
c©2015 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 67, No. 4 (2015) pp. 1671–1680
doi: 10.2969/jmsj/06741671

Markov loops, free field and Eulerian networks

By Yves Le Jan

Dedicated to the memory of Professsor Kiyosi Itô
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Abstract. We investigate the relations between the Poissonnian loop
ensemble arising in the construction of random spanning trees, the free field,
and random Eulerian networks.

1. The loop ensemble and the free field.

Relations between occupation fields of Markov processes and Gaussian processes
have been the object of many investigations since the seminal work of Symanzik [20]. In
this seminal work, Poisson ensembles of Brownian loops were used. Since the work of
Lawler and Werner [8] on “loop soups”, they have also been the object of many investiga-
tions. Their properties can be studied in the context of rather general Markov processes
in connection with various fields. The purpose of the present work is to investigate new
directions in this context. We adopt the framework described in [11]. Given a graph
G = (X, E), a set of non negative conductances Cx,y = Cy,x indexed by the set of edges
E and a non negative killing measure κ on the set of vertices X, we can associate an
energy (or Dirichlet form) E , we will assume to be positive definite, which is a transience
assumption. For any function f on X, we have:

E(f ; f) =
1
2

∑
x,y

Cx,y(f(x)− f(y))2 +
∑

x

κxf2(x).

There is a duality measure λ defined by λx =
∑

y Cx,y + κx. Let Gx,y be the symmetric
Green’s function associated with E . It is assumed that

∑
x Gx,xλx is finite.

The symmetric associated continuous time Markov process can be obtained from the
Markov chain defined by the transition matrix Px,y = Cx,y/λy by adding independent
exponential holding times of mean 1 before each jump. If P is submarkovian, the chain
is absorbed at a cemetery point ∆. If X is finite, the transition matrix is necessarily
submarkovian.

The complex (respectively real) free field is the complex (real) Gaussian field on X

whose covariance function is G. We will denote it by ϕ (respectively ϕR).
We denote by µ the loop measure associated with this symmetric Markov process (µ

can be also viewed as a shift invariant measure on based loops). We refer to [11] for the
general definition in terms of Markovian bridges, but let us mention that the measure
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of a non-trivial discrete loop is the product of the transition probabilities of the edges
divided by the multiplicity of the loop. The measure on continuous time loops is then
obtained by including exponential holding times, except for one point loops on which the
holding time measure (which has infinite mass) has density e−t/t.

The Poissonian loop ensemble L is the Poisson process of loops of intensity µ. Recall
that when G is finite, it can be sampled by the following algorithm (cf: [11], [2]):

• First step: After choosing any ordering of X, define a set of based loops around
each vertex. These are the based loops of the continuous Markov chain erased in
the construction through Wilson’s algorithm of the random spanning tree rooted
in the cemetery point associated with the discrete time Markov chain.

Recall that this construction goes as follows: We first build a loop erased chain
{η1} starting from the first vertex and ending at the cemetery point ∆, then, from
the next vertex in X − {η1} a loop-erased chain η2 ending in {η1} ∪ {∆} and so
on. . . The union of the ηi is a spanning tree.

This set of erased based loops includes one point loops which are the holding
times at points which are traversed only once.

• Second step: Split these based loops into a collection of smaller loops based at the
same point by dividing the local time at the base points into intervals given by
independent Poisson-Dirichlet random variables.

• Finally, map this new set of based loops to their equivalence classes under the shift
(this is the definition of loops).

This construction is related to the famous excursion point process introduced by
K. Itô in [6]. Indeed, a similar construction can be done with linear Brownian motion
or more generally one-dimensional diffusions (cf [12]). It can be also extended to non
symmetric Markov chains (cf [2]).

2. Occupation field and isomorphisms.

Given any vertex x of the graph, denote by L̂x the total time spent in x by the
loops, normalized by λx. L̂ is known as the occupation field of L.

Recall that as a Poisson process, L is infinitely divisible. We denote by Lα the
Poisson process of loops of intensity αµ and by L̂α the associated occupation field. It
can be constructed in such a way that the the set of loops Lα increases with α.

It has been shown in [9] (see also [11]) that the fields L̂ = L̂1 (L̂1/2) and (1/2)ϕ2

((1/2)ϕ2
R) have the same distribution. Note that this property extends naturally to one

dimensional diffusions. Generalisations to dimensions 2 and 3 involve renormalization
(cf [11], [9]).

We can use the second identity in law to give a simple proof of a result known as
the generalized second Ray-Knight theorem ([5], [21], [17]). Let x0 be a point of X, and
assume that κ is supported by x0. Set D = X − {x0}. Then it follows from the classical
energy decomposition that

ϕR = ϕD
R + ϕR(x0)
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and ϕD
R (the real free field associated with the restriction of E to D) is independent of

ϕR(x0).
On the other hand,

L̂1/2 = L̂D
1/2 + L̂(x0)

1/2

where L̂(x0)
1/2 denotes the occupation field of the set of loops of L1/2 hitting x0 and L̂D

1/2

denotes the occupation field of the set of loops of L1/2 contained in D.
The two terms of the decomposition are clearly independent.
Moreover, given that its value at x0 is ρ, the field L̂(x0)

1/2 has the same distribution as
the occupation field γ̂τρ

of an independent copy of the Markov chain started at x0 and
stopped when the local time at x0 equals ρ.

The identity in law which is valid between L̂D
1/2 and (1/2)(ϕD

R )2 as well as between

L̂1/2 and (1/2)ϕR2 can be desintegrated taking L̂x0
1/2 = (1/2)ϕ2

R(x0) = ρ. Noting finally
that the sign η of ϕR at x0 is independent of the other variables we get that

1
2
ϕR

2 + γ̂τρ

(d)
= L̂D

1/2 + γ̂τρ

(d)
=

1
2
(
ϕD
R + η

√
2ρ

)2

but we have also, by symmetry of ϕD
R ,

1
2
(
ϕD
R + η

√
2ρ

)2 (d)
=

1
2
(
ϕD
R +

√
2ρ

)2 (d)
=

1
2
(
ϕD
R −

√
2ρ

)2
.

So that finally we have proved:

Proposition 2.1.

1
2
ϕR

2 + γ̂τρ

(d)
=

1
2
(
ϕD
R +

√
2ρ

)2
.

Note that a natural coupling of the free field with the occupation field of the loop
ensemble of intensity (1/2)µ has been recently given by T. Lupu [13], using loop clusters.

3. Jumping numbers.

In what follows, we will assume for simplicity that G is finite. We will now define
other fields associated with the loop ensembles.

Given any oriented edge (x, y) of the graph, denote by Nx,y(l) the total number of
jumps made from x to y by the loop l and by N

(α)
x,y the total number of jumps made from

x to y by the loops of Lα. Note that N
(α)
x,x = 0.

Let Z be any Hermitian matrix indexed by pairs of vertices such that ∀x, y, 0 <

|Zx,y| ≤ 1, and such that all but a finite set of entries indexed by K ×K, with K finite,
are equal to 1. We denote N (1) by N .

The content of the following lemma appeared already in [11].
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Lemma 3.1. Denote by PZ
x,y the matrix Px,yZx,y.

i) We have:

E

( ∏

x6=y

Z
N(α)

x,y
x,y

)
=

[
det(I − PZ)

I − P

]−α

.

ii) Moreover, for α = 1,

E

( ∏

x6=y

ZNx,y
x,y

)
= E

(
e
P

x6=y((1/2)Cx,y(Zx,y−1)ϕxϕ̄y)
)
.

Proof (See also chapter 6 of [11]).
i) The left side can be expressed as exp

(
α

∫ ( ∏
x,y Z

Nx,y(l)
x,y − 1

)
µ(dl)

)
and

∫ ( ∏
x,y

ZNx,y(l)
x,y − 1

)
µ(dl) =

∫ ( p(l)∏
m=2

Zξm−1,ξmµ(dl)− µ({non trivial loops})
)

which is equal to
∑∞

n=1(1/n)(Tr([PZ ]n)−Tr(Pn)). The result follows from the identity
log(det) = Tr(log).

ii) The right hand side equals det(I − P )/det(I − PZ). ¤

4. Eulerian networks.

We define a network to be a N-valued function defined on oriented edges of the graph.
It is given by a matrix k with N-valued coefficients which vanishes on the diagonal and
on entries (x, y) such that {x, y} is not an edge of the graph. We say that k is Eulerian
if

∑
y

kx,y =
∑

y

ky,x.

For any Eulerian network k, we define kx to be
∑

y kx,y =
∑

y ky,x. It is obvious that
the field N (α) defines a random network which verifies the Eulerian property.

The distribution of the random network defined by Lα is given in the following:

Proposition 4.1. i) For any Eulerian network k,

P (N (α) = k) = C det(I − P )α
∏
x,y

P kx,y
x,y

where C is the coefficient of
∏

x,y P
kx,y
x,y in Perα(P (kx, x ∈ X)).

Here P (kx, x ∈ X) is denoting the (|k|, |k|) matrix obtained by repeating kx times
each column of P of index x and then ky times each line of index y (with |k| = ∑

x kx).
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The α-permanent Perα of a (d, d)-matrix A is defined as the sum, on all permu-
tations σ of {1, . . . , d}, of the products α#cycles(σ)

∏d
i=1 Ai,σ(i).

ii) For α = 1, there is a simpler expression: For any Eulerian network k,

P (N = k) = det(I − P )
∏

x kx!∏
x,y kx,y!

∏
x,y

P kx,y
x,y .

Proof. i) follows from the expansion of det(I−PZ)α using a well known expansion
formula for determinants powers using α-permanents (cf [22], [16]).

ii) follows from i), but we will rather give two different alternative proofs.
Let N be the additive semigroup of networks and E be the additive semigroup of

Eulerian networks. On one hand, note that

E

( ∏
x,y

ZNx,y
x,y

)
=

∑

k∈E

P (N = k)
∏
x,y

Zkx,y
x,y .

On the other hand, from the previous lemma, we get

E

( ∏
x,y

ZNx,y
x,y

)

= E
(
e
P

x,y((1/2)Cx,y(Zx,y−1)ϕxϕ̄y)
)

=
1

(2π)d det(G)

∫
e−(1/2)(

P
x λxϕxϕ̄x−

P
(x,y)∈K×K Cx,yZx,yϕxϕ̄y)

∏
x

1
2i

dϕx ∧ dϕ̄x

=
1

(2π)d det(G)

∫ ∞

0

∫ 2π

0

e−(1/2)(
P

x λxr2
x−
P

x,y Cx,yZx,yrxryei(θx−θy))
∏
x

rxdrxdθx

=
1

(2π)d det(G)

∫ ∞

0

∫ 2π

0

e−(1/2)
P

x λxr2
x

×
∑

n∈N

∏

x,y∈K

1
nx,y!

(
Cx,y

(
1
2
Zx,yrxryei(θx−θy)

)nx,y
) ∏

x

rxdrxdθx

Integrating in the θx variables and using the definition of Eulerian networks, it equals

1
det(G)

∫ ∞

0

e−(1/2)
P

x λxr2
x

∑

n∈E

∏

(x,y)∈K×K

1
nx,y!

(
1
2
Cx,yZx,yrxry

)nx,y ∏
x

rxdrx

=
1

det(G)
∏

λx

∑

n∈E

∏

x∈K

nx!
∏

(x,y)∈K×K

1
nx,y!

(
Cx,y

λx
Zx,y

)nx,y

= det(I − P )
∑

n∈E

∏

x∈K

nx!
∏

(x,y)∈K×K

1
nx,y!

(Px,yZx,y)nx,y .
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We conclude the proof of the proposition by identifying the coefficients of
∏

x,y Z
kx,y
x,y .

Note that in the case of a space with two points a and b, we see that the number of
jumps Na,b follows a geometric distribution if α = 1. For general α, we get a negative
binomial distribution.

An alternative proof can be derived using Wilson’s algorithm. It goes roughly as
follows. We fix an order on the vertices: X = {x1, . . . , xn} and denote by Λ the set
of n-tuples of (possibly trivial) loops {l1, . . . , ln} such that li is rooted in xi and avoids
{x1, . . . , xi−1}. Given an Eulerian network k, there are

∏
x kx!/

∏
x,y kx,y! different ele-

ments of Λ inducing it. Indeed, kx!/
∏

x,y kx,y! is the number of ways to order the oriented
edges exiting from x. Once such a choice has been made at every vertex, a n-tuple of
loops is determined: one starts with the first edge of the first vertex and then takes the
first edge of its endpoint, and so on until we come back to the first vertex and no exiting
edge is left at this point. Then we move to the next vertex, etc. . .

Given any oriented spanning tree T rooted in ∆, all the elements of Λ have the
same probability

∏
x,y P

kx,y
x,y

∏
(u,v)∈T Pu,v to be (jointly with T ) the output of Wilson’s

algorithm. We get the result by summing on all spanning trees. ¤

5. Random homology.

Note that the additive semigroup of Eulerian networks is naturally mapped on the
first homology group H1(G,Z) of the graph, which is defined as the quotient of the
fundamental group by the subgroup of commutators. It is an Abelian group with n =
|E| − |X| + 1 generators. The homology class of the network k is determined by the
antisymmetric part ǩ of the matrix k.

The distribution of the induced random homology Ň (α) seems more difficult to com-
pute explicitly. Note however that for any j ∈ H1(G,Z), P (Ň (α) = j) can be computed
as a Fourier integral on the Jacobian torus of the graph Jac(G) = H1(G,R)/H1(G,Z).

Here, following the approach of [7] we denote by H1(G,R) the space of harmonic
one-forms, which in our context is the space of one-forms ωx,y = −ωy,x such that∑

y Cx,yωx,y = 0 for all x ∈ X and by H1(G,Z) the space of harmonic one-forms ω

such that for all discrete loops (or equivalently for all non backtracking discrete loops) γ

the holonomy ω(γ) is an integer.
More precisely, if we equip H1(G,R) with the scalar product defined by the set of

conductances C:

‖ω‖2 =
∑
x,y

Cx,y(ωx,y)2

and let dω be the associated Lebesgue measure, for all j ∈ H1(G,Z),

P (Ň (α) = j) =
1

|Jac(G|
∫

Jac(G)

E
(
e2πi〈Ň(α)−j,ω〉)dω

=
1

|Jac(G)|
∫

Jac(G)

[
det(I − P e2πiω

)
det(I − P )

]−α

e−2πi〈j,ω〉dω.
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For α = 1, this expression can be written equivalently as

=
1

|Jac(G)|
∫

Jac(G)

E
(
e
P

x6=y((1/2)Cx,y(e2πiωx,y−1)ϕxϕ̄y)
)
e−2πi〈j,ω〉dω

=
1

|Jac(G)|
∫

Jac(G)

E
(
e(1/2)(E−E(2πiω))(ϕ,ϕ̄)

)
e−2πi〈j,ω〉dω

where E(2πiω) denotes the positive energy form defined by:

E(2πiω)(f, g) =
1
2

∑
x,y

Cx,y

(
f(x)− e2πiωx,yf(y)

)(
ḡ(x)− e−2πiωx,y ḡ(y)

)
+

∑
x

κxf2(x).

This expession can also be written as

1
|Jac(G)|

1
det(G)

∫

CX

∫

Jac(G)

e−(1/2)E(2πiω)(ϕ,ϕ̄)e−2πi〈j,ω〉dω
dϕ ∧ dϕ̄

2i
.

This calculation suggests a coupling between the loop ensembles and the gauge field
measure defined on H1(G,R).

Note finally that by adapting the results proved in [7], we see that the volume of the
Jacobian torus |Jac(G)| can be expressed as the inverse of the square root of a number
which can be computed in two ways:

a) as det(Λ)
∏

e∈E Ce with Λ denoting the (n, n) intersection matrix defined by any
base ci of the module H1(G,Z): Λi,j = 〈ci, cj〉. It is well known that such a base can be
defined by any spanning tree: One considers a spanning tree T of the graph, and chooses
an orientation on each of the n remaining edges. This defines n oriented cycles on the
graph and a system of n generators for the fundamental group and for the homology
group. (See [15] or ([18]) in a more general context). In this definition of Λ we use
the dual scalar product of the scalar product defined on the space of harmonic forms.
It is induced by the scalar product on functions on the set of oriented edges Eo by
〈e,±e〉 = ±1/Ce and 〈ci, cj〉 = 0 if e 6= ±e′.

b) as sum of the C-weights of the spanning trees of G (the weights are defined as the
product of the conductances of their edges). See [11, Section 8–2] for a determinantal
expression.

6. Additional remarks.

6.1. A determinant formula.
Recall that Nx denotes

∑
y Nx,y and that Nx,x = 0. Lemma 3.1 can be stated in a

more general form (cf [11, (6–4)]):

E

( ∏

x6=y

ZNx,y
x,y

∏
x

Z−(Nx+1)
x,x

)

= E
(
e
P

x6=y((1/2)Cx,y(Zx,y−1)ϕxϕ̄y)+
P

x((1/2)λx(1−Zx,x)ϕxϕ̄x)
)
.
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A consequence is that for any set (xi, yi) of distinct oriented edges, and any set zl of
distinct vertices,

E

( ∏

i

N(xi,yi)

∏

l

(Nzl
+ 1)

)
= E

( ∏

i

ϕxi
ϕ̄yi

C(xi,yi)

∏

l

λzl
ϕzl

ϕ̄zl

)
.

In particular, if X is assumed to be finite, if [DN ](x,y) = 0 for x 6= y and [DN ](x,x) =
1 + Nx, for all χ ≥ λ, then

E(det(MχDN −N)) = E(det(Mϕ(Mχ − C)Mϕ̄)) = det(Mχ − C)Per(G).

Note that DN −N is a Markov generator.

6.2. An application of the BEST theorem.
The BEST theorem (cf [19]) determines the measure induced on Eulerian networks

by the restriction of µ to non trivial loops. If k is a Eulerian network, let k̃ be the oriented
Eulerian graph associated with it. Its set of vertices is X and it has kx,y oriented edges
from x to y. Let |k| =

∑
x kx be the total number of edges in k̃. Note that all pointed

loops inducing the same network k ∈ E have the same measure (1/|k|) ∏
x,y P

kx,y
x,y and that

there are
∏

x,y kx,y! rooted Eulerian tours of k̃, i.e. directed rooted closed paths visiting
each edge of k̃ exactly once, inducing each of them. It follows that the µ-measure of k is
given by (N(k)/

∏
x,y kx,y!)(1/|k|) ∏

x,y P
kx,y
x,y where N(k) is the number of Eulerian tours

of k̃. It is given by the BEST theorem:

N(k) = |k| τ(k̃)
∏
x

(kx − 1)!

where τ(k̃) is the number of arborescences of k̃ (which can be obtained by the matrix-tree
theorem (cf [19])) and the factor |k| takes into account the choice of the first oriented
edge in the Eulerian tour. Hence,

µ(k) = τ(k̃)
∏
x

(kx − 1)!
∏
x,y

P
kx,y
x,y

kx,y!

for k non zero. We know already that the total µ measure of non zero networks is
− log(det(I − P )).

Our probabilities on Eulerian networks are therefore a sum of the convolutions pow-
ers of this measure with Poissonnian weights. I do not know of any combinatorial proof
of that fact. When α varies, we can in fact view the process N (α) as a Eulerian network-
valued subordinator and the BEST theorem gives an expression of its Lévy measure.

6.3. Open questions.
The random network defines a random energy form on the graph. The resolvent,

the Poisson kernels and the spectrum of the random Markov generator DN − N could
be investigated. Besides, given any pair (A,B) of disjoint subsets of X, a network k
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defines an integer NA,B(k) which is the value of the maximal flow from A to B. It is
also the minimal number of cuts (on the associated digraph k̃) which separate A and B.
See for exemple [1]. Percolation from A to B means that NA,B(k) is non-zero. These
random variables are also of special interest for the study of random networks. Their
asymptotic properties could be investigated in connection with the percolation problem
for loop clusters (cf: [10], [4], [13], [3], [14]).

The coupling with gauge fields, already mentionned in the homology section, will be
investigated more closely in a forthcoming paper. The effect of this coupling is to intro-
duce a negative exponential factor in the distribution of Lα. The exponent is a quadratic
function of the homology which can be associated with a combinatorial imbedding of the
graph.

Recollections. I had the privilege to meet Professor Itô many times in Kyoto
and several times in France, when he visited Paris. I was young at that time and I now
realize how much I was impressed by his leadership, his elegant style, and his kindness.
I also realize that a major part of my work was directly or indirectly inspired by him.
This is a very modest tribute to his memory.
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[19] R. P. Stanley, Enumerative Combinatorics, 2, Cambridge University Press.

[20] K. Symanzik, Euclidean quantum field theory, Scuola internazionale di Fisica “Enrico Fermi”,

XLV Corso, Academic Press, 1969, 152–223.

[21] A.-S. Sznitman, Topics in occupation times and Gaussian free fields, Zurich Lectures in Advanced

http://dx.doi.org/10.1214/aop/1019160507
http://dx.doi.org/10.1006/aama.1999.0672
http://dx.doi.org/10.1007/s00440-003-0319-6
http://dx.doi.org/10.1007/s00440-003-0319-6
http://dx.doi.org/10.1214/09-AOP509
http://dx.doi.org/10.1111/j.1751-5823.2009.00091.x


1680 Y. Le Jan

Mathematics, European Mathematical Society (EMS), 2012.

[22] D. Vere-Jones, Alpha-permanents and their applications to multivariate gamma, negative bino-

mial and ordinary binomial distributions, New Zealand J. Math., 26 (1997), 125–149.

Yves Le Jan

Université Paris-Sud

Bâtiment 425

Orsay, France

E-mail: yves.lejan@math.u-psud.fr




