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Abstract. We consider some measure-theoretic properties of functions
belonging to a Sobolev-type class on metric measure spaces that admit a
Poincaré inequality and are equipped with a doubling measure. The prop-
erties we have selected to study are those that are related to area formulas.

1. Introduction.

We investigate some measure-theoretic properties of functions belonging to the
Banach or vector space-valued Newtonian space N1,p(X) and compare these proper-
ties in the more general setting with the classical Euclidean ones. Newtonian space is a
metric space analogue of the classical Sobolev space W 1,p(Rn) and was first introduced
and studied by Shanmugalingam in [29]; here X refers to a complete metric measure
space with a measure µ that satisfies a volume doubling condition and the space is as-
sumed to support a Poincaré inequality. Under these rather standard conditions on the
space, we give a metric space version of Luzin’s condition for the graph mapping similar
to one in Malý et al. [27], we study absolute continuity as defined by Malý [23] for
functions in the Newtonian class, and we also discuss the condition due to Radó and
Reichelderfer [28].

We provide a version of the area formula for Newtonian functions. In particular,
we extend the Euclidean results of HajÃlasz [10] and Malý et al. [27] to Newton–Sobolev
functions in the aforementioned setting of general metric spaces. We provide another
view to a recent result by Magnani [22] which is related to the area formula in general
metric measure spaces.

Under rather general assumptions on X (see Section 2) the following area formula
will be shown to be valid for the graph mapping ū of u ∈ N1,p

loc (X;Rm), where p > m or
p ≥ m = 1,

HQ(ū(A)) =
∫

A

J ū dµ,

whenever A is a µ-measurable subset and J ū denotes the generalized Jacobian of ū.
In particular, HQ(ū(A)) = 0 whenever µ(A) = 0. Here the exponent Q serves as a
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space, Newtonian space, Poincaré inequality, Sobolev space, upper gradient.

http://dx.doi.org/10.2969/jmsj/06720561


562 N. Marola and W. P. Ziemer

substitute for the dimension of X, and it is associated with the doubling constant of the
underlying measure µ (see Section 2).

Although the proofs for these formulas are rather standard, our general setting
causes some unexpected difficulties. To overcome these, we carefully consider some local
properties of so-called generalized Jacobian of a function and couple them with the
aforementioned measure-theoretic properties of Newton–Sobolev functions.

There is a rich supply of examples of complete metric spaces with a volume doubling
measure that support a Poincaré inequality and where our results are applicable. To name
but a few, we list Carnot–Carathéodory spaces, thus including the Heisenberg group and
more general Carnot groups, as well as Riemannian manifolds with non-negative Ricci
curvature.

In outline, the paper is organized as follows: In Section 2 we introduce the necessary
background material such as the doubling condition for the measure, upper gradients,
Poincaré inequality, Newtonian spaces, and capacity. In Section 3 we establish a general
criterion for a version of Luzin’s condition in the spirit of Radó and Reichelderfer [28,
V.3.6], see also Malý et al. [27]. Then we close Section 3 by proving, with the aid of
estimates between the capacity and the Hausdorff content, that the graph mapping of a
vector-valued Newtonian function satisfies a version of the Luzin condition. In Section 4
we deal with the area formula. In Section 5 we study the Radó–Reichelderfer condition
and absolute continuity of Newtonian functions in the spirit of Malý [23].

Acknowledgements. We would like to thank Nageswari Shanmugalingam for
detailed comments and suggestions on several draft versions of the paper.

2. Metric measure spaces: doubling and Poincaré.

We briefly recall the basic definitions and collect some well-known results needed
later. For a thorough treatment we refer the reader to a monograph by A. and J. Björn
[3] and Heinonen [13].

Throughout the paper, if not otherwise stated, X := (X, d, µ) is a complete metric
space endowed with a metric d and a positive complete Borel regular measure µ such
that 0 < µ(B(x, r)) < ∞ for all balls B(x, r) := {y ∈ X : d(x, y) < r}; and if B =
B(x, r), then we denote τB = B(x, τr) for each τ > 0. We also denote the metric ball
B(x, r) by BX(x, r) if necessary. Also throughout the paper, if not otherwise stated, let
Y := (Y, d̃, ν) be a complete separable metric measure space with a positive complete
Borel regular measure ν. A function f : X → Y is called L-Lipschitz if for all x, y ∈ X,
d̃(f(x), f(y)) ≤ Ld(x, y). We let Lip(f) be the infimum of such L.

In our treatment, it is natural to assume some connection between the measure and
the metric. Also by dimension we mean some quantity which relates the measure of a
metric ball to its radius. We shall clarify these concepts below. Our standing assumptions
on the metric space X are as follows.

(D) The measure µ is doubling, i.e., there exists a constant Cµ ≥ 1, called the doubling
constant of µ, such that

µ(B(x, 2r)) ≤ Cµµ(B(x, r)).
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for all x ∈ X and r > 0.
(PI) The space X supports a weak (1, p)-Poincaré inequality for some p ≥ 1 (see below).

We note the doubling condition (D) implies that for every x ∈ X and r > 0, we have
for λ ≥ 1

µ(B(x, λr)) ≤ CλQµ(B(x, r)), (2.1)

where Q = log2 Cµ, and the constant depends only on Cµ. The exponent Q serves as a
dimension of the doubling measure µ; we emphasize that it need not be an integer. When
it is necessary to emphasize the relationship between Q and X, we will use the notation
XQ. Complete metric spaces verifying condition (D) are precisely those that have finite
Assouad dimension [13]. This notion of dimension, however, need not to be uniform in
space. In what follows, we assume further that there exists a constant C > 0, depending
only on Cµ, such that the measure µ satisfies the lower mass bound

CrQ ≤ µ(B(x, r)) (2.2)

for all x ∈ X and 0 < r < diam(X). It follows from (D) that µ satisfies the following
local version of (2.2): For a fixed x0 ∈ X and a scale rD > 0 we have

C̃rQ ≤ µ(B(x, r)) (2.3)

for all balls B(x, r) ⊂ X with x ∈ B(x0, rD) and 0 < r < rD, where C̃ =
Cr−Q

D µ(B(x0, rD)) and C is from (2.1).
Let s ≥ 0. We define the (spherical) Hausdorff s-measure in X as in Federer [8,

2.10.2] (see also [13]) and will denote it by Hs. We also denote by Hs
∞ the Hausdorff

s-content in X defined as

Hs
∞(E) = inf

{ ∞∑

i=1

rs
i : E ⊂

∞⋃

i=1

B(xi, ri), xi ∈ E

}
,

where the infimum is taken over all countable covers of E by balls B(xi, ri). We note
here that if X is a proper, i.e. boundedly compact, metric space, then Hausdorff content
is inner regular in the following sense

Hs
∞(E) = sup{Hs

∞(K) : K ⊂ E, K compact}

whenever E ⊂ X is a Borel set. See Federer [8, Corollary 2.10.23]. We shall also need
the concept of the Hausdorff measure of codimension s of E ⊂ X which we define by
applying the Carathéodory construction to the function

h(B(x, r)) =
µ(B(x, r))

rs
.

Above, we use the convention h(B(x, 0)) := h(∅) = 0. We thus define the restricted
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Hausdorff content of codimension s as follows

H̃s
R(E) = inf

{ ∞∑

i=1

h(B(xi, ri)) : E ⊂
∞⋃

i=1

B(xi, ri), xi ∈ E, ri ≤ R

}
,

where 0 < R < ∞. When R = ∞, we have the corresponding Hausdorff content of E

and denote it by H̃s
∞(E). Finally, the Hausdorff measure of codimension s is defined as

H̃s(E) = lim
R→0

H̃s
R(E).

We remark that if the measure µ is Q-regular, i.e., µ(B(x, r)) ≈ rQ, for some Q ≥ 1,
H̃s(E) ≈ HQ−s(E). Let us mention that the lower mass bound (2.2) for the measure µ

implies thatHQ is absolutely continuous with respect to µ and thatHQ−s(E) ≤ CH̃s(E).
The upper s-density of a finite Borel regular measure ζ at x is defined by

Θ∗s(ν, x) = lim sup
r→0+

ζ(B(x, r))
ωsrs

,

where ωs is the Lebesgue measure of the unit ball in Rs when s is a positive integer, and
ωs = Γ(1/2)s/Γ(s/2 + 1) otherwise. We record that if for all x in a Borel set E ⊂ X,
Θ∗s(ζ, x) ≥ α, 0 < α < ∞, then

ζ ≥ αCHs E,

where the positive constant C depends only on s. On the other hand, if Θ∗s(ζ, x) ≤ α we
obtain

ζ E ≤ αCHs E,

where a positive constant C depends only on s. See Federer [8, 2.10.19].
Recall that the following general covering theorem is valid in our setting. From a

given family of balls B with sup{diamB : B ∈ B} < ∞ covering a set E ⊂ X we can
select a pairwise disjoint subfamily B′ of balls such that

E ⊂ ⋃
B∈B′

5B,

see [8, Corollary 2.8.5]. If X is separable, then B′ is countable and B′ = {Bi}i≥1.
In this note, a curve γ in X is a continuous mapping from a compact interval [0, L]

to X. We recall that each curve can be parametrized by 1-Lipschitz map γ̃ : [0, L] → X.
A nonnegative Borel function g on X is an upper gradient of a function f : X → Y if for
all rectifiable curves γ, we have

d̃(f(γ(L)), f(γ(0))) ≤
∫

γ

g ds. (2.4)
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See Cheeger [5] and Shanmugalingam [29] for a discussion on upper gradients. If g is a
nonnegative measurable function on X and if (2.4) holds for p-almost every curve, p ≥ 1,
then g is a weak upper gradient of f . By saying that (2.4) holds for p-almost every curve
we mean that it fails only for a curve family with zero p-modulus (see, e.g., [29]). If u has
an upper gradient in Lp(X), then it has a minimal weak upper gradient gf ∈ Lp(X) in the
sense that for every weak upper gradient g ∈ Lp(X) of f , gf ≤ g µ-almost everywhere
(a.e.), see Corollary 3.7 in Shanmugalingam [30]. While the results in [29] and [30]
are formulated for real-valued functions and their upper gradients, they are applicable
for metric space valued functions and their upper gradients; the proofs of these results
require only the manipulation of upper gradients, which are always real-valued.

We define Sobolev spaces on metric spaces following Shanmugalingam [29]. Let
Ω ⊆ X be nonempty and open. Whenever u ∈ Lp(Ω) and p ≥ 1, let

‖u‖N1,p(Ω) := ‖u‖1,p :=
(∫

Ω

|u|p dµ +
∫

Ω

gp
u dµ

)1/p

. (2.5)

The Newtonian space on Ω is the quotient space

N1,p(Ω) = {u : ‖u‖N1,p(Ω) < ∞}/∼,

where u ∼ v if and only if ‖u − v‖N1,p(Ω) = 0. The space N1,p(Ω) is a Banach space
and a lattice. If Ω ⊂ Rn is open, then N1,p(Ω) = W 1,p(Ω) as Banach spaces. For
these and other properties of Newtonian spaces we refer to [29]. The class N1,p(Ω;Rm)
consists of those mappings u : Ω → Rm whose component functions each belong to
N1,p(Ω) = N1,p(Ω;R). Qualitative properties like Lebesgue points, density of Lipschitz
functions, quasicontinuity, etc. may be investigated componentwise.

A function belongs to the local Newtonian space N1,p
loc (Ω) if u ∈ N1,p(V ) for all

bounded open sets V with V̄ ⊂ Ω, the latter space being defined by considering V as a
metric space with the metric d and the measure µ restricted to it.

Newtonian spaces share many properties of the classical Sobolev spaces. For ex-
ample, if u, v ∈ N1,p

loc (Ω), then gu = gv µ-a.e. in {x ∈ Ω : u(x) = v(x)}, furthermore,
gmin{u,c} = guχ{u 6=c} for c ∈ R.

We shall also need a Newtonian space with zero boundary values. For a measurable
set E ⊂ Ω, let

N1,p
0 (E) = {f |E : f ∈ N1,p(Ω) and f = 0 on Ω \ E}.

This space equipped with the norm inherited from N1,p(Ω) is a Banach space.
We say that X supports a weak (1, p)-Poincaré inequality if there exist constants

C > 0 and τ ≥ 1 such that for all balls B(z, r) ⊂ X, all measurable functions f on X

and for all weak upper gradients gf of f ,

∫

B(z,r)

|f − fB(z,r)| dµ ≤ Cr

( ∫

B(z,τr)

gp
f dµ

)1/p

, (2.6)
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where fB(z,r) :=
∫

B(z,r)
f dµ :=

∫
B(z,r)

f dµ/µ(B(z, r)).
It is well known that the embedding N1,p(X) → Lp(X) is not surjective if and only

if there exists a curve family in X with a positive p-modulus. Moreover, the validity of
a Poincaré inequality can sometimes be stated in terms of p-modulus. More precisely, to
require that (2.6) holds in X is to require that the p-modulus of curves between every
pair of distinct points of the space is sufficiently large, see Theorem 2 in Keith [15].

It is noteworthy that by a result of Keith and Zhong [16] in a complete metric space
equipped with a doubling measure and supporting a weak (1, p)-Poincaré inequality there
exists ε0 > 0 such that the space admits a weak (1, p′)-Poincaré inequality for each
p′ > p− ε0.

The following Luzin-type approximation theorem shall be of use later in the
paper. We refer to Shanmugalingam [29, Theorem 4.1] for the proof which, in turn,
is a modification of an idea due to S. Semmes. See also HajÃlasz [9, Theorem 5].

Theorem 2.1. Suppose X satisfies (D) and (PI) for some 1 < p < ∞. Let
u ∈ N1,p(X). Then for every ε > 0 there is a Lipschitz function fε : X → R such that

µ({x ∈ X : u(x) 6= fε(x)}) < ε

and ‖u− fε‖1,p < ε. In other words, with Fε := {x ∈ X : u(x) 6= fε(x)}, we have u|X\Fε

is Lipschitz.

Capacity
There are several equivalent definitions for capacities, and the following are the ones

we find most suitable for our purposes. Let 1 ≤ p < ∞ and Ω ⊂ X bounded.

• The variational p-capacity of a set E ⊂ X is the number

capp(E) = inf ‖gu‖p
Lp(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E; recall that
gu is the minimal p-weak upper gradient of u.

• The relative p-capacity of E ⊂ Ω is the number

Capp(E, Ω) = inf ‖gu‖p
Lp(Ω),

where the infimum is taken over all u ∈ N1,p
0 (Ω) such that u ≥ 1 on E.

• The Sobolev p-capacity of E ⊂ X is the number

Cp(E) = inf ‖u‖p
N1,p(X),

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E.

Observe that if µ(X) < ∞ the constant function will do as a test function, thus all
sets are of zero variational p-capacity. However, this is not true for the relative p-capacity
whenever X \ Ω is “large”, say, Cp(X \ Ω) > 0.
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Under our assumptions, these capacities enjoy the standard properties of capacities.
For instance, when p > 1 they are Choquet capacities, i.e., the capacity of a Borel set can
be obtained by approximating with compact sets from inside and open sets from outside.
It is noteworthy, however, that the Choquet property fails for p = 1 in the general metric
setting. This does not cause any problems for us as we mainly deal with compact sets in
this note. In a recent paper by Kinnunen–Hakkarainen [12] the BV-capacity was proved
to be a Choquet capacity. See, e.g., Kinnunen–Martio [18], [19] for a discussion on
capacities on metric spaces.

The Sobolev capacity is the correct gauge for distinguishing between Newtonian
functions: if u ∈ N1,p(X), then u ∼ v if and only if u = v p-quasieverywhere, i.e., outside
a set of zero Sobolev p-capacity. Moreover, by Shanmugalingam [29] if u, v ∈ N1,p(X)
and u = v µ-a.e., then u ∼ v. A function u ∈ N1,p(X) is said to be quasicontinuous,
if there exists an open set G ⊂ X with arbitrarily small Sobolev p-capacity such that
the restriction of u to X \ G is continuous. A mapping in N1,p(X;Rm) is said to be
quasicontinuous if each of its component functions is quasicontinuous. Recall that all
functions in N1,p(X) are quasicontinuous, see Björn et al. [4]. Since Newtonian functions
have Lebesgue points outside a set of zero Sobolev capacity, in what follows we may
assume that every Newtonian function is precisely represented.

3. Graphs of Newtonian functions: Luzin’s condition.

Let Q > 0. Recall that a mapping f : X → Y is said to satisfy Luzin’s condition
(NQ) if HQ(f(E)) = 0 whenever E ⊂ X satisfies µ(E) = 0. By way of motivation,
the validity of Luzin’s condition implies certain change of variable formulas, thus it is of
independent interest in analysis.

Let E ⊂ X. We denote by f̄ : X → X × Y the graph mapping of f

f̄(x) = (x, f(x)), x ∈ X,

and Gf (E) is the graph of f over E defined by

Gf (E) = {(x, f(x)) : x ∈ E} ⊂ X × Y.

It is well known that if the mapping f is Borel measurable, then the graph Gf (X)
is Borel measurable as well, see, e.g., [10, Lemma 18]. We, furthermore, denote by
prX : X ×Y → X the projection prX(x, y) = x, and by prY : X ×Y → Y the projection
prY (x, y) = y. Observe that Lip(prX) = Lip(prY ) = 1. Also it is well-known that if
f : X → Y is continuous, then Gf (X) is homeomorphic to X.

Lemma 3.1. Let f : X → Rm, m ≥ 1, be measurable. Then prX(Gf (X) ∩ E) is
measurable for every Borel measurable subset E ⊂ X × Rm.

Proof. Let f∗ and f∗ be Borel measurable representatives of f ; Borel regularity
of the measure µ implies that if f is measurable, then there exist Borel measurable
functions f∗, f∗ such that f∗ ≤ f ≤ f∗ and f∗(x) = f∗(x) for µ-a.e. x ∈ X. Thus the
graph Gf∗(X) of f∗ and the graph Gf∗(X) of f∗ are Borel subsets of X × Rm. Then
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Kuratowski [20, Theorem 2, p. 385] implies that the projections prX(Gf∗(X) ∩ E) and
prX(Gf∗(X) ∩ E) are Borel measurable for every Borel measurable set E ⊂ X × Rm.
Since f∗ and f∗ agree up to a set of µ-measure zero, so do sets prX(Gf∗(X) ∩ E) and
prX(Gf∗(X) ∩ E), implying that prX(Gf (X) ∩ E) is µ-measurable. ¤

We now state a general criterion for the condition (NQ) similar to that of Radó and
Reichelderfer, see [28, V.3.6] and Malý [23]. In Euclidean spaces this result was obtained
by Malý et al. [27].

In what follows, we suppose that 1 ≤ m < Q, where m is related to Rm.

Theorem 3.2. Suppose X satisfies condition (D) and the lower mass bound (2.2)
is satisfied. Let f : XQ → Rm be a measurable function. Denote

Ξz,r = Gf (XQ) ∩B(z, r),

where z ∈ XQ × Rm and 0 < r < diam(XQ). Suppose that there exists a weight Φ ∈
L1

loc(X
Q) such that

HQ−m
∞ (prX(Ξz,r)) ≤ 1

diam(Ξz,r)m

∫

prX(Ξz,4r)

Φ dµ (3.1)

for all z ∈ XQ ×Rm and all 0 < r < diam(XQ)/4. Then there exists a positive constant
C < ∞, depending on Cµ and m, such that

HQ(f̄(E)) ≤ C

∫

E

Φ dµ (3.2)

for each Borel measurable set E ⊂ XQ. In particular, f̄ satisfies Luzin’s condition (NQ).

Proof. Define a set function σ on the Cartesian product XQ × Rm by

σ(E) =
∫

prX(Gf (XQ)∩E)

Φ dµ, E ⊂ XQ × Rm.

By a Vitali-type covering theorem there is a pairwise disjoint countable subfamily of balls
{Bi} := {B(xi, ri)} such that we may cover prX(Ξz,r) as follows

prX(Ξz,r) ⊂
⋃

i

B(xi, 5ri) =:
⋃

i

5Bi.

For each i let Mi denote the greatest integer satisfying

(Mi − 1)ri < diam(Ξz,r).

Since Ξz,r ∩ pr−1
X (5Bi) is bounded in XQ × Rm, it can be contained in a large enough

cylinder of the form B(xi, 5ri)×Ri, whereRi is a cube in Rm with side-length diam(Ξz,r).
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Since Miri ≥ diamΞz,r, Ri may be covered by Mm
i cubes {Rj

i} with side ri. We hence
obtain

HQ
∞(Ξz,r ∩ pr−1

X (5Bi)) ≤ CMm
i rQ

i ≤ C(Miri)mrQ−m
i

≤ C(diam(Ξz,r) + ri)mµ(5Bi)(5ri)−m.

As ri ≈ diam(5Bi) ≤ diamprX(Ξz,r) ≤ diam(Ξz,r) summing over i shows that

HQ
∞(Ξz,r) ≤ C diam(Ξz,r)m

∞∑

i=1

µ(5Bi)
(5ri)m

.

Hence by taking the infimum over all coverings we have obtained the following estimate

HQ
∞(Ξz,r) ≤ C diam(Ξz,r)mH̃m

∞(prX(Ξz,r)),

where the constant C depends only on Cµ and m. Assumption (3.1) together with this
estimate gives for each z ∈ X × Rm and 0 < r < diam(XQ)/4

HQ
∞(Ξz,r) ≤ C diam(Ξz,r)mH̃m

∞(prX(Ξz,r))

≤ C

∫

prX(Ξz,4r)

Φ dµ ≤ Cσ(B(z, 4r)). (3.3)

Since for HQ-almost every z ∈ Gf (XQ), see Federer [7, Lemma 10.1],

lim sup
r→0+

HQ
∞(Ξz,r)
ωQrQ

≥ C, (3.4)

it follows from (3.3) that

lim sup
r→0+

σ(B(z, r))
ωQrQ

≥ C

for HQ-almost every z ∈ Gf (XQ). Lemma 3.1 implies that σ is a measure on the Borel
sigma algebra of XQ×Rm, and it may be extended to a regular Borel outer measure σ∗

on all of XQ × Rm in the usual way

σ∗(A) := inf{σ(E) : A ⊂ E, E is a Borel set}.

Since Φ ∈ L1
loc(X

Q) it follows that σ∗ is a Radon measure on XQ × Rm. Therefore, by
(3.4)

HQ(E) ≤ Cσ∗(E)

for all E ⊂ Gf (XQ). Finally, given a µ measurable set E ⊂ XQ, choose a Borel set G
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with E ⊂ G. Then f̄(E) ⊂ G× Rm, G× Rm is a Borel set, and

HQ(f̄(E)) ≤ Cσ∗(f̄(E)) ≤ Cσ(G× Rm) = C

∫

G

Φ dµ.

The proof is completed by taking the infimum over all such G. If E ⊂ XQ such that
µ(E) = 0 then it readily follows that HQ(f(E)) = 0. This completes the proof. ¤

In (3.1) we may replace the Hausdorff content HQ−m
∞ (prX(Ξz,r)) with an inequality

involving H̃m
∞(prX(Ξz,r)) on the left hand side.

We shall show, as an application of Theorem 3.2, that the graph mapping of a
Newtonian function satisfies a version of Luzin’s condition (NQ). We start with a few
auxiliary estimates. We shall need the following relation between the p-capacity and the
Hausdorff content when p ≥ 1. For the proof of the next lemma the reader should consult
Costea [6, Thoerem 4.4] and Kinnunen et al. in [17, Theorem 3.5] for the case (I) and
(II), respectively.

Lemma 3.3. Suppose X satisfies conditions (D) and (PI), and the lower mass
bound (2.2) is satisfied.

(I) Let 1 < p ≤ Q and E ⊂ X and suppose Q− p < t ≤ Q. Then

Ht
∞(E ∩B(x, r)) ≤ Crt−Q+p Capp(E ∩B(x, r), B(x, 2r)),

where x ∈ X, r > 0, and C depends on Cµ, p, t, and the constants in the weak
(1, p)-Poincaré inequality.

(II) Let p = 1 and E ⊂ X compact. Then

H̃1
∞(E) ≤ C cap1(E),

where the constant C depends only on the doubling constant Cµ and the constants
in the weak (1, 1)-Poincaré inequality.

Remark 3.4. If u ∈ N1,p
0 (B(x, 2r);Rm) such that u ≥ 1 on E ∩ B(x, r), gu is a

minimal p-weak upper gradient of u, and m, where 1 ≤ m < min{p,Q}, we obtain

HQ−m
∞ (E ∩B(x, r)) ≤ Crp−m

∫

B(x,2r)

gp
u dµ,

where the constant C is as in Lemma 3.3 (I).
If u ∈ N1,1(X;R) such that u ≥ 1 on E and gu is a minimal 1-weak upper gradient

of u, Lemma 3.3 (II) implies that

H̃1
∞(E) ≤ C

∫

X

gu dµ,

where the constant C is from Lemma 3.3 (II).
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The preceding estimates imply the following. Observe also that the graph mapping
is always one-to-one.

Theorem 3.5. Suppose that X satisfies conditions (D) and (PI) with some 1 ≤
p ≤ Q, and the lower mass bound (2.2) is satisfied. Let u ∈ N1,p(XQ;Rm), where either
p > m or p ≥ m = 1. Then the graph mapping u satisfies Luzin’s condition (NQ).

The assumption that p > m or p ≥ m = 1 is necessary already in the Euclidean
case. We refer to a discussion in Malý et al. [27].

Proof of Theorem 3.5. It is sufficient to verify the hypothesis of Theorem 3.2
with some locally integrable function Φ on XQ.

Assume first p > m and, to this end, fix a point z = (x̃, ỹ) ∈ XQ × Rm and r > 0.
We observe the following

Ξz,r = Gu(XQ) ∩B(z, r) ⊂ (Gu(XQ) ∩ (BX(x̃, r)×B(ỹ, r))).

Hence we have that

prX(Ξz,r) ⊂ (BX(x̃, r) ∩ u−1(B(ỹ, r))),

moreover u(x) ∈ B(ỹ, r) for µ-a.e. x ∈ BX(x̃, r)∩u−1(B(ỹ, r)). Let us define the function
v : XQ → R by

v(x) = max
{

2− |u(x)− u(x̃)|
r

, 0
}

,

and consider an open subset O ⊂ XQ such that {x ∈ XQ : v(x) > 0} ⊂ O. Then
(gu/r)χO is a p-weak upper gradient of v [29, Lemma 4.3], where gu is a minimal p-weak
upper gradient of u. Let η : XQ → R be a Lipschitz cut-off function so that η = 1
on BX(x̃, r), η = 0 in XQ \ BX(x̃, 2r), 0 ≤ η ≤ 1, and gη ≤ 2/r. Then vη ≥ 1 on
BX(x̃, r) ∩ u−1(B(ỹ, r)), and vη ∈ N1,p

0 (B(x̃, 2r)). Moreover, the product rule for upper
gradients gives us the following gvη ≤ gv + 2v/r µ-a.e. Thus vη is admissible for the
relative p-capacity and Lemma 3.3 (I) implies that

HQ−m
∞ (prX(Ξz,r)) ≤ HQ−m

∞ (BX(x̃, r) ∩ u−1(B(ỹ, r)))

≤ Crp−m

∫

BX(x̃,2r)∩O

gp
vη dµ

≤ Crp−m

∫

BX(x̃,2r)∩O

(
vp

rp
+ gp

v

)
dµ

≤ Cr−m

∫

BX(x̃,2r)∩u−1(B(ỹ,2r))

(1 + gp
u) dµ.

Since
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BX(x̃, 2r) ∩ u−1(B(ỹ, 2r)) ⊂ prX(Ξz,4r),

above reasoning gives us that

HQ−m
∞ (prX(Ξz,r)) ≤ C

rm

∫

prX(Ξz,4r)

(1 + gp
u) dµ.

This verifies the assumptions of Theorem 3.2 with Φ = C(1 + gp
u), and thus concludes

the proof when p > m. The case p ≥ m = 1 is dealt with by a similar argument together
with the estimate in Lemma 3.3 (II). ¤

4. Aspects of area formulas for Newtonian functions.

In this section we shall prove versions of the area formula for Newtonian functions.
In the metric measure space setting these formulas have been studied previously by
Ambrosio–Kirchheim [1], Magnani [21], [22], and Malý [24], [25], to name but a few. In
particular, in [24] coarea properties and coarea formula, which is considered as dual to
the area formula, are thoroughly studied in metric spaces. We also refer to HajÃlasz [10]
for a very nice discussion on the topic in Euclidean spaces.

We define the generalized Jacobian of a continuous map f : X → Y at x as follows

J f(x) := lim sup
r→0

ν(f(B(x, r)))
µ(B(x, r))

,

where, we recall, ν measures Y . It follows from [8, 2.2.13] applied to the pull-back
measure νf (E) := ν(f(E)), that f(E) is ν-measurable for every Borel set E ⊂ X.
Moreover, for µ-a.e. x, the generalized Jacobian J f(x) is finite, see Federer [8, 2.9]. It
is also easy to see that if g : X → Y is another continuous map such that g = f on an
open subset A ⊂ X, then J f(x) = J g(x) for µ-a.e. x ∈ A.

An alternative, but maybe less tractable, way to define a generalized Jacobian of f

at x could be as follows. Set

J̃ f(x) := lim sup
r→0

f∗ν(B(x, r))
µ(B(x, r))

,

where f∗ν is a measure which results by Carathéodory’s construction from ζ(A) =
ν(f(A)), A ⊂ X, on the family of all Borel subsets of X, see [8, 2.10.1]. Hence if A

is a Borel subset of X, then

f∗ν(A) = sup
{ ∑

B∈H
ζ(B) : H is a Borel partition of A

}

cf. [8, Theorem 2.10.8]; for any Borel set A ⊂ X the following identity will be satisfied
[8, Theorem 2.10.10]
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f∗ν(A) =
∫

Y

N(f |A, y) dν(y),

where the multiplicity function of f relative to a subset A is written as N(f |A, y) =
#(A ∩ f−1(y)) for each y ∈ Y .

To compare these two notions, we have that

J f(x) = J̃ f(x) = J f |D(x)

for µ-a.e. x ∈ D, where D ⊂ X is closed and f |D is assumed to be one-to-one. Here we
denote

J f |D(x) := lim sup
r→0

ν(f(B(x, r) ∩D))
µ(B(x, r))

.

Let us clarify this. Clearly, J f |D(x) ≤ J f(x) ≤ J̃ f(x) for µ-a.e. x ∈ D. On the other
hand, since f is one-to-one on D we have that ζ(A) := ν(f(A)) is, in fact, a measure on
D, and that ζ(A) = f∗ν(A) for every Borel subset of D. Thus we obtain as in Magnani
[22, proof of Theorem 2] for every (density point) x ∈ D

J̃ f(x) ≤ lim sup
r→0

ν(f(B(x, r) ∩D))
µ(B(x, r))

+ lim sup
r→0

f∗ν(B(x, r) \D)
µ(B(x, r))

= J f |D(x),

where the last equality follows form [8, Corollary 2.9.9] applied to J̃ f(x)χD, where χD

is the characteristic function of the set D.
Magnani [22] has recently presented a unified approach to the area formula for

merely continuous mappings between metric spaces, and thus without any notion of
differentiability. We remark that in the present paper a function in N1,p

loc (XQ;Rm) al-
though having some “differentiability” properties, need not to be even continuous as all
Newtonian functions are, a priori, only quasicontinuous. Let us state the following area
formula.

Theorem 4.1. Suppose X satisfies conditions (D) and (PI) with some 1 ≤ p ≤ Q,
and the lower mass bound (2.2) is satisfied. Let u ∈ N1,p

loc (XQ;Rm), where p > m or
p ≥ m = 1. Then the following area formula is valid

HQ(ū(A)) =
∫

A

J ū(x) dµ(x), (4.1)

whenever A ⊂ X is µ-measurable.

Proof. By Theorem 3.5 the graph mapping ū satisfies Luzin’s condition (NQ) and
is, moreover, one-to-one on X. Thus the pull-back measureHQ(ū(A)), A ⊂ XQ arbitrary
µ-measurable subset, is absolute continuous with respect to the doubling measure µ.

Let {fi}i≥1, fi : XQ → Rm, be a sequence of Lipschitz functions and E1 ⊂ E2 ⊂
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· · · ⊂ XQ associated closed sets such that ui := u|Ei
= fi|Ei

and µ(XQ \ ⋃
i Ei) = 0.

The existence of such sets and functions follows from Theorem 2.1. Then the following
identity is valid by the area formula obtained in [22]

∫

Ei

J f̄i(x) dµ(x) = HQ(f̄i(Ei)). (4.2)

Since ui(x) = fi(x) for x ∈ Ei, Ei closed, it follows that J ūi(x) = J f̄i(x) for µ-a.e.
x ∈ Ei. The equality (4.2) remains true for measurable A ⊂ E∞, where E∞ =

⋃∞
i=1 Ei,

and moreover, (4.2) will also be valid whenever µ(A) = 0. Thus (4.1) holds for all
µ-measurable set A ⊂ XQ. ¤

Let us discuss an alternative formulation of the area formula which can be obtained
by using Theorem 2 in Magnani [22]. Assume X satisfies conditions (D) and (PI) with
some 1 ≤ p < ∞, and assume further that there exist disjoint µ-measurable sets {Aj}j≥1

such that they occupy µ-a.e. of X, i.e. µ(X \⋃
j Aj) = 0. Let u ∈ N1,p

loc (XQ;RN ), where
Q ≤ N . Assume further that u satisfies Luzin’s condition (NQ) and u|Aj

is one-to-one
for each i = 1, 2, . . . . Then the following area formula is valid

∫

A

θ(x)J u(x) dµ(x) =
∫

RN

∑

x∈u−1(y)

θ(x) dHN (y),

whenever A ⊂ X is µ-measurable and θ : A → [0,∞] is a measurable function. In
particular,

∫

A

J u(x) dµ(x) =
∫

RN

N(u|A, y) dHN (y)

is valid whenever A ⊂ X is µ-measurable.

5. Newtonian functions: absolute continuity, Radó, Reichelderfer, and
Malý.

Absolutely continuous functions on the real line satisfy Luzin’s condition, are con-
tinuous, and differentiable almost everywhere. It is well-known that these properties
for the Sobolev class W 1,p(Rm) depend on p. For instance, functions in W 1,m(Rm)
may be nowhere differentiable and nowhere continuous whereas functions in W 1,p(Rm),
p > m, have Hölder continuous representatives and are differentiable almost everywhere.
We consider Luzin’s condition, absolute continuity, and differentiability for the Banach
space valued Newtonian space N1,p(XQ;V), when p ≥ Q, and thus extend some related
results studied in Heinonen et al. [14]. Here V := (V, ‖ · ‖V) is an arbitrary Banach
space of positive dimension. We refer the reader to [14] for a detailed discussion on the
Banach space valued Newtonian functions. Suppose X satisfies conditions (D) and (PI)
with some 1 ≤ p < ∞; the following is known:

• Let p > Q. In this case each function u ∈ N1,p(XQ;R) is locally (1−Q/p)-Hölder
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continuous (Shanmugalingam [29]), moreover u is differentiable µ-a.e. with respect
to the strong measurable differentiable structure (see Cheeger [5]). For the latter
result we refer to Balogh et al. [2].

• Let p = Q. Then every continuous pseudomonotone mapping in N1,Q
loc (XQ;V)

satisfies Luzin’s condition (NQ) (Heinonen et al. [14, Theorem 7.2]).

It would be interesting to generalize Calderon’s differentiability theorem to Banach
space valued Newtonian functions.

Recall that following Malý–Martio [26], a map f : X → V is pseudomonotone if
there exists a constant CM ≥ 1 and rM > 0 such that

diam(f(B(x, r))) ≤ CM diam(f(∂B(x, r)))

for all x ∈ X and all 0 < r < rM . Note that we denote ∂B(x, r) := {y ∈ X : d(y, x) = r}.
Let Ω be open such that Ω ⊂ XQ. We show next that u ∈ N1,p(Ω;V), p ≥ Q, is

absolutely continuous in the following sense. Following Malý [23] we say that a mapping
f : Ω → V is Q-absolutely continuous if for each ε > 0 there exists δ = δ(ε) > 0 such
that for every pairwise disjoint finite family {Bi}∞i=1 of (closed) balls in Ω we have that

∞∑

i=1

diam(f(Bi))Q < ε,

whenever
∑∞

i=1 µ(Bi) < δ. Furthermore, we say that a mapping f : X → V satisfies the
Q-Radó–Reichelderfer condition, condition (RR) for short, if there exists a non-negative
control function Φf ∈ L1

loc(X) such that

diam(f(B(x, r)))Q ≤
∫

B(x,r)

Φf dµ (5.1)

for every ball B(x, r) ⊂ X with 0 < r < R. A condition similar to this was used by
Radó and Reichelderfer in [28, V.3.6] as a sufficient condition for the mappings with the
condition (RR) to be differentiable a.e. and to satisfy Luzin’s condition, see also Malý
[23]. A function f is said to satisfy condition (RR) weakly if (5.1) holds true with a
dilated ball B(x, αr), α > 1, on the right-hand side of the equation.

It readily follows that condition (RR) implies (local) Q-absolute continuity of f .
Indeed, let ε > 0 and {B(xi, rxi

)}, 0 < rxi
< R, a pairwise disjoint finite family of balls

in Ω such that E =
⋃

i B(xi, rxi
), and µ(E) < δ. Then condition (RR) and pairwise

disjointness of {B(xi, rxi
)} imply

∑

i

diam(f(B(xi, rxi
)))Q ≤

∑

i

∫

B(xi,rxi
)

Φf dµ =
∫

E

Φf dµ < ε.

Local absolute continuity of a function follows even if the functions satisfies condition
(RR) weakly.

Condition (RR) also implies that the map f has finite pointwise Lipschitz con-
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stant almost everywhere, see Wildrick–Zürcher [31, Proposition 3.4]. Combined with a
Stepanov-type differentiability theorem [2], this has implications for differentiability [5].
We also refer to a recent paper [32].

For the next proposition, we recall that the noncentered Hardy–Littlewood maximal
function restricted to Ω, denoted MΩ, is defined for an integrable (real-valued) function
f on Ω by

MΩf(x) := sup
B

∫

B(x,r)

|f | dµ,

where the supremum is taken over all balls B ⊂ Ω containing x. Consider further the
restrained noncentered maximal function MΩ,R in which the supremum is taken only
over balls in Ω with radius less than R. Then MΩf = supR>0MΩ,Rf . It is standard
also in the metric space setting, we refer to Heinonen [13], that for 1 < p ≤ ∞ the
operator MΩ is bounded on LP , i.e., there exists a constant C, depending on Cµ and p,
such that for all f ∈ Lp

‖Mf‖Lp ≤ C‖f‖Lp .

We have the following generalization.

Proposition 5.1. Suppose X satisfies conditions (D) and (PI) with

(I) p = Q. If u ∈ N1,Q
loc (XQ;V) is continuous and pseudomonotone, then u satisfies

condition (RR), and thus is (locally) Q-absolutely continuous.
(II) some p > Q. Then u ∈ N1,p

loc (XQ;V) satisfies condition (RR) weakly, and thus is
(locally) Q-absolutely continuous.

Proof. Let Ω b XQ be open, and fix x ∈ Ω.
(I): Let B(x, rx), 0 < rx < min{rD, rM}, be a ball such that B(x, 12τrx) ⊂ Ω; τ ≥ 1

is the dilatation constant appearing in the Poincaré inequality. By a Sobolev embedding
theorem HajÃlasz–Koskela [11, Theorem 7.1] there exists a constant C, depending on Cµ

and the constants in the weak (1, Q)-Poincaré inequality, and a radius rx < r < 2rx such
that

‖u(z)− u(y)‖p
V ≤ Cd(z, y)p/Qrp(1−1/Q)

x

∫

B(x,5τrx)

gp
u dµ (5.2)

for each z, y ∈ Ω with d(y, x) = r = d(z, x), where p ∈ (Q − ε0, Q). In fact, [11,
Theorem 7.1] is stated and proved only for real-valued functions, but the argument is
valid also when the target is a Banach space as we may make use of the Lebesgue
differentation theorem for Banach space valued maps as in [14, Proposition 2.10]. Since
u is pseudomonotone we obtain from (5.2)

diam(u(B(x, rx)))p ≤ Cp
M diamu(∂B(x, r))p ≤ Crp

x

∫

B(x,5τrx)

gp
u dµ,
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where C depends on Cµ, CM , and the constants in the weak (1, Q)-Poincaré inequality.
For each y ∈ B(x, rx) we have

∫

B(x,5τrx)

gp
u dµ ≤

∫

B(y,10τrx)

gp
u dµ ≤MΩ,12τrx

gp
u(y).

Combining the preceding two estimates and integrating over y ∈ B(x, rx) we get

diam(u(B(x, rx)))p ≤ Crp
x

∫

B(x,rx)

MΩ,12τrx
gp

u dµ.

Recall that Q− ε0 < p < Q; we get

diam(u(B(x, rx)))p ≤ Crp
xµ(B(x, rx))−p/Q

( ∫

B(x,rx)

(MΩ,12τrx
gp

u)Q/p dµ

)p/Q

≤ Crp
xµ(B(x, rx))−p/Q

( ∫

B(x,rx)

gQ
u dµ

)p/Q

,

which implies together with (2.3) that

diam(u(B(x, rx)))Q ≤ CC̃

∫

B(x,rx)

gQ
u dµ,

where C depends on Cµ, CM , and the constants in the weak (1, Q)-Poincaré inequality,
and C̃ is from (2.3). As gQ

u ∈ L1
loc(X) this verifies the fact that u satisfies condition

(RR), and thus is locally Q-absolutely continuous.
(II): Let B(x, rx), 0 < rx < rD, be a ball such that B(x, 5τrx) ⊂ Ω. Theorem 5.1 (3)

in HajÃlasz–Koskela [11, Theorem 5.1] implies that there exist a constant C, depending
on Cµ, p, and the constants appearing in the weak (1, p)-Poincaré inequality, such that

‖u(z)− u(y)‖V ≤ Cd(z, y)1−Q/prQ/p
x

( ∫

B(x,5τrx)

gp
u dµ

)1/p

for all z, y ∈ B(x, rx). In fact, [11, Theorem 5.1] is stated and proved only for real-valued
functions, but the argument is valid also when the target is a Banach space. Young’s
inequality ab ≤ ap/p + bp′/p′ and (2.3) imply

diam(u(B(x, rx)))Q ≤ CrQ
x

µ(B(x, rx))Q/p

( ∫

B(x,5τrx)

gp
u dµ

)Q/p

≤ C

(
C̃−1µ(B(x, rx)) +

∫

B(x,5τrx)

gp
u dµ

)

≤ C

( ∫

B(x,αrx)

(
C̃−1 + gp

u

)
dµ

)
.
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Hence u satisfies condition (RR) weakly with α = 5τ and with Φu = C(C̃−1 + gp
u), C̃ is

from (2.3). ¤

The fact that a continuous pseudomonotone function u ∈ N1,Q
loc (XQ;V) verifies

Luzin’s condition (NQ) would easily follow also from Proposition 5.1 (I).
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