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Abstract. The purpose of this paper is to describe the probabilistic
aspects underlying the theory of the hypoelliptic Laplacian, as a deforma-
tion of the standard elliptic Laplacian. The corresponding diffusion on the
total space of the tangent bundle of a Riemannian manifold is a geometric
Langevin process, that interpolates between the geometric Brownian motion
and the geodesic flow. Connections with the central limit theorem for the oc-
cupation measure by the geometric Brownian motion are emphasized. Spectral
aspects of the hypoelliptic deformation are also provided on tori. The relevant
hypoelliptic deformation of the Laplacian in the case of Riemann surfaces of
constant negative curvature is briefly described, in connection with Selberg’s
trace formula.

Introduction.

The purpose of this paper is to describe the probabilistic aspects that underlie the
construction of the hypoelliptic Laplacian, at the crossroads of two unrelated theories:
index theory, and the central limit theorem.

1. The index of an elliptic operator is the difference of the dimensions of its kernel and
its cokernel. It only depends on the principal symbol of the operator. The Atiyah-
Singer index theorem [AS68a], [AS68b] gives a cohomological formula for the index
in terms of characteristic classes.

2. The particular version of the central limit theorem we think of describes the asymp-
totics of the occupation measure by a geometric Brownian motion as time tends to
infinity in terms of a Gaussian random field. This result can also be formulated as
the study of the lowest eigenvalue of a family of second order differential operators as
a parameter b tends to 0, all the other eigenvalues tending to +∞.

A possibly common feature of these two theories is that they are both concerned with
small eigenvalues, the zero eigenvalue of certain operators in the case of index theory,
and small eigenvalues in the case of the central limit theorem.

Before we explain the content of the present paper, we will give the proper perspec-
tive to the theory of the hypoelliptic Laplacian.
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0.1. The scalar version of the hypoelliptic Laplacian.
Let us describe the hypoelliptic Laplacian in its simplest form. Let X be a compact

Riemannian manifold of dimension n, and let X be the total space of its tangent bundle.
Let HTX , ATX be the harmonic oscillators along the fibres TX

HTX =
1
2
(−∆V + |Y |2 − n), ATX =

1
2
(−∆V + 2∇V

Y ). (0.1)

In (0.1), ∆V denotes the Laplacian along the fibre TX, Y is the generic element of TX,
and ∇V

Y denote differentiation along the fibre with respect to the radial vector field Y .
The two harmonic oscillators are conjugate via the gaussian function exp(−|Y |2/2).

Let U be the vector field on X that generates the geodesic flow. In geodesic coordi-
nates centred at x ∈ X, we have

U(x, Y ) =
n∑

i=1

Y i ∂

∂xi
. (0.2)

For b > 0, set

LX
b =

HTX

b2
− U

b
, MX

b =
ATX

b2
− U

b
. (0.3)

The operators in (0.3) are conjugate by the same Gaussian as before. They are not self-
adjoint. By a theorem of Hörmander [H67] on second operators of the form

∑m
i=1 X2

i +
X0

1, if t is an extra time coordinate in R+, the operators ∂/∂t + LX
b , ∂/∂t + MX

b are
hypoelliptic. This is actually the form of Hörmander’s theorem in which X0 plays an
essential role2. The scalar operators LX

b ,MX
b are the simplest version of the hypoelliptic

Laplacian.
Such operators have appeared before. The operator of Kolmogorov [K34] on R2

given by K = −(1/2)(∂2/∂y2) − y(∂/∂x) can be thought of as a prototype of the hy-
poelliptic Laplacian. When X = R3, the operators LX

b ,MX
b are known as Fokker-Planck

operators and appear in statistical physics. In this case, MX
b is the infinitesimal generator

of a process (x·, Y·) that projects on X to a Langevin process [L08].
One first result is that the equivalent families of operators LX

b ,MX
b interpolate in

the proper sense between the standard Laplacian −∆X/2 on X as b → 0, and the proper
version of the generator of the geodesic flow (1/2)|Y |2−U as b → +∞. To be more precise
on the b → 0 convergence, the families of operators LX

b ,MX
b acting on X collapse3 to

the operator −∆X/2 acting on X.

1A sufficient condition for the hypoellipticity of such operators is that the distribution spanned by
X0, . . . , Xm and their Lie brackets of arbitrary order is the full tangent bundle.

2In this respect, our hypoelliptic operators are different from the Heisenberg Laplacians in subrie-
mannian geometry.

3In Riemannian geometry, if the metric on the fibres of a fibration tends to zero, one says that the
original manifold collapses to the base manifold. Here, while X is not viewed as a Riemannian manifold,

certain aspects of collapsing remain true.
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0.2. Hypoelliptic Laplacian and the central limit theorem.
Let V be a smooth function X → R such that

∫
X

V (x)dx = 0. One way to obtain a
central limit theorem for the associated Brownian motion x· on X is to study the spectral
asymptotics as b → 0 of the family of operators

SX
b = −∆X

2b2
+

V

b
. (0.4)

Indeed if b2 = 1/t, then

SX
b = t

(
−∆X

2
+

V√
t

)
, (0.5)

and making b → 0 is equivalent to making t → +∞. By comparing (0.3) and (0.4),
the structures of MX

b and SX
b are very similar, when replacing −∆X/2 by the harmonic

oscillator ATX . Since the fibres TX are the fibres of a vector bundle, the analytic and
geometric situations are not the same.

0.3. The dynamical version of the interpolation.
The diffusion process corresponding to the operator MX

b can be described in terms
of the second order stochastic differential equation on X

b2ẍ + ẋ = ẇ. (0.6)

In (0.6), w· is a Brownian motion along the fibres TX suitably transported using the
Levi-Civita connection on TX, and ẇ denotes its differential in the sense of Stratonovitch.
The Markov diffusion process associated with MX

b is just given by (x·, bẋ.). The speed
ẋ· of x· is an Ornstein-Uhlenbeck process Z· with covariance (1/b2) exp(−|t− s|/b2).

If one ignores the probabilistic difficulties, we find that when b = 0, equation (0.6) is
just ẋ = ẇ, the equation for the Brownian motion on X, and when b = +∞, it becomes
ẍ = 0, the equation of geodesics on X. At the algebraic level, the interpolation property
described at the end of Subsection 0.1 is obvious.

0.4. The preservation of the spectrum.
For a suitable nonscalar version of the hypoelliptic Laplacian LX

b described in [B11]
when X is a locally symmetric space, the spectrum of −∆X/2 remains rigidly embedded
in the spectrum of LX

b . In [B11], the trace of the heat kernel exp(s∆X/2) is viewed as a
generalized Euler characteristic, and the above rigidity property as a formal consequence
of index theory.

The version of the central limit theorem we described in (0.4), (0.5) is concerned
with the lower part of the spectrum of the operators SX

b , while here the whole spectrum
of −∆X/2 is preserved. There is no contradiction. Indeed the operator −∆X/2 acts on
C∞(X,R), which can be identified with the kernel of the nonnegative operator ATX .

A construction by Witten [W82] shows that the harmonic oscillator is just the
restriction to smooth functions of the Hodge Laplacian associated with the Witten com-
plex of the considered vector space. Unsurprisingly, the corresponding family of Witten
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Laplacians along TX plays an important role in the construction of LX
b in [B11].

As a consequence of the above, in [B11] we show that as b → +∞, the supertrace
of the heat kernel for LX

b localizes near the closed geodesics in X. Ultimately we obtain
the Selberg’s trace formula [M72] as a consequence of the interpolation procedure we
just described. This version is valid not only for Riemann surfaces of genus g ≥ 2, but
for compact locally symmetric spaces of arbitrary dimension.

0.5. The hypoelliptic Laplacians.
The principal symbol of −∆X is just |ξ|2. The geometric Laplacians, like the Hodge

Laplacians in de Rham or Dolbeault theory, or the squares of Dirac operators have the
same scalar principal symbol |ξ|2. These operators have canonical hypoelliptic defor-
mations in their category [B05], [B08a], [B11]. This means that there is not only one
hypoelliptic Laplacian, but many. In the present paper, we will mostly limit ourselves to
the deformation of the scalar operator −∆X/2.

The original version of the hypoelliptic Laplacian in de Rham theory developed in
[B05] exists over any compact Riemannian manifold. It can be viewed as a semiclassical
version of the Witten deformation [W82] of the standard Hodge Laplacian on the loop
space LX4, that would be associated with the energy functional. The preservation under
hypoelliptic deformation of certain spectral invariants like the analytic torsion [RS71]
was established by Lebeau and ourselves in [BL08]. For the relevant probabilistic aspects
of the hypoelliptic Laplacian in de Rham theory, we refer to [B08b]. The Malliavin
calculus also plays an essential role in [B11] to obtain the proper uniform control of
the hypoelliptic heat kernels. For applications of the hypoelliptic Laplacian to complex
geometry, we refer to [B08a], [B13].

0.6. The organization of the paper.
In the first two sections of the paper, we state a number of results concerning the

central limit theorem for the occupation time of a geometric Brownian motion and for
the Ornstein-Uhlenbeck process. These two sections give the proper perspective to the
construction of the hypoelliptic Laplacian in the three sections that follow.

More precisely, in Section 1, we recall certain aspects of the central limit theorem
for the Brownian motion on a compact Riemannian manifold, in commutative and non-
commutative form.

In Section 2, we explain the commutative and noncommutative aspects of the central
limit theorem associated with the Ornstein-Uhlenbeck process.

In Section 3, we construct the scalar hypoelliptic Laplacian on a vector space and
on a torus.

In Section 4, we explain elementary aspects of index theory in connection with the
constructions of Subsection 3.

Finally, in Section 5, we construct the scalar hypoelliptic Laplacians LX
b ,MX

b , and
we describe their main properties. Also we show how the index theoretic aspects of the
constructions of Section 4, that are valid for vector spaces or for tori, can be suitably

4The proper cohomological theory is equivariant cohomology with respect to the obvious action of S1

on LX. No rigorous construction of the corresponding Hodge Laplacian or of its Witten deformation is

available.
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extended to the case of Riemann surfaces with constant negative curvature.
The probabilistic aspects of the hypoelliptic Laplacian have played a dominant role in

its development. For a survey of other aspects of the hypoelliptic Laplacian, in particular
in connection with Morse theory, and with the classical Witten Laplacian, we refer to
[B08b], [B08c].

1. The central limit theorem for the geometric Brownian motion.

In this section, we review some aspects of the central limit theorem for the Brownian
motion on a compact Riemannian manifold, in its commutative and noncommutative
versions. This will permit us to give the proper perspective to the construction of the
hypoelliptic Laplacian, and to some of its properties.

At least in the scalar case, the results contained in this section are already known
in a form or another. They are the elementary starting point of the theory of large
deviations for occupation times by a Markov process or a diffusion process [DSt89].

This section is organized as follows. In Subsection 1.1, we study the behaviour of
the spectrum of the operator SX

b in (0.4) and of its heat kernel as b → 0.
In Subsection 1.2, we interpret the results of Subsection 1.1 in terms of a central

limit theorem for the occupation ‘density’ by the Brownian motion.
Finally, in Subsection 1.3, we give a noncommutative version of the above results

for Bochner Laplacians acting on sections of a Hermitian vector bundle.

1.1. The spectrum of SX
b as b → 0.

Let X be a compact Riemannian manifold, let gTX be the corresponding metric on
TX, and let dx be the associated volume form. Let ∆X be the Laplace-Beltrami operator.
For 1 ≤ p ≤ +∞, let LX

p denote the real Lp space associated with dx. In particular 〈 〉LX
2

denotes the canonical scalar product on LX
2 , and its extension to a symmetric complex

valued bilinear form on LX
2 ⊗R C.

Here R is the vector space of constants in C∞(X,R). Let P : LX
2 → R denote the

corresponding orthogonal projection operator. If f ∈ LX
2 , then

Pf =
1

Vol(X)

∫

X

f(x)dx. (1.1)

Let R⊥ be the orthogonal space to R in LX
2 . The corresponding orthogonal projection

operator is given by

P⊥ = 1− P. (1.2)

For V , W ∈ C∞(X,C), b > 0, let SX
b be the second order elliptic operator on X

SX
b = −∆X

2b2
+

V

b
+ W. (1.3)

For s > 0, let exp(−sSX
b )(x, x′) be the smooth kernel associated with exp(−sSX

b ) with
respect to dx′. Let Tr[exp(−sSX

b )] denote the trace of exp(−sSX
b ) so that
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Tr
[
exp(−sSX

b )
]

=
∫

X

exp
(− SX

b

)
(x, x)dx. (1.4)

Let (−∆X/2)−1 be the inverse of −∆X/2 restricted to R⊥. Then (−∆X/2)−1 is a
bounded self-adjoint positive operator.

Theorem 1.1. If V ∈ C∞(X,C) is such that
∫

X
V (x)dx = 0, for s > 0, as b → 0,

we have the uniform convergence of smooth functions and their derivatives of any order
on X ×X,

exp
(− sSX

b

)
(x, x′) →

exp
(

s
Vol(X)

(〈V, (−∆X/2)−1V 〉LX
2
− ∫

X
W (x)dx

))

Vol(X)
. (1.5)

In particular, for s > 0, as b → 0,

Tr
[
exp(−sSX

b )
] → exp

(
s

Vol(X)

(〈
V, (−∆X/2)−1V

〉
LX

2
−

∫

X

W (x)dx

))
. (1.6)

If V, W are real, if σb is the lowest eigenvalue of the self-adjoint operator SX
b , as

b → 0,

σb → 1
Vol(X)

(
−〈

V, (−∆X/2)−1V
〉

LX
2

+
∫

X

W (x)dx

)
, (1.7)

and the other eigenvalues tend to +∞. When V, W are arbitrary, equation (1.7) also
holds for one simple eigenvalue of SX

b , the real part of the other eigenvalues tending to
+∞.

Proof. In the sequel, we will write our operators as (2, 2) matrices with respect
to the orthogonal splitting LX

2 = R⊕R⊥. In particular, we have identities of the form

−1
2
∆X =

[
0 0
0 α

]
, V =

[
0 β2

β3 β4

]
, W =

[
γ1 γ2

γ3 γ4

]
. (1.8)

Put

S1 = γ1, S2 = β2 + γ2b, S3 = β3 + γ3b, S4 = α + β4b + γ4b
2. (1.9)

Then

SX
b =




S1
S2

b
S3

b

S4

b2


 . (1.10)

Now we proceed as in [BL08, Section 17.2]. If λ ∈ C, put
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D4 = S4 − b2λ. (1.11)

Let λ ∈ C be such that D4 is invertible. Set

H = λ− S1 + S2D
−1
4 S3. (1.12)

We also assume that H is invertible. By (1.9), at least formally, λ − SX
b is invertible,

and we can write (λ− SX
b )−1 in the form

(λ− SX
b )−1 =

[
H−1 −bH−1S2D

−1
4

−bD−1
4 S3H

−1 −b2D−1
4 + b2D−1

4 S3H
−1S2D

−1
4

]
. (1.13)

Figure 1.

For a > 0, let Γ = Γa be the contour in C described in Figure 1, and let ∆ = ∆a

be the closure of the connected component of C \ Γ not containing 0. One verifies easily
that there exist a > 0, b0 > 0 such that for 0 < b ≤ b0, if λ ∈ ∆, D4 and H are invertible,
and moreover, if u ∈ R⊥,

‖D−1
4 u‖0 ≤ C‖u‖0. (1.14)

Moreover, given k ∈ N, there exists mk ∈ N such that for 0 < b ≤ b0, λ ∈ ∆, u ∈
Hk ∩R⊥, then

‖D−1
4 u‖k+1 ≤ Ck(1 + |λ|)mk‖u‖k. (1.15)

We have the trivial identity

D−1
4 − S−1

4 = b2λS−1
4 D−1

4 . (1.16)

By (1.16), we find that if u is taken as before,
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∥∥(D−1
4 − S−1

4 )u
∥∥

0
≤ Cb2|λ|‖u‖0, (1.17)

and moreover, for any k ∈ N,

∥∥(D−1
4 − S−1

4 )u
∥∥

k+1
≤ Cb2(1 + |λ|)mk+1‖u‖k. (1.18)

By (1.13) and by the above, we find that if u ∈ C∞(X,C), if λ ∈ ∆, then

∥∥(λ− SX
b )−1u− P

(
λ + PV P⊥(−∆X/2)−1P⊥V P − PWP

)−1
Pu

∥∥
0
≤ Cb‖u‖0, (1.19)

and moreover, for any k ∈ N, we have

∥∥(λ− SX
b )−1u− P

(
λ + PV P⊥(−∆X/2)−1P⊥V P − PWP

)−1
Pu

∥∥
k+1

≤ Ckb(1 + |λ|)mk+1‖u‖k. (1.20)

Clearly, for 0 < b ≤ b0, s > 0, we have the identity

exp(−sSX
b ) =

1
2iπ

∫

Γ

exp(−sλ)
λ− SX

b

dλ. (1.21)

By integration by parts, for any k ∈ N, we get

exp(−sSX
b ) = (−1)k k!

2iπsk

∫

Γ

exp(−sλ)
(λ− SX

b )k+1
dλ. (1.22)

By (1.19) and (1.21), we find that for s > 0, as b → 0, we have the strong convergence
of operators acting on LX

2 ⊗R C

exp(−sSX
b ) → exp

(
s

Vol(X)

(〈
V, (−∆X/2)−1V

〉
LX

2
−

∫

X

W (x)dx

))
P. (1.23)

Using (1.20) and (1.22), we deduce easily that the convergence in (1.23) is a uniform
convergence of smooth kernels together with their derivatives of arbitrary order. By
(1.1), we obtain the first part of our theorem. By integrating the left-hand side of (1.5)
on the diagonal, we get (1.6).

If V, W are real, the eigenvalues of SX
b are real. Also s > 0 → Tr[exp(−sSX

b )] is
the Laplace transform of the spectral measure for SX

b . From (1.6), we get the last part
of our theorem. In the general case, using the convergence of the resolvents in (1.19),
(1.20), we obtain the corresponding result on the eigenvalues.

We will now give a second proof of our theorem when V ∈ C∞(X,R). Let f ∈
C∞(X,R), let ¤X

T be the Witten Laplacian [W82] associated with f , and let −∆X
f be

its restriction in degree 0. Then

−∆X
f = −∆X −∆Xf + |∇f |2. (1.24)
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The operator −∆X
f is self-adjoint and nonnegative, and its kernel is 1-dimensional and

spanned by e−f .
In the sequel, we take V ∈ C∞(X,R) such that PV = 0. Set

f = (−∆X/2)−1V. (1.25)

Equation (1.3) can be rewritten in the form

SX
b = −∆X

bf

2b2
− 1

2
|∇f |2 + W. (1.26)

Let Rb be the vector space spanned by e−bf and let R⊥
b be its orthogonal in LX

2 . We
write our operators as (2, 2) matrices with respect to the splitting LX

2 = Rb ⊕R⊥
b . In

particular

− 1
2
∆X

bf =
[
0 0
0 αbf

]
, −1

2
|∇f |2 + W =

[
δ1 δ2

δ3 δ4

]
. (1.27)

Note that for b = 0, αbf = α.
By (1.26), (1.27), we have the analogue of (1.10)

SX
b =




δ1 δ2

δ3
1
b2

(αbf + b2δ4)


 . (1.28)

Using (1.28), we can now proceed exactly as before, except that the matrix structure is
simpler. Of course, the splitting of LX

2 now depends on b. However, this dependence on
b can be easily dropped by using the fact that Rb is spanned by ebf . By proceeding as
in (1.19), (1.20), we find in particular that as b → 0, if λ ∈ ∆,

(
λ− SX

b

)−1 → P

(
λ− P

(
−1

2
|∇f |2 + W

)
P

)−1

P. (1.29)

The same arguments as in (1.23) show that for any s > 0, as b → 0

exp
(− sSX

b

) → exp
(

sP

(
1
2
|∇f |2 −W

)
P

)
P, (1.30)

the convergence in (1.30) being a convergence of smooth kernels on X ×X. By (1.1), we
get

P

(
1
2
|∇f |2 −W

)
P =

1
Vol(X)

∫

X

(
1
2
|∇f |2 −W

)
(x)dx. (1.31)

By (1.25), we obtain
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∫

X

|∇f |2(x)dx = 2
〈
V, (−∆X/2)−1V

〉
LX

2
. (1.32)

By (1.30)–(1.32), we get (1.5). The second proof of our theorem is completed. ¤

Remark 1.2. The first proof of Theorem 1.1 given above gives some idea of how
corresponding results for the hypoelliptic Laplacian are established in [BL08].

1.2. The central limit theorem for the geometric Brownian motion.
Let C(R+, X) denote the space of continuous functions from R+ into X equipped

with the topology of uniform convergence over compact sets, and let s ∈ R+ → xs ∈ X

denote its generic element. Given x ∈ X, let Px denote the probability measure on
C(R+, X) associated with the Brownian motion starting at x at time 0.

By the ergodic theorem, we know that as t → +∞,

1
t

∫ t

0

W (xs)ds →
∫

X
W (x)dx

Vol(X)
Px a.s.. (1.33)

For a > 0, let N(a) denote the probability law on R of the centred Gaussian with
variance a.

Theorem 1.3. If V ∈ C∞(X,R) is such that
∫

X
V (x)dx = 0, for any x ∈ X,

as t → +∞, the probability law of the process s ∈ R+ → (1/
√

t)
∫ st

0
V (xu)du converges

to the probability law of the process s ∈ R+ → cbs, where bs is a real Brownian motion
starting at 0, and

c2 = 2
〈(−∆X/2)−1V, V 〉LX

2

Vol(X)
. (1.34)

As t → +∞, the probability law of the process s ∈ R+ → (1/t)
∫ st

0
W (xu)du con-

verges to the deterministic process s ∈ R+ → s(
∫

X
W (x)dx/Vol(X)).

For 0 < s1 < · · · < sm, as t → +∞, the probability law of (xs1t, xs2t, . . . , xsmt)
converges to the product of the probability laws dx/Vol(X).

Finally, as t → +∞, the joint law of the above random processes and random vari-
ables converges to the corresponding product law.

Proof. We use the notation of Subsection 1.1 with V replaced by iV , and W = 0.
Observe that for t > 0,

SX
1/
√

t
= t

(
−1

2
∆X + i

V√
t

)
. (1.35)

By (1.35) and by Feynman-Kac’s formula, if u ∈ C∞(X,R), for s > 0, we get

exp
(− sSX

1/
√

t

)
u(x) = EPx

[
exp

(
−i

∫ st

0
V (xu)du√

t

)
u(xst)

]
. (1.36)
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By Theorem 1.1, as t → +∞, we have the uniform convergence of smooth functions and
their derivatives of any order

exp
(− sSX

1/
√

t

)
u → exp

(
−s
〈V, (−∆X/2)−1V 〉LX

2

Vol(X)

)∫
X

u(x)dx

Vol(X)
. (1.37)

By (1.36), (1.37), as t → +∞

EPx

[
exp

(
−i

∫ st

0
V (xu)du√

t

)]
→ exp

(
−s
〈V, (−∆X/2)−1V 〉LX

2

Vol(X)

)
. (1.38)

For α ∈ R, we may as well replace V by αV in (1.38). Using Paul Lévy’s theorem, as
t → +∞, given s > 0, we have the convergence of probability laws,

1√
t

∫ st

0

V (xu)du → N

(
2s
〈(−∆X/2)−1V, V 〉LX

2

Vol(X)

)
. (1.39)

Let us now give another proof of (1.39), that will be the probabilistic counterpart
to the second proof of Theorem 1.1. We still define f as in (1.25). By Itô’s formula5, we
get

f(xt) = f(x)−
∫ t

0

V (xu)du +
∫ t

0

〈∇f(xu), δxu〉, (1.40)

where the last term in (1.40) is a classical Itô stochastic integral. By (1.40), we get

∫ st

0
V (xs)ds√

t
=

f(x)− f(xst)√
t

+

∫ st

0
〈∇f(xu), δxurangle√

t
. (1.41)

Now we proceed as Franchi-Le Jan [FL12, Lemma 8.7.4] in their proof of the central
limit theorem for martingales. For α ∈ R, put

Zα,t,s = exp
(√−1α

∫ s

0
〈∇f(xu), δxu〉√

t
+

α2

2

∫ s

0
|∇f(xu)|2du

t

)
. (1.42)

Given t > 0, Zα,t,s|s∈R+ is a martingale and

EPx [Zα,t,s] = 1. (1.43)

By the ergodic theorem, given s ≥ 0, as t → +∞, we get

5In the sequel, we denote by δ the differential in the sense of Itô, and by d the differential in the sense

of Stratonovitch.
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∫ st

0
|∇f(xu)|2du

t
→ s

∫
X
|∇f(x)|2dx

Vol(X)
Px a.e.. (1.44)

By (1.42)–(1.44), we find easily that as t → +∞,

EPx

[
exp

(√−1α

∫ st

0
〈∇f(xs), δxs〉√

t

)]
→ exp

(
−α2s

2

∫
X
|∇f(x)|2dx

Vol(X)

)
. (1.45)

By Paul Lévy’s theorem, we deduce from (1.45) that given s ≥ 0, as t → +∞, we have
the convergence of probability laws

∫ st

0
〈∇f(xs), δxs〉√

t
→ N

(
s

∫
X
|∇f(x)|2dx

Vol(X)

)
. (1.46)

Since f is bounded, from (1.41), (1.46), as t → +∞, we have the convergence of
probability laws

∫ st

0
V (xu)du√

t
→ N

(
s

∫
X
|∇f(x)|2dx

Vol(X)

)
. (1.47)

By (1.32), (1.47), we get another proof of (1.39).
To complete the proof of our theorem, the essential point is to show that the prob-

ability laws of the continuous processes s ∈ R+ → (1/
√

t)
∫ st

0
V (xu)du form a tight set

of probability measures. By Burkholder-Davis-Gundy’s inequalities, given p > 1, for
0 ≤ s ≤ s′

∥∥∥∥
1√
t

∫ s′t

st

〈∇f(xu), δxu〉
∥∥∥∥

p

≤ Cp(s′ − s)1/2. (1.48)

By (1.40), (1.48), we obtain the required compactness argument. This concludes the
proof of the first part of our theorem.

By (1.33), if s varies in compact sets in R∗
+, Px a.s., (1/t)

∫ st

0
W (xu)du converges

uniformly to s → s(
∫

X
W (x)dx/Vol(X)). Since W is bounded, this family of functions

is equicontinuous, so that uniform convergence also takes place near 0.
Using Theorem 1.1 with V = 0, W = 0, we obtain our result on the convergence

as t → +∞ of the joint law of (xs1t, . . . , xsmt). By using the full strength of Theorem
1.1, we obtain the required convergence of the joint probability laws. The proof of our
theorem is completed. ¤

Remark 1.4. Theorem 1.3 can be reformulated as a result of convergence in law
of a scaled local time centred field for the process x· to the free field on X.

1.3. The case of vector bundles.
We take X as before. Let (F, gF ,∇F ) be a complex Hermitian vector bundle on X

equipped with a Hermitian connection. Let LX,F
2 be the vector space of square-integrable
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sections of F . Let AX,F be an elliptic self-adjoint nonnegative operator of order 2 acting
on C∞(X, F ). Set

H = kerAX,F . (1.49)

Then H is a finite dimensional vector subspace of C∞(X, F ). Let P be the orthogonal
projection operator on H. Then P is given by a smooth kernel P (x, x′). Set

P⊥ = 1− P. (1.50)

Then P⊥ is the orthogonal projection on the orthogonal space H⊥ to H in LX,F
2 . Let

(AX,F )−1 denote the inverse of AX,F acting on H⊥.
Let V, W ∈ C∞(X, End(F )). In the sequel, we assume that

PV P = 0. (1.51)

For b > 0, set

SX,F
b =

AX,F

b2
+

V

b
+ W. (1.52)

Note that PV P⊥(AX,F )−1P⊥V P is an endomorphism of H. It can also be viewed as an
operator acting on C∞(X, F ) with a smooth kernel.

Theorem 1.5. For any s > 0, as b → 0, we have the uniform convergence of
smooth kernels together with their derivatives of any order on X ×X

exp
(− sSX,F

b

)
(x, x′) → (

P exp(s(PV P⊥(AX,F )−1P⊥V P − PWP ))P
)
(x, x′). (1.53)

In particular, as b → +∞

Tr
[
exp(−sSX,F

b )
] → Tr

[
P exp(s(PV P⊥(AX,F )−1P⊥V P − PWP ))P

]
. (1.54)

When b → 0, a finite number of eigenvalues of SX,F
b converges to the eigenvalues of

−PV P⊥(AX,F )−1P⊥V P + PWP , the real part of the other eigenvalues tending to +∞.

Proof. The proof of our theorem follows the same lines as the proof of Theorem
1.1. In particular, the convergence of the heat kernels is obtained via the convergence of
the resolvents. ¤

Remark 1.6. If ∆X,F is the Bochner Laplacian acting on C∞(X, F ) associated
with the Riemannian metric gTX and the connection ∇F , if AX,F = −∆X,F /2, then
exp(−sSX,F

b ) can be evaluated using a matrix version of the Feynman-Kac formula.
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2. The central limit theorem for the Ornstein-Uhlenbeck process.

In this section, we explain certain aspects of the central limit theorem for the
Ornstein-Uhlenbeck process in its commutative and noncommutative form, and we de-
velop corresponding analytic results for its infinitesimal generator, the harmonic oscilla-
tor. The results of the present section are closely related to the results of Section 1.

This section is organized as follows. In Subsection 2.1, we state elementary properties
of the harmonic oscillator on an Euclidean vector space E.

In Subsection 2.2, we study the behaviour of the spectrum of a family of elliptic op-
erators ME

b , an analogue of the family of operators SX
b that was considered in Subsection

1.1.
In Subsection 2.3, we interpret the results of Subsection 2.2 in terms of a central

limit theorem for the occupation ‘density’ of the Ornstein-Uhlenbeck process.
In Subsection 2.4, we obtain a matrix version of the central limit theorem.
Finally, in Subsection 2.5, we study the special case of the perturbation of the

harmonic oscillator by a matrix V depending linearly on Y ∈ E. The hypoelliptic
Laplacian will turn out to be an infinite dimensional version of this kind of operator.

2.1. The harmonic oscillator.
Let E be a finite dimensional Euclidean vector space of dimension n, and let Y be

its generic element. Let ∆E be the Laplacian of E, and let ∇Y be the radial vector field
on E. Let AE be the harmonic oscillator

AE =
1
2
(−∆E + 2∇Y ). (2.1)

Then AE is a formally self-adjoint operator on LE
2 (e−|Y |

2
dY ), whose kernel is spanned

by the function 1.
Set

HE = exp(−|Y |2/2)AE exp(|Y |2/2), (2.2)

so that

HE =
1
2
(−∆E + |Y |2 − n). (2.3)

Then HE is a self-adjoint operator acting on LE
2 , and its kernel is spanned by

exp(−|Y |2/2). It is well-known that

SpAE = SpHE = N. (2.4)

Given m ∈ N, the Hermite polynomials of degree m on E span the eigenspace of AE

associated with the eigenvalue m.
Let p be the orthogonal projection operator from LE

2 (e−|Y |
2
(dY /πn/2)) on kerAE ,

and let P be the orthogonal projection operator from LE
2 on kerHE . We identify p with
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the corresponding smooth kernel with respect to exp(−|Y ′|2)(dY ′/πn/2), and P with its
smooth kernel with respect to dY ′/πn/2. In particular,

p(Y, Y ′) = 1, P (Y, Y ′) = exp
(
−1

2
(|Y |2 + |Y ′|2)

)
. (2.5)

2.2. The spectrum of LE
b as b → 0.

Let V, W ∈ C∞(E,C) such that V, W and their derivatives of arbitrary order grow
at most linearly as |Y | → +∞. Note that

pV p =
∫

E

V (Y ) exp(−|Y |2) dY

πn/2
p,

PV P =
∫

E

V (Y ) exp(−|Y |2) dY

πn/2
P.

(2.6)

In the sequel, we assume that

pV p = 0. (2.7)

For b > 0, set

LE
b =

HE

b2
+

V

b
+ W, ME

b =
AE

b2
+

V

b
+ W, (2.8)

so that

LE
b = exp(−|Y |2/2)ME

b exp(|Y |2/2). (2.9)

Let exp(−sLE
b )(Y, Y ′) be the smooth kernel associated with exp(−sLE

b ) with re-
spect to dY ′/πn/2, and let exp(−sME

b )(Y, Y ′) be the smooth kernel associated with
exp(−sME

b ) with respect to exp(−|Y ′|2)(dY ′/πn/2). Then

exp
(− sLE

b

)
(Y, Y ′) = exp

(
−1

2
(|Y |2 + |Y ′|2)

)
exp

(− sME
b

)
(Y, Y ′). (2.10)

Let (AE)−1 denote the inverse of AE acting on the orthogonal vector space to the con-
stants.

Theorem 2.1. For s > 0, as b → 0, we have the uniform convergence of smooth
kernels and their derivatives on compact subsets of E × E,

exp(−sME
b )(Y, Y ′) → exp

(
s

∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2

− s

∫

E

W (Y ) exp(−|Y |2) dY

πn/2

)
. (2.11)
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In particular, as b → 0,

Tr
[
exp(−sME

b )
] → exp

(
s

∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2

− s

∫

E

W (Y ) exp(−|Y |2) dY

πn/2

)
. (2.12)

If V, W are real, if σb is the lowest eigenvalue of the self-adjoint operator ME
b , as b → 0,

σb → −
∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2
+

∫

E

W (Y ) exp(−|Y |2) dY

πn/2
, (2.13)

and the other eigenvalues tend to +∞. If V, W are arbitrary, equation (2.13) still holds
for one eigenvalue of ME

b , the real part of the other eigenvalues tending to +∞.

Proof. It is easier to replace ME
b by LE

b . Indeed the operator HE is classically
self-adjoint, and the associated Sobolev spaces can be expressed in terms of classical
Schwartz spaces. The proof is then exactly the same as the proof of Theorem 1.1. ¤

2.3. The central limit theorem for the Ornstein-Uhlenbeck process.
To construct the semigroup exp(−sAE), one can use the associated stochastic differ-

ential equation. Namely let w· be a Brownian motion with values in E such that w0 = 0.
Given Y0 ∈ E, consider the stochastic differential equation

dY = −Y ds + ẇs, Y0 = Y0, (2.14)

so that

Ys = e−sY0 + e−s

∫ s

0

euδwu. (2.15)

There is another Brownian motion B· such that

Ys = e−sY0 + e−sB(e2s−1)/2. (2.16)

Let QY0 be the probability law of the process Y·.
We will establish an analogue of Theorem 1.3.

Theorem 2.2. If V ∈ C∞(E,R) has at most linear growth and is such that∫
E

V (Y ) exp(−|Y |2)dY = 0, as t → +∞, for any Y0 ∈ E, the probability law of the
process s ∈ R+ → (1/

√
t)

∫ st

0
V (Yu)du converges to the probability law of the process

s ∈ R+ → cws, with

c2 = 2
∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2
. (2.17)



Hypoelliptic Laplacian and probability 1333

As t → +∞, the probability law of the process s ∈ R+ → (1/t)
∫ st

0
W (Yu)du con-

verges to the deterministic process s ∈ R+ → s
∫

E
W (Y ) exp(−|Y |2)(dY /πn/2).

For 0 < s1 < · · · < sm, as t → +∞, the probability law of (Ys1t, Ys2t, . . . , Ysmt)
converges to the product of the probability laws exp(−|Y |2)dY/πn/2.

Finally, as t → +∞, the joint law of the above random processes and random vari-
ables converges to the corresponding product law.

Proof. By making t = 1/b2, and using Theorem 2.1, the proof is the same as the
proof of Theorem 1.3. ¤

Remark 2.3. The content of Remark 1.4 still applies here. The relevant free field
now refers to the Gaussian random field with covariance 2(AE)−1 or 2(HE)−1.

2.4. The matrix version of the central limit theorem.
Let F be a finite dimensional Hermitian vector space. We assume that V, W ∈

C∞(E, End(F )) are such that V, W and their derivatives of arbitrary order grow at most
linearly as |Y | → +∞. We still assume that (2.6), (2.7) hold. Set

LE,F
b =

HE

b2
+

V

b
+ W, ME,F

b =
AE

b2
+

V

b
+ W. (2.18)

Also we use the same conventions on the kernels of exp(−sLE,F
b ), exp(−sME,F

b ) as in
Subsection 2.2.

Theorem 2.4. For s > 0, as b → 0, we have the uniform convergence of smooth
kernels and their derivatives on E × E

exp
(− sME,F

b

)
(Y, Y ′) → exp

(
s

∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2

− s

∫

E

W (Y ) exp(−|Y |2) dY

πn/2

)
. (2.19)

As b → 0,

Tr
[
exp(−sME,F

b )
] → Tr

[
exp

(
s

∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2

− s

∫

E

W (Y ) exp(−|Y |2) dY

πn/2

)]
. (2.20)

As b → 0, the eigenvalues of ME,F
b converge either to the eigenvalues of

−
∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2
+

∫

E

W (Y ) exp(−|Y |2) dY

πn/2
,

or their real part tends to +∞.
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Proof. The proof of our theorem is the same as the proof of Theorems 1.5 and
2.1. ¤

2.5. The case where V is linear.
We will now consider a special case of Theorem 2.4. Indeed let v : E → End(F ) be

a linear map. Let R ∈ End(F ) be such that if e1, . . . , en is an orthonormal basis of E,
then

R =
1
2

n∑

i=1

v(ei)2. (2.21)

Set

LE,F
b =

HE

b2
+

v(Y )
b

, ME,F
b =

AE

b2
+

v(Y )
b

. (2.22)

Theorem 2.5. For s > 0, as b → 0, we have the uniform convergence of smooth
kernels and their derivatives on compact subsets of E × E

exp
(− sME,F

b

)
(Y, Y ′) → exp(sR). (2.23)

As b → +∞, the eigenvalues of ME,F
b converge to the eigenvalues of −R, or their real

parts tend to +∞.

Proof. The eigenspace of AE associated with the eigenvalue 1 is spanned by the
linear functions of Y . It follows that if V (Y ) = v(Y ), we have the identity

∫

E

V (Y )((AE)−1V )(Y ) exp(−|Y |2) dY

πn/2
= R. (2.24)

Our theorem now follows from Theorem 2.4. ¤

Let us give the probabilistic counterpart to Theorem 2.5. We still take Y· as in
(2.14). Set

Zs =
Ys/b2

b
. (2.25)

There is another Brownian motion w· such that

dZs =
1
b2

(−Zs + dws), Z0 = Y0/b. (2.26)

Let Ub,s ∈ End(F ) be the solution of

dUb,s

ds
= −Ub,sv(Zs), U0 = 1. (2.27)
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If f(Y ) is a bounded element of C∞(E, F ), a version of Feynman-Kac formula shows
that

exp
(− sME,F

b

)
f(Y0) = EQY0

[
Ub,sf(Ys/b2)

]
. (2.28)

Let U0,s be the solution of the stochastic differential equation in the sense of
Stratonovitch

dU0,s = −U0,sv(dws), U0,0 = 1. (2.29)

Equation (2.29) can be rewritten as the stochastic differential equation in the sense of
Itô

dU0,s = U0,s(Rds− v(δw)), U0,0 = 1. (2.30)

By (2.30), we deduce that

E[U0,s] = exp(sR). (2.31)

Theorem 2.6. As b → 0, the distribution valued process s ∈ R+ → Zs converges
in probability law to s ∈ R+ → ẇs. As b → 0, the probability law of s ∈ R+ → Ub,s

converges to the probability law of s ∈ R+ → U0,s. Also the joint law of (Z·, U·) converges
to the joint law of (ẇ, U0,·).

For 0 < s1 < · · · sm, as b → 0, the probability law of (Ys1/b2 , Ys2/b2 , . . . Ysm/b2)
converges to the product of probability laws exp(−|Y |2)dY/πn/2.

Finally, the joint law of (Z·, U·) and (Ys1/b2 , Ys2/b2 , . . . Ysm/b2) converges to the cor-
responding product law.

Proof. For the proof of a more difficult result, we refer to [B11, Theorem 12.8.1].
¤

3. The hypoelliptic Laplacian on a vector space and on a torus.

The purpose of this section is to study the hypoelliptic Laplacian in its simplest
version. Namely, if E is an Euclidean vector space, the companion hypoelliptic Laplacians
LE

b ,ME
b are scalar operator over E × E. They are infinite dimensional versions of the

operators LE,F
b ,ME,F

b that were considered in Subsection 2.5, and their properties are
intimately related to what we did in Sections 1 and 2. Also if E/Λ is a torus modelled on
E, we also consider the hypoelliptic Laplacians LE/Λ

b ,ME/Λ
b that act over on E/Λ×E.

We study the analytic and spectral properties of the above operators, and the behaviour
of their heat kernel as b → 0. Also we describe the associated diffusion process, which is
a Langevin process.

This section is organized as follows. In Subsection 3.1, we construct the hypoelliptic
Laplacians LE

b ,ME
b on E × E.

In Subsection 3.2, we show that the diffusion process on E×E associated with ME
b

projects to a Langevin process on E.
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In Subsection 3.3, by taking the Fourier transform of LE
b on the first copy of E, we

obtain an operator L̂E
b,ξ which can be diagonalized explicitly.

In Subsection 3.4, we show that the hypoelliptic non-self adjoint operator LE
b is

conjugate to an elliptic self-adjoint operator, by an unbounded conjugation.
In Subsection 3.5, if Λ ⊂ E is a lattice, using the previous conjugation, we compute

the spectrum of LE/Λ
b explicitly, and we show that as b → 0, from a spectral point of

view, LE/Λ
b converges to −(1/2)∆E/Λ.

In Subsection 3.6, we recall a formula of [B11] for the heat kernel for LE
b on E×E.

In Subsection 3.7, we give a nontrivial identity that expresses an integral along the
second copy of E of the heat kernel for LE

b in terms of the heat kernel of ∆E/2 on E.
Finally, in Subsection 3.8, we study the limit as b → +∞ of the hypoelliptic heat

kernel.

3.1. The hypoelliptic Laplacian associated with a vector space E.
We use the notation of Subsection 2.5. The generic element of E×E will be denoted

(x, Y ). Differentiation along the first copy of E will be denoted ∇H , while differentiation
on the second copy will be denoted ∇V . Here, the harmonic oscillators AE ,HE will act
on the second copy of E in E × E.

Put

F = C∞(E,R). (3.1)

In (3.1), E is identified with the corresponding first copy in E × E.
Let v : E → End(F ) be the linear map

v(Y ) = −∇H
Y . (3.2)

Then v(Y ) ∈ End(F ). Let ∆E,H denote the Laplacian along the first copy of E. With
the conventions in (2.21), we get

R =
1
2
∆E,H . (3.3)

We denote by LE
b ,ME

b the operators LE,F
b ,ME,F

b in (2.22), so that

LE
b =

HE

b2
− ∇H

Y

b
, ME

b =
AE

b2
− ∇H

Y

b
. (3.4)

The operators LE
b ,ME

b are known as Fokker-Planck operators. They are the sum of a
self-adjoint piece, AE/b2 or HE/b2, and of an antisymmetric piece −∇H

Y /b.
In [K34], Kolmogorov introduced the operator

K = −1
2
∆V −∇H

Y , (3.5)

and computed the smooth heat kernel for K. The operator K is the model of the second
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order hypoelliptic differential operators studied by Hörmander [H67]. Let just mention
that if t ∈ R+, the operator ∂/∂t + K is also hypoelliptic, which, in retrospect explains
the smoothness of the heat operator for K.

The same argument also shows that ∂/∂t + LE
b , ∂/∂t + ME

b are hypoelliptic. In
particular LE

b ,ME
b are hypoelliptic. An operator like LE

b ,ME
b is called a hypoelliptic

Laplacian.

3.2. The Langevin process associated with ME
b .

The stochastic differential equation corresponding to the semigroup exp(−sME
b ) is

given by

ẋ =
Y

b
, Ẏ = −Y

b2
+

ẇ

b
, (3.6)

x0 = x, Y0 = Y.

If Z = Y/b, we get instead

ẋ = Z, Ż =
1
b2

(−Z + ẇ), (3.7)

x0 = x, Z0 =
Y

b
.

If f ∈ C∞(E × E,R) is bounded, then

exp
(− sME

b

)
f(x, Y ) = E[f(xs, Ys)]. (3.8)

By (3.6), (3.7), we obtain

b2ẍ + ẋ = ẇ. (3.9)

Equation (3.9) is a Langevin equation [L08]. For b = 0, (3.9) reduces to the equation of
Brownian motion ẋ = ẇ in the first copy of E, for b = ∞, it reduces to the equation of
geodesics ẍ = 0.

An obvious application of Theorem 2.6 gives the following result.

Theorem 3.1. As b → 0, the probability law of (x·, Z·) converges to the probability
law of (x+w·, ẇ·). For 0 < s1 < · · · < sm, the probability law of (Ys1 , . . . , Ysm

) converges
to the product of the probability laws exp(−|Y |2)dY/πn/2.

Finally, the joint law of (x·, Z·) and (Ys1 , . . . , Ysm
) converges to the corresponding

product law.

Remark 3.2. Theorem 3.1 legitimates the naive idea that for b = 0, equation
(3.9) reduces to ẋ = ẇ. Ultimately, the infinite dimensional version of Theorem 2.6 with
F = C∞(E,R) and v(Y ) = −∇H

Y is correct.

The diffusion process corresponding to the operator LE
b is given by the stochastic
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differential equation

ẋ =
Y

b
, Ẏ =

ẇ

b
, (3.10)

x0 = x, Y0 = Y.

By (3.10), we get

b2ẍ = ẇ. (3.11)

If f ∈ C∞(E × E,R) is bounded, then

exp
(− sLE

b

)
f(x, Y ) = E

[
exp

(
− 1

2b2

(∫ s

0

|Yu|2du− ns

))
f(xs, Ys)

]
. (3.12)

Equation (3.12) can be rewritten in the form

exp
(− sLE

b

)
f(x, Y ) = E

[
exp

(
−1

2

(∫ s

0

|ẋ|2du− ns

b2

))
f(xs, Ys)

]
. (3.13)

Equation (3.13) is of special interest, since the energy of the path x· appears explicitly
in the right-hand side, while for the usual Brownian motion, this energy is infinite, and
remains conceptually in the shadow.

3.3. The Fourier transform L̂b,ξ.
Let L̂E

b,ξ denote the Fourier transform of the operator LE
b in the variable x. If ξ ∈ E∗,

then

L̂E
b,ξ =

1
2b2

(−∆E,V + |Y |2 − n
)− i

b
〈Y, ξ〉. (3.14)

Given ξ ∈ R, the proper theory of the operator L̂b,ξ can be set up so that the operator
L̂b,ξ has compact resolvent acting on LE

2 [BL08].
We identify E and E∗ by the scalar product. Then we can rewrite (3.14) in the form

L̂E
b,ξ =

1
2b2

(−∆E,H + |Y − ibξ|2 − n
)

+
1
2
|ξ|2. (3.15)

Let A(E) be the vector space of complex valued analytic functions on E. Then L̂E
b,ξ

acts on A(E). If a ∈ E ⊗R C, let Ta be the map acting on A(E),

Taf(Y ) = f(Y + a). (3.16)

Equivalently

Ta = exp(∇V
a ). (3.17)
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By (3.14), we have the identity

TibξL̂E
b,ξT

−1
ibξ =

HE

b2
+

1
2
|ξ|2. (3.18)

This identity should be understood as purely algebraic. Note that Tibξ does not act on
any natural Sobolev space on E. Therefore, the operators in (3.16) cannot safely be
considered as isospectral6.

For k ∈ Nn, let Pk(Y ) be the Hermite polynomial of multiindex k. As we saw before,
the exp(−|Y |2/2)Pk(Y ) are the eigenfunctions of HE . Note that

T−ibξ exp(−|Y |2/2)Pk(Y ) = exp
(
−1

2
|Y − ibξ|2

)
Pk(Y − ibξ). (3.19)

Given ξ ∈ E∗, the function in (3.19) lies in the Schwartz space S(E,C). Ultimately,
one finds easily that the operator L̂b,ξ is explicitly diagonalizable with eigenfunctions in
(3.19), and the vector space spanned by the linear combinations of these eigenfunctions
is dense in LE

2 . In particular, the operators in (3.18) are indeed isospectral, in spite of
the fact that the intertwining map Tibξ does not act in a standard way.

It follows from the above that

Sp L̂E
b,ξ =

N
b2

+
1
2
|ξ|2. (3.20)

By (3.20), as b → 0, the spectrum of L̂b,ξ converges to (1/2)|ξ|2, which fits with Theorem
2.5.

3.4. A nontrivial conjugation.
Let us now go back to the original operators LE

b . Let ∆E,H be the Laplacian on the
first copy of E in E × E. We have the analogue of (3.15)

LE
b =

1
2b2

(−∆E,V + |Y − b∇H
· |2 − n

)− 1
2
∆E,H . (3.21)

Again, by [BL08], the proper theory of the operator LE
b can be set up so that its resolvent

acts on LE×E
2 . If Λ ⊂ E is a lattice, because of hypoellipticity, the corresponding operator

LE/Λ
b on E/Λ× E has compact resolvent.

Let e1, . . . , en be an orthonormal basis of E, and let (x1, . . . , xn) and (Y 1, . . . , Y n)
be the corresponding coordinates on E ⊕ E. Set

N =
n∑

i=1

∂2

∂xi∂Y i
. (3.22)

Then

6The situation is completely different if ξ is replaced by iξ.
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N̂ξ = i∇V
ξ . (3.23)

Note that N is a hyperbolic operator. Let C(E) be the complex vector space of
linear combinations of functions of the type x → exp(i〈x, ξ〉). Then exp(bN) acts on
C(E)⊗A(E). However, exp(bN) does not act on any Sobolev space.

Still we have the formal analogue of (3.18),

exp(bN)LE
b exp(−bN) =

HE

b2
− 1

2
∆E,H . (3.24)

Equation (3.24) should be viewed as an algebraic identity. Again, the operators in (3.23)
are not conjugate in the classical sense, since the conjugating operator exp(bN) is not a
honest operator.

3.5. The spectrum of LE/Λ
b .

To make our argument simpler, we will consider instead the operators LE/Λ
b ,ME/Λ

b

acting on E/Λ× E. Let Λ∗ ⊂ E∗ be the dual lattice to Λ

Λ∗ = {ξ ∈ E∗, 〈ξ, Λ〉 ⊂ 2πZ}. (3.25)

Then equation (3.24) descends to

exp(bN)LE/Λ
b exp(−bN) =

HE

b2
− 1

2
∆E/Λ. (3.26)

The arguments in (3.18)–(3.20) show that LE/Λ
b can be properly diagonalized. If

λ ∈ Λ∗, the eigenfunctions of LE
b are given by

exp
(
−1

2
|Y − ibλ|2

)
Pk(Y − ibλ) exp(i〈λ, x〉), (3.27)

the corresponding eigenvalue being given by |k|/b2 + |λ|2/2. Again the span of these
eigenfunctions is the full L

E/Λ×E
2 .

If A,B are subsets of R, we denote by A+B the subset of R that consists of all the
possible sums a + b, a ∈ A, b ∈ B. It follows from the above that

SpLE/Λ
b =

N
b2

+ Sp
(
−1

2
∆E/Λ

)
. (3.28)

Ultimately, even though equation (3.26) is not a proper conjugation, its consequences
are correct, i.e., the operators in (3.26) are isospectral.

Observe the remarkable fact that the eigenvalues of LE/Λ
b are real. As b → 0, either

they tend to the eigenvalues of −∆E/Λ/2 or they tend to +∞. From a spectral theoretic
point of view, as b → 0, the operator LE/Λ

b converges to the operator −∆E/Λ/2. The
consequences of Theorem 2.5 are still valid even though the twisting F = C∞(E/Λ,R)
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is infinite dimensional. The fundamental fact is that the eigenvalues of −∆E/Λ/2 are
rigidly embedded in the eigenvalues of LE/Λ

b .

Theorem 3.3. The following identity holds:

Tr
[
exp(−sLE/Λ

b )
]

= Tr
[
exp(−sHE/b2)

]
Tr

[
exp(s∆E/Λ/2)

]
. (3.29)

Proof. By (3.28), we get

Tr[exp(−sLE/Λ
b )] =

(
1− e−s/b2

)−n Tr
[
exp(s∆E/Λ/2)

]
. (3.30)

Moreover, we have the identity

Tr
[
exp(−sHE/b2)

]
=

(
1− e−s/b2

)−n
. (3.31)

By (3.30), (3.31), we get (3.29). ¤

Remark 3.4. One can give a direct proof of (3.29) that uses (3.26).

3.6. The heat kernel for LE
b .

Set

Hb,s

(
(x, Y ), (x′, Y ′)

)
=

1
2

(
tanh(s/2b2)(|Y |2 + |Y ′|2) +

|Y ′ − Y |2
sinh(s/b2)

)

+
1

2(s− 2b2 tanh(s/2b2))

∣∣x′ − x− b tanh(s/2b2)(Y + Y ′)
∣∣2,

Kb,s

(
(x, Y ), (x′, Y ′)

)
=

1
2 sinh(s/b2)

∣∣e−s/2b2Y − es/2b2Y ′∣∣2

+
1

2(s− 2b2 tanh(s/2b2))

∣∣x′ − x− b tanh(s/2b2)(Y + Y ′)
∣∣2.
(3.32)

Then

Kb,s

(
(x, Y ), (x′, Y ′)

)
= Hb,s

(
(x, Y ), (x′, Y ′)

)
+

1
2
(|Y ′|2 − |Y |2). (3.33)

Let exp(−sLE
b )((x, Y ), (x′, Y ′)), exp(−sME

b )((x, Y ), (x′, Y ′)) be the smooth kernels
of exp(−sLE

b ), exp(−sME
b ) with respect to dx′(dY ′/πn/2), exp(−|Y ′|2)dx′(dY ′/πn/2).

By [B11, Proposition 10.5.1], we get

exp
(− sLE

b

)
((x, Y ), (x′, Y ′))

=
[

es/b2

4π sinh(s/b2)(s− 2b2 tanh(s/2b2))

]n/2

exp
(−Hb,s((x, Y ), (x′, Y ′))

)
,
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exp
(− sME

b

)
((x, Y ), (x′, Y ′))

=
[

es/b2

4π sinh(s/b2)(s− 2b2 tanh(s/2b2))

]n/2

exp
(|Y ′|2 −Kb,s((x, Y ), (x′, Y ′))

)
.

(3.34)

The computation in [B11] uses (3.24) explicitly.
Another explanation for equation (3.34) given in [B11, Section 10.5] is as follows.

Since the operator ME
b has total weight 2 in the variables x, Y and in the differentia-

tion operators ∇H ,∇V , its heat kernel exp(−sME
b ) is Gaussian, and can be computed

by solving a corresponding variational problem associated with the corresponding large
deviation functional [B11, Section 10.1]. If x· : [0, s] → E is a smooth path, set

Hb,s(x) =
1
2

∫ s

0

(|ẋ|2 + b4|ẍ|2)du. (3.35)

Here we fix (x0, ẋ0) = (x, Y/b) and (xs, ẋs) = (x′, Y ′/b). The problem of mini-
mizing (3.35) has a unique solution. In [B11, Proposition 10.3.2], it is shown that
Hb,s((x, Y ), (x′, Y ′)) is precisely the minimum value of Hb,s(x). This ultimately explains
equation (3.34). The first factor in the right-hand side can be obtained using the fact
that the heat kernel for exp(−sME

b ) consists of probability measures.
By (3.32), we recover the fact established in [B11, Equation (10.3.49)] that as b → 0,

Hb,s((x, Y ), (x′, Y ′)) → H0,s((x, Y ), (x′, Y ′)) =
1
2s
|x′ − x|2 +

1
2
(|Y |2 + |Y ′|2). (3.36)

By (3.34), (3.36), as b → 0, we have the convergence of smooth kernels and their
derivatives on compact sets of E × E

exp
(− sLE

b

)
((x, Y ), (x′, Y ′))

→ exp
(
−1

2
(|Y |2 + |Y ′|2)

)
1

(2πs)n/2
exp

(
− 1

2s
|x′ − x|2

)
. (3.37)

Let exp(s∆E/2)(x) be the smooth kernel of exp(s∆E/2) with respect to dx. Using (2.5),
equation (3.37) can be rewritten in the form

exp
(− sME

b

)
((x, Y ), (x′, Y ′)) → exp

(
s∆E

2

)
(x′ − x). (3.38)

Equation (3.38) is the strict analogue at the level of smooth kernels of equation (2.23)
in Theorem 2.5, which is only valid when F is finite dimensional.

3.7. A nonperturbative identity of smooth kernels on E.
First, we state an identity in [B11, Equation (10.6.17)].
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Proposition 3.5. For any a ∈ E, the following identity holds:

∫

E

exp
(− sLE

b

)
b,s

((0, Y ), (a, Y ))
dY

πn/2
=

(
1− e−s/b2

)−n(2πs)−n/2 exp
(
−|a|

2

2s

)
. (3.39)

Proof. This just follows from equation (3.34). ¤

Now we reinterpret the left-hand side of (3.39) as a partial trace in the variable Y .
We denote this partial trace by Tra.

Theorem 3.6. The following identity holds:

Tra
[
exp(−sLE

b )
]

= Tr
[
exp(−sHE/b2)

]
exp(s∆E/2)(a). (3.40)

Remark 3.7. In [B11, Section 10.6], it is shown how to derive (3.40) from (3.24).
A version of Poisson’s formula shows that Theorem 3.3 can be derived from Theorem
3.6.

3.8. The limit as b → +∞.
As b → +∞, by (3.28), an infinite number of eigenvalues of LE

b accumulate to 0.
Let Kb be the map f(Y ) → f(bY ), or f(x, Y ) → f(x, bY ). Set

LE
b = KbLE

b K−1
b . (3.41)

Then

LE
b =

1
2

(
−∆V

b4
+ |Y |2 − n

b2

)
−∇H

Y . (3.42)

By (3.42), we get

L̂E

b,ξ =
1
2

(
−∆V

b4
+ |Y |2 − n

b2

)
− i〈Y, ξ〉. (3.43)

By (3.19), the eigenfunctions of L̂E

b,ξ are given by

exp
(
−b2

2
|Y − iξ|2

)
Pk(b(Y − iξ)). (3.44)

By (3.42), (3.43), as b → +∞, we have the convergence of operators in the naive
sense

LE
b → LE

∞ =
1
2
|Y |2 −∇H

Y , L̂E

b,ξ → L̂E

∞,ξ =
1
2
|Y |2 − i〈Y, ξ〉. (3.45)

Also if f ∈ S(E × E,C), then
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exp(−sLE
∞)f(x, Y ) = exp

(
−s

2
|Y |2

)
f(x + sY, Y ). (3.46)

The operator −LE
∞ is essentially the generator of the geodesic flow (x, Y ) → (x + sY, Y )

on E × E.
If f̂(ξ, Y ) is the Fourier transform of f(x, Y ) in the variable x, we get

exp
(− sL̂E

∞,ξ

)
f̂(ξ, Y ) = exp

(
−s

2
|Y |2 + i〈sY, ξ〉

)
f̂(ξ, Y ). (3.47)

Of course, (3.47) is the Fourier transform of (3.46).
The first equation (3.45) indicates that as b → +∞, the heat equation for LE

b

propagates more and more along the geodesic flow. This can be seen directly from
(3.10), (3.11).

Set

Hb,s((x, Y ), (x′, Y ′)) = Hb,s((x, bY ), (x′, bY ′)). (3.48)

Now we proceed as in [B11, Section 10.3]. By (3.32), one finds easily that as b → +∞,
Hb,s((x, Y ), (x′, Y ′)) tends to +∞ unless

Y ′ = Y, x′ = x + sY, (3.49)

which is exactly the equation of propagation of the geodesic flow. As shown in [B11,
Equation (10.3.57)], when such conditions are verified, as b → +∞,

Hb,s((x, Y ), (x′, Y ′)) → 1
2s
|x′ − x|2. (3.50)

The above considerations indicate that the concentration around the geodesic flow can
also be seen at the level of heat kernels.

When considering traces instead, by Theorems 3.3 and 3.6, as b → +∞,

Tr
[
exp(−sLE/Λ

b )
] ∼ (b2/s)n Tr

[
exp(s∆E/Λ/2)

]
, (3.51)

Tra
[
exp(−sLE

b )
] ' (b2/s)n exp(s∆E/2)(a).

4. Index theory and the hypoelliptic Laplacian on a vector space.

In this section, we combine the results of Section 3 with elementary arguments of
index theory to prove that in the proper sense, the supertrace of the heat kernel of a
suitable modification of the operator LE

b is just the trace of the original elliptic heat
kernel. The price to pay is that the new hypoelliptic operators are no longer scalar.

This section is organized as follows. In Subsection 4.1, we introduce some elementary
tools of linear algebra that are relevant in index theory.
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In Subsection 4.2, we construct the Witten complex on the Euclidean vector space
E. Its corresponding Hodge Laplacian is a simple modification of the harmonic oscillator
HE .

In Subsection 4.3, we construct a first order differential operator DE
b acting on

C∞(E × E, Λ·(E∗)), and we obtain the nonscalar hypoelliptic Laplacian L E
b .

In Subsection 4.4, we obtain the result mentioned before on the invariance of the
trace of the elliptic Laplacian by the hypoelliptic deformation.

Finally, in Subsection 4.5, we make b → +∞ in our fundamental identity, and
we recover standard identities on the heat kernel of E or on E/Λ. It turns out that the
algebraic machine which produces such identities will extend to a more general geometric
context.

4.1. Linear algebra.
Let H = H+⊕H− be a Z2-graded real or complex vector space. Let τ = ±1 be the

involution of H that defines the grading, i.e., τ = ±1 on H±. The algebra End(H) is a
Z2-graded algebra, the even part being made of morphisms commuting with τ , the odd
part of the morphisms that anticommute with τ .

If a, b ∈ End(H), we define the supercommutator [a, b] by the formula

[a, b] = ab− (−1)deg a deg bba. (4.1)

Note that if a, b are both odd, [a, b] is the anticommutator of a, b.
If a ∈ End(H), we define its supertrace Trs[a] by the formula

Trs[a] = Tr[τa]. (4.2)

A fundamental fact [Q85] is that supertraces vanish on supercommutators. Indeed, if
a, b ∈ End(H), the only nontrivial case is when a, b are both odd. In this case

τ [a, b] = τab− bτa. (4.3)

The fact that Trs[[a, b]] vanishes reduces to the fact that the trace of a commutator
vanishes.

Note that D ∈ Endodd(H) can be written in matrix form with respect to the splitting
H = H+ ⊕H− as

D =
[

0 D−
D+ 0

]
. (4.4)

Proposition 4.1. Let D ∈ Endodd(H). Then

Trs[exp(−D2)] = dimH+ − dimH−. (4.5)

Proof. We only need to show that Trs[exp(−sD2)] does not depend on s. Using
the fact that



1346 J.-M. Bismut

D2 =
1
2
[D, D], (4.6)

we get

∂

∂s
Trs[exp(−sD2)] = −1

2
Trs[[D, D] exp(−sD2)]. (4.7)

Since

[D, D2] = 0 (4.8)

a form of Jacobi’s identity shows that

[D, D] exp(−sD2) = [D, D exp(−sD2)]. (4.9)

By (4.7), (4.9), we get

∂

∂s
Trs[exp(−sD2)] = −1

2
Trs[[D, D exp(−sD2)]]. (4.10)

Since supertraces vanish on supercommutators, (4.10) vanishes, which concludes the
proof. ¤

In the sequel, we will also use the above formalism in an infinite dimensional setting.

4.2. The Witten complex.
Let E be a finite dimensional Euclidean vector space. Let (Ω·(E), dE) denote its de

Rham complex. The Witten twist [W82] of the operator dE by the Gaussian function
is given by

exp(−|Y |2/2)dE exp(|Y 2/2|) = dE + Y ∧ . (4.11)

We equip Ω·2(E), the vector space of L2 forms on E, with its L2 scalar product

〈s, s′〉 =
∫

E

〈s, s′〉Λ·(E∗)dY. (4.12)

The formal adjoint of dE + Y ∧ is just dE∗ + iY , where dE∗ is just the formal adjoint of
dE with respect to (4.12), and iY is the contraction by Y . Then [d + Y ∧, d∗ + iY ] (the
supercommutator of the two operators) is the associated Hodge Laplacian.

Let NΛ·(E∗) be the number operator of the exterior algebra Λ·(E∗), that acts by
multiplication by p on Λp(E∗). Recall that H is the harmonic oscillator on E. Put

DE = d + Y ∧+d∗ + iY . (4.13)

An easy computation in [W82] shows that
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1
2
DE,2 =

1
2
[
dE + Y ∧, dE∗ + iY

]
= HE + NΛ·(E∗). (4.14)

By (4.14), the kernel of the Hodge Laplacian in (4.14) is concentrated in degree 0 in
Λ·(E∗) and is generated by the Gaussian exp(−|Y |2/2), on which d + Y ∧, d∗ + iY both
vanish.

It is equivalent to equip the vector space of bounded smooth forms in Ω·(E) with
the scalar product

〈s, s′〉′ =
∫

E

〈s, s′〉 exp(−|Y |2)dY, (4.15)

and to consider instead the formal adjoint of dE with respect to (4.15) given by dE∗+2iY .
Put

DE′ = dE + dE∗ + 2iY . (4.16)

Then

DE′ = exp(|Y |2/2)DE exp(−|Y |2/2). (4.17)

The associated Hodge Laplacian is such that

1
2
DE′,2 =

1
2
[
dE , dE∗ + 2iY

]
= AE + NΛ·(E∗). (4.18)

The kernel of the operator in (4.18) is concentrated in degree 0 and is generated by the
function 1.

Proposition 4.2. For any s > 0, the following identity holds:

Trs
[
exp(−sDE,2/2)

]
= 1. (4.19)

Proof. By (4.14), we get

Trs[exp(−sDE,2/2)] = Tr[exp(−sHE)]Trs
[
exp(−sNΛ·(E∗))

]
. (4.20)

By (3.31), we get

Tr[exp(−sHE)] = (1− e−s)−n. (4.21)

Also it is elementary to show that

Trs
[
exp(−sNΛ·(E∗))

]
= (1− e−s)n. (4.22)

By (4.20)–(4.22), we get (4.19).
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Another proof is based on the proof of Proposition 4.1. Indeed, the fact that (4.19)
does not depend on s can be shown as in Proposition 4.1. By making instead s → +∞,
we get (4.19). ¤

Remark 4.3. The method used in the second proof of Proposition 4.2 can be
extended to more general index problems.

4.3. The hypoelliptic de Rham Hodge complex.
The generic coordinate in E×E is still denoted (x, Y ). The exterior algebra Λ·(E∗)

should be thought as the exterior algebra of the dual of the second copy of E in E⊕E. The
exterior algebras of the two copies of E will be identified. If e1, . . . , en is an orthonormal
basis of E, using coordinates on E × E with respect to this base, we have the identity

dxi = dY i, 1 ≤ i ≤ n. (4.23)

Now we will consider the vector space C∞(E × E, Λ·(E∗)). Let dx, dY be the de
Rham operators along the two copies of E, and let d∗x, d∗Y denote their classical formal
adjoints. For b > 0, set

DE
b = −dE

x + dE∗
x +

1
b

(
dE

Y + Y ∧+dE∗
Y + iY

)
. (4.24)

Equation (4.24) can be written in the form

DE
b =

dyi

b

(
∂

∂yi
+ yi − b

∂

∂xi

)
+

i∂/∂yi

b

(
− ∂

∂yi
+ yi − b

∂

∂xi

)
. (4.25)

Let D̂E
b,ξ be the Fourier transform of DE

b in the variable x. By (4.24), we get

D̂E
b,ξ =

1
b

(
dE

Y + Y ∧ −ibξ ∧+dE∗
Y + iY−ibξ

)
. (4.26)

The operators in (4.25), (4.26) are not self-adjoint. Also using the notation in (3.17),
(3.22), by (4.25), (4.26), we get

exp(bN)DE
b exp(−bN) =

DE

b
, TibξD̂

E
b,ξT

−1
ibξ =

DE

b
. (4.27)

By (4.14), (4.27), we conclude that

exp(bN)
1
2
DE×E,2

b exp(−bN) =
1
b2

(HE + NΛ·(E∗)),

Tibξ
1
2
D̂E,2

b,ξ T−1
ibξ =

1
b2

(HE + NΛ·(E∗)).
(4.28)

By the results of Subsection 3.3, we conclude easily that D̂E
b,ξ is isospectral to DE/b.
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If Λ ⊂ E is a lattice, we can replace E×E by E/Λ×E. By the above, we conclude
that D

E/Λ
b is isospectral to an infinite number of copies of DE/b indexed by the Fourier

modes of E/Λ.
Recall that the operator LE

b was defined in Subsection 3.1.

Definition 4.4. Set

L E
b = LE

b +
NΛ·(E∗)

b2
, L̂ E

b,ξ = L̂E
b,ξ +

NΛ·(E∗)

b2
. (4.29)

Then L E
b is a hypoelliptic operator acting on C∞(E × E, Λ·(E∗)), and L̂ E

b,ξ is its
Fourier transform in the variable x.

Proposition 4.5. The following identities hold :

L E
b = −1

2
∆E,H +

1
2
DE,2

b , L̂ E
b,ξ =

1
2
|ξ|2 +

1
2
D̂E×E,2

b,ξ . (4.30)

Proof. By (4.14) and (4.28), we get

DE,2
b =

1
2b2

(−∆E,V + |Y − b∇H
· |2 − n

)
+

NΛ·(E∗)

b2
. (4.31)

By (4.29), (4.31), we get (4.30). ¤

Remark 4.6. If Λ ⊂ E is a lattice, we define the operator L
E/Λ
b on E/Λ× E by

a similar formula.

4.4. A nonperturbative identity.
Now we give another version of Theorems 3.3 and 3.6.

Theorem 4.7. For any s > 0, a ∈ E, the following identities hold :

Tra
s

[
exp(−sL E

b )
]

= exp(s∆E/2)(a),

Trs
[
exp(−sL

E/Λ
b )

]
= Tr

[
exp(s∆E/Λ/2)

]
.

(4.32)

Proof. Our theorem follows from Theorems 3.3, 3.6, and from Proposition 4.2.
¤

Remark 4.8. It follows from the above that the operator D
E/Λ,2
b is isospectral

to the operator DE,2/b2 acting on C∞(E/Λ,R) ⊗ C∞(E, Λ·(E∗)). The correspond-
ing eigenvalues have infinite multiplicity, because C∞(E/Λ,R) is infinite dimensional.
Adding −∆E,H/2 has the effect of making L

E/Λ
b hypoelliptic, and the corresponding

heat operator to be trace class. A similar interpretation can be given on the operator
L E

b .
The fact that equation (4.32) holds when b → 0 can still be viewed as a consequence

of Theorems 2.5 and 3.6. It is similar in spirit to equation (4.5) in Proposition 4.1. It
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gives a form of the McKean-Singer index formula in index theory [MS67].

4.5. The limit b → +∞.
We can now take the limit as b → +∞ in equation (4.32). Contrary to what happens

in equation (3.51), there is no singularity as b → ∞. By using (3.45) explicitly, from
(4.32) we get

exp(s∆E/2)(a) =
exp(−|a|2/2)

(2πs)n/2
,

Tr
[
exp(s∆E/Λ/2)

]
=

Vol(E/Λ)
(2πs)n/2

∑

λ∈Λ

exp(−|λ|2/2s).
(4.33)

The identities in (4.33) should be viewed as a consequence of taking the limits as b → 0
and b → +∞ in (4.32). The second identity is just the Poisson formula.

Of course these identities are well-known! They have acquired an index theoretic
flavour, i.e., they express a global (or operator theoretic) quantity in local terms, exactly
like the index theorem of Atiyah-Singer [AS68a], [AS68b]. But most importantly, they
will have a nontrivial extension in more general geometric situations.

5. The geometric hypoelliptic Laplacians.

The purpose of this section is to explain the construction of the geometric hypoel-
liptic Laplacian. More precisely, we describe the scalar hypoelliptic Laplacian acting on
the total space of the tangent bundle of a compact Riemannian manifold, and also the
associated diffusion, which projects on X as a geometric Langevin process. Also, we
briefly explain the extension to symmetric spaces and compact locally symmetric spaces
of the index theoretic constructions of Section 4.

This section is organized as follows. In Subsection 5.1, we construct the scalar
hypoelliptic Laplacian.

In Subsection 5.2, we describe the corresponding geometric Langevin process, and
we state various results on the behaviour as b → 0 of this hypoelliptic diffusion and of
its heat kernel.

In Subsection 5.3, we show that as b → +∞, the geometric Langevin process con-
verges to a suitable version of the geodesic flow.

In Subsection 5.4, we give a few details on the construction of the hypoelliptic
Laplacian in de Rham theory.

Finally, in Subsection 5.5, we explain some aspects of the construction of the hypoel-
liptic Laplacian on symmetric and locally symmetric spaces, by focusing on the case of
the Poincaré upper half plane, and on Riemann surfaces of constant negative curvature.

5.1. The hypoelliptic Laplacian on a compact manifold.
Let X be a compact Riemannian manifold. Let ∇TX be the Levi-Civita connection

on the tangent bundle TX. Let π : X → X be the total space of the tangent bundle
of X. The fibres of π will be denoted T̂X, to distinguish these fibres from the tangent
bundle TX. Let THX ⊂ TX denote the horizontal subbundle of associated with ∇TX .
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If U ∈ TX, let UH ∈ THX denote its horizontal lift.
Let Y denote the tautological section on X of π∗T̂X. Let Z denote the vector field

on X that generates the geodesic flow. If Y ∈ T̂X, we identify Y with the corresponding
element of TX. Then we have the identity

Z = Y H . (5.1)

The corresponding differentiation operator will be denoted ∇H
Y .

Let H
dTX , A

dTX denote the harmonic oscillators along the fibres T̂X with respect to
the given Riemannian metric gTX .

Definition 5.1. For b > 0, let LX
b ,MX

b be the operators acting on C∞(X ,R)

LX
b =

H
dTX

b2
− ∇H

Y

b
, MX

b =
A
dTX

b2
− ∇H

Y

b
. (5.2)

As in (2.9), we get

LX
b = exp(−|Y |2/2)MX

b exp(|Y |2/2). (5.3)

The operators LX
b ,MX

b are as canonical as the ordinary Laplacian −∆X/2. They are
still hypoelliptic. Contrary to the hypoelliptic Laplacians on Heisenberg manifolds that
require a special geometry, our hypoelliptic operators exist universally. Even though
their structure is similar to the structure of the operators LE

b ,ME
b in (3.4), the situation

is somewhat different, because the harmonic oscillators A
dTX ,H

dTX now act along the
fibres of a vector bundle.

The operators LX
b ,MX

b are geometric versions of Fokker-Planck operators.

5.2. The geometric Langevin process.
The probabilistic constructions of the heat equation semigroups exp(−sLX

b ),
exp(−sMX

b ) is formally the same as in (3.6)–(3.8) and in (3.10)–(3.12). The only very
significant difference is that the Brownian motion w· takes its values in TxX and is trans-
ported along the trajectory x· with respect to the Levi-Civita connection. Also Ẏ should
be interpreted here as the covariant derivative of Y with respect to the Levi-Civita con-
nection ∇TX . In particular as in (3.9), the stochastic differential equation corresponding
to MX

b projects on X to the second order stochastic differential equation

b2ẍ + ẋ = ẇ. (5.4)

In (5.4), ẇ is the Stratonovitch differential of Brownian motion in TX. Again ẍ is
calculated using the Levi-Civita connection.

One remarkable aspect of the above equations is that the stochastic differential
equations can be solved pointwise, for every trajectory w·. This is in dramatic contrast
with the stochastic differential equation
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ẋ = ẇ, x0 = x (5.5)

corresponding to Brownian motion on X.
For s > 0, let exp(s∆X/2)(x, x′) be the smooth kernel on X for exp(s∆X/2) with

respect to the volume dx′. Let exp(−sMX
b )((x, Y ), (x′, Y ′)) be the smooth kernel for

exp(−sMX
b ) with respect to exp(−|Y ′|2)dx′(dY ′/πn/2). Set

Z· =
Y·
b

. (5.6)

Theorem 5.2. As b → 0, the probability law of (x·, Z·) converges to the probability
law of (x·, ẇ·). For 0 < s1 < · · · < sm, the law of ((xs1 , Ys1), . . . , (xsm

, Ysm
)) converges

to the law of ((xs1 ,Ys1), . . . , (xsm ,Ysm)), where conditionally on xs1 , . . . ,xsm , the prob-
ability law of (Ys1 , . . . ,Ysm) is the product of the probability laws exp(−|Y |2)dY/πn/2 in
the fibres T̂Xxs1

, . . . , T̂Xxsm
.

The joint laws of (x·, Z·) and of Ys1 , . . . , Ysm
converge to the corresponding product

law.
As b → 0, for any s > 0, we have the uniform convergence of smooth kernels and

their derivatives of any order over compact sets of X

exp
(− sMX

b

)
((x, Y ), (x′, Y ′)) → exp(s∆X/2)(x, x′). (5.7)

As b → 0, for any s > 0

Tr
[
exp(−sMX

b )
] → Tr[exp(s∆X/2)]. (5.8)

Proof. The first part of our theorem was established in the proof of [B11, Theo-
rem 12.8.1] when X is a noncompact symmetric space. The proof when X is an arbitrary
compact manifold is exactly the same.

The convergence of the smooth kernels in (5.7) was proved by Bismut-Lebeau [BL08,
Equation (3.4.10) and chapter 17] using pseudodifferential operators. Part of the func-
tional analysis developed in [BL08] is based on the analogue of the matrix splitting in
the proof of Theorem 1.1. Another proof, also valid in the noncompact case, was given
in [B08c, Theorem 12.8.1], that is based on probabilistic arguments. The Malliavin
calculus plays an important role in this last proof. ¤

Remark 5.3. By Theorem 5.2, the analogues of Theorem 3.1 and of equation
(3.38) still hold in the geometric situation considered above. The behaviour of the lower
part of the spectrum of LX

b was studied in detail in [BL08, Chapter 10]. In [B11, Section
14.10], the ergodic theorem for the Ornstein-Uhlenbeck process Y· plays an important
role in the analysis of the above convergence as b → 0. This is not surprising in view of
the considerations of Sections 1 and 2. Finally, note that the analogue of equation (2.24)
is given by

∫
dTX

∇H
Y

(
A
dTX

)−1∇H
Y exp(−|Y |2) dY

πn/2
=

1
2
∆X . (5.9)
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Equation (5.9) is the simplest formal explanation for some of the above results.

5.3. The dynamical aspects of the limit b → +∞.
For b > 0, let kb be the morphism of C∞(X ,R) given by f(x, Y ) → f(x, bY ). As in

(3.41), put

LX
b = KbLX

b K−1
b . (5.10)

As in (3.42), we get

LX
b =

1
2

(
−∆V

b4
+ |Y |2 − n

b2

)
−∇H

Y . (5.11)

As in (3.45), as b → +∞,

LX
b → LX

∞ =
1
2
|Y |2 −∇H

Y . (5.12)

The above indicates that as in Subsection 3.8, as b → +∞, the heat equation for LX
b

propagates more and more along the geodesic flow. This is also obvious by equation
(5.4).

Intuitively, it should be clear that as b → +∞, given s > 0, Trs[exp(−sLX
b )] localizes

around closed geodesics on the time interval [0, s]. Since there are an infinite number of
those, handling the localization is a priori not so easy.

5.4. The hypoelliptic Laplacian in de Rham theory.
It is not possible to establish a nonperturbative identity for Tr[exp(−sLX

b )] similar
to equation (3.29) in Theorem 3.3, because there is no conjugation identity like (3.26).
In general, the spectrum of LX

b cannot be computed explicitly.
In [B05], we have shown that in the proper sense, in the same way as −∆X can

be viewed as the restriction to 0-forms of a classical elliptic Hodge Laplacian ¤X , the
hypoelliptic operators LX

b ,MX
b can be viewed as the restriction to 0-forms of a hypoel-

liptic Hodge Laplacian acting on X . In [BL08], with Lebeau, we have shown that in full
generality, certain spectral invariants like the Ray-Singer analytic torsion are invariant
under the deformation from elliptic to hypoelliptic Hodge theory. For explicit connec-
tions between the hypoelliptic Laplacian and the Witten Laplacian, we refer to recent
work by Shen [Sh14].

5.5. The hypoelliptic Laplacian on locally symmetric spaces.
The purpose of our later work [B11] is to show that on symmetric or locally symmet-

ric spaces of noncompact type, the nonperturbative index theoretic identities of Theorem
4.7 can be suitably extended. The proper description of locally symmetric spaces is in
terms of Lie groups, and that part of the mystery of the construction outlined below lies
in group theoretic considerations which go beyond the scope of this paper.

If X is a locally symmetric space of noncompact type, the associated hypoelliptic
Laplacian L X

b acts on the total space X̂ of a larger bundle TX ⊕N than TX, N being
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a natural orthocomplement to TX. More precisely, L X
b acts on smooth sections over X̂

of the exterior algebra Λ·(T ∗X ⊕N∗).
Let us explain the construction of L X

b when X is the Poincaré upper half-plane.
We will write X as the symmetric space

X = SL2(R)/S1. (5.13)

The Poincaré metric on X, which has constant curvature −1, just comes from the Killing
form on the Lie algebra sl2(R). Also PSL2(R) = SL2(R)/{±1} acts on X as its group
of isometries.

The Lie algebra sl2(R) splits as

sl2(R) = p⊕R. (5.14)

Indeed sl2(R) is the Lie algebra of (2, 2) trace free real matrices, p is the vector space of
trace free symmetric matrices, and R consists of the antisymmetric matrices.

The tangent bundle TX can easily be obtained from the adjoint action of S1 ⊂
SL2(R) on p. Still, the splitting (5.14) indicates that there is a canonical 1-dimensional
real line bundle N on X such that F = TX ⊕ N is canonically flat. Here, this means
that over X, TX ⊕N can be canonically identified with the trivial vector bundle sl2(R).
The metric on TX ⊕ N comes from the adjoint action of S1 on the right-hand side of
(5.14). However, the canonical flat connection does not preserve the splitting on F and
does not preserve the metric.

To better explain the construction of TX⊕N , let us consider the sphere S2 embedded
in R3. The orthogonal bundle N to TS2 in R3 is such that TS2 ⊕N = R3, and R3 is
canonically flat, but the canonical flat connection does not preserve the splitting of R3.
Exactly the same construction can be used for X, when identifying X with its hyperbolic
model, the Euclidean product on R3 being replaced by the canonical bilinear symmetric
form of signature (2, 1).

Over X, we will extend the considerations of Subsection 4.3. Namely E × E is
replaced by the total space X̂ of TX ⊕ N . The Witten complex over the second copy
of E is replaced by the corresponding Witten complex along the fibres of the Euclidean
vector bundle TX ⊕N .

In the constructions of Subsection 4.3, we have used the following identity

(− dE
x + dE∗

x

)2 = ∆E . (5.15)

Equivalently, the standard Laplacian ∆E on E has a natural square root which is a
differential operator.

Let Y1, Y2, Y3 be the vector fields on X that correspond to an orthonormal basis of
sl2(R) = p⊕ k. Then we have the elementary formula

∆X = Y 2
1 + Y 2

2 − Y 2
3 . (5.16)

The Dirac operator D̂K introduced by Kostant [Ko97], which is an operator acting on
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C∞(X, Λ·(sl2(R)∗))7, is such that

D̂K,2 = ∆X + c. (5.17)

In (5.17), c is an explicitly computable constant. This identity is a strict analogue of
(5.15). Recall that TX ⊕ N is the trivial vector bundle sl2(R). Therefore D̂K can be
viewed as an operator acting on C∞(X, Λ·(T ∗X ⊕N∗)).

Remarkably enough, the Witten Laplacian of the fibres TX ⊕ N acts on sections
of Λ·(T ∗X ⊕ N∗) along TX ⊕ N , and D̂K acts on sections on X on Λ·(T ∗X ⊕ N∗).
Let π̂ : X̂ → X be the obvious projection. These considerations at least suggest that
these two kinds of operators can be combined into a single operator L X

b acting on
C∞(X̂ , π̂∗Λ·(T ∗X ⊕N∗)). This is precisely what is done in [B11].

If Σ is the Riemann surface obtained by quotienting X by the action of a discrete
cocompact torsion free subgroup Γ of SL2(R), the flat vector bundle F = TX ⊕N on X

descends to the flat vector bundle F = TΣ⊕N on Σ. Ultimately, the whole construction
descends to Σ.

The main result in [B08c] is that Theorem 4.7 can be suitably extended, X and Σ
replacing E and E/Λ. For Σ, the analogue of the second equation in (4.33) is Selberg’s
trace formula [M72].

The results of [B11] are valid for compact locally symmetric spaces associated with
arbitrary reductive Lie groups.

Remark 5.4. A question which has been repeatedly raised is why, instead of con-
sidering the hypoelliptic Laplacian and the corresponding Langevin process, one does
not pick instead a process whose speed would be the Brownian motion along the sphere
bundle in TX, and the corresponding infinitesimal generator. First, the hypoelliptic
Laplacian emerges as a natural answer to questions connected with isospectral deforma-
tions of the elliptic Laplacian. More fundamentally, the hypoelliptic Laplacian behaves
properly under natural operations like taking products of manifolds. This is not the
case with diffusions whose speed lies in a sphere bundle, simply because the product of
spheres is not a sphere. Finally, as is made clear by the Poisson formula on the circle,
the trace of the heat kernel is expressed as an infinite sum indexed by the lengths of all
closed geodesics in a given time t. No such sum would ever emerge from a stochastic
process with constant speed. There is certainly a counterpart to the b → 0 properties of
the hypoelliptic Laplacian using sphere bundles, but the b → +∞ aspect would be lost.

The sphere bundle emerges naturally when considering instead the wave equation on
X, which propagates at constant speed. Note that the product of solutions of the wave
equation on two manifolds is not a solution of the wave equation on the product. As
explained in [B11, Section 12.3] and [B12, Section 5.3], deep connections exist between
the hypoelliptic Laplacian and the wave equation. Indeed it can be shown that as b → 0,
the integral along the fibre T̂X of the hypoelliptic heat kernel is an approximate solution
of the wave equation on X that propagates at speed 1/b. This fact does not contradict

7The Dirac operator of Kostant acts on C∞(SL2(R), Λ·(sl2(R)∗)). We just give here a simplified

version of the Kostant operator.
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the nonfunctorial behaviour of solutions of the wave equation, because as b → 0, the
speed of propagation becomes infinite.

Important work has been done by Franchi and Le Jan [FL07], [FL11] on diffusions
on the Lorentzian sphere bundle of Lorentzian manifolds. In this case, the functorial
obstruction to naturality disappears, because the product of Lorentzian manifolds is not
Lorentzian.

Recollections of Professor K. Itô. I first met Professor Kiyosi Itô at a
conference funded by the Taniguchi Foundation in Katata in 1982. Accompanying me
were my wife and our one year and a half son. Professor Itô struck me as a genuinely kind
and attentionate person. He told us of his mathematical life, first under duress in war
time, his fundamental work on stochastic differential equations later facing temporary
misunderstanding. This was said in a quiet tone, with a genuine sense of humour. His
wife and himself were extremely kind to our son, whom they tried to provide with the
best milk possible.

Part of the conference was revolving around Paul Malliavin’s stochastic calculus of
variations. Professor Itô liked to mention he was now a student of Paul Malliavin, which
provoked bursts of laughter on Paul Malliavin’s side.

Once he asked to talk to me privately. He gave me such an astonishing and personal
piece of advice and encouragement that I remember it to this day.

With Professor Kiyosi Itô, we lost a top mathematician, and a gentleman.
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Université Paris-Sud

Bâtiment 425

91405 Orsay, France

E-mail: Jean-Michel.Bismut@math.u-psud.fr

http://dx.doi.org/10.1002/cpa.20140
http://dx.doi.org/10.1002/cpa.20140
http://dx.doi.org/10.1007/s00220-011-1312-z
http://dx.doi.org/10.1007/s00220-011-1312-z
http://dx.doi.org/10.1007/BF02392081
http://dx.doi.org/10.1007/BF02392081
http://dx.doi.org/10.2307/1968123
http://dx.doi.org/10.2307/1968123
http://dx.doi.org/10.1006/aima.1997.1608
http://dx.doi.org/10.1006/aima.1997.1608
http://dx.doi.org/10.1002/cpa.3160250302
http://dx.doi.org/10.1002/cpa.3160250302
http://dx.doi.org/10.1016/0040-9383(85)90047-3
http://dx.doi.org/10.1016/0001-8708(71)90045-4
http://dx.doi.org/10.1016/0001-8708(71)90045-4
http://dx.doi.org/10.1016/j.crma.2013.12.012
http://dx.doi.org/10.1016/j.crma.2013.12.012



