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Abstract. This paper is concerned with the characterization of spaces of
square integrable holomorphic functions on a complex manifold, G, in terms
of the derivatives of the function at a fixed point o ∈ G. The reproducing
kernel properties of square integrable holomorphic functions are reviewed and
a number of examples are given. These examples include square integrable
holomorphic functions relative to Gaussian measures on complex Euclidean
spaces along with their generalizations to heat kernel measures on complex
Lie groups. These results are intimately related to the Itô’s chaos expansion
in stochastic analysis and to the Fock space description of free quantum fields
in physics.

1. Dedication.

I first met Professor Itô while still a graduate student during the Fall of 1985 while
attending the annual thematic program, “Stochastic Differential Equations and their Ap-
plications,” held at the Institute for Mathematics and its applications at the University
of Minnesota. It was somewhat intimidating being a graduate student among the numer-
ous well established and famous mathematicians at the program. However, I still have
very fond memories of meeting Professor Itô at this venue. Not only was professor Itô
an excellent expositor, he was very kind and generous to everyone including us graduate
students. I feel extremely privileged to have met Professor Itô on this and other occasions
throughout my professional career. More importantly, I have been deeply influenced by
Professor Itô’s mathematical insights and fundamental contributions to stochastic anal-
ysis and analysis in general. I am delighted to dedicate this paper to his memory.

2. Introduction.

Notation 2.1. Let (G, o) be a pointed connected complex manifold. For any open
subset, V ⊂ G, let H(V ) denote the space of holomorphic functions on V .

Definition 2.2. A measure, λ, on G (equipped with the Borel σ – algebra) is
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smooth if for each chart z on G with domain D(z), there exists a smooth function ρz :
D(z) → [0,∞) such that dλ = ρzdmz on D(z) where mz is the push-forward of Lebesgue
measure on R(z) := z(D(z)) by z−1. We further say that λ is strictly positive if ρz > 0
on D(z) for all charts z. [It suffices to check this condition on any collection of charts
covering G.]

As usual let, L2(λ) denote space of complex valued (equivalence classes) of square
integrable functions on G with inner product defined by

(f, g)L2(λ) :=
∫

G

f · ḡ dλ ∀ f, g ∈ H(G)

and associated Hilbert norm defined by ‖f‖L2(λ) := (f, f)1/2
L2(λ).

In this paper we are interested in the general question of characterizing the space,

HL2(G,λ) :=
{
f ∈ H(G) : ‖f‖L2(λ) < ∞}

, (2.1)

of holomorphic square integrable functions on G in terms of their derivatives at some
fixed base point o ∈ G. To make this problem more tractable, for most of the paper we
will restrict our attention to the case where G is a complex Lie group and o = e is the
identity element of G.

Perhaps the most well known example of this situation is when G is a complex
vector space and λ is a Gaussian measure on G. The holomorphic structure arises from a
unitary isomorphism from L2 – functions of a Gaussian measure on a real vector space to
HL2(G,λ) known as the Segal-Bargmann transform, see Segal [36], [37] and Bargmann
[1]. The Segal-Bargmann transform was later extended to the Lie group setting Brian
Hall [23], see Gross and Malliavin [22] for or more detailed background surrounding
these results. The Gaussian context arises rather naturally when studying the quantum-
mechanical Harmonic oscillator in both finite and infinite dimensional settings. The
infinite dimensional setting relates to “free” quantum-field theories where the derivative
space can be taken to be a certain completion of the symmetric tensor algebra over G

referred to as Fock space, see V. A. Fock [15] and Notation 5.4 below.
The structure of the paper is as follows;

1. Section 3 reviews some basic properties of HL2(G,λ) in Equation (2.1). In particular
we will show HL2(G,λ) is a reproducing kernel Hilbert space. The key observations
here is the Cauchy integral formula allows one to control the derivatives of a function
at a point in terms of its L2 norm.

2. Section 4 is then mostly devoted to studying HL2(G,λ) when G = C and dλ(z) =
ρ(|z|)dm(z) where ρ is a positive radial function on C and m is two dimensional
Lebesgue measure on C. In these examples, the space of allowed derivatives at 0 ∈ C
is a Hilbert subspace of sequences with a weighted `2 – norm with weights determined
by the function ρ.

3. Section 5 then reviews the Gaussian setting in finite dimensions which leads to the
Fock space description of the possible derivatives of a square integrable holomorphic
function. The proofs and statements of the results in this section are formulated to
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allow for an easier transition to the results in Section 6.
4. In Section 6, we take G to be a complex Lie group, o = e ∈ G, and λ to be a “ heat

kernel measure” associated to a left-invariant second order (sub)elliptic operator on
C∞(G). The results in this section have appeared in [6], [10], [11], [12]. We will
however give new proofs of some these results which are more stochastic in nature
than the original analytic proofs. These proofs make rather direct contact with Itô’s
work, especially see [29], [31].

3. Hilbert space properties of HL2(G,λ).

In this section we will recall some of the basic properties of the square integrable
holomorphic functions as introduced in Definition 2.2. After this section we will restrict
our attention to the case that G is a Lie group. The next lemma is a slight extension of
[10, Lemma 3.4].

Lemma 3.1. To each o ∈ G and any open neighborhood V of o there exists a chart
z on M such that o ∈ D(z) ⊂ V and a family of smooth probability measures, {δg}g∈D(z),
such that ;

1. dδg = δz
gdmz with δz

g being smooth and compactly supported in D(z) and the map
D(z)×G 3 (g, x) → δz

g(x) ∈ [0,∞) being smooth.
2. For all f ∈ H(V ) and g ∈ D(z),

f(g) =
∫

G

f(x)δg(dx) ∀ f ∈ H(G).

Proof. The statement of the lemma is local, so without loss of generality we may
assume that M

.= D1 where for any R > 0,

DR
.= {z ∈ Cd : |zi| < R ∀ i = 1, 2, . . . , d}. (3.1)

Let f be a holomorphic function on D1 and ε ∈ (0, 1/2) be given. By the mean value
theorem for holomorphic functions;

f(g) = (2π)−d

∫

[0,2π]d
f
({

gj + rje
√−1θj

}d

j=1

) d∏

j=1

dθj , (3.2)

for any choices of {ri}d
i=1 ⊂ [0, 1/2). Choose a smooth function h : R→ [0,∞) such that

h has support in (−ε, ε), h is constant near 0, and

∫ 1

0

h(r)rdr = 1.

Multiply (3.2) by r1 · · · rdh(r1) · · ·h(rd) and integrate each ri over [0, ε) to find:
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f(g) =
∫

Dε

f(g + x)ρ(x)m(dx) =
∫

D1

f(x)δg(x)m(dx),

where ρ(x) = (2π)−dh(|x1|) · · ·h(|xd|), δg(x) = ρ(x− g), and m is Lebesgue measure on
Cd. ¤

Theorem 3.2 (Pointwise Bounds). If λ is a smooth strictly positive measure on
G, then the function C : G → [0,∞] defined by

C(g) := sup
f∈H(G)\{0}

|f(g)|
‖f‖L2(G)

, (3.3)

is locally uniformly bounded on G. To be more precise for all compact sets K ⊂ G,
C(K) := supg∈K C(g) < ∞. More generally if V := {V1, . . . , Vn} is any finite collection
of smooth vector fields on G, then

CV(g) := sup
f∈H(G)\{0}

|(V1 . . . Vnf)(g)|
‖f‖L2(G)

(3.4)

is locally uniformly bounded on G.

Proof. Let o ∈ G, z be a chart on G, and δg be the measures as described in
Lemma 3.1. Then for g ∈ D(z),

f(g) =
∫

D(z)

f(x)δg(x)dmz(x) =
∫

D(z)

f(x)
δg(x)
λz(x)

dλ(x). (3.5)

From this identity and the Cauchy-Schwarz inequality,

|f(g)| ≤ ‖f‖L2(D(z),λ)‖δg/λz‖L2(D(z);λ)

from which it follows that C(g) ≤ ‖δg/λz‖L2(D(z);λ). The latter expression is bounded
for g is a neighborhood of o and since o ∈ G was arbitrary the proof is completed by a
simple covering argument.

Differentiating Equation (3.5) implies

(V1 . . . Vnf)(g) =
∫

D(z)

f(x)
δVg (x)
λz(x)

dλ(x)

where δVg (x) := V1(g)V2 . . . Vn[y → δy(x)]. The assertion about CV now follows by the
same argument as above with δg replaced by δVg . ¤

The reader may also wish to consult [5] where very precise bounds similar to Theorem
3.2 may be found in the d = 1 case when M = C, and dλ(z) = e−ϕ(z)dm(z) with
0 ≤ ∆ϕ ≤ C < ∞.
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Corollary 3.3. The subspace, HL2(G,λ), is a closed subspace of L2(λ) and in
particular HL2(G,λ) is a Hilbert space.

Proof. Suppose that f ∈ L2(λ) and fn ∈ HL2(G,λ) is a sequence converging in
L2(λ) to f . Given a compact subset, K, of G we conclude from Theorem 3.2 that there
exists C(K) < ∞ such that

sup
g∈K

|fn(g)− fm(g)| ≤ C(K)‖fn − fm‖L2(λ) → 0 as m,n →∞.

Thus {fn}∞n=1 is locally uniformly convergent and hence the pointwise limiting function,
F , is still holomorphic. By passing to a subsequence if necessary, we may conclude that
f = limn→∞ fn = F (λ – a.e.) and hence the L2(λ) - equivalence class is represented by
the unique holomorphic representative, F . ¤

Theorem 3.4 (Reproducing Kernel). To each positive smooth measure, λ, on G,
there exists a unique function (called the reproducing kernel),

k = kλ : G×G → C

such that for all w ∈ G, k(·, w) is the unique element in HL2(λ) such that

f(w) = (f, k(·, w))L2(λ) ∀ f ∈ HL2(λ). (3.6)

1. k(w, z) = (k(·, z), k(·, w)) and hence k(w, z) = k(z, w).
2. k(z, w) is jointly C∞ with w → k(z, w) being holomorphic for each z ∈ G.
3. If {ϕn}∞n=0 ⊂ HL2(λ) is any orthonormal basis, then

k(z, w) =
∞∑

n=0

ϕn(z)ϕn(w), (3.7)

where the sum is absolutely convergent.
4. The function, C : G → [0,∞) in Theorem 3.2 is given by

C(g) = ‖k(·, g)‖L2(λ) =
√

k(g, g), (3.8)

i.e. for all f ∈ HL2(G) the following optimal pointwise bounds hold,

|f(g)|2 ≤ ‖f‖2L2(λ)k(g, g) for all g ∈ G. (3.9)

5. We also have,

|k(z, w)| ≤
√

k(z, z) · k(w, w) =
√

C(z)C(w) ∀ z, w ∈ G. (3.10)

Proof. By Theorem 3.2, the pointwise evaluations maps, evg(f) := f(g), defines
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a continuous linear functional on the Hilbert space HL2(G,λ). Therefore the existence
and uniqueness of k satisfying Equation (3.6) is a consequence of the Riesz theorem for
continuous linear functionals on a Hilbert space. We now prove the remaining items of
the theorem in turn.

1. Apply Equation (3.6) with f(·) = k(·, z).
2. Let w be a point in G and choose a complex chart, ψ : U → ψ(U) ⊂o Cd such

that w ∈ U and ψ(U) is closed under complex conjugation. Then for w ∈ U let
w̄ := ψ−1(ψ(w)). [Note this notion of conjugation on U is chart dependent and is
not well defined in general.] As k(z, w) = k(w, z) is holomorphic for w ∈ U we may
conclude that k(z, w̄) is also holomorphic for w ∈ U . An application of (an easy
version of) Hartog’s Theorem, see [40] now shows that G × U 3 (z, w) → k(z, w̄)
is jointly holomorphic and in particular smooth. (We will give a another proof of
this statement as after the proof of item 5. which avoids the need for using Hartog’s
theorem.)

3. Equation (3.7) follows by the reproducing property of k, Item 1. and Parseval’s
identity;

∞∑
n=0

ϕn(z)ϕn(w) =
∞∑

n=0

(ϕn, k(·, z))(ϕn, k(·, w))

=
∞∑

n=0

(k(·, w), ϕn)(ϕn, k(·, z))

= (k(·, w), k(·, z)) = k(z, w).

4. From Equation (3.6) and the Cauchy-Schwarz inequality,

|f(w)| =
∣∣(f, k(·, w))L2(λ)

∣∣ ≤ ‖f‖L2(λ) · ‖k(·, w)‖L2(λ) (3.11)

where

‖k(·, w)‖2L2(λ) = 〈k(·, w), k(·, w)〉 = k(w, w).

From this equation it follows that equality holds in Equation (3.11) when f = k(·, w)
and therefore the optimal constant C(z) as defined in Equation (3.3) is given by
Equation (3.8).

5. Equation (3.10) follows by taking f = k(·, z) in Equation (3.11) and then using Equa-
tion (3.8).

Second proof of item 2. If PN is orthogonal projection onto span{ϕn : 0 ≤
n ≤ N}, then

kN (z, w) := (k(·, w), PNk(·, z)) =
N∑

n=0

ϕn(z)ϕn(w)

satisfies; 1) kN (z, w) → k(z, w) pointwise, 2)
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|kN (z, w)| ≤ ‖k(·, w)‖‖k(·, z)‖ ≤ C(w)C(z)

and so {kN (z, w)}∞N=1 is locally uniformly bounded, 3) and hence kN → k in the L2 -
norm over compact sets. Give w ∈ G let U ⊂ G be an open neighborhood of w and w̄

be defined as in the proof of item 2 above. With this notation we see that

kN (z, w̄) =
N∑

n=0

ϕn(z)ϕn(w̄) for (z, w) ∈ G× U

is jointly holomorphic on G × U . From Corollary 3.3 applied to any precompact neigh-
borhood G̃ ⊂ G × U , we may now conclude that kN → k locally uniformly and hence
G × U 3 (z, w) → k(z, w̄) = limN→∞ kN (z, w̄) is holomorphic on (z, w) ∈ G × U . In
particular, k(z, w) is jointly smooth. ¤

3.1. Crude pointwise bounds for Lie groups.
For the remainder of this paper, we are now going to further assume that G is a

complex Lie group and our base point, o, is the identity element e ∈ G. Let us further
suppose that dλ(g) = ρ(g)dg where ρ is a positive continuous function on G and dg is a
fixed right invariant Haar measure on G. For A ∈ g = Lie(G) := TeG let Ã denote the
left invariant vector field on G agreeing with A at e ∈ G.

Notation 3.5. If V is a precompact open neighborhood of e ∈ G and ρ : G →
(0,∞) is a given function, let

ρV (g) := inf
x∈V g

ρ(x) = inf
y∈V

ρ(yg).

Theorem 3.6. If V is a precompact open neighborhood of e ∈ G and ρ ∈
C(G, (0,∞)), then there exists C(V ) < ∞ such that for all f ∈ H(G),

|f(g)| ≤ C(V )‖f‖L2(V,λ)
1√

ρV (g)
∀ g ∈ G.

Proof. Applying Lemma 3.1 with o = e ∈ G, there exists a smooth probability
measure of the form δe(x)dx with δe ∈ C∞c (V, [0,∞)) such that

f(e) =
∫

V

f(x)δe(x)dx ∀ f ∈ H(G).

Then for any g we may use this equation with f replace by f ◦Rg to find;

f(g) = f ◦Rg(e) =
∫

V

f(xg)δe(x)dx

=
∫

V g

f(x)δe(xg−1)dx =
∫

V g

f(x)
δe(xg−1)

ρ(x)
dλ(x).
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Therefore by an application of the Cauchy–Schwarz inequality,

|f(g)| ≤ ‖f‖L2(V g,λ) ·
∥∥∥∥

δe((·)g−1)
ρ(·)

∥∥∥∥
L2(V g,λ)

where

∥∥∥∥
δe((·)g−1)

ρ(·)

∥∥∥∥
2

L2(V g,λ)

=
∫

V g

δ2
e(xg−1)
ρ2(x)

ρ(x)dx ≤ 1
ρV (g)

∫

V g

δ2
e(xg−1)dx

from which the theorem holds with

C(V ) :=

√∫

V

δ2
e(x)dx = ‖δe‖L2(m). ¤

4. Examples with G = C.

Before continuing with the general theory in the complex Lie group case, let us pause
to give some examples in the special case where G = C and o = 0, In this case Haar
measure is Lebesgue measure, dm(z) = dxdy, where as usual z = x + iy. As above let
dλ(z) = ρ(z)dm(z) where ρ ∈ C(C, (0,∞)) is a positive continuous function on C. We
will further use the standard first order differential operators on C,

∂ := ∂z =
1
2
(∂x − i∂y), and ∂̄ := ∂z̄ =

1
2
(∂x + i∂y)

where ∂x := ∂/∂x = ∂ + ∂̄, ∂y := ∂/∂y = i(∂ − ∂̄). With this notation the Laplacian, ∆,
on C ∼= R2 may be expressed as

∆ := ∂2
x + ∂2

y = 4∂∂̄.

Notation 4.1 (Taylor map). Given a function f on C which is holomorphic near
0, let

Tf = {f (n)(0)}∞n=0 ∈ CN0 .

Notation 4.2 (Derivative Space). Let

J0 :=
{

α := {αn}∞n=0 ⊂ C : lim sup
n→∞

∣∣∣∣
αn

n!

∣∣∣∣
1/n

= 0
}

.

By the basic properties of holomorphic functions we have that T : H(C) → J0 is a
linear isomorphism with inverse,
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T−1(α)(z) =
∞∑

n=0

αn

n!
zn for all z ∈ C.

Our primary aims are to; 1) develop some basic properties of HL2(λ), 2) identify the
norm on J0 which makes

T |HL2(λ) : HL2(λ) → J0 isometric,

and 3) characterize the image, T (HL2(λ)) ⊂ J0, of the Taylor map.

Definition 4.3. LetHP(C) denote the space of holomorphic polynomials. Further
let,

HPk = {p ∈ HP(C) : deg(p) ≤ k} =
{

p(z) =
k∑

n=0

anzn : an ∈ C
}

.

Notation 4.4. For every ε > 0, let

ρε(z) := min{ρ(w) : w ∈ D(z, ε)}.

Corollary 4.5 (Louiville’s Theorem). Suppose there exists c < ∞ and n ∈ N0

such that

ρ(z) ≥ c

|z|2n + 1
for all z ∈ C. (4.1)

Then HL2(ρ) = HPk for some k < n where HPk := {0} if k ≤ 0.

Proof. First off from Equation (4.1) we conclude that

sup
|z|=r

1
ρε(z)

≤ sup
|z|≤r+ε

|z|2n + 1
c

=
(r + ε)2n + 1

c
. (4.2)

Hence if m > n and f ∈ HL2(λ), by the Cauchy estimates and the pointwise bounds in
Theorem 3.6 along with Equation (4.2), we find,

|f (m)(0)| ≤ m!
rm

sup
|z|=r

|f(z)|

≤ m!
rm

1√
πε
‖f‖L2(λ)

√
sup
|z|=r

1
ρε(z)

≤ m!
rm

1√
πε
‖f‖L2(λ)

√
(r + ε)2n + 1

c
→ 0 as r →∞.

Hence it follows by Taylor’s theorem that f ∈ HPn by Taylor’s theorem. Since
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∫

C
|zn|2dλ(z) ≥ c

∫

C

|z|2n

1 + |z|2n
dm(z) = ∞,

it follows that in fact, HL2(λ) ⊂ HPn−1. Lastly if f(z) =
∑k

j=0 ajz
j ∈ HL2(λ) with

ak 6= 0, then there exists M < ∞ such that |f(z)| ≥ (1/2)|ak||z|k for |z| ≥ M . Therefore
we conclude that

∫

|z|≥M

|z|2kρ(z)dm(z) ≤ |ak|2
4

∫
|f(z)|2ρ(z)dm(z) < ∞

from which is easily follows that HPk ⊂ HL2(λ). ¤

Example 4.6 (A Non-Uniform Decay Example). If ρ(z) := (1/π) exp(−|z|2), then
HP ⊂ HL2(ρdm) and in particular dimHL2(ρdm) = ∞. On the other hand if ϕ is any
nowhere vanishing holomorphic function (i.e. ϕ(z) = eg(z) for some g ∈ H) then the
map,

HL2(ρdm) 3 f → ϕf ∈ HL2

(
ρ

|ϕ|2 dm

)

is unitary and so again dimHL2((ρ/|ϕ|2)dm) = ∞. However, even though
HL2((ρ/|ϕ|2)dm) is infinite dimensional, it is possible that HL2((ρ/|ϕ|2)dm) does not
contain any non-zero polynomials. For example, let ϕ(z) := exp(−(c/2)z2). Then
HL2((ρ/|ϕ|2)dm) ∩HP ={0} when c ≥ 1 as is easy to verify since

ρ(z)
|ϕ(z)|2 =

1
π

exp(−((1− c)x2 + (1 + c)y2))

is now growing in the y – direction for fixed x.

4.1. Radially symmetric densities.
For the rest of this section let us now enforce the standing assumption that ρ(z) =

ρ(|z|) is a continuous positive radial function on C such that HP ⊂ HL2(λ), i.e.

∫

C
|z|kρ(z)dm(z) < ∞ for all k ∈ N0.

In this case we will use the following notation.

Notation 4.7. For α ∈ CN0 , let

‖α‖2ρ :=
∞∑

n=0

|αn|2
(

an

n!

)2

where a2
n :=

∫

C
|z|2ndλ(z).

We further let J(ρ) be the Hilbert subspace of CN0 defined by
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J(ρ) :=
{
α = (α0, α1, . . . ) ∈ CN0 : ‖α‖2ρ < ∞}

equipped with the inner product,

〈α, β〉ρ :=
∞∑

n=0

αnβ̄n

(
an

n!

)2

for all α, β ∈ J(ρ).

Proposition 4.8. If ρ(z) = ρ(|z|) and HP ⊂ HL2(λ), then for all n ∈ N0,

(f, zn)L2(ρ) :=
∫

C
f(z)z̄nρ(|z|)dm(z) = a2

n

f (n)(0)
n!

. (4.3)

Proof. Using polar coordinates we find,

(f, zn) =
∫ ∞

0

( ∫ π

−π

f(reiθ)rne−inθdθ

)
ρ(r)rdr, (4.4)

where, using Taylor’s theorem, we have

∫ π

−π

f(reiθ)rne−inθdθ =
∞∑

k=0

f (k)(0)
k!

∫ π

−π

rkeikθrne−inθdθ = 2πr2n f (n)(0)
n!

.

Thus it follows that

(f, zn) =
f (n)(0)

n!
2π

∫ ∞

0

r2nρ(r)rdr =
f (n)(0)

n!

∫

C
|z|2ndλ(z)

which proves Equation (4.3). ¤

Theorem 4.9. If ρ(z) = ρ(|z|) and HP ⊂ HL2(λ), then;

1. {zn/an}∞n=0 forms an orthonormal basis for HL2(λ).
2. For any f ∈ HL2(λ),

f(z) =
∞∑

n=0

f (n)(0)
n!

zn (4.5)

converges pointwise and L2(λ).
3. The Taylor map in T in Notation 4.1 is a unitary map from HL2(λ) → J(λ).
4. The reproducing kernel (see Theorem 3.4) for λ is given by

k(z, w) = kλ(z, w) =
∞∑

n=0

1
a2

n

(zw̄)n. (4.6)

5. Every f ∈ H(C) satisfies the (optimal) pointwise bounds,
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|f(z)|2 ≤ ‖f‖2L2(λ)

( ∞∑
n=0

1
a2

n

|z|2n

)
. (4.7)

6. If f ∈ H(C), then

∫

C
|f(z)|2ρ(z)dm(z) =

∞∑
n=0

|f (n)(0)|2
(

an

n!

)2

.

Proof. We prove each item in turn.

1. Taking f(z) = zm in Equation (4.3) shows (zm, zn) = a2
nδm,n and therefore,

{zn/an}∞n=0 is orthonormal subset of HL2(λ). If f ∈ HL2(λ) is orthogonal to
{zn/an}∞n=0, then according to Equation (4.3),

0 =
(

f,
zn

an

)
= an

f (n)(0)
n!

for all n ∈ N0.

As f is entire, we may conclude that f is identically zero and hence {zn/an}∞n=0 is an
orthonormal basis for HL2(λ).

2. The pointwise convergence of the sum in Equation (4.5) to f(z) is a consequence of
Taylor’s theorem for holomorphic functions and the L2(λ) – convergence follows from
item 1. and the observation that

f (n)(0)
n!

zn =
(

f,
zn

an

)

L2(ρ)

zn

an
.

3. The fact that T : HL2(λ) → J(λ) is unitary follows directly from item 1.
4. Item 4. is a direct consequence of item 3. of Theorem 3.4 and item 1. of this theorem.
5. The bounds in Equation (4.7) follows from item 4. of Theorem 3.4 and Equation (4.6).
6. To see the isometry property is valid for all f ∈ H(C), use T : HL2(λ) → J(λ) is

unitary, Taylor’s theorem, and Fatou’s lemma, to show;

∫

C
|f(z)|2ρ(z)dm(z) =

∫

C
lim inf
N→∞

∣∣∣∣
N∑

n=0

f (n)(0)
n!

zn

∣∣∣∣
2

ρ(z)dm(z)

≤ lim inf
N→∞

∫

C

∣∣∣∣
N∑

n=0

f (n)(0)
n!

zn

∣∣∣∣
2

ρ(z)dm(z)

= lim inf
N→∞

N∑
n=0

a2
n

∣∣∣∣
f (n)(0)

n!

∣∣∣∣
2

=
∞∑

n=0

a2
n

∣∣∣∣
f (n)(0)

n!

∣∣∣∣
2

. ¤

Corollary 4.10 (Density of Polynomials). If ρ(z) = ρ(|z|) > 0 is such that
HP ⊂ HL2(λ), then HP is dense in HL2(λ).

Proof. This is an immediate consequence of item 1. of Theorem 4.9. ¤
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Question. under what conditions on ρ is HP is dense in HL2(λ)? It is certainly
not necessary for ρ to be radially symmetric. For example, by a change of variables
arguments one easily shows that HP is dense in HL2(λ) if ρ(z) = ρ̃(|az + b|) for some
a 6= 0 and ρ̃ decays sufficiently fast at infinity. Moreover, it is shown in [13, Theorem
3.6] (or see Theorem 5.1 below) that HP is dense in HL2(λ) whenever

ρ(z) = C exp(−(ax2 + 2bxy + cy2))

for some a, c > 0 and b ∈ R such that b2 − ac < 0.

4.2. Exponential examples.
Theorem 4.11. If κ > 0, Γ(z) :=

∫∞
0

tze−t(dt/t) is the gamma function, and

ρ(z) = ρκ(z) :=
κ

2π
exp(−|z|κ),

then

‖α‖2ρ =
∞∑

n=0

|αn|2 Γ((2n + 2)/κ)
(n!)2

,

k(z, w) =
∞∑

n=0

1
Γ((2n + 2)/κ)

(zw̄)n,

and for all f ∈ H(C),

|f(z)|2 ≤ ‖f‖2L2(ρκdm)

( ∞∑
n=0

|z|2n

Γ((2n + 2)/κ)

)
and

∫

C
|f(z)|2 κ

2π
exp(−|z|κ)dm(z) =

∞∑
n=0

|f (n)(0)|2 Γ((2n + 2)/κ)
(n!)2

.

Proof. These results all follow directly from Theorem 4.9 upon noting (after
making a change of variables) that

a2
n = κ

∫ ∞

0

r2n+1e−rκ

dr = Γ
(

2n + 2
κ

)
. ¤

Example 4.12 (κ = 1). If κ = 1, then

k(z, w) =
∞∑

n=0

1
(2n + 1)!

(zw̄)n =
sinh(

√
zw̄)√

zw̄

and for all f ∈ H(C),
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1
2π

∫

C
|f(z)|2 exp(−|z|)dm(z) =

∞∑
n=0

|f (n)(0)|2 (2n + 1)!
(n!)2

,

and

|f(z)|2 ≤ ‖f‖2L2(λ)

sinh(|z|)
|z| ≤ ‖f‖2L2(λ)

1
2|z|e

|z|.

Example 4.13 (κ = 2). If κ = 2, then

k(z, w) =
∞∑

n=0

1
n!

(zw̄)n = ezw̄

and for all f ∈ H(C),

1
π

∫

C
|f(z)|2 exp(−|z|2)dm(z) =

∞∑
n=0

1
n!
|f (n)(0)|2, and

|f(z)|2 ≤ ‖f‖2L2(λ)e
|z|2 . (Bargmann’s Pointwise Bounds)

We will revisit this last example in the next section.

5. The “classical” Gaussian example.

In this section we will take G = Cd and o = 0 ∈ Cd. If u ∈ Cd we let ∂uf(z) :=
d/dt|0f(z + tu) so that

∂

∂xl
= ∂el

and
∂

∂yl
= ∂iel

for 1 ≤ l ≤ d,

where {el}d
l=1 is the standard basis for Cd. As in the d = 1, we will also use the standard

complex differential operators,

∂l =
∂

∂zl
=

1
2

(
∂

∂xl
− i

∂

∂yl

)
, ∂̄l =

∂

∂z̄l
=

1
2

(
∂

∂xl
+ i

∂

∂yl

)
.

Theorem 5.1 (Density). Let q : Cd → R be a positive quadratic form on Cd

when considering Cd as a real vector space. Define the Gaussian measure on Cd by
dλ(z) = ρ(z)dm(z), where m is Lebesgue measure on Cd, ρ(z) = (1/Z)e−q(z), and Z is
the normalization constant which makes λ a probability measure. Then the holomorphic
polynomials are dense in HL2(Cd, λ).

This theorem was proved in [13, Theorem 3.6] where the authors made use of the
finite dimensional version of the Itô-chaos expansion in order to reduce the problem to
the density of all polynomials in the L2 -space of a Gaussian measure. We will give an
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alternate proof technique here which may prove to be useful for other measures on Cd.
Let us first recall the standard integration by parts lemma.

Lemma 5.2 (Integration by Parts). Suppose that f, g ∈ C1(Rd) and v ∈ Rd such
that |fg|+ |f∂vg|+ |g∂vf | is integrable relative to Lebesgue measure m on Rd. Then

∫

Rd

f∂vg dm = −
∫

Rd

g∂vf dm. (5.1)

Proof. The proof is standard and is based on introducing a cutoff function,
ΨM (x) := Ψ(x/M), where Ψ ∈ C∞c (Rd) such that Ψ ≥ 0 and Ψ(x) = 1 if |x| ≤ 2.
One then uses the dominated convergence theorem to justify passing to the limit as
M →∞ in the following identity;

0 =
∫

Rd

∂v(ΨMfg) dm

=
∫

Rd

1
M

(∂vΨ)
(

x

M

)
f(x)g(x) dm(x) +

∫

Rd

ΨM∂vf · g dm +
∫

Rd

ΨMf∂vg dm. ¤

Proof of Theorem 5.1. In order to demonstrate the method of proof of Theo-
rem 5.1 let us first consider the special case where d = 1 and q(z) = |z|2 = zz̄ so that
ρ(z) = (1/π)e−zz̄. We wish to show: if f ∈ HL2(C, λ) is orthogonal to all the holomor-
phic polynomials then f ≡ 0. Let p(z) =

∑N
k=0 akzk be a holomorphic polynomial and

p(∂̄) =
∑N

k=0 ak∂̄k. Notice that p(∂̄)ρ(z) = p(−z)ρ(z). By repeated applications of the
integration by parts Lemma 5.2 we find

∫

C
z̄mf(z)p(−z)ρ(z)dm(z) =

∫

C
z̄mf(z)p(∂̄)ρ(z)dm(z)

=
∫

C
p(−∂̄)(z̄mf(z))ρ(z)dm(z)

=
∫

C
(p(−∂̄)z̄m)f(z)ρ(z)dm(z) = 0

wherein the last equality we have used that fact that ∂̄f = 0 (f is holomorphic) and
the assumption that f is orthogonal to the holomorphic polynomials. Therefore we have
shown

∫
C f(z)z̄kzmρ(z)dm(z) = 0 for all integers k and m. In particular, this shows that

f is orthogonal to all polynomials and hence is zero.
The general proof will follow this same strategy with some minor complications

which arise when Q 6= I. Let q : Cd → R be a positive quadratic form where Cd is
viewed as the real vector space R2d. We may write q(z) = z ·Az + 2Bz · z̄ + z̄ ·Cz̄ where
A, B, and C are d × d complex matrices and v · w =

∑d
i=1 viwi is the complex bilinear

dot product on Cd. Notice that q(iz) + q(z) = 4Bz · z̄ for all z ∈ Cd. Therefore, B = B∗

and B is positive definite. In particular B is invertible. It can also be shown that A = C̄,
but this will not be needed in the proof of Theorem 5.1.
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Let us now proceed to the proof of the density Theorem 5.1 in the general case. Let
p(z, z̄) be a polynomial in z and z̄. We will call the highest power of z’s appearing in
p(z, z̄) the z–degree of p. By assumption, we are given that f : Cd → C is holomorphic
and

∫

Cd

f(z)p(z, z̄)dλ(z) = 0 (5.2)

for all polynomials p which have zero z–degree. We wish to show that Equation (5.2)
holds for all polynomials p(z, z̄). This will be proved by induction on the the z–degree
of p.

So suppose k ≥ 0 and that Equation (5.2) holds for all polynomials of z–degree less
than or equal to k. Let p(z, z̄) be any polynomial of z–degree k. Integration by parts
along with ∂̄if = 0 and the fact that ∂̄ip(z, z̄) has z–degree less than or equal to k leads
to

∫

Cd

f(z)p(z, z̄)∂̄iρ(z)dm(z) = −
∫

Cd

f(z)(∂̄ip(z, z̄))ρ(z)dm(z) = 0. (5.3)

Since

∂̄iρ(z) = −2(Btz + Cz̄)iρ(z)

and p(z, z̄)(Cz̄)i is a polynomial of z–degree k, it follows from Equation (5.3) and the
induction hypothesis that

0 =
∫

Cd

f(z)p(z, z̄)(Btz + Cz̄)iρ(z)dm(z) =
∫

Cd

f(z)p(z, z̄)(Btz)iρ(z)dm(z).

Since B is invertible and i is arbitrary, we may take linear combinations of the above
identity in order to conclude

0 =
∫

Cd

f(z)p(z, z̄)zlρ(z)dm(z)

for all l and polynomials p of z–degree equal to k. Hence Equation (5.2) holds for all
polynomials p of z–degree less than or equal to k+1. This completes the induction argu-
ment and establishes Equation (5.2) for all polynomials. This then proves the theorem
since space of all polynomials is well known to be dense in L2(Cd, λ). ¤

For the rest of this section we will now restrict our attention to the case where λt

(for t > 0) is the Gaussian measure defined by

dλt(z) :=
(

1
πt

)d

e−(1/t)q(z)dm(z) (5.4)

with
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q(z) = z · z̄ =
d∑

i=1

|zi|2. (5.5)

Notation 5.3. Let J0 denote the elements α = (αn)∞n=0 where for each n, αn :
(Cd)n → C are complex multi-linear symmetric forms on Cd. Given a holomorphic
function, f , on Cd (or on a open neighborhood of 0 ∈ Cd), let f̂(0) = α ∈ J0 be defined
by α0 = f(0) and for n ≥ 1,

αn(u1, . . . , un) := (∂u1 . . . ∂un
f)(0) for all ui ∈ Cd.

It should be observe that f̂(0) is indeed in J0. This is because; 1) f being holomor-
phic guarantees that αn is complex multi-linear (an not just real multi-linear) and 2) αn

is symmetric in its arguments since mixed partial directional derivatives commute.

Notation 5.4 (Symmetric Fock Space). For t > 0 and α ∈ J0, let

‖α‖2t :=
∞∑

n=0

tn

n!
‖αn‖2 where

‖αn‖2 :=
∑

u1,...,un∈S

|αn(u1, . . . , un)|2

and S is a complex orthonormal basis for Cd. We then let J0
t := {α ∈ J0 : ‖α‖t <

∞} which is a Hilbert space when equipped with the inner product associated to the
Hilbertian norm, ‖·‖t. [The Hilbert space, J0

t , is an example of a symmetric (or Bosonic)
Fock space.]

With this notation we have the following multi-dimensional version of Example 4.13.

Theorem 5.5. Let t > 0 be fixed and T : H(Cd) → J0 be the Taylor map, f →
Tf = f̂(0). If f ∈ H(Cd), then

‖f‖L2(λt) =
∥∥f̂(0)

∥∥
t
= ‖Tf‖t (5.6)

and T : HL2(λt) → J0
t is unitary. Moreover we also have the following results.

1. If f ∈ HL2(λt) and α = Tf = f̂(0), then

f(z) =
∞∑

n=0

1
n!

αn

( n times︷ ︸︸ ︷
z, z, . . . , z

)
(5.7)

converges pointwise and L2(λt).
2. {pβ(z) := zβ/

√
β!t|β|/2 : β ∈ Nd

0} forms an orthonormal basis for HL2(λt) where
β! =

∏d
l=1 βl! and |β| = β1 + · · ·+ βd.
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3. The reproducing kernel (see Theorem 3.4) for λt is given by

k(z, w) = kλt(z, w) = e(1/t)z·w̄. (5.8)

4. Every f ∈ H(C) satisfies the (optimal) pointwise bounds,

|f(z)|2 ≤ ‖f‖2L2(λt)
e1/t|z|2 for all z ∈ Cd. (5.9)

Proof. Although this theorem could be proved by similar methods used to prove
Theorem 4.9, it will be more instructive to give a different proof here which is more easily
generalizes to the setting of complex Lie groups in Section 6 below. The key observation
is to make use of the fact that λt is the convolution kernel associated to the heat flow,
et∆/4 where

∆ =
d∑

l=1

[(
∂

∂xl

)2

+
(

∂

∂yl

)2]
= 4∂ · ∂̄ := 4

d∑

l=1

∂l∂̄l.

In particular, for a large class of functions we have

(
et∆/4f

)
(0) =

∫

Cd

f(z)dλt(z).

Assuming that f ∈ HL2(λ) and working formally for the moment we have,

∫

Cd

|f(z)|2dλt(z) =
(
et∆/4|f |2)(0) =

∞∑
n=0

tn

n!
(
(∂ · ∂̄)n|f |2)(0). (5.10)

As f is holomorphic, ∂f̄ = 0 = ∂̄f and ∂̄f̄ = ∂f , we conclude that

(∂ · ∂̄)|f |2 =
d∑

l=1

∂lf · ∂lf =
d∑

l=1

|∂lf |2

and similarly by induction that

(∂ · ∂̄)n|f |2 =
d∑

l1,...,ln=1

|∂l1 . . . ∂lnf |2.

Evaluating this expression at z = 0 shows

‖αn‖2 =
d∑

l1,...,ln=1

|∂l1 . . . ∂lnf |2(0) =
(
(∂ · ∂̄)n|f |2)(0)

which combined with Equation (5.10) formally proves Equation (5.6).



Holomorphic functions and the Itô chaos 1467

Although the above computation was formal it is easy to justify when f ∈ HP(Cd)
in which case all sums are finite sums. Thus Equation (5.6) holds for all f ∈ HP(Cd)
and then by a simple limiting argument along with the density result in Theorem 5.1 we
may conclude that Equation (5.6) is valid for f ∈ HL2(λt). [The key points to carrying
out this limiting arguments are: 1) if HP(Cd) 3 fk → f ∈ HL2(λt) in the L2(λt) –
norm, then {Tfk}∞k=1 is Cauchy in J0

t and 2) the Cauchy estimates show fk and all of
its derivatives converge to the analogous derivatives of f as k → ∞.] Since T [HP(Cd)]
is the dense subspace of finite rank tensors on J0

t (i.e. those α ∈ J0
t with αn ≡ 0 for

all sufficiently large n), we may easily conclude that T maps HL2(λt) onto J0
t , i.e. T is

unitary.
If f ∈ H(C) with ‖f‖L2(λt) = ∞, then let α = Tf and set

fk(z) :=
k∑

n=0

1
n!

αn(z, z, . . . , z)

be the kth – order Taylor approximation to f . Then by Taylor’s theorem for entire
functions on Cd we know that fk(z) → f(z) as k → ∞ and therefore by Fatou’s lemma
along with the Equation (5.6) for holomorphic polynomials we find,

∞ = ‖f‖2L2(λt)
≤ lim inf

k→∞
‖fk‖2L2(λt)

= lim inf
k→∞

k∑
n=0

tn

n!
‖αn‖2 = ‖α‖2t .

Thus we have shown that Equation (5.6) holds for all f ∈ H(C). We now prove the
remaining results in items 1–4 in turn.

1. The pointwise convergence in Equation (5.7) is guaranteed by Taylor’s theorem for
holomorphic functions. The L2(λt) – convergence follows from the isometry property
already proved which allows us to conclude that {z → (1/n!)αn(z, z, . . . , z)}∞n=0 is a
collection of orthogonal functions in L2(λt) with

∞∑
n=0

∥∥∥∥z → 1
n!

αn(z, z, . . . , z)
∥∥∥∥

2

L2(λt)

=
∞∑

n=0

‖αn‖2J0
t

= ‖α‖2J0
t

< ∞.

2. Let β ∈ Nd
0 and n = |β|. A little thought shows

∂l1 . . . ∂lnzβ |z=0 =

{
β! if ∂l1 . . . ∂ln = ∂β

0 otherwise

where ∂β = ∂β1
1 . . . ∂βd

d . From this observation and the isometry property already
proved, it follows that {zβ : β ∈ Nd

0} is an orthogonal subset of HL2(λt). Moreover,
since

n!
β!

= #{(l1, . . . , ln) ∈ {1, . . . , d}n : ∂l1 . . . ∂ln = ∂β},
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we may conclude that

‖z → zβ‖2L2(λt)
=

tn

n!
(β!)2 · n!

β!
= tnβ! = t|β|β!.

These computations along with the fact that holomorphic polynomials are dense in
HL2(λt) completes the proof of item 2.
3. & 4. The proof of items 3. and 4. now follow as in the proof of Theorem 4.9. ¤

For infinite dimensional versions of this theory see Shigekawa [38], Sugita [39],
and Gross and Malliavin [22] where the reader will numerous relevant references. The
interested reader may consult [13] and [24] for a number of related results involving
more general Gaussian measure in both finite and infinite dimensional settings and their
relations to the Itô-chaos expansion and Brian Hall’s isometry theorem first introduced
in [23].

6. Heat kernel complex Lie group theory.

The goal of this section is to describe the results in [10], [11], [12] which generalize
the results of the previous section to the context of complex Lie groups. In this setting
we will be replacing the Gaussian measure λt in Equation (5.4) by more general “ heat
kernel” measures (see Theorem 6.16) associated to both elliptic and hypo-elliptic second
order left invariant differential operators on a complex Lie group. Along the way, I will
also indicate alternative proofs to some of the results in [10], [11], [12] which are likely
to be more palatable to stochastic analysts. These new proofs also show more clearly the
connection of the results in [10], [11], [12] to Itô’s chaos expansions, see [29].

6.1. Algebraic setup.
For the rest of this paper we are going to assume that G is a complex simply

connected Lie group. Let g := Lie(G) = TeG be the complex Lie algebra of G and g∗ be
the (complex) dual space of g. For example, as above we might take G = Cd or some
other complex simply connected nilpotent Lie group, see [12]. Another example to have
in mind is G = SL(n,C) (with n ≥ 2) in which case g = Lie(SL(n,C)) = sl(n,C) – the
space of n× n trace free matrices.

Definition 6.1. for A ∈ g and g ∈ G let Ã(g) = Lg∗A so that Ã is the unique
left invariant vector field on G which agrees with A at the identity.

Notation 6.2. Given a complex Lie algebra g, let;

1. T (g) =
⊕∞

n=0 g⊗n be the complex algebraic tensor algebra over g,

2. T (g)′ =
∏∞

k=0(g
⊗k)∗ denote the algebraic dual to T (g).

3. J ⊂ T (g) be the two sided ideal in T (g) generated by {ξ⊗ η− η⊗ ξ− [ξ, η] : ξ, η ∈ g}.

Let D denote the complex linear differential operators onH(G) which preserveH(G).
By the universal property of the tensor algebra, T (g), there exists an algebra homomor-
phism, T (g) 3 β → β̃ ∈ D, determined uniquely by setting 1̃ = id and Ã to be as
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in Definition 6.1 for all A ∈ g. [Notice that; if z ∈ C, A ∈ g, and f ∈ H(G), then
(zA)∼f = z · Ãf by the Cauchy-Riemann equations.] It will also be useful to let, for
x ∈ G, and k ∈ N0, (Dkf)(x) ∈ (g⊗k)∗ be uniquely determined by

〈
(Dkf)(x), A1 ⊗ · · · ⊗Ak

〉
=

(
Ã1 . . . Ãkf

)
(x). (6.1)

Definition 6.3 (Taylor map). For f ∈ H = H(G) and x ∈ G, let f̂(x) ∈ T (g)′ be
defined by

〈f̂(x), β〉 := f̂(x)(β) = (β̃f)(x) ∀ β ∈ T (g).

We call f̂(x) ∈ J0 the Taylor coefficients of f at x and refer to the linear map,

H(G) 3 f
T→ Tf := f̂(e) ∈ J0, (6.2)

as the Taylor map. We also will denote f̂(e) by αf .

To be more explicit f̂(x) is determined by 〈f̂(x), 1〉 = f(x) and

〈f̂(x), A1 ⊗ · · · ⊗An〉 = 〈(Dnf)(x), A1 ⊗ · · · ⊗An〉 =
(
Ã1 . . . Ãnf

)
(x)

for any n ∈ N and Ai ∈ g for 1 ≤ i ≤ n.

Lemma 6.4. If f ∈ H(G), then αf (β) = 0 for all β ∈ J .

Proof. As is well known, if γ1, γ2 ∈ T (g) and ξ, η ∈ g, then

[γ1 ⊗ (ξ ⊗ η − η ⊗ ξ − [ξ, η])⊗ γ2]∼ = γ̃1

(
ξ̃η̃ − η̃ξ̃ − [̃ξ, η]

)
γ̃2 = 0

since by the definition of the Lie bracket, [̃ξ, η] = [ξ̃, η̃]. In other words, β̃ = 0 for all
β ∈ J and in particular (β̃f)(e) for all β ∈ J . ¤

Definition 6.5. Let J0 = {α ∈ T (g)′ : α|J ≡ 0} be the (raw) derivative space.
[The derivative space may be identified with the dual of the universal enveloping algebra,
U(g) = T (g)/J .]

We now suppose that q is a non-negative Hermitian form on g∗. The proof of the
following simple linear algebra lemma may be found in [11, Lemma 2.2]

Lemma 6.6. If q is a non-negative Hermitian form on g∗, then there exists m ≤
dimC(g) and a linearly independent subset, {Xl}m

l=1 ⊂ g, such that

q(α, β) =
m∑

l=1

α(Xl)β(Xl) for all α, β ∈ g∗.
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Definition 6.7 (Horizontal subspace). The horizontal subspace associated to q is
H = H(q) := spanC(Xl : 1 ≤ l ≤ m) with the inner product: (Xl, Xk)H := δlk. [Let me
emphasize that m may be strictly less than dimC g.]

Example 6.8. If g = sl(n,C) we might take q to be the dual norm to the Hilbert–
Schmidt inner product on g defined by 〈A,B〉HS := tr(B∗A).

Next we extend q to (g⊗k)∗ by defining

q⊗k(α, β) =
m∑

l1,...,lk=1

α(Xl1 ⊗ · · · ⊗Xlk)β(Xl1 ⊗ · · · ⊗Xlk)

for all α, β ∈ (g⊗k)∗.

Definition 6.9. For each t > 0, and α ∈ T (g)′ let

qt(α) :=
∞∑

k=0

tk

k!
q⊗k(α, α) (6.3)

and then set

J0
t := {α ∈ J0 : qt(α) < ∞}. (6.4)

For α, β ∈ J0
t we also let

qt(α, β) :=
∞∑

k=0

tk

k!
q⊗k(α, β) (6.5)

which is the polarization of Equation (6.3).

Definition 6.10 (Hörmander’s condition). We say q satisfies Hörmander’s condi-
tion if Lie(H(q)) = g where Lie(H(q)) is the smallest Lie-subalgebra of g which contains
the horizontal subspace, H(q).

The next theorem gives simple necessary and sufficient condition on q in order that
qt is an inner product on J0

t for one and hence for all t > 0.

Theorem 6.11 ([11, Theorem 2.7]). The following are equivalent :

1. Hörmander’s condition holds, i.e. Lie(H) = g,
2. T (g) = T (H) + J ,
3. for any t > 0, qt|J0

t
is an inner product on J0

t .

6.2. The reconstruction series.
If z is a point in Cn and z⊗k is its kth tensor power in (Cn)⊗k then the conventional

power series representation of a holomorphic function f in a neighborhood of 0 ∈ Cn

may be written f(z) = 〈α, Φ(z)〉, where Φ(z) :=
∑∞

k=0(k!)−1z⊗k is an element of the
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(suitably completed) tensor algebra over Cn and α is in the dual space. In order to
recover a holomorphic function f on a complex Lie group G from a knowledge of its
Taylor coefficient α = f̂(e), we will need to represent f globally on G by an analogous
kind of power series. Of course we do not, in general, have a global coordinate system as
on Cn. Proposition 6.13 below is a special case of [11, Proposition 5.13] which in turn
relies on the machinery in [6] and [10]. To state the proposition we need the following
notation.

Notation 6.12. If g : [0, 1] → G is a piecewise C1 path such that g(0) = e then
for each n ∈ N we let

Ψn
t (g) :=

∫

∆n(t)

b′(s1)⊗ · · · ⊗ b′(sn) ds ∈g⊗n

where

∆n(t) := {(s1, . . . , sn) : 0 ≤ s1 ≤ s2 ≤ · · · ≤ sn ≤ t},

ds = ds1 . . . dsn, b(s) :=
∫ s

0
θ(g′(r))dr and θ is the Maurer-Cartan form defined by

θ(g′(r)) := Lg(r)−1∗g′(r) ∈ g. Here Lx : G → G denotes the holomorphic function given
by left multiplication by x ∈ G. We further let Ψ0

t (g) = 1 and

Ψt(g) :=
∞∑

n=0

Ψn
t (g) ∈

∞∏
n=0

g⊗n.

Proposition 6.13 ([11, Proposition 5.13]). If f ∈ H(G), α = Tf = f̂(e), and
g : [0, 1] → G is a piecewise C1 path, such that g(0) = e, then

f(g(1)) = 〈α, Ψ1(g)〉 :=
∞∑

k=0

〈f̂(e),Ψk
1(g)〉 (6.6)

where the sum in Equation (6.6) is absolutely convergent.

Proof. I will give a sketch of the proof here and refer the interested reader to [6,
Proposition 5.1] for the details. There are three basic steps to the proof.

1. For each z = x + iy ∈ C, let

Vz(t, g) ≡ Lg∗[zb′(t)] = Lg∗(xb′(t) + yib′(t)).

One then shows that the unique solution, gz(t) ∈ G, to the ordinary differential
equation:

ġz(t) = Vz(t, gz(t)) = Lg∗[zb′(t)] with gz(0) = e (6.7)

is holomorphic in z. Consequently z → f(gz(1)) is a holomorphic function of z and
hence has an expansion of the form,
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f(gz(1)) =
∞∑

n=0

anzn for all z ∈ C (6.8)

which is absolutely convergent.
2. By repeated use of the fundamental theorem of calculus one shows (see [6, Lemma

5.2]),

f(gz(1)) =
N−1∑
n=0

zn

∫

∆n(1)

〈
Dnf(e), b′(s1)⊗ · · · ⊗ b′(sn)

〉
ds + zNRN (z) (6.9)

=
N−1∑
n=0

zn

∫

∆n(1)

〈αf ,Ψn
1 (g)〉ds + zNRN (z) (6.10)

where

RN (z) ≡
∫

∆N (1)

〈
DNu(gz(s1)), b′(s1)⊗ · · · ⊗ b′(sN )

〉
ds. (6.11)

3. By comparing the series in Equations (6.8) and (6.10) we may conclude that in fact
an =

∫
∆n(1)

〈αf ,Ψn
1 (g)〉ds and therefore,

f(gz(1)) =
∞∑

n=0

zn ·
∫

∆n(1)

〈αf ,Ψn
1 (g)〉ds for all z ∈ C.

The result now follows by taking z = 1 in the previous equation. ¤

Remark 6.14. The absolute convergence of the sum in Equation (6.6) is solely a
consequence of the fact that f is holomorphic on G.

6.3. Heat Kernel Measures.
Definition 6.15. Given a non-negative Hermitian form, q, on g∗ we associate a

second order differential operator on C∞(G) defined by

∆ = ∆q :=
m∑

l=1

[
X̃l

2
+ Ỹl

2]

where {Xl}m
l=1 form a basis for H(q) as described in Lemma 6.6 and Yl := iXl =

√−1Xl

for 1 ≤ l ≤ m. We refer to ∆q as the Laplacian associated to q.

The following theorem is by now standard and the reader is referred to [11, Section
3] for references to the literature where the proofs and more details may be found.

Theorem 6.16. Assuming Lie(H) = g, there exists a convolution (heat kernel)
semi-group, {ρt}t>0 ⊂ C∞(G, (0,∞)) such that
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(
et∆/4f

)
(e) =

∫

G

f(g)dλt(g)

where dλt(g) = ρt(g)dg and dg denotes a right Haar measure on G. [The fact that ρt is
smooth is a consequence Hörmander’s theorem [25].]

The following Theorem 6.17 is the main theorem in [11]. The remaining goal of this
paper is to explain some aspects of the proof of this theorem. Along the way, we will
give some alternate Itô calculus explanations of the some the steps in the proof which
were previously done by more pure analytic techniques.

Theorem 6.17 (Taylor Isomorphism Theorem, [11, Theorem 6.1]). Let G be a
connected, simply connected complex Lie group. Suppose that q is a non-negative Her-
mitian form on the dual space g∗ and assume that Hörmander’s condition holds, (cf.
Definition 6.10). Let ρt denote the heat kernel as in Theorem 6.16. Then the Taylor
map,

HL2(G,λt) 3 f → Tf = f̂(e) = αf ∈ J0
t

is a unitary map from HL2(G,λt) onto J0
t .

Proof. Before getting started let us first note that the same type of formal ar-
gument used in the proof of Theorem 5.5 carry over to this setting to formally show for
f ∈ HL2(λt) that

‖f‖2L2(λt)
= et∆/4|f |2(e) =

∞∑
n=0

1
n!

(
(Z · Z̄)n|f |2)(e)

=
∞∑

n=0

1
n!

m∑

l1,...,lk=1

∣∣X̃l1 . . . X̃lkf(e)
∣∣2 =

∥∥f̂
∥∥2

t
, (6.12)

where

Zl =
1
2
(
X̃l − iỸl

)
and Z̄l =

1
2
(
X̃l + iỸl

)
.

However, it is much more difficult to make this argument rigorous in this case as there
are, in general, no known dense subspaces in HL2(λt) and J0

t respectively on which these
computations are easily justified. For example it is shown in [21] that for general g there
are typically no finite rank tensors in J0. On the other hand, if g is “stratified,” then
the finite rank tensors in J0 are dense in J0

t and the above proof goes through, see [12,
Lemma 3.5].

The rigorous proof for general g involves three steps. The proofs given here of the
first two steps will be different than those given in [11].

1. First we wish to show ‖f̂(e)‖2
J0

t
≤ ‖f‖2L2(ρt)

for all f ∈ HL2(G,λt) and hence for all
f ∈ H(G). This is the content of Corollary 6.23 below.
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2. Secondly we show ‖f‖2L2(ρt)
≤ ‖f̂(e)‖2

J0
t

for all f ∈ H(G), see Corollary 6.28 below.
These two steps together shows the isometry property in Equation (6.12) holds for all
f ∈ H(G).

3. The last step is to show the Taylor map, HL2(G,λt) 3 f → f̂(e) ∈ J0
t is surjective.

This is where the fact that G is simply connected comes into play. The construction
of f ∈ H(G) from α ∈ J0

t is rather subtle and I have nothing new to add here over
the proof given in [11, Section 6]. ¤

The remainder of this section is devoted to the proofs of Corollaries 6.23 and 6.28
below. The proofs we give here will make heavy use of Brownian motion, Itô calculus,
and multiple Itô integrals in particular. This is in contrast to the more analytic proofs
given in [11].

Remark 6.18. The Taylor Isomorphism Theorem 6.17 was proved for non-
degenerate q in [6] for complexifications of compact type Lie groups and then for general
complex Lie groups in [10]. The most general form given here is found in [11] as already
mentioned. There are by now numerous infinite dimensional version of this theorem,
see Gordina [17], [18], [19], Cecil [4], Driver and Gordina [7], [8], [9], and Gordina and
Melcher [20]. Moreover, the methods describe above for the informal proof of Equation
(6.12) have proved useful for understanding the large-N limit of the Segal-Bargmann-Hall
transform in the context of SL(N,C), see [14].

6.4. Itô expansion results.
Let (Ω, {Bs}s≥0, P ) be a filtered probability space satisfying the usual assumptions.

We further assume that {b(s) ∈ H(q)}s≥0 is a “horizontal” Brownian motion by which
we mean

b(s) =
1√
2

m∑

j=1

(xj(s)Xj + yj(s)Yj) ∈ H(q) (6.13)

where {(x1(s), . . . , xm(s))}s≥0 and {(y1(s), . . . , ym(s))}s≥0 are two independent Rm –
valued Brownian motions. Let g(s) ∈ G denote the solution to the stochastic differential
equation;

δg
.= Lg∗δb with g(0) = e, (6.14)

or equivalently g solves

δg
.=

d∑

j=1

{
X̃j(g)δxj + Ỹj(g)δyj

}
with g(0) = e. (6.15)

Here and in the rest of the paper we use δb to denote the Stratonovich differential while
db denotes the Itô differential.

The interpretation of such equations again goes back to Itô [27], [28], [30], [32]. By
definition of (6.15), if u ∈ C∞(G), then
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du(g) .=
d∑

j=1

{
(X̃ju)(g)δxj + (Ỹju)(g)δyj

}

=
d∑

j=1

{
(X̃ju)(g)dxj + (Ỹju)(g)dyj

}
+

1
2

d∑

j=1

{
(X̃2

j u)(g) + (Ỹ 2
j u)(g)

}1
2
ds

= 〈Du(g), db〉+
1
4
(∆u)(g)ds, (6.16)

where Du(g) is viewed as an element of g∗R and gR denotes g thought of as a real vector
space. Thus g(s) is a Brownian motion on G with generator ∆ and hence

Law(g(t)) = λt for all t > 0. (6.17)

If u = f ∈ H(G) then ∆f = 0 (by the Cauchy-Riemann equations) so that (6.16)
simplifies to

df(g) = 〈Df(g), db〉. (6.18)

We will need a few auxiliary results in order to exploit this stochastic description
of λt. Our first goal is to get control of size of Dnf for f ∈ HL2(G,λt) so that we can
conclude that the local martingale, f(gs), is in fact a square integrable martingale for
0 ≤ s ≤ t.

Theorem 6.19. If f ∈ HL2(G,λt), then for all n ∈ N and 0 < s < t, there exists
Cs = C(n, s) < ∞ such that

‖Dnf‖L2(λτ ) ≤ Cs‖f‖L2(λt) for all 0 < τ ≤ s.

Proof. To this end we start with Lemma 3.1 in order to see that there exists a
smooth function δ : G×G → C supported near (e, e) ∈ G×G such that

f(x) =
∫

G

f(y)δ(x, y)dy

which then implies,

(
Ã1 . . . Ãnf

)
(e) =

∫

G

f(y)
(
Ã1 . . . Ãnδ

)
(e, y)dy

=
∫

G

f(y)
(Ã1 . . . Ãnδ)(e, y)

ρτ (y)
ρτ (y)dy, (6.19)

where

(
Ã1 . . . Ãnδ

)
(e, y) := Ã1 . . . Ãn[x → δ(x, y)]|x=e.
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If we replace f by f ◦ Lx in Equation (6.19), it follows that

(
Ã1 . . . Ãnf

)
(x) =

(
Ã1 . . . Ãnf

) ◦ Lx(e) =
(
Ã1 . . . Ãn[f ◦ Lx]

)
(e)

=
∫

G

f(xy)
(
Ã1 . . . Ãnδ

)
(e, y)dy

=
∫

G

f(xy)
(Ã1 . . . Ãnδ)(e, y)

ρτ (y)
ρτ (y)dy.

Now let 0 < ε = t− s and then defining Cε < ∞ by

Cε := sup
{∣∣∣∣

(Ã1 . . . Ãnδ)(e, y)
ρτ (y)

∣∣∣∣
2

: |Ai| = 1, y ∈ G, ε ≤ τ ≤ t

}
.

Then for 0 ≤ τ ≤ s < t we have ε ≤ t− τ ≤ t and therefore,

∣∣(Ã1 . . . Ãnf)(x)
∣∣2 ≤

∫

G

|f(xy)|2
∣∣∣∣
(Ã1 . . . Ãnδ)(e, y)

ρτ (y)

∣∣∣∣
2

ρτ (y)dy

≤ |A1|2 . . . |An|2Cε

∫

G

|f(xy)|2ρτ (y)dy.

Now multiply this equation by ρt−τ (x) and then integrating the result while making us
of the fact that {ρτ}τ>0 is a convolution semi-group we learn that

∫ ∣∣(Ã1 . . . Ãnf)(x)
∣∣2ρt−τ (x)dx ≤ |A1|2 · · · |An|2Cε

∫

G

|f(xy)|2ρτ (y)ρt−τ (x)dydx

= |A1|2 · · · |An|2Cε

∫

G

|f(y)|2ρt(y)dy

from which the result easily follows. ¤

Corollary 6.20. If f ∈ HL2(G,λt), then es(∆/4)f = f a.e. for 0 ≤ s < t, where
by definition,

(
es(∆/4)f

)
(x) :=

∫

G

f(y)ρs(x−1y)m(x)dy

and m is the modular function defined by
∫

G
f(xy)dy = m(x)

∫
G

f(y)dy.

Proof. Let Ms := f(gs). Then by Itô’s formula along with the fact that ∆f = 0
allows us to conclude that

Ms = M0 +
∫ s

0

〈Df(gr), dbr〉
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is a local martingale. Moreover, by Theorem 6.19 we may conclude that for any s < t

that
∫ s

0

E|Df(gr)|2dr ≤ Cs

∫ s

0

‖f‖2L2(ρt)
dr < ∞

and hence {Ms}0≤s<t is a square integrable martingale. This fact and the Markov
property for {gτ}τ≥0 shows for any 0 ≤ r < s < t that

f(gr) = Mr = E[Ms|Br] = E[f(gs)|Br] = (e((s−r)/4)∆f)(gr) a.s.

From this we conclude (and the positivity of the ρr) that e((s−r)/4)∆f = f a.e. which
suffices to conclude the proof. ¤

Corollary 6.21. If f ∈ HL2(G,λt), then Ms
.= f(g(s)) is a square integrable

martingale for s ∈ [0, t].

Proof. From Corollary 6.20 and the Markov property, we conclude that

f(gs) = (e(t−s)(∆/4)f)(gs) = E[f(gt)|Bs].

This completes the proof since f(gt) is a square integrable random variable and therefore
Ms := E[f(gt)|Bs] is a square integrable martingale for 0 ≤ s ≤ t. ¤

Corollary 6.22. If f ∈ HL2(G,λt), then

‖f‖L2(ρs) ↑ ‖f‖L2(ρt) as s ↑ t. (6.20)

Proof. From Corollary 6.21 and the convergence theorem for L2 – martingales,
‖f‖2L2(ρs) = E|Ms|2 increases to E|Mt|2 = ‖f‖2L2(ρt)

. ¤

Corollary 6.23. If f ∈ HL2(G,λt), then ‖f̂(e)‖2
J0

t
≤ ‖f‖2L2(ρt)

.

Proof. By the stochastic analogue of the iteration scheme used to prove Equation
(6.9), we find

f(gs) =
n∑

k=0

〈
Dkf(e),

∫

∆k(s)

dbt1 ⊗ · · · ⊗ dbtk

〉
+ Rs(n) (6.21)

where

Rs(n) :=
〈

Dn+1f(gt0),
∫

∆n+1(s)

dbt0 ⊗ dbt1 ⊗ · · · ⊗ dbtn

〉
.

Because of Theorem 6.19, we know that
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∫

∆n+1(s)

E‖Dn+1f(gt0)‖2dt0 . . . dtn < ∞

for all 0 ≤ s < t. Therefore it follows by the basic properties of iterated Itô integrals
that

E|f(gs)|2 =
n∑

k=0

E
〈

Dkf(e),
∫

∆k(s)

dbt1 ⊗ · · · ⊗ dbtk

〉2

+ E|Rs(n)|2

=
n∑

k=0

sk

k!
‖Dkf(e)‖2 +

∫

∆n+1(s)

E‖Dn+1f(gt0)‖2dt0 . . . dtn

≥
n∑

k=0

sk

k!
‖Dkf(e)‖2. (6.22)

We may now let n ↑ ∞ to learn,

∥∥f̂(e)
∥∥2

J0
s
≤ E|f(gs)|2 = ‖f‖2L2(ρs).

We may now pass to the limit as s ↑ t to conclude that ‖f̂(e)‖2
J0

t
≤ ‖f‖2L2(ρt)

wherein we
have used Equation (6.20) for the right side and the monotone convergence theorem to
conclude,

∥∥f̂(e)
∥∥2

J0
t

=↑ lim
s↑t

∥∥f̂(e)
∥∥2

J0
s
. ¤

Remark 6.24. It is tempting to try to prove Equation (6.22) without the aid of
Theorem 6.19 using the following simpler (false) “ argument.” The false argument (which
appears in various places in the literature) states; by the basic properties of multiple Itô
integrals, all terms in Equation (6.21) are orthogonal so of course,

E|f(gs)|2 =
n∑

k=0

E
〈

Dkf(e),
∫

∆k(s)

dbt1 ⊗ · · · ⊗ dbtk

〉2

+ E|Rs(n)|2

≥
n∑

k=0

E
〈

Dkf(e),
∫

∆k(s)

dbt1 ⊗ · · · ⊗ dbtk

〉2

. (6.23)

To see this type of argument is in general false consider the following example that the
author learned from Remi Leandre many years ago.

Example 6.25. Let {Bt}t≥0 be a Brownian motion in R3 and let f(y) = 1/|x− y|
for some fixed point x ∈ R3 \ {0}. Then it is well known that ∆f(y) = 0 for y 6= x and
∆f = −4πδx in the sense of Schwarz-distributions. As {x} is a polar set for B, we may
apply Itô’s lemma to conclude,
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f(Bt) = f(0) +
∫ t

0

∇f(Bs) · dBs.

Hence, if the argument prior to Equation (6.23) were true in this setting we would
conclude that

∫ t

0
∇f(Bs) · dBs is orthogonal to the constant functions, i.e.

0 = E
[ ∫ t

0

∇f(Bs) · dBs

]
= E[f(Bt)− f(0)] = Ef(Bt)− 1

|x| . (6.24)

To see this is false, let

pt(y) :=
1

(2πt)3/2
exp

(
− 1

2t
|y|2

)
for y ∈ R3.

Then

d

dt
Ef(Bt) =

d

dt

∫

R3
f(y)pt(y)dy =

1
2

∫

R3
f(y)∆pt(y)dy

=
1
2
(−4π)

∫

R3
δx(y)pt(y)dy := −2πpt(x) < 0

and therefore using the easily verified fact that [0,∞) 3 t → Ef(Bt) is continuous in t,
we learn

Ef(Bt) < Ef(B0) =
1
|x| for all t > 0

which violates Equation (6.24).

The next theorem is a close relative of the Veretennikov-Krylov formula in [41].

Theorem 6.26. Suppose that f ∈ H(G) and α := Tf = f̂(e) ∈ J0. Then for all
t ∈ [0,∞),

f(g(t)) =
∞∑

k=0

〈
αk,

∫

∆k(t)

db(s1)⊗ · · · ⊗ db(sk)
〉

(6.25)

where the sum is almost surely absolutely convergent.

Proof. This theorem is the stochastic analogue of Proposition 6.13. We will
sketch two proofs of this result.

1. The first method is to repeat the proof in of Proposition 6.13 in the stochastic context
making use of basic facts about multiple Itô integrals and stochastic flows. Results
on stochastic flows may be found (for example) in Kunita [34], see Theorem 4.8.4. In
truth it may be difficult to find the exact results which are needed here.

2. The second method is to make use of Terry Lyons’ rough path analysis to give a proof
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of Proposition 6.13 which is valid in the context of Brownian motion. Recall that we
may choose a version of

Bst :=
∫ t

s

[b(τ)− b(s)]⊗R δb(τ) for 0 ≤ s ≤ t < ∞

such that (bs,t = b(t)− b(s),Bs,t) is a geometric rough path. [The subscript R on the
tensor symbol indicates we are, for the moment, taking tensor products of g over R
rather than C.] In fact, we may choose piecewise linear approximations, bn(t) to b(t)
so that

(
bn
s,t,Bn

s,t

)
=

(
bn(t)− bn(s),

∫ t

s

[bn(τ)− bn(s)]⊗R dbn(τ)
)

converges to (bs,t,Bs,t) in (p, p/2) -variation norm for any 2 < p < 3, see for example
[35, Theorem 4.1.1] or [16, Proposition 3.6]. The exceptional null set, E, is now fixed
once and for all. Moreover for any 1/3 < α < 1/2, there exists a finite non-negative
random variable C(α, T ) such that off of E (expanded a bit if necessary) the following
Hölder-estimates hold;

‖bst‖g ≤ C(α, T )|t− s|α and ‖Bs,t‖g⊗Rg ≤ C(α, T )|t− s|2α ∀ s, t ∈ [0, T ],

where ‖ · ‖g and ‖ · ‖g⊗Rg are any two fixed norms on g and g⊗R g respectively.
3. From Theorem 4.20 of [3], we may now construct a solution gz(t) to the rough path

analogue of Equation (6.7). This rough path solution is uniquely determined in this
setting by requiring gz(t) satisfies; for all smooth functions, u : G → C, there exists a
constant C = C(u, z) < ∞ such that

∣∣∣∣∣
u(gz(t))− u(gz(s))− (Du)(gz(s))

〈
Lgz(s)∗[zbst]

〉

−(
D2
Ru

)
(gz(s))

〈
[Lgz(s)∗Mz ⊗R Lgz(s)∗Mz]Bst

〉
∣∣∣∣∣ ≤ C|t− s|3α (6.26)

for all 0 ≤ s ≤ t ≤ T . Here MzA := zA for all z ∈ C and A ∈ g and (D2
Ru)(g) is the

real linear functional on g⊗R g determined by,

(
D2
Ru

)
(g)〈A⊗R B〉 :=

(
ÃB̃u

)
(g) ∀ g ∈ G & A,B ∈ g.

It is worth observing that if u = f ∈ H(G), then

(
D2
Rf

)
(g)〈A⊗R B〉 = (D2f)(g)〈A⊗B〉.

4. Now let gn
z (t) denote the solution to Equation (6.7) with b(t) replaced by bn(t) as in

step 2. Then by Terry Lyons’ universal limit theorem, we know that gn
z (t) → gz(t)

locally uniformly in (z, t) and so by Morera’s theorem, z → gz(t) is still holomorphic
in z. Moreover, the universal limit theorem [35, Theorem 4.1.1] (or see [16, Theorem
8.5 and Chapter 9]) also implies
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∫

∆n(t)

dbn(s1)⊗ · · · ⊗ dbn(sn)

converges to a version of the Stratonovich iterated integral,

∫

∆n(t)

δb(s1)⊗ · · · ⊗ δb(sn).

So following the same arguments as in the proof of Proposition 6.13, we may conclude
off the exceptional set, E, that

f(g(1)) =
∞∑

k=0

〈
f̂(e),

∫

∆k(t)

δb(s1)⊗ · · · ⊗ δb(sk)
〉

.

5. Explicit formulas relating multiple Stratonovich integrals to multiple Itô integrals are
well known, see for example [26], [2, Proposition 1], [33], and [13, Definition 4.10].
From these formula one shows

∫

∆k(t)

δb(s1)⊗ · · · ⊗ δb(sk) =
∫

∆k(t)

db(s1)⊗ · · · ⊗ db(sk) a.s. (6.27)

and so, at the expense of increasing the size of exceptional null set E, we also have

f(g(t)) =
∞∑

k=0

〈
f̂(e),

∫

∆k(t)

db(s1)⊗ · · · ⊗ db(sk)
〉

.

A direct proof of Equation (6.27) may also be given as follows.
The key point is that differential of the complex quadratic variation tensor (denoted
by db⊗ db) is zero because,

db(t)⊗ db(t) =
1
2

m∑

j=1

[Xj ⊗Xj + Yj ⊗ Yj ]dt

=
1
2

m∑

j=1

[
Xj ⊗Xj + (iXj)⊗ (iXj)

]
dt

=
1
2

m∑

j=1

[Xj ⊗Xj −Xj ⊗Xj ]dt = 0,

wherein we have used Yj := iXj as in the definition of b(t) in Equation (6.13). There-
fore if we let

Sk(t) :=
∫

∆k(t)

δb(s1)⊗ · · · ⊗ δb(sk),
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then

Sk+1(t) =
∫ t

0

Sk(τ)⊗ δb(τ) =
∫ t

0

Sk(τ)⊗ db(τ) +
1
2

∫ t

0

dSk(τ)⊗ db(τ)

=
∫ t

0

Sk(τ)⊗ db(τ) +
1
2

∫ t

0

Sk−1(τ)⊗ db(τ)⊗ db(τ)

=
∫ t

0

Sk(τ)⊗ db(τ)

and the result now follows by induction on k. ¤

Remark 6.27. The expansion in Equation (6.25) converges not because of some
size restriction imposed on α = f̂(e) but because f is assumed to be holomorphic on G.
For example when G = C, Equation (6.25) reduces to

f(b(t)) =
∞∑

k=0

αk ·
∫

∆k(t)

db(s1) . . . db(sk) =
∞∑

k=0

αk

k!
b(t)k (6.28)

and the only information we can infer about the coefficients, αk = f (k)(0), is that
lim supk→∞ ‖αk/k!‖1/k = 0, i.e. the radius of convergence of the power series in Equation
(6.28) is infinite.

Corollary 6.28. If f ∈ H(G), then ‖f‖L2(λt) ≤ ‖f̂(e)‖J0
t

and in particular, if
f̂ ∈ J0

t , then f ∈ L2(λt).

Proof. Let α = f̂(e). By Fatou’s lemma along with Theorem 6.26,

‖f‖2L2(λt)
= E|f(gt)|2 = E

[
lim

N→∞

∣∣∣∣
N∑

k=0

∫

∆k(t)

〈αk, db⊗k〉
∣∣∣∣
2]

≤ lim inf
N→∞

E
[∣∣∣∣

N∑

k=0

∫

∆k(t)

〈αk, db⊗k〉
∣∣∣∣
2]

= lim inf
N→∞

E
[ N∑

k=0

tk

k!
‖αk‖2

]
=

∞∑

k=0

tk

k!
‖αk‖2 = ‖α‖2J0

t
. ¤
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and probability theory, Springer, Tokyo, 1996, pp. 73–116.

[23] B. C. Hall, The Segal-Bargmann “coherent state” transform for compact Lie groups, J. Funct.

Anal., 122 (1994), 103–151.

[24] B. C. Hall, A new form of the Segal-Bargmann transform for Lie groups of compact type, Canad.

J. Math., 51 (1999), 816–834.
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