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Counting subgraphs in hyperbolic graphs with symmetry
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Abstract. We confirm a conjecture of Kyoji Saito on the growth func-
tions of graphs, which was originally posed for hyperbolic groups.

1. Introduction.

This note addresses some questions that arise in the series of works by Kyoji Saito
on the growth functions of graphs [Sa], [Sa2]. We study “hyperbolike” graphs, which
include Cayley graphs of hyperbolic groups. We generalize some well-known results
on hyperbolic groups to the hyperbolike setting (Theorem 2.9, Theorem 4.1), including
rationality of generating functions, and sharp estimates on the growth rate of vertices.
We then apply these results to confirm a conjecture of Saito on the “opposite series”,
which was originally posed for hyperbolic groups (Theorem 5.3, Corollary 5.4). We also
give a (standard) example of a hyperbolike graph with positive density of dead ends, and
point out its implications for the applicability of the main theorems in [Sa].

Acknowledgements. We would like to thank Laurent Bartholdi, Pierre-
Emmanuel Caprace, Markus Pfeiffer, Kyoji Saito and Yasushi Yamashita for helpful
comments and discussions.

2. Generating functions of hyperbolike graphs.

Definition 2.1 (hyperbolike graph). A connected graph X of finite valence is
δ-hyperbolike for some δ ≥ 0 if it satisfies the following properties:

(1) X is δ-hyperbolic; and
(2) Aut(X) is transitive on the vertices.

Condition (2) implies that all vertices have the same valence — i.e. X is regular.
Moreover, by hypothesis, this (common) valence is finite. Thus X is proper as a (path)
metric space.

Example 2.2 (Hyperbolic group). The main example of a hyperbolike graph is
the Cayley graph of a hyperbolic group with respect to a finite generating set. Different
choices of generating sets give rise to graphs which are δ-hyperbolike for different δ.
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Moreover, the automorphism group of the graph depends on the choice of generating set.
We always have G ⊂ Aut(X) where G acts (freely and transitively on the vertices) on
its Cayley graph by left multiplication.

Example 2.3 (Free group). Even for X the Cayley graph of a hyperbolic group G,
The group Aut(X) may be much bigger than G. For example, we can take G to be a free
group, with a free generating set. Then X is a regular tree, and Aut(X) is uncountable.

Example 2.4 (Quasi tree with parabolic symmetry group). The following example
was described to us by Pierre-Emmanuel Caprace. Let T be a k-regular tree (with k ≥ 3
finite) and fix an end e of T . For each vertex v, let γv denote the geodesic from v to
e, and let v′ denote the vertex on γv at distance 2 from v. Build a new graph X by
attaching an edge from each vertex v to the corresponding v′. Then Aut(X) is just the
subgroup of Aut(T ) fixing e; in particular, it is vertex transitive, but not unimodular,
therefore there is no discrete subgroup acting cocompactly on X.

Pick a base point x ∈ X. Since Aut(X) is transitive, any two choices are isomorphic.
For any n let Xn denote the ball of radius n about x in X (i.e. the complete subgraph
spanned by the vertices at distance ≤ n from x).

We let Aut(X, x) denote the subgroup of Aut(X) fixing x. Evidently, Aut(X, x)
fixes each subgraph Xn, so that there are homomorphisms

pn : Aut(X, x) → Aut(Xn)

and we can identify Aut(X, x) with the inverse limit

Aut(X, x) = lim←− pn(Aut(X, x)).

In particular, Aut(X, x) is compact, and therefore either finite or uncountable. In the
first case, Aut(X) is itself finitely generated and a hyperbolic group, and the orbit map
to X is a quasi-isometry. But in general we do not know the answer to the following:

Question 2.5. Let X be hyperbolike. Is there a hyperbolic group G quasi-
isometric to X?

Remark 2.6. If one removes the hypothesis that X be δ-hyperbolic, the analogue
of Question 2.5 has a negative answer in general.

If Tr and Ts are regular trees of valence r, s respectively (where r 6= s and ∞ >

r, s > 2), and if hr, hs are horofunctions on Tr and Ts respectively, the Diestel Leader
graph DL(r, s) is the subgraph of the product Tr × Ts where hr + hs = 0. These graphs
were introduced in [DL]. Firstly, it was shown in [BNW] that they do not admit a group
action with finitely many orbits and finite vertex stabilizers, and then it was shown in
[EFW] that DL(r, s) is not even quasi-isometric to a Cayley graph.

The Diestel Leader graphs are reminiscent of non-unimodular solvable groups, and
it is harder to imagine an analogue in the hyperbolic world.

Remark 2.7. Random walks on hyperbolike graphs (and more general graphs with
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vertex transitive symmetry groups, which might not be hyperbolic or finite valence) are
studied in [KW].

Definition 2.8. Let Y, Z be any two finite graphs. Let (Y |Z) denote the number
of distinct embeddings of Y as a complete subgraph of Z. For any finite graph Y , define
the generating function

bY (t) :=
∑

(Y |Xn)tn.

In words: the coefficients of bY (t) count the number of copies of Y in the balls of each
fixed radius in X.

By abuse of notation, we can think of x as a graph with 1 vertex, so that bx(t) is
the generating function for the sizes of the balls |Xn|.

With this notation, we have the formula

bXn(t)/|Aut(Xn)| = bx(t)/tn − polar part at 0.

To see this, observe first that every embedding of Xn into X as a complete subgraph
(taking x to x without loss of generality) has image equal to exactly Xn. For, every point
in Xn is within distance n of x, so the image is contained in Xn. So the claim follows by
counting.

Then the formula follows, since embeddings of Xn in Xm up to automorphisms are
in bijection with points in Xm−n.

The following theorem generalizes a result in [Ep2]:

Theorem 2.9 (Rationality). Let X be δ-hyperbolike. For any connected graph
Y , let bY (t) be the generating function whose coefficient of tn is the number of distinct
embeddings of Y as a complete subgraph of Xn. Then bY (t) is rational.

The result is known for a Cayley graph of a hyperbolic group, [Ep2].

3. Proof of the rationality theorem.

In this section we give the proof of Theorem 2.9. The argument borrows heavily
from the well-known proof by Cannon [Ca] in the case of a hyperbolic group; but there
are some subtleties, which are worth spelling out now in informal language.

The main subtlety is the possibility that there are distinct geodesics γ, γ′ between
points x and y, and some φ ∈ Aut(X) with φ(γ) = γ′. This situation can certainly occur:
consider a surface group with a presentation like 〈a, b, c, d | [a, b][c, d]〉. The Cayley graph
is the 1-skeleton of the tiling of H2 by regular octagons with angles π/4 at the vertices.
Two antipodal vertices of an octagon may be joined by two distinct paths of length 4
in the Cayley graph, and these paths may be interchanged by an automorphism of the
graph.

This ambiguity makes it tricky to define a regular language of geodesics in bijection
with the elements of X. Simply put, there is no way to make such a choice without
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breaking the symmetry — in other words, without finding a subgroup G of Aut(X)
which is still (coarsely) transitive, but acts freely on some rich set of (sufficiently long)
geodesics. Such a subgroup does not exist in general (e.g. Example 2.4), and it is not
clear what to use as a substitute; morally this is the sort of issue we are raising with
Question 2.5.

Definition 3.1 (Synchronous fellow travelers). Let γ and γ′ be two geodesics with
the same initial vertex. Let their lengths be ` and `′ respectively. For any T ≥ 0, the
geodesics γ, γ′ are said to T -synchronously fellow travel if for all i up to min(`, `′), there
is an inequality

d(γ(`− i), γ′(`′ − i)) ≤ T.

Definition 3.2 (Competitor). Let B2δ+1(y) be the ball of radius (2δ + 1) about
y in X. For any y, an element z ∈ B2δ+1(y) is a competitor of y if d(x, z) ≤ d(x, y), and
if some geodesic from x to z (2δ + 1)-synchronously fellow travels every geodesic from x

to y.

Note that with this definition, y is a competitor of itself, since every geodesic from
x to y (2δ + 1)-synchronously fellow travels every (other) geodesic from x to y.

Definition 3.3 (Tournament and tournament type). A function F from the ver-
tices of B2δ+1(y) to Z is a tournament if it satisfies the following conditions:

(1) for any z there is an inequality d(x, z)− d(x, y) ≤ F (z) ≤ d(y, z); and
(2) if z is a competitor of y, then d(x, z) = d(x, y) + F (z).

Two tournaments F : B2δ+1(y) → Z and F ′ : B2δ+1(y′) → Z have the same type if
there is an automorphism φ ∈ Aut(X) with φ(y) = φ(y′) so that F = F ′ ◦ φ.

Note that if F is a tournament then |F (z)| ≤ 2δ + 1 for all z, so there are only
finitely many types of tournament.

Remark 3.4. The meaning of a tournament is roughly as follows. As we march
along a path, we would like to know the relative distance from x to the different elements
z in B2δ+1(y) in order to certify that we are really traveling along a geodesic. The
problem is that it is hard to keep track of relative distance to points z that are on the
periphery. So we keep track of an upper bound on their relative distance (i.e. the value
F (z)), which measures (roughly) the length of the shortest path from x to z which stays
(synchronously) close to the geodesic we have traveled along.

Definition 3.5 (cone and cone type). The cone associated to a point y, denoted
cone(y), is the full subgraph of X consisting of points z so that d(x, z) = d(x, y)+d(y, z).

We say that y and y′ have the same cone-type if there is φ ∈ Aut(X) taking y to y′

and taking cone(y) to cone(y′).

The following lemma is the analogue of Cannon’s key lemma, that (2δ + 1)-level
determines cone type in hyperbolic groups.



Counting subgraphs in hyperbolic graphs with symmetry 1217

Lemma 3.6 (Tournament determines cone type). Let X be δ-hyperbolike with base
point x. Let y and y′ with tournaments F and F ′ be given.

Suppose there is φ ∈ Aut(X) with F = F ′ ◦ φ. Then φ takes cone(y) to cone(y′).

Proof. Let z ∈ cone(y). We need to show that φ(z) ∈ cone(y′). This is proved by
induction on d(y, z). If γ is a geodesic from y to z, and w is the penultimate point on the
geodesic, then φ(w) ∈ cone(y′) by the induction hypothesis. So if φ(z) is not in cone(y′)
we must have d(x, y′)+d(y′, φ(z)) ≥ d(x, φ(z))+1. A geodesic from x to φ(z) must pass
through Bδ(y′) and therefore some point on that geodesic must be a competitor to y′.
Applying φ−1 to the restriction of this geodesic gives a shortcut from a corresponding
competitor to z, contrary to the fact that z is in cone(y). So φ(z) ∈ cone(y′) as claimed.

¤

Lemma 3.7. Let y ∈ X, and let F : B2δ+1(y) → Z be a tournament. Then
for any y′ ∈ X with d(y, y′) = 1 and d(x, y′) = d(x, y) + 1 there is a tournament
F ′ : B2δ+1(y′) → Z whose type depends only on the type of F and the choice of y′ in the
type of cone(y).

Proof. We construct F ′ as follows. First, note that d(x, y′) = d(x, y) + 1 means
that there is a geodesic γ from x to y′ whose penultimate vertex is y.

Now, let z′ ∈ B2δ+1(y′) be a competitor of y′. Thus, by definition, there is some
geodesic γ′ from x to z′ which (2δ + 1)-synchronously fellow travels γ.

Let z be on γ′ with d(z, z′) = 1. Then by the definition of synchronous fellow-
traveling, d(z, y) ≤ 2δ + 1, and z is a competitor of y.

So, we define

F ′(z′) = min{F (z) + d(z, z′)− 1 | z ∈ B2δ+1(y)}.

Then F ′(z′) ≤ d(y′, z′) since F (z) ≤ d(y, z). Evidently, d(x, z′) = d(x, y′) + F ′(z′) for
every competitor z′ of y′. Moreover, for every z′ there is some z ∈ B2δ+1(y) with

d(x, z′)− d(x, y′) ≤ d(x, z) + d(z, z′)− d(x, y)− 1 ≤ F (z) + d(z, z′)− 1 = F ′(z′)

(take z to attain the minimum in the definition of F ′(z′). If z′ is a competitor of y′, then
each ≤ becomes =). By definition, the type of F ′ depends only on the type of F and the
choice of y′ in the type of cone(y). ¤

Definition 3.8 (child and parent). A point y′ is a child of y, and y is a parent of
y′, if d(y, y′) = 1 and d(x, y′) = d(x, y) + 1.

Every parent of y′ is a competitor of every other parent. Therefore the tournament
type of any parent y determines the number of parents of each child of y.

We now give the proof of Theorem 2.9.

Proof. Define a finite directed graph as follows. Each vertex corresponds to a
possible tournament type. There is a directed edge from the tournament type of y, F

to the tournament type of y′, F ′ if y′ is a child of y, and F ′ is the tournament type
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constructed from the tournament type of F by Lemma 3.7. There is a unique vertex,
the base vertex, for the tournament type for the base vertex x. We take the connected
component of the base vertex in the following argument.

We put a (rational) weight w on the edge from (y, F ) to (y′, F ′) which is equal to
the reciprocal of the number of parents of y′. We need to show that this is well-defined;
i.e. it can be determined from the tournament type of (y, F ) and (y′, F ′). In the ball
B2(y), count the number of z with F (z) = 0 and d(z, y′) = 1. We claim that these are
in bijection with the parents of y′. For, if F (z) = 0 then d(x, z) ≤ d(x, y) by definition,
so if furthermore d(z, y′) = 1 then d(x, y′) ≤ d(x, z) + 1 ≤ d(x, y) + 1 = d(x, y′), so these
inequalities are equalities. Conversely, every parent z is a competitor, and thus F (z) = 0
since d(z, y′) = 1. This proves the claim, and shows that the weight is well-defined.

Label the vertices of the graph by distinct integers, and define a non-negative matrix
M whose ij entry is equal to w(e) if there is an edge e from vertex i to vertex j, and
0 otherwise. Let ι be the row vector (1, 0, 0 · · · 0) and let 111 be the column vector whose
entries are all 1s. Then there is a formula

bx(t) =
∑

n

(ιMn111)tn

whose coefficients by their form satisfy a finite linear recurrence (due to the fact that M

is a root of its own characteristic polynomial), and therefore bx(t) is a rational function.
In Section 2 we saw that bXn

(t)/|Aut(Xn)| is derived from bx(t)/tn by throwing
away the polar part at 0. Thus bXn

(t) is also a rational function.
Finally, for any connected graph Y we choose a base point y ∈ Y and an integer n

which is at least as big as the diameter of Y , and we count how many copies of Y there
are in Xn with y at the center. For each of these copies, we let D be the least number
so that Y is in XD, and call these the D-copies. From these finitely many coefficients
we can reconstruct bY (t) from bXn(t) in an obvious way and express it as a finite linear
combination of series of the form bD(t) for D ≤ n. ¤

Remark 3.9 (explanation of the formula). Let v0 be the base vertex of the directed
graph Γ in the argument. Lemma 3.7 gives a natural map B from the set of all finite
geodesics starting at x in X to the set of all directed finite paths starting at v0 in Γ.
Indeed the map B is a bijection. The inverse B−1 is given by the induction on the length
of a path. We call the inverse image a lift. Suppose v(ij), j = 0, 1, 2, . . . , n + 1 is a
directed path in Γ with v(i0) = v0 and it is lifted for 0 ≤ j ≤ n to a geodesic starting
at x and ending at z in X. Since there is a directed edge from v(in) to v(in+1), there
must be a point y ∈ X and a child of y, y′ such that the tournament type of y is v(in)
and the tournament type of y′ is v(in+1), and that there is φ ∈ Aut(X) with φ(y) = z.
Now extend the geodesic by adding φ(y′) after z, which is the lift of v(in+1). This is a
geodesic by Lemma 3.6.

The map P assigning the end points to those geodesics is a surjection to X. Notice
that for each point y ∈ X with y 6= x, by the definition of the weight of each edge in Γ,
the total weight of the paths in the set BP−1(y) is always 1 (again, by the induction on
d(x, y)). Now the formula follows.
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4. Patterson–Sullivan measures for hyperbolike graphs.

From Theorem 2.9 and from elementary linear algebra it follows that if X is δ-
hyperbolike for some δ, and is not quasi-isometric to a point or a line, then there are
constants λ > 1 and C > 1, and an integer k ≥ 0 so that there is an estimate of the form

C−1λnnk ≤ |Xn| ≤ Cλnnk.

In this section we refine this estimate, showing that k = 0. Explicitly, we show

Theorem 4.1 (Exponential). Let X be δ-hyperbolike. Then there are constants
λ > 1 and C > 1 so that there is an estimate of the form

C−1λn ≤ |Xn| ≤ Cλn.

Remark 4.2. If we use the notation X=n for the subset of X at distance exactly
n from the base point, then a similar estimate

C−1λn ≤ |X=n| ≤ Cλn

holds, with the same constant λ but a possibly different constant C.

If X is the Cayley graph of a hyperbolic group, Theorem 4.1 is due to Coornaert [Co],
and is proved by generalizing the theory of Patterson–Sullivan measures. As explained
in [C, Section 2.5], the proof of Coornaert’s theorem can be considerably simplified by
first showing that the generating function bx(t) is rational, as a corollary of Cannon’s
theorem for hyperbolic groups.

Our proof of Theorem 4.1 runs along very similar lines, and amounts to little more
than the verification that the steps in the argument given in [C] hold in the more general
context of hyperbolike graphs. We carry out this verification in the remainder of the
section.

4.1. Visual boundary.
The first step is to metrize ∂∞X following Gromov. Let dX denote the ordinary

(path) metric in X.

Definition 4.3. Fix some base point x ∈ X and some constant a > 1. The a-
length of a rectifiable path γ in X, denoted lengtha(γ), is the integral along γ of a−dX(x,·)

with respect to its ordinary length, and the a-distance from y to z, denoted da
X(y, z) is

the infimum of the a-lengths of paths between y and z.

The following comparison lemma, due to Gromov, lets us compare a-length to ordi-
nary length.

Lemma 4.4 (Gromov). There is some a0 > 1 so that for 1 < a < a0 the completion
X of X in the a-length metric is homeomorphic to X ∪ ∂∞X. Moreover, for such an a

there is a constant C so that for all y, z ∈ ∂∞X there is an inequality
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C−1a−(y|z) ≤ da
X(y, z) ≤ Ca−(y|z)

where (y|z) denotes the Gromov product.

The Gromov product (y|z) is usually taken to denote the expression

(y|z) :=
1
2
(dX(x, y) + dX(x, z)− dX(y, z))

but since we are only ever interested in the value of this expression up to a (uni-
formly bounded) additive constant, we could just as easily use the normalization
(y|z) = dX(x, yz), i.e. the distance from x to some (equivalently, any) geodesic yz

from y to z. We stress that this expression is to be interpreted as denoting “equality
up to a uniform additive constant”; this (unspecified but effective) constant will later be
absorbed into a multiplicative constant.

4.2. Patterson–Sullivan measure.
The next step is to construct a (so-called) Patterson–Sullivan (probability) measure

on X. Theorem 2.9 has the key corollary that this measure will be supported on the
boundary.

Define the Poincaré zeta function ζX(s), well-defined for s sufficiently large, by the
formula

ζX(s) :=
∑

y∈X

e−sdX(x,y).

Recall that we have already shown that there is an estimate of the form

C−1λnnk ≤ |Xn| ≤ Cλnnk.

It follows that ζX converges if s > h := log(λ) and diverges at h. We may therefore
define, for each s > h, a probability measure νs on X (supported in X) by putting
an atom of size e−sdX(x,y)/ζX(s) at each y ∈ X. Take a subsequence of measures that
converges as s → h from above, and define ν to be the limit. By construction, this is a
probability measure supported on ∂∞X.

4.3. Quasiconformal measure.
Recall that if y ∈ ∂∞X, a horofunction by centered at y is a limit of a convergent

subsequence of functions of the form dX(yi, ·)−dX(yi, x) for yi → y. Such a horofunction
is not unique, but is well-defined up to a uniformly bounded additive constant.

Definition 4.5 (Coornaert). For φ ∈ Aut(X) define jφ : ∂∞X → R by

jφ(y) = aby(x)−by(φ(x))

for some horofunction by centered at y. A probability measure ν on ∂∞X is quasiconfor-
mal of dimension D if for every φ ∈ Aut(X), the measure φ∗ν is absolutely continuous
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with respect to ν, and there is a constant C (independent of φ) so that

C−1jφ(y)D ≤ d(φ∗ν)/dν ≤ Cjφ(y)D.

Note that the uniform additive ambiguity in the definition of by is absorbed into a
uniform multiplicative ambiguity in the definition of jφ, which is then absorbed into the
constant C; so this definition makes sense.

Proposition 4.6. The measure ν is quasiconformal of dimension D, where D =
h/ log a.

Proof. From the definition of Radon-Nikodym derivative, it suffices to show that
there is a constant C, so that for all y ∈ ∂∞X there is a neighborhood V of y in X so
that for all A ⊂ V ,

C−1jφ(y)Dν(A) ≤ ν(φ−1A) ≤ Cjφ(y)Dν(A).

By the definition of a horofunction, and δ-thinness, there is a neighborhood V of y in X

so that

dX(x, φ−1z)− dX(x, z)− C ≤ by(φ(x))− by(x) ≤ dX(x, φ−1z)− dX(x, z) + C

for some C, and for all z ∈ V .
For each s > h we have

φ∗νs(z)/νs(z) = νs(φ−1z)/νs(z) = e−s(dX(x,φ−1z)−dX(x,z)).

Taking s → h and defining aD = eh proves the proposition. ¤

4.4. Shadows.
We now recall Sullivan’s definition of shadows:

Definition 4.7. For y ∈ X and R > 0 the shadow S(y, R) is the set of z ∈ ∂∞X

such that every geodesic ray from x to z comes within distance R of y.

Lemma 4.8. Fix R > 2δ. Then there is a constant N so that for any z ∈ ∂∞X

and any n there is at least 1 and there are at most N elements y with dX(x, y) = n and
z ∈ S(y, R).

Proof. If γ is any geodesic from x to z, and if y is any point on γ, then z ∈ S(y, R).
Conversely, if y and y′ are two elements with dX(x, y) = dX(x, y′) and z ∈ S(y, R) ∩
S(y′, R) then dX(y, y′) ≤ 2R. ¤

Lemma 4.9. Fix R. Then there is a constant C so that for any y ∈ X there is an
inequality

C−1a−dX(x,y)D ≤ ν(S(y, R)) ≤ Ca−dX(x,y)D.
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Proof. First observe by δ-thinness and the definition of a shadow, that there is
some constant C ′ so that

dX(x, y)− C ′ ≤ bz(x)− bz(y) ≤ dX(x, y) + C ′

for any z ∈ S(y, R). Since jφ(z) = abz(x)−bz(φ(x)) it follows that there is a constant C so
that

C−1adX(x,φ(x)) ≤ jφ(z) ≤ CadX(x,φ(x))

for any φ ∈ Aut(X) and any z ∈ S(φ(x), R).
Now, since ν is a quasiconformal measure, ν cannot consist of a single atom. So let

m0 < 1 be the measure of the biggest atom of ν, and fix m0 < m < 1. By compactness
of ∂∞X there is some ε so that every ball in ∂∞X of diameter ≤ ε (in the a-metric) has
mass at most m. Now, for any φ ∈ Aut(X), the set φ−1S(φ(x), R) consists of exactly
the y ∈ ∂∞X for which every geodesic ray from φ−1(x) to y comes within distance R of
x. As R → ∞, the diameter of ∂∞X − φ−1S(φ(x), R) goes to zero uniformly in φ, and
so for some R0, and for all R ≥ R0, we have

1−m ≤ ν(φ−1S(φ(x), R)) ≤ 1

independent of φ.
But by Proposition 4.6 and the discussion above, there is some constant C1 so that

C1a
dX(x,φ(x))D ≤ ν(φ−1S(φ(x), R))/ν(S(φ(x), R)) ≤ C1a

dX(x,φ(x))D.

Taking reciprocals, and using 1−m ≤ ν(φ−1S(φ(x), R)) ≤ 1 completes the proof. ¤

We now give the proof of Theorem 4.1.

Proof. We already know the lower bound. For each y with d(x, y) = n we have
e−hn = a−Dn ≤ Cν(S(y, R)). On the other hand, by Lemma 4.8, every point z ∈ ∂∞X

is contained in at least 1 and at most N sets S(y, R) with d(x, y) = n. So

|X=n|e−hnC−1 ≤
∑

d(x,y)=n

ν(S(y, R)) ≤ Nν

( ⋃

d(x,y)=n

S(y, R)
)

= N. ¤

5. The opposite series Ω(P ) for a power series P .

5.1. Definitions.
We recall the definition of opposite series from Saito [Sa]. Let P (t) =

∑∞
n=0 antn

be a power series in t with an real numbers. Assume there exist u, v such that for all n,
u ≤ an−1/an ≤ v.

Define a polynomial in s for each n ≥ 0 as follows:
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Xn(P ) =
n∑

k=0

an−k

an
sk.

Define Ω(P ) as the set of accumulation points of the sequence {Xn}n in the set of formal
power series on s (with respect to the product topology on each coefficients). An element
in Ω(P ) is called an opposite series in [Sa, Section 11.2].

Now, let G be a group with a finite generating set S. Let an denote the number of
elements g ∈ G whose word length is n with respect to S. Using an’s, we define P (t),
denoted by PG,S , and obtain Ω(PG,S).

Saito also defined another set Ω(G,S), a map πΩ : Ω(G,S) → Ω(PG,S) and proved
(Theorem in Section 11.2) that the map is surjective under two assumptions (S and I in
his paper; we will discuss S). Saito’s theory is most interesting when Ω(G,S) or Ω(PG,S)
is finite, but his paper gives only a few examples where finiteness is shown to hold.

Saito proposed the following conjecture in the last section of his paper [Sa, Section
12. Conjecture 4]:

Conjecture 5.1 (Saito). Ω(G,S) is finite if G is a word hyperbolic group.

In view of Saito’s theorem relating Ω(G,S) to Ω(PG,S), it is natural to ask:

Question 5.2. Is Ω(PG,S) finite if G is hyperbolic?

Saito conjectures that this will be the case [Sa2], and we will answer this question
in the affirmative (Corollary 5.4). Conjecture 5.1 is still open. Interestingly it turns out
that there is an example of a hyperbolic group which does not satisfy the assumption S

(see Example 6.2).

Theorem 5.3 (finiteness). Let X be a hyperbolike graph, and for any connected
graph Y , let bY (t) be the generating function whose coefficient of tn is the number of
distinct embeddings of Y as a complete subgraph of Xn. Then Ω(bY ) is finite.

A special case, which answers Saito’s question, is:

Corollary 5.4. If G is a word hyperbolic group, then Ω(PG,S) is finite for any
finite generating set S.

5.2. Proof of Theorem 5.3 and Corollary 5.4.
We recall a well-known result from analytic combinatorics.

Theorem 5.5 ([FlSe, Theorem IV.9]). If f(z) is a rational function that is an-
alytic at zero and has poles at points α1, α2, . . . αm, then its coefficients are a sum of
exponential-polynomials: there exist m polynomials Πj(x) such that, for n larger than
some fixed n0,

fn =
∑

j

Πj(n)α−n
j

where fn is the coefficient of zn in f(z). Furthermore, the degree of Πj is equal to the
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order of the pole of f at αj minus one.

Let’s apply this to prove Theorem 5.3.

Proof. The power series bY (t) is a rational function, whose poles are (a subset
of) the reciprocals of the roots of the matrix M constructed in the proof of Theorem 2.9.
Since M is a non-negative matrix, Perron–Frobenius theory says that there is a root of
largest absolute value which is real and positive, and all other roots with this absolute
value differ by multiplication by a root of unity. From Theorem 4.1 and Theorem 5.5 we
conclude that these roots of maximum modulus are simple, or else the dominant term
in the growth rate of the coefficients of bY (t) would be of the form polynomial times
exponential, where the polynomial had positive degree (contrary to Theorem 4.1).

It follows from Theorem 5.5 that for n sufficiently big, there is some m0 ≤ m so that
after reordering the poles of bY (t) in non-decreasing modulus, we have an expression of
the form

fn =
∑

j≤m0

πjα
−n
j +

∑

j>m0

Πj(n)α−n
j

where α1 is real and positive, where αj for j ≤ m0 is of the form α1ωj for some root of
unity ωj , and where |αj | > α1 for j > m0.

Evidently α−1
1 = λ with notation from Theorem 4.1. Moreover, if N is the least

common multiple of the order of the roots of unity ωj , then we can rewrite this expression
as

fn = C[n]λ
n + o(λn)

where C[n] depends only on the residue of n mod N . Again, by Theorem 4.1 we can
conclude that C[n] is real and positive for all n mod N .

If we define the polynomial Xn(bY ) =
∑n

k=0(fn−k/fn)sk as in Definition 5.1, then
as n →∞ for every fixed k the coefficient of sk in Xn(P ) approaches a value depending
only on n mod N . Hence there are finitely many accumulation points of the Xn, which
is exactly the conclusion of Theorem 5.3. ¤

6. Dead ends.

Definition 6.1. Let X be a graph and x a base point. A vertex y is a dead end
if there is no z 6= y with d(x, z) = d(x, y) + d(y, z).

It is important for Saito to study graphs with the additional hypothesis that the
asymptotic density of dead end elements is zero. This is one of the assumptions he puts
in the main theorem in [Sa, Section 11.2, Assumption 2. S]. Unfortunately, we show
now that this hypothesis is genuinely restrictive, since there are (very simple) hyperbolic
groups with finite generating sets whose Cayley graphs have a positive density of dead
ends. Actually, these examples are already well-known; we simply bring them up to point
out the implications for Saito’s theory.
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The following example is worked out it detail by Pfeiffer [Pf, Appendix C]; we
summarize the story.

Example 6.2 (Triangle group). Let G be the (2, 3, 7) triangle group; i.e. the group
with the following presentation

G := 〈a, b | a2, b3, (ab)7〉.

We abbreviate b−1 by B. Every geodesic word in G alternates between a and either b or
B.

Moreover, infinite geodesics are exactly those that don’t contain (except possibly at
the very start) substrings of the form ababab or aBaBaB. For, suppose ababab appears
in the middle of the word. It must be followed by an a, and preceded by either b or B.
If we have babababa then of course we can replace it by aBaBaB which is shorter. If we
have Babababa we can rewrite it as BBaBaBaB = baBaBaB which is shorter.

Now, if W is any word with at most 2 consecutive abs or aBs in a row (and is
therefore a geodesic), we can extend it to something like WXBabaBababab which now
we claim is a dead-end. For, it can only be extended to

WXBabaBabababa = WXBabaBBaBaBaB = WXBababaBaBaB

which is definitely shorter. On the other hand, WXBabaBababab is itself a geodesic;
trying to rewrite it, one can only replace ababab by BaBaBaBa giving

WXBabaBBaBaBaBa = WXBababaBaBaBa

which is longer.
Thus this group has dead end elements with positive density (at least 2−6).
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