk0
β for all β ∈ Mj are pairwise

disjoint. Furthermore, it follows from (iv) and (v) that there exists zk0
β ∈ Qk0

β such that
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B(zk0
β , a0δ

k0) ⊂ Qk0
β ⊂ B(zk0

β , C1δ
k0) ⊂ B(zk0

β , rB) ⊂ B(zk0
β , C1δ

k0−1). (3.5)

Therefore, from (2.3), Proposition 3.4 together with the fact that ρ is of type (1/p+
ω − 1,

1/p−ω − 1) and pω ≤ p−ω ≤ p+
ω , we have

( ∫

Sj(B)

∣∣(I − (I + r2
BL∗)−1)Mf(x)

∣∣2dµ(x)
)1/2

≤
( ∑

β∈Mj

∫

B(z
k0
β ,rB)

∣∣(I − (I + r2
BL∗)−1)Mf(x)

∣∣2dµ(x)
)1/2

≤ C‖f‖BMOM
ρ,L∗ (X)

( ∑

β∈Mj

V (B(zk0
β , rB)) sup

x∈B(z
k0
β ,rB)

ρ(x, V (B(zk0
β , rB)))2

)1/2

≤ C2jN(1/pω−1)‖f‖BMOM
ρ,L∗ (X)V (B(xB , 2C1δ

kj−1))1/2sup
x∈B

ρ(x, V (B(xB , rB)))

≤ C2jN(1/pω−1)‖f‖BMOM
ρ,L∗ (X)V (2jB)1/2sup

x∈B
ρ(x, V (B)). (3.6)

Combination of two estimates (3.4) and (3.6) gives

|〈f,m〉| ≤ C

∞∑

j=0

2−εj2jN(1/pω−1)

(
V (B)

V (2jB)

)1/pω−1

‖f‖BMOM
ρ,L∗ (X)

≤ C
∞∑

j=0

2j(−ε+N(1/pω−1))‖f‖BMOM
ρ,L∗ (X)

≤ C‖f‖BMOM
ρ,L∗ (X). (3.7)

Now for any g ∈ Hmol,ε,2fM
ω,fin then by Theorem 3.3, there exists a representation g =∑K

i=1 µimi, where the m′
is are (ω, ε, M̃)-molecules and

K∑

i=1

|µi| ≤ C‖g‖HL,ω(X). (3.8)

As a result, it follows from (3.7) and (3.8) that

〈f, g〉 =
K∑

i=1

|µi|〈f,mi〉

≤ C
K∑

i=1

|µi|‖f‖BMOM
ρ,L∗ (X)

≤ C‖g‖HL,ω(X)‖f‖BMOM
ρ,L∗ (X).
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The proof of part (i) of Theorem 3.2 is complete.
Conversely, we will adapt the ideas in [21] to give the proof of part (ii) of Theorem

3.2. Observe that for each (ω, ε, M)-molecule m,

|`(m)| ≤ C‖`‖(HL,ω(X))∗ .

Since each element in MM,ε
ω (L) is also an (ω, ε, M)-molecule associated to the ball

B(x0, 1) which implies that ` defines a linear function on MM,ε
ω (L) for every ε > 0,

M > (n/2)(1/pω − 1/2). Therefore, (I − (I + t2L∗))M ` is well defined and belongs to
L2

loc for all t > 0. Fix a ball B and let φ ∈ L2(B) such that ‖φ‖L2(B) ≤ 1. Then one can
check that

m̃ = (I − (I + r2
BL)−1)Mφ

is an (ω, ε, M)-molecule for every ε > 0 and hence ‖m̃‖HL,ω(X) ≤ C. Consequently, we
have

|〈(I − (I + r2
BL∗)−1)M `, φ〉| = |〈`, (I − (I + r2

BL)−1)Mφ〉|
= |〈`, m̃〉| ≤ C‖`‖(HL,ω(X))∗ ,

which further implies that

1
sup
x∈B

ρ(x, V (B))

(
1

V (B)

∫

B

|(I − (I + r2
BL∗)−1)M `(x)|2dµ(x)

)1/2

≤ C‖`‖(HL,ω(X))∗ ,

for all balls B. Thus, ` ∈ BMOM
ρ,L∗(X) and ‖`‖BMOM

ρ,L∗ (X) ≤ C‖`‖(HL,ω(X))∗ , which
completes the proof of part (ii). ¤

4. Riesz transform and holomorphic functional calculus.

4.1. Holomorphic functional calculus.
Lemma 4.1. Let the operator L satisfy Assumptions (i) and (ii), ω satisfy As-

sumption (C) and M > (n/2)(1/pω − 1/2). Suppose that T is linear (resp. nonnegative
sublinear) operator which maps L2(X) continuous into weak-L2(X). If there exists a
positive constant C such that for any (ω, ε, M)-molecule α

∫

X

ω(x, T (λα)(x))dµ(x) ≤ CV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
, (4.1)

then T extends to a bounded linear (resp. sublinear) operator from HL,ω(X) to L(ω);
moreover, there exists a positive constant C ′ such that

‖Tf‖L(ω) ≤ C ′‖f‖HL,ω(X),
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for all f ∈ HL,ω(X).

The proof is similar to one of Lemma 5.2 in [26] with minor modifications, thus we
omit it here.

Theorem 4.1. Let L be of type θ on L2(X) with 0 ≤ θ < π/2 and satisfy (i)
and (ii), ω satisfy (C) and θ < ν < π. Then, for any f ∈ H∞(S0

ν), f(L) is bounded on
HL,ω(X), that is, for any g ∈ HL,ω(X)

‖f(L)g‖HL,ω(X) ≤ C‖f‖∞‖g‖HL,ω(X). (4.2)

Proof. Choose M > (n/2)(1/pω − 1/2) and p̃ω > pω close enough to pω (as in
Convention (B)) so that there exists ε satisfying

n

(
1
pω

− 1
p̃ω

)
< ε < 2M +

n

2
− n

pω
.

With any (ω, ε, M)-molecule m associated to a ball B ⊂ X, we will claim that

∫

X

ω(x, SL(λf(L)m)(x))dµ(x) ≤ C‖f‖∞V (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
. (4.3)

Once (4.3) is proved, (4.2) follows by Lemma 4.1.
Let us prove (4.3). Write

∫

X

ω(x, SL(λf(L)m)(x))dµ(x) ≤
∞∑

j=0

∫

X

ω(x, SL(λf(L)m · χSj(B))(x))dµ(x) =
∞∑

j=0

Aj

for all j ∈ N.
Since ω satisfies Assumption (C), by the Hölder inequality, for each j ∈ N, one

obtains

Aj ≤
∞∑

k=0

∫

Sk(2jB)

ω(x, SL(λf(L)m · χSj(B))(x))dµ(x)

≤
∞∑

k=0

V (2k+jB) inf
x∈X

ω

(
x,
|λ| ∫

Sk(2jB)
|SL(f(L)m · χSj(B))(y)|dµ(y)

V (2k+jB)

)

≤
∞∑

k=0

V (2k+jB) inf
x∈X

ω

(
x,
|λ|‖SL(f(L)m · χSj(B))‖L2(Sk(2jB))

V (2k+jB)1/2

)
.

For k = 0, 1, 2,
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‖SL(f(L)m · χSj(B))‖L2(Sk(2jB))

≤ C‖f(L)m · χSj(B)‖L2(X)

≤ C‖f‖∞‖m‖Sj(B)2−jε[V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1.

For k ≥ 3, write

‖SL(f(L)m · χSj(B))‖2L2(Sk(2jB))

=
∫

Sk(2jB)

( ∫ d(x,xB)/4

0

+
∫ ∞

d(x,xB)/4

)

×
∫

d(x,y)<t

|t2Le−t2Lf(L)m · χSj(B)|2
dµ(y)
V (x, t)

dt

t
dµ(x)

= Ij + IIj .

Let us estimate Ij . It can be verified that there exists a positive constant C such that
for all closed sets E and F in X, t ∈ (0,∞) and g ∈ L2(X) supported in E,

‖(tL)M+1e−tLf(L)g‖L2(F ) ≤ C

(
t

d(E, F )2

)M+1

‖g‖L2(E). (4.4)

Setting Ukj(B) := {y ∈ X : d(x, y) ≤ d(x, xB)/4 for certain x ∈ Sk(2jB)}, then
for each z ∈ Sj(B) and y ∈ Ukj(B), we have d(y, z) ≥ 2k+j−2rB . Combining∫

d(x,y)<t
V (x, t)−1dµ(x) < c, m = LMb and (4.4), one gets

Ij ≤ C

∫ 2k+j+1rB

0

∫

Sj(B)

|(t2L)M+1e−t2Lf(L)b · χSj(B)(y)|2dµ(y)
dt

t4M+1

≤ C‖f‖2∞‖b‖2L2(Sj(B))

∫ 2k+j+1rB

0

(
ct2

d(Ukj(B), Sj(B))2

)2M+2
dt

t4M+1

≤ C‖f‖2∞2−4(j+k)M2−2εj [V (2jB)]−1 inf
x∈B

[ρ(x, V (2jB))]−2.

For the term IIj , we have

IIj ≤ C

∫ ∞

2k+j−1rB

∫

Sj(B)

|(t2L)M+1e−t2Lf(L)b · χSj(B)(y)|2dµ(y)
dt

t4M+1

≤ C‖f‖2∞‖b‖2L2(Sj(B))

∫ ∞

2k+j−1rB

dt

t4M+1

≤ C‖f‖2∞2−4(k+j)M2−2εj [V (2jB)]−1 inf
x∈B

[ρ(x, V (2jB))]−2.

Further going, from the estimates for Ij , IIj , the strictly lower type pω of ω together
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with the fact that −2Mpω + n(1− pω/2) < 0, we obtain

∫

Sj(B)

ω(x, SL(f(L)m)(x))dµ(x)

≤ C‖f‖∞
∞∑

k=0

2(−2(k+j)M−jε)pωV (2k+jB)

× inf
x∈X

ω

(
x,

|λ|
[V (2k+jB)]1/2[V (2jB)]1/2sup

y∈B
ρ(y, V (2jB))

)

≤ C‖f‖∞
∞∑

k=0

2(−2(k+j)M−jε)2kn(1−pω/2)pωV (2jB) inf
x∈X

ω

(
x,

|λ|
[V (2jB)]sup

y∈B
ρ(y, V (2jB))

)
.

Since ρ is of uniformly lower type 1/p̃ω − 1, we further have

∞∑

j=0

∫

Sj(B)

ω(x, SL(λf(L)m)(x))dµ(x)

≤ C‖f‖∞
∞∑

j=0

2−εpωjV (2jB)
(

V (B)
V (2jB)

)pω/epω

inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)

≤ C‖f‖∞
∞∑

j=0

2−εpωj21−(pω/epω)njV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
.

Noting that since n(1/pω − 1/p̃ω) < ε and M > (n/2)(1/pω − 1/2), we learn that

∞∑

j=0

∫

Sj(B)

ω(x, SL(λf(L)m)(x))dµ(x) ≤ C‖f‖∞V (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
.

¤
4.2. Riesz transforms.
Assume that D is a densely defined linear operator on L2(X) which possesses the

following properties:

( i ) DL−1/2 is bounded on L2(X).
( ii ) The family of operators {√tDe−tL}t>0 satisfies the Davies–Gaffney estimate (2.5).

Noting that operators D satisfying assumptions (i) and (ii) above include gradient opera-
tors in divergence form and Riemannian gradients on all complete Riemannian manifolds,
see for example [2], [3], [11].

Theorem 4.2. For any f ∈ HL,ω(X),

‖DL−1/2(f)‖L(ω) ≤ C‖f‖HL,ω(X).
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Before giving the proof of Theorem 4.2, we state the following lemma.

Lemma 4.2. For every M ∈ N, all closed sets E, F in X with d(E, F ) > 0 and
every f ∈ L2(X) supported in E, one has

‖DL−1/2(I − e−tL)Mf‖L2(F ) ≤ C

(
t

d(E, F )2

)M

‖f‖L2(E), ∀t > 0, (4.5)

and

‖DL−1/2(tLe−tL)Mf‖L2(F ) ≤ C

(
t

d(E, F )2

)M

‖f‖L2(E), ∀t > 0. (4.6)

Proof. The proof of Lemma 4.2 is completely analogous to one of Lemma 2.2 in
[22] and we omit it here. ¤

Proof of Theorem 4.2. Choose M > (n/2)(1/pω−1/2). Let m is an (ω, ε, M)-
molecule associated to a ball B, ε < 2M + n/2 − n/pω. Then there exists a function b

such that m = LMb. Setting T = DL−1/2 and write

∫

X

ω(x, T (λm)(x))dµ(x) ≤
∫

X

ω
(
x, |λ|T ((I − er2

BL)Mm(x))
)
dµ(x)

+
∫

X

ω
(
x, |λ|T ([I − (I − er2

BL)M ]m(x))
)
dµ(x)

≤
∞∑

j=0

∫

X

ω
(
x, |λ|T ((I − er2

BL)M (m · χSj(B))(x))
)
dµ(x)

+
∞∑

j=0

∫

X

ω
(
x, |λ|T ([I − (I − er2

BL)M ](m · χSj(B))(x))
)
dµ(x)

≤
∞∑

j=0

Ij +
∞∑

j=0

IIj .

We estimate the term Ij first. By the Hölder inequality, we obtain

Ij ≤
∞∑

k=0

∫

Sk(2jB)

ω(x, |λ|T ((I − er2
BL)M )(m · χSj(B))(x))dµ(x)

≤
∞∑

k=0

V (2k+jB) inf
x∈X

ω

(
x,

|λ|
V (2k+jB)

∫

Sk(2jB)

T ((I − er2
BL)M )(m · χSj(B))(y)dµ(y)

)

≤
∞∑

k=0

V (2k+jB) inf
x∈X

ω

(
x,

|λ|
[V (2k+jB)]1/2

‖T ((I − er2
BL)M )(m · χSj(B))‖L2(Sk(2jB))

)
.
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For k = 0, 1, 2, it follows from Lemma 4.2 that

‖T ((I − er2
BL)M )(m · χSj(B))‖L2(Sk(2jB))

≤ C‖m‖L2(Sj(B)) ≤ C2−εj [V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1,

and for k ≥ 3 that

‖T ((I − er2
BL)M )(m · χSj(B))‖L2(Sk(2jB))

≤ C2−2M(k+j)‖m‖L2(Sj(B))

≤ C2−2M(k+j)2−εj [V (2jB)]−1/2 inf
x∈B

[ρ(x, V (2jB))]−1.

At this stage, by the same argument used in the proof of Theorem 4.1, we obtain

∞∑

j=0

Ij ≤ CV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
.

We now proceed with terms IIj , j = 0, 1, . . . Also, by the Hölder inequality, we obtain

IIj ≤
∞∑

k=0

∫

Sk(2jB)

ω(x, |λ|T (I − (I − er2
BL)M )(m · χSj(B))(x))dµ(x)

≤
∞∑

k=0

V (2k+jB)

× inf
x∈X

ω

(
x,

|λ|
V (2k+jB)

∫

Sk(2jB)

T (I − (I − er2
BL)M )(m · χSj(B))(y)dµ(y)

)

≤
∞∑

k=0

V (2k+jB)

× inf
x∈X

ω

(
x,

|λ|
[V (2k+jB)]1/2

‖T (I − (I − er2
BL)M )(m · χSj(B))‖L2(Sk(2jB))

)

≤
∞∑

k=0

IIk
j .

Next we have

I − (I − er2
BL)M =

M∑

k=1

cke−kr2
BL,

where ck := (−1)k+1(M !/(M − k)!k!). Therefore,
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IIk
j ≤ C sup

1≤k≤M
‖Te−kr2

BLm · χSj(B)‖L2(Sk(2jB))

≤ C sup
1≤k≤M

∥∥∥∥T

(
k

M
r2
BLe−(k/M)r2

BL

)M

(r−2
B L−1)Mm · χSj(B)

∥∥∥∥
L2(Sk(2jB))

.

At this point, repeating the argument used to estimate Ij , we also obtain that

∞∑

j=0

IIj ≤ CV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
.

Combining obtained estimates gives

∫

X

ω(x, T (λm(x)))dµ(x) ≤ CV (B) inf
x∈X

ω

(
x,

|λ|
V (B)sup

y∈B
ρ(y, V (B))

)
.

This, together with Lemma 4.1, therefore completes our proof. ¤
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