
c©2015 The Mathematical Society of Japan
J. Math. Soc. Japan
Vol. 67, No. 3 (2015) pp. 1069–1076
doi: 10.2969/jmsj/06731069

Sum formula for finite multiple zeta values

By Shingo Saito and Noriko Wakabayashi

(Received May 29, 2013)
(Revised Oct. 23, 2013)

Abstract. The sum formula is one of the most well-known relations
among multiple zeta values. This paper proves a conjecture of Kaneko pre-
dicting that an analogous formula holds for finite multiple zeta values.

1. Introduction.

1.1. Finite multiple zeta values.
The multiple zeta values (MZVs) and multiple zeta-star values (MZSVs) are defined

by

ζ(k1, . . . , kn) =
∑

m1>···>mn≥1

1
mk1

1 · · ·mkn
n

,

ζ?(k1, . . . , kn) =
∑

m1≥···≥mn≥1

1
mk1

1 · · ·mkn
n

for k1, . . . , kn ∈ Z≥1 with k1 ≥ 2. They are both generalizations of the Riemann zeta
values ζ(k) at positive integers.

Among a large number of variants of the MZ(S)Vs, there has recently been grow-
ing interest in finite multiple zeta(-star) values (FMZ(S)Vs). Set A = (

∏
p Z/pZ)/

(
⊕

p Z/pZ), where p runs over all primes; in other words, the elements of A are of
the form (ap)p, where ap ∈ Z/pZ, and two elements (ap) and (bp) are identified if and
only if ap = bp for all but finitely many primes p. We shall simply write ap for (ap) since
no confusion is likely. The following definition is due to Zagier (see [6]):

Definition 1.1. For k1, . . . , kn ∈ Z≥1, we define

ζA(k1, . . . , kn) =
∑

p>m1>···>mn≥1

1
mk1

1 · · ·mkn
n

∈ A,

ζ?
A(k1, . . . , kn) =

∑

p>m1≥···≥mn≥1

1
mk1

1 · · ·mkn
n

∈ A

and call them finite multiple zeta(-star) values.
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We spell out two easy properties of FMZ(S)Vs that will be used later; see Theorems
4.3 and 6.1 in [3] for the proofs. See also [6], [8] and the introduction of [7].

Proposition 1.2. (1) We have ζA(k) = 0 for all k ∈ Z≥1.
(2) For k1, k2 ∈ Z≥1, we have

ζA(k1, k2) = ζ?
A(k1, k2) = (−1)k1

(
k1 + k2

k1

)
Bp−k1−k2

k1 + k2
.

Here the numbers Bm are the Bernoulli numbers given by

∞∑
m=0

Bm
xm

m!
=

x

1− e−x
∈ Q[[x]].

1.2. Sum formula.
The sum formula is a basic class of relations among MZ(S)Vs and has been gener-

alized in various directions. For k, n ∈ Z with 1 ≤ n ≤ k − 1, set

Ik,n = {(k1, . . . , kn) ∈ Zn
≥1 | k1 + · · ·+ kn = k, k1 ≥ 2}.

Theorem 1.3 (Sum formula [1], [2]). For k, n ∈ Z with 1 ≤ n ≤ k − 1, we have

∑

(k1,...,kn)∈Ik,n

ζ(k1, . . . , kn) = ζ(k),

∑

(k1,...,kn)∈Ik,n

ζ?(k1, . . . , kn) =
(

k − 1
n− 1

)
ζ(k).

Kaneko [5] conjectured the following analogous relations for FMZ(S)Vs:

∑

(k1,...,kn)∈Ik,n

ζA(k1, . . . , kn) =
(

1 + (−1)n

(
k − 1
n− 1

))
Bp−k

k
,

∑

(k1,...,kn)∈Ik,n

ζ?
A(k1, . . . , kn) =

(
(−1)n +

(
k − 1
n− 1

))
Bp−k

k
.

The aim of this paper is to prove the conjecture and its generalizations given below.
For k, n, i ∈ Z with 1 ≤ i ≤ n ≤ k − 1, set

Ik,n,i = {(k1, . . . , kn) ∈ Zn
≥1 | k1 + · · ·+ kn = k, ki ≥ 2};

note that Ik,n,1 = Ik,n.

Theorem 1.4 (Main theorem). For k, n, i ∈ Z with 1 ≤ i ≤ n ≤ k − 1, we have
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∑

(k1,...,kn)∈Ik,n,i

ζA(k1, . . . , kn) = (−1)i−1

((
k − 1
i− 1

)
+ (−1)n

(
k − 1
n− i

))
Bp−k

k
,

∑

(k1,...,kn)∈Ik,n,i

ζ?
A(k1, . . . , kn) = (−1)i−1

(
(−1)n

(
k − 1
i− 1

)
+

(
k − 1
n− i

))
Bp−k

k
.

Setting i = 1 gives Kaneko’s conjecture.

2. Proof of the main theorem.

For notational simplicity, we write the sums to be computed as

Sk,n,i =
∑

(k1,...,kn)∈Ik,n,i

ζA(k1, . . . , kn), S?
k,n,i =

∑

(k1,...,kn)∈Ik,n,i

ζ?
A(k1, . . . , kn)

for k, n, i ∈ Z with 1 ≤ i ≤ n ≤ k − 1.

2.1. Recurrence relations.
We begin the proof by establishing recurrence relations for Sk,n,i and S?

k,n,i. We
will show the recurrence relations by expressing products of FMZ(S)Vs as sums of
FMZ(S)Vs via the harmonic product (see [4]). Since explaining the harmonic product in
its full generality is unnecessarily cumbersome, we shall only illustrate it by examples.
If k1, k2, l ∈ Z≥1, then Proposition 1.2 (1) shows that

0 = ζA(k1, k2)ζA(l)

=

( ∑
m1>m2

1
mk1

1 mk2
2

)(∑
m

1
ml

)

=

( ∑
m>m1>m2

+
∑

m1>m>m2

+
∑

m1>m2>m

+
∑

m1=m>m2

+
∑

m1>m2=m

)
1

mk1
1 mk2

2 ml

= ζA(l, k1, k2) + ζA(k1, l, k2) + ζA(k1, k2, l) + ζA(k1 + l, k2) + ζA(k1, k2 + l),

where m1, m2, and m are all assumed to be positive integers less than p, and similarly
that

0 = ζ?
A(l, k1, k2) + ζ?

A(k1, l, k2) + ζ?
A(k1, k2, l)− ζ?

A(k1 + l, k2)− ζ?
A(k1, k2 + l).

An analogous procedure leads to the following lemma:

Lemma 2.1. For n ∈ Z≥2 and k1, . . . , kn−1, l ∈ Z≥1, we have

n∑

j=1

ζA(k1, . . . , kj−1, l, kj , . . . , kn−1) +
n−1∑

j=1

ζA(k1, . . . , kj−1, kj + l, kj+1, . . . , kn−1) = 0,
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n∑

j=1

ζ?
A(k1, . . . , kj−1, l, kj , . . . , kn−1)−

n−1∑

j=1

ζ?
A(k1, . . . , kj−1, kj + l, kj+1, . . . , kn−1) = 0.

Proof. Expand the left-hand sides of ζA(k1, . . . , kn−1)ζA(l) = 0 and
ζ?
A(k1, . . . , kn−1)ζ?

A(l) = 0. ¤

Proposition 2.2 (Recurrence relations). For k, n, i ∈ Z with 2 ≤ i+1 ≤ n ≤ k−1,
we have

(n− i)Sk,n,i + iSk,n,i+1 + (k − n)Sk,n−1,i = 0,

(n− i)S?
k,n,i + iS?

k,n,i+1 − (k − n)S?
k,n−1,i = 0.

Proof. Summing the equations in Lemma 2.1 over all (k1, . . . , kn−1, l) ∈ Ik,n,i

gives the desired recurrence relations. Indeed, the map

(k1, . . . , kn−1, l) 7→ (k1, . . . , kj−1, l, kj , . . . , kn−1)

defined on Ik,n,i is a bijection onto Ik,n,i+1 for j = 1, . . . , i and onto Ik,n,i for j =
i + 1, . . . , n; under the map

(
(k1, . . . , kn−1, l), j

) 7→ (k1, . . . , kj−1, kj + l, kj+1, . . . , kn−1)

from Ik,n,i × {1, . . . , n − 1} to Ik,n−1,i, the preimage of each (k′1, . . . , k
′
n−1) ∈ Ik,n−1,i is

of cardinality
∑

1≤j≤n−1
j 6=i

(k′j − 1) + (k′i − 2) = k − n. ¤

2.2. Computation of S?
k,n,i.

Lemma 2.3 (Initial values). For k, i ∈ Z with 1 ≤ i ≤ k − 1, we have

S?
k,k−1,i = (−1)i−1

(
k

i

)
Bp−k

k
.

Proof. By the duality theorem for FMZSVs [3, Theorem 4.6] and Proposition
1.2 (2), we find that

S?
k,k−1,i = ζ?

A(1, . . . , 1︸ ︷︷ ︸
i−1

, 2, 1, . . . , 1︸ ︷︷ ︸
k−i−1

) = −ζ?
A(i, k − i) = (−1)i−1

(
k

i

)
Bp−k

k
. ¤

Proposition 2.4. For k, n, i ∈ Z with 1 ≤ i ≤ n ≤ k − 1, we have

S?
k,n,i = (−1)i−1

(
(−1)n

(
k − 1
i− 1

)
+

(
k − 1
n− i

))
Bp−k

k
.
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Proof. The proof is by backward induction on n.
We first consider the case n = k − 1. If k is even, then the identity trivially follows

from Lemma 2.3 because Bp−k = 0 (in Q and so in Z/pZ as well) whenever p is a prime
at least k + 3. If k is odd, then the identity again follows from Lemma 2.3 because

(−1)n

(
k − 1
i− 1

)
+

(
k − 1
n− i

)
=

(
k − 1
i− 1

)
+

(
k − 1

k − i− 1

)
=

(
k

i

)
.

Now assume that the identity holds for n. Then Proposition 2.2 shows that

(k − n)S?
k,n−1,i = (n− i)S?

k,n,i + iS?
k,n,i+1

= (n− i)(−1)i−1

(
(−1)n

(
k − 1
i− 1

)
+

(
k − 1
n− i

))
Bp−k

k

+ i(−1)i

(
(−1)n

(
k − 1

i

)
+

(
k − 1

n− i− 1

))
Bp−k

k

= (−1)i−1

(
(n− i)(−1)n

(
k − 1
i− 1

)
+ (k − n + i)

(
k − 1

n− i− 1

))
Bp−k

k

+ (−1)i

(
(k − i)(−1)n

(
k − 1
i− 1

)
+ i

(
k − 1

n− i− 1

))
Bp−k

k

= (k − n)(−1)i−1

(
(−1)n−1

(
k − 1
i− 1

)
+

(
k − 1

n− i− 1

))
Bp−k

k
.

Therefore the identity holds for n− 1 as well and the proof is complete. ¤

2.3. Computation of Sk,n,i.
Observe that each (F)MZV can be written as a Z-linear combination of (F)MZSVs

and vice versa, an example being

ζA(k1, k2, k3) =
∑

m1>m2>m3

1
mk1

1 mk2
2 mk3

3

=

( ∑

m1≥m2≥m3

−
∑

m1=m2≥m3

−
∑

m1≥m2=m3

+
∑

m1=m2=m3

)
1

mk1
1 mk2

2 mk3
3

= ζ?
A(k1, k2, k3)− ζ?

A(k1 + k2, k3)− ζ?
A(k1, k2 + k3) + ζ?

A(k1 + k2 + k3),

where m1, m2, and m3 are all assumed to be positive integers less than p.

Lemma 2.5. For k, n ∈ Z with 1 ≤ n ≤ k − 1, we have

Sk,n,1 =
n−1∑

j=0

(−1)j

(
k − n + j − 1

j

)
S?

k,n−j,1.
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Proof. Each ζA(k1, . . . , kn), where (k1, . . . , kn) ∈ Ik,n,1, can be written as a
sum of the values of the form (−1)jζ?

A(k′1, . . . , k
′
n−j) where j = 0, . . . , n − 1 and

(k′1, . . . , k
′
n−j) ∈ Ik,n−j,1. Moreover, each (k′1, . . . , k

′
n−j) ∈ Ik,n−j,1 appears in this man-

ner exactly as many times as there are ways of adding j bars to the n − j − 1 existing
bars in the gaps in the following sequence of stars, in such a way that no bar separates
the leftmost two stars and no two bars are in the same gap:

?? · · · ?︸ ︷︷ ︸
k′1

| · · · | ? · · · ?︸ ︷︷ ︸
k′n−j

Since there are (k′1 − 2) + (k′2 − 1) + · · · + (k′n−j − 1) = k − n + j − 1 gaps that accept
bars, the number of ways is

(
k−n+j−1

j

)
. ¤

Lemma 2.6 (Initial values). For k, n ∈ Z with 1 ≤ n ≤ k − 1, we have

Sk,n,1 =
(

1 + (−1)n

(
k − 1
n− 1

))
Bp−k

k
.

Proof. By Proposition 2.4 and Lemma 2.5, we have

Sk,n,1 =
n−1∑

j=0

(−1)j

(
k − n + j − 1

j

)(
(−1)n−j +

(
k − 1

n− j − 1

))
Bp−k

k

=
(

(−1)n
n−1∑

j=0

(
k − n + j − 1

j

)
+

n−1∑

j=0

(−1)j

(
k − n + j − 1

j

)(
k − 1

n− j − 1

))
Bp−k

k
.

Recall that (1 − x)−m =
∑∞

j=0

(
m+j−1

j

)
xj ∈ Q[[x]] for m ∈ Z≥1. Looking at the

coefficient of xn−1 in the product of (1− x)−(k−n) and (1− x)−1 gives

n−1∑

j=0

(
(k − n) + j − 1

j

)
=

(
(k − n + 1) + (n− 1)− 1

n− 1

)
=

(
k − 1
n− 1

)
;

looking at the coefficient of xn−1 in the product of (1 + x)−(k−n) and (1 + x)k−1 gives

n−1∑

j=0

(−1)j

(
k − n + j − 1

j

)(
k − 1

n− j − 1

)
= 1.

The proof is now complete. ¤

Proposition 2.7. For k, n, i ∈ Z with 1 ≤ i ≤ n ≤ k − 1, we have

Sk,n,i = (−1)i−1

((
k − 1
i− 1

)
+ (−1)n

(
k − 1
n− i

))
Bp−k

k
.
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Proof. The proof is by induction on i, the case i = 1 being Lemma 2.6. Assume
that the identity holds for i. Then Proposition 2.2 shows that

iSk,n,i+1 = −(n− i)Sk,n,i − (k − n)Sk,n−1,i

= −(n− i)(−1)i−1

((
k − 1
i− 1

)
+ (−1)n

(
k − 1
n− i

))
Bp−k

k

− (k − n)(−1)i−1

((
k − 1
i− 1

)
+ (−1)n−1

(
k − 1

n− i− 1

))
Bp−k

k

= −(−1)i−1

(
(n− i)

(
k − 1
i− 1

)
+ (k − n + i)(−1)n

(
k − 1

n− i− 1

))
Bp−k

k

− (−1)i−1

(
(k − n)

(
k − 1
i− 1

)
+ (k − n)(−1)n−1

(
k − 1

n− i− 1

))
Bp−k

k

= (−1)i

(
(k − i)

(
k − 1
i− 1

)
+ i(−1)n

(
k − 1

n− i− 1

))
Bp−k

k

= i(−1)i

((
k − 1

i

)
+ (−1)n

(
k − 1

n− i− 1

))
Bp−k

k
.

Therefore the identity holds for i + 1 as well and the proof is complete. ¤

Combining Propositions 2.4 and 2.7, we have completed the proof of the main the-
orem (Theorem 1.4).
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