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By Shouhei Honda

(Received Apr. 5, 2012)
(Revised Jan. 21, 2013)

Abstract. We study harmonic functions with polynomial growth on
asymptotic cones of a nonnegatively Ricci curved manifold with Euclidean
volume growth. Especially, we will give the classification of such harmonic
functions.

1. Introduction.

Let M be a complete n-dimensional nonnegatively Ricci curved manifold and VM :=
limR→∞ volBR(m)/Rn, where m ∈ M . Note that by Bishop-Gromov volume comparison
theorem, the limit exists and does not depend on the choice of m. Assume that the
following Euclidean volume growth condition holds:

VM > 0.

Let (M∞,m∞) be an asymptotic cone of M , to which the rescaled Riemannian manifolds
(M, R−1

i dM ,m) for a divergent sequence of positive numbers Ri, converges to (M∞,m∞)
with respect to the Gromov-Hausdorff topology, where dM is the distance function of M .
In this paper, we will study harmonic functions with polynomial growth on M∞. See
Section 2 for the definition of harmonic functions on M∞. For d ≥ 0, let Hd(M∞)
be the space of harmonic functions f on M∞ satisfying that there exists C > 1 such
that |f(x)| ≤ C(1 + m∞, xd) for every x ∈ M∞, where m∞, x = dM∞(m∞, x). By
Cheeger-Colding’s cerebrated work [5], we see that there exists a compact geodesic space
X with diamX ≤ π such that (M∞,m∞) is isometric to the metric cone (C(X), p) of
X, where C(X) := R≥0 × X/({0} × X), the distance is defined by (t1, x1), (t2, x2) :=√

t21 + t22 − 2t1t2 cos x1, x2, and p = [{0} × X]. Note that X is Hn−1-rectifiable and
that (X, Hn−1) satisfies a weak Poincaré inequality of type (1, 2), where Hn−1 is the
(n − 1)-dimensional Hausdorff measure. See [20, Lemma 4.3] and [38, Corollary 3.2].
Thus, by [8, Theorem 6.25], we see that there exists the canonical self-adjoint operator
(called Laplacian) ∆X on L2(X). Let Eλ(X) be the space of functions on X spanned by
eigenfunctions of ∆X on X associated with the eigenvalues ≤ λ.

A main result in this paper is the following:
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Theorem 1.1 (Harmonic functions with polynomial growth on asymptotic cones).
Let d ≥ 0. Then we have

dimHd(C(X)) = dimEd(d+n−2)(X).

Especially, we have dimHd(C(X)) < ∞.

Note that we can regard the last statement dim Hd(C(X)) < ∞ as a solution of an
asymptotic cone’s version of Yau’s conjecture (see [14, Conjecture 0.1], [74] and [75]).

We will also show the following asymptotic estimates. This is an asymptotic cone’s
version of Weyl type asymptotic bounds on manifolds given by Colding-Minicozzi in [18]:

Theorem 1.2 (Weyl type asymptotic bounds). For every V > 0, there exists
d(n, V ) ≥ 1 such that

C(n)−1VMdn−1 ≤ dimHd(M∞) ≤ C(n)VMdn−1

holds for every n-dimensional complete nonnegatively Ricci curved manifold M with
VM ≥ V , every d ≥ d(n, V ) and every asymptotic cone (M∞,m∞) of M , where C(n) is
a positive constant depending only on n.

It is important that we can get two sided bounds on asymptotic cones as above.
Compare with [18, Theorem 0.26] and [18, Proposition 6.1].

We will also give a relationship between harmonic functions with polynomial growth
on M and that of asymptotic cones:

Theorem 1.3 (Liouville type theorem). There exists a unique d1 ≥ 1 such that
the following hold :

1. Hd(M) = {constant functions} for every 0 < d < d1.
2. Hd(M∞) = {constant functions} for every 0 < d < d1 and every asymptotic cone

(M∞,m∞) of M .
3. Hd1(M̂∞) 6= {constant functions} for some asymptotic cone (M̂∞, m̂∞) of M .

As a corollary of Theorem 1.3, we have the following: Assume that there exists
0 < r ≤ 1 such that every asymptotic cone of M is isometric to the cone C(Sn−1(r))
of Sn−1(r) = {x ∈ Rn; |x| = r} (note that in general, the asymptotic cones of M are
not unique, however if M has nonnegative sectional curvature, then the asymptotic cone
of M is unique. See for instance [6], [59]. Moreover, recently Colding-Minicozzi showed
that if RicM ≡ 0, VM > 0 and an asymptotic cone has a smooth cross section, then the
asymptotic cone is unique. See [19].) Let

d1 :=
−(n− 1) +

√
(n− 2)2 + 4n/r2

2
.

Then we have Hd(M) = {constant functions} for every d < d1. Note that d1 → ∞ as
r → 0.
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Essential tools to show Theorems 1.1, 1.2 and 1.3 are important results about asymp-
totic behavior of harmonic functions on manifolds given by Colding-Minicozzi in [15],
[18] and a new notion about a convergence of Lipschitz functions with respect to the
Gromov-Hausdorff topology given by the author in [38].

Organization of this paper is as follows:
In Section 2, we will introduce several fundamental notions for metric measure

spaces, the structure theory of limit spaces of Riemannian manifolds developed by
Cheeger-Colding, several results given in [38] which will be used in this paper and two
important (gradient) estimates by Cheng-Yau and Li-Schoen.

In Section 3, we will discuss about frequency functions for harmonic functions intro-
duced by Colding-Minicozzi in [15]. Roughly speaking, we will show that C0-convergence
of harmonic functions with respect to the Gromov-Hausdorff topology yields convergence
of frequency functions of them. See Proposition 3.4 for the precise statement. By using
Proposition 3.4, several important results about asymptotic behavior of harmonic func-
tions given in [15], and several properties for convergence of harmonic functions with
respect to the Gromov-Hausdorff topology given in [38], we will give a proof of Theorem
1.1.

In Section 4, we will give a proof of Theorem 1.2 by using results given in Section 3
and [18].

In Section 5, we will study the topology of the moduli space of asymptotic cones of
M . Roughly speaking, we will show that the Gromov-Hausdorff topology on the moduli
space and the spectral topology given by Kasue-Kumura in [42], [43] coincide. This is
a solution of an asymptotic cone’s version of Fukaya’s conjecture [26, (0.5) Conjecture].
The main result in Section 5 is Theorem 5.4.

In Section 6, we will show a comparison theorem between Hd(M) and H d̂(M∞).
See Theorem 6.1. As corollaries, we will give an alternative proof of Weyl type asymp-
totic bounds for harmonic functions on manifolds by Colding-Minicozzi, and a proof of
Theorem 1.3 via Theorem 5.4.

Section 7 is an appendix. We will show a co-area formula on a non-collapsing metric
cone. This performs a crucial role in this paper.
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2. Preliminaries.

For a positive number ε > 0 and real numbers a, b, we use the following notation:

a = b± ε ⇐⇒ |a− b| < ε.

We denote by Ψ(ε1, ε2, . . . , εk; c1, c2, . . . , cl) (or by Ψ for short) some positive function on
Rk

>0 ×Rl satisfying

lim
ε1,ε2,...,εk→0

Ψ(ε1, ε2, . . . , εk; c1, c2, . . . , cl) = 0

for fixed real numbers c1, c2, . . . , cl. We often denote by C(c1, c2, . . . , cl) some positive
constant depending only on fixed real numbers c1, c2, . . . , cl.

2.1. Metric measure spaces.
For a metric space Z, a point z ∈ Z and positive numbers r,R with r < R, let

Br(z) := {x ∈ Z; z, x < r}, Br(z) := {x ∈ Z; z, x ≤ r}, ∂Br(z) := {x ∈ Z; z, x = r} and
Az(r,R) := BR(z) \ Br(z), where x, y is the distance between x and y, we often denote
the distance by dZ(y, x). For z ∈ Z, we denote the distance function from z by rz, i.e.,
rz(w) := z, w. For a Lipschitz function f on Z and a point z ∈ Z which is not isolated
in Z, we put

Lip f(z) := lim sup
r→0

(
sup

x∈Br(z)\{z}

|f(x)− f(z)|
x, z

)
.

If z is isolated in Z, then we put Lip f(z) := 0. We also denote the Lipschitz constant of
f by Lip f := supx6=y(|f(x)− f(y)|/x, y). For an open subset U ⊂ Z, we denote the set
of Lipschtiz functions on U with compact support by K(U). We say that Z is proper if
every bounded subset of Z is relatively compact. We also say that Z is a geodesic space
if for every x1, x2 ∈ Z, there exists an isometric embedding γ from [0, x1, x2] to Z such
that γ(0) = x1, γ(x1, x2) = x2 (γ is called a minimal geodesic from x1 to x2). In this
paper, for a proper metric space Z and a Radon measure υ of Z, we say that a pair (Z, υ)
is a metric measure space if the following hold:

1. (Positivity). υ(B1(z)) > 0 for every z ∈ Z.
2. (Doubling condition). For every R > 0, there exists κ = κ(R) ≥ 0 such that

υ(B2r(z)) ≤ 2κυ(Br(z)) for every 0 < r < R.

We now recall the notion of rectifiability for metric measure spaces given by Cheeger-
Colding in [8]:

Definition 2.1. Let (Z, υ) be a metric measure space. We say that Z is υ-
rectifiable if there exist a positive integer m, a collection of Borel subsets {Ck,i}1≤k≤m,i∈N

of Z, and a collection of bi-Lipschitz embedding maps {φk,i : Ck,i → Rk}k,i such that
the following hold:

1. υ(Z \⋃
k,i Ck,i) = 0.
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2. υ is Ahlfors k-regular at each x ∈ Ck,i, i.e., there exists Ak,i > 1 such that (Ak,i)−1rk ≤
υ(Br(x)) ≤ Ak,ir

k for every 0 < r < (Ak,i)−1.
3. For every k, every x ∈ ⋃

i∈N Ck,i and every 0 < δ < 1, there exists i such that x ∈ Ck,i

and that the map φk,i is (1± δ)-bi-Lipschitz to the image φk,i(Ck,i).

It is important that the cotangent bundle on a rectifiable metric measure space
exists in some sense. We do not explain the construction, however we now give several
fundamental properties of the cotangent bundle only:

Theorem 2.2 (Cheeger, Cheeger-Colding, [3], [8]). Let (Z, υ) be a rectifiable met-
ric measure space. Then, there exist a topological space T ∗Z and a Borel map π : T ∗Z
→ Z such that the following hold :

1. υ(Z \ π(T ∗Z)) = 0.
2. π−1(w) is a finite dimensional real Hilbert space with the inner product 〈·, ·〉(w) for

every w ∈ π(T ∗Z).
3. For every open subset U of Z and every Lipschitz function f on U , there exist a

Borel subset V of U , and a Borel map df (called the differential section of f or the
differential of f) from V to T ∗Z such that υ(U \ V ) = 0 and that π ◦ df(w) = w,
|df |(w) = Lip f(w) = lipf(w) for every w ∈ V , where |v|(w) :=

√
〈v, v〉(w).

4. Assume that (Z, υ) satisfies a weak Poincaré inequality of type (1, 2) and that Z is
compact. Then a bilinear form

∫

Z

〈df1, df2〉dυ

is closable. Especially, the canonical self-adjoint operotor ∆Z (called the Laplacian on
Z ) on L2(Z) is well-defined. Moreover, (1 + ∆Z)−1 is a compact operator.

See Section 4 in [3] and Section 7 in [8] for the definition of a weak Poincaré inequality
on metric measure spaces and the details of Theorem 2.2.

Let 1 < p < ∞ and let (Z, υ) be a metric measure space satisfying a weak Poincaré
inequality of type (1, p). Then for every open subset U of Z, it is known that the Sobolev
space H1,p(U) on U is well-defined and that the differential df as above of f ∈ H1,p(U)
is also well-defined. See also Section 4 in [3] for the detail.

Finally we end this subsection by giving the definition of harmonic functions on
metric measure spaces by Cheeger. We say that f ∈ H1,2(U) is harmonic on U if

∫

U

|d(f + k)|2dυ ≥
∫

U

|df |2dυ

holds for every k ∈ K(U). See Section 7 in [3] for several fundamental properties of
harmonic functions.

2.2. Gromov-Hausdorff convergence and the structure theory of limit
spaces of Riemannian manifolds.

Let {(Zi, zi)}1≤i≤∞ be a sequence of pointed proper geodesic spaces. We say that
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(Zi, zi) converges to (Z∞, z∞) with respect to the pointed Gromov-Hausdorff topology
if there exist sequences {εi}i, {Ri}i of positive numbers, and {φi}i of Borel maps
φi from (BRi(zi), zi) to (BRi(z∞), z∞) such that εi → 0, Ri → ∞ as i → ∞,
BRi

(z∞) ⊂ Bεi
(Image φi) and |α, β − φi(α), φi(β)| ≤ εi for every α, β ∈ BRi

(xi). We

denote it by (Zi, zi)
(φi,Ri,εi)−−−−−−→ (Z∞, z∞) or by (Zi, zi) → (Z∞, z∞) for short. As-

sume (Zi, zi) → (Z∞, z∞). Let {xi}1≤i≤∞ be a sequence of points xi ∈ Zi. We say
that xi converges to x∞ if xi ∈ BRi(zi) and φi(xi), x∞ → 0. Then, we denote it by
xi → x∞. Let {υi}1≤i≤∞ be a sequence of Radon measures υi on Zi. We say that
(Zi, zi, υi) converges to (Z∞, z∞, υ∞) with respect to the measured Gromov-Hausdorff
topology if limi→∞ υi(Br(xi)) = υ∞(Br(x∞)) for every r > 0 and every xi → x∞.
Then we denote it by (Zi, zi, υi) → (Z∞, z∞, υ∞). See also Section 1 in [6] or [26,
(0.2) Definition]. Let (X, x), (W,w) be proper geodesic spaces. We say that (X, x) is
a tangent cone of W at w if there exists a sequence {ε}i of positive numbers such that
εi → 0 and (X, x, ε−1

i dX) → (W,w). For a metric space Y and a positive integer n, let
Rn(Y ) := {y ∈ Y ; every tangent cone of Y at y is isometric to (Rn, 0n).}.

We end this subsection by introducing several important properties of the non-
collapsing limit space of a sequence of Riemannian manifolds with a lower Ricci curvature
bound by Cheeger-Colding [5], [6], [7], [8], Colding [12]. See [5], [6], [7], [8] for collapsing
case. Let {(Mi,mi)}i<∞ be a sequence of pointed n-dimensional complete Riemannian
manifolds and (M∞,m∞) the Gromov-Hausdorff limit space. Assume that there exist
ν > 0 and K < 0 such that RicMi ≥ K(n− 1) and volB1(mi) ≥ ν for every i < ∞. Let
Rn = Rn(M∞). Then, we have the following:

1. (GH-convergence implies measured GH-convergence [6, Theorem 5.9]). (Mi,mi, vol)
→ (M∞,m∞,Hn) where Hn is the n-dimensional spherical Hausdorff measure.

2. (Regular sets have full measure [6, Theorem 2.1]). Hn(M∞ \ Rn) = 0.
3. (Limit spaces are rectifiable [8, Theorems 5.5 and 5.7]). M∞ is Hn-recitifiable.

2.3. Convergence of the differentials of Lipschitz functions.
In this subsection, we recall the definition of a convergence of the differential of

Lipschitz functions with respect to the measured Gromov-Hausdorff topology given in
[38]. We consider the same setting as in the previous subsection: Let (Mi,mi) →
(M∞,m∞) with RicMi

≥ K(n − 1) and volB1(mi) ≥ ν. Fix R > 0, L ≥ 1 and an
L-Lipschitz function fi on BR(mi) for every i ≤ ∞. We say that fi converges to f∞ at
x∞ if fi(xi) → f∞(x∞) for every xi → x∞. Then we denote it by fi → f∞ at x∞. The
following notion performs a crucial role in this paper:

Definition 2.3 ([38, Definition 1.1, Definition 4.4]). We say that dfi converges to
df∞ at x∞ if for every ε > 0 and every zi → z∞, there exists r > 0 such that

lim sup
i→∞

∣∣∣∣
1

volBt(xi)

∫

Bt(xi)

〈drzi , dfi〉d vol− 1
Hn(Bt(x∞))

∫

Bt(x∞)

〈drz∞ , df∞〉dHn

∣∣∣∣ < ε

and
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lim sup
i→∞

1
volBt(xi)

∫

Bt(xi)

|dfi|2d vol ≤ 1
Hn(Bt(x∞))

∫

Bt(x∞)

|df∞|2dHn + ε

for every 0 < t < r and every xi → x∞. Then we denote it by dfi → df∞ at x∞.

We use the following notation: (fi, dfi) → (f∞, df∞) at x∞ if fi → f∞ and dfi → df∞
at x∞. We end this subsection by giving two fundamental properties of this convergence:

1. [38, Corollary 4.7]. Assume that fi is harmonic for every i < ∞ and that fi → f∞
on BR(m∞) (i.e., fi → f∞ at every x∞ ∈ BR(m∞)). Then we see that dfi → df∞ on
BR(m∞) and that f∞ is harmonic on BR(m∞).

2. [38, Corollary 4.4]. Let k be a positive integer, r > 0 with r < R, {wi}i a sequence
of points wi ∈ Mi with wi → w∞, {f l

i , g
l
i}1≤i≤∞,1≤l≤k a collection of Lipschitz func-

tions f l
i , g

l
i on BR(mi) with supi,l(Lip f l

i + Lip gl
i) < ∞, and {Fi}1≤i≤∞ ⊂ C0(Rk).

Assume that the following hold:
(a) Fi converges to F∞ with respect to the compact uniformly topology.
(b) df l

i → df l
∞ and dgl

i → dgl
∞ at a.e. α ∈ BR(m∞) \Br(w∞) for every 1 ≤ l ≤ k.

Then we have

lim
i→∞

∫

BR(mi)\Br(wi)

Fi

(〈df1
i , dg1

i 〉, . . . , 〈dfk
i , dgk

i 〉
)
d vol

=
∫

BR(m∞)\Br(w∞)

F∞
(〈df1

∞, dg1
∞〉, . . . , 〈dfk

∞, dgk
∞〉

)
dHn.

See [38] for more fundamental properties of this convergence: dfi → df∞.

2.4. Gradient estimates.
In this subsection, we recall the following two very important estimates. These

estimates will be used many times in this paper:

1. (Cheng-Yau’s gradient estimate [11]). Let K ≥ 0, R > 0 and let (M, m) be a pointed
complete n-dimensional Riemannian manifold with RicM ≥ K(n− 1). Then for every
positive valued harmonic function f on BR(m), we have

|∇f |2
f2

≤ C(n,K, r,R)

on Br(m) for every r < R.
2. (Li-Schoen’s mean value inequality [51]). Let (M, m) be a pointed complete n-

dimensional nonnegatively Ricci curved manifold, R > 0 and f a nonnegative valued
subharmonic function B3R/2(m). Then we have

sup
BR(m)

f ≤ C(n)
volB3R/2(m)

∫

B3R/2(m)

fd vol .

Note that if RicM ≥ 0, then |∇h|2 is a subharmonic function for every harmonic function
h. This is a direct consequence of Bochner’s formula.
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3. Convergence of frequency functions.

Our goal in this section is to give a proof of Theorem 1.1. Throughout this section, we
will always assume that the dimensions of all manifolds under consideration are greater
than 2. See [22], [39], [53] for important works about two dimensional case.

Throughout this section, we fix an n-dimensional complete nonnegatively Ricci
curved Riemannian manifold M with V gM

M := VM > 0, where gM is the Riemannian
metric of M . It is easy to check that V r−2gM

M = V gM

M holds for every r > 0. Fix m ∈ M .
Note that the entire Green’s function GgM (x, y) on M exists. See for instance [63].

First we recall an important result about asymptotic behavior of GgM by Colding-
Minicozzi:

Theorem 3.1 (Colding-Minicozzi [16]). We have

lim
m,x→∞

GgM (m,x)
m,x2−n =

volB1(0n)
VM

.

Note that for every r > 0, we have

Gr−2gM (m,x) =
GgM (m,x)

r2−n
.

It is known that there exists C1 > 1 such that m,x2−n ≤ GgM (m,x) ≤ C1m,x2−n for
every m 6= x. Define a smooth function bgM

m on M \ {m} by

bgM
m (x) :=

(
VM

volB1(0n)
GgM (m,x)

)1/(2−n)

.

Note br−2gM
m = bgm

m /r. We use the notation bgM = bgM
m for short. Thus we have

(
VM

volB1(0n)

)2−n

m, yr−2gM ≤ br−2gM (y) ≤
(

C1VM

volB1(0n)

)2−n

m, yr−2gM

for every r > 0. Let bgM (m) := 0. It is easy to check

∇gM bgM =
VM

(2− n) volB1(0n)
(bgM )n−1∇gM GgM (m, ·).

On the other hand, for every ε > 0, there exists R(ε) > 0 such that

1
vol{bgM ≤ R}

∫

bgM≤R

∣∣|∇bgM |2 − 1
∣∣2 + |Hess(bgM )2 −2gM |2d vol ≤ ε

for every R > R(ε) and that
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∣∣∣∣
bgM (x)
m,xgM

− 1
∣∣∣∣ < ε

for every x ∈ M \BR(ε)(m). See (2.23), (2.24) and (2.25) in [15] or Section 4 in [16] for
the proofs of these results.

Lemma 3.2. We have

lim
R→∞

vol{bgM ≤ R}
volBgM

R (m)
= 1.

Proof. Fix 0 < ε < 1. Let R(ε) > 0 as above and

R̂(ε) :=
(

C1VM

volB1(0n)

)2−n

R(ε) + R(ε).

Fix R > R̂(ε).
First we will show BR(m) ⊂ {bgM ≤ (1 + ε)R}. Let y ∈ BR(m). If m, y ≤ R(ε),

then

bgM (y) ≤
(

C1VM

volB1(0n)

)2−n

m, y ≤
(

C1VM

volB1(0n)

)2−n

R(ε) ≤ R̂(ε) ≤ R.

If m, y > R(ε), then |bgM (y)−m, y| < εm, y. Especially, we have bgM (y) ≤ (1 + ε)m, y <

(1 + ε)R. Thus, we have BR(m) ⊂ {bgM ≤ (1 + ε)R}.
On the other hand, for every x ∈ {bgM ≤ (1 + ε)R} with m,x ≥ R(ε), we have

(1− ε)m,x ≤ bgM (x) ≤ (1 + ε)R. Thus, we have {bgM ≤ (1 + ε)R} ⊂ B(1+ε)R/(1−ε)(m).
Since

lim
R→∞

volBaR(m)
volBbR(m)

=
(

a

b

)n

for every a, b > 0, we have the assertion. ¤

We now recall the definition of the frequency function for a harmonic function on M

by Colding-Minicozzi. For R > 0, 0 < r < R and a harmonic function u on {bgM < R},
let

IgM
u (r) := r1−n

∫

bgM =r

u2|∇gM bgM |d volgM

n−1, DgM
u (r) = r2−n

∫

bgM≤r

|∇gM u|2d volgM

and

F gM
u (r) := r3−n

∫

bgM =r

∣∣∣∣
∂u

∂n

∣∣∣∣
2

|∇bgM |d volgM

n−1,

where n is the outer unit normal vector of {bgM = r}, volgM

n−1 is the (n− 1)-dimensional
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Hausdorff measure with respect to the Riemannian metric gM . Moreover, let

UgM
u (r) :=

DgM
u (r)

IgM
u (r)

if IgM
u (r) 6= 0, UgM

u (r) := 0 if IgM
u (r) = 0.

We call the function UgM
u on (0, R) the frequency function for u. Note that the critical

set of bgM has codimension two at least. See [10], [34]. By the maximum principle,
UgM

u (r) = 0 for some 0 < r < R if and only if u is a constant function. Note that

DgM
u (r) ≤

(
r

s

)2−n

DgM
u (s),

dIgM
u

dr
= 2

DgM
u (r)
r

and

IgM
u (s) = exp

(
2

∫ s

r

UgM
u (t)

t
dt

)
IgM
u (r)

for r < s. See (2.10), (2.12), (2.13) and (2.14) in [15] for the proofs. For τ, r > 0, R > rτ

and a harmonic function u on {bgM < R}, we put uτ := u/τ . Then for a rescaled metric
τ−2gM , it is easy to check that Dτ−2gM

uτ
(r) = τ−2DgM

u (rτ), Iτ−2gM
uτ

(r) = τ−2IgM
u (rτ),

F τ−2gM
uτ

(r) = τ−2F gM
u (rτ) and Uτ−2gM

uτ
(r) = UgM

u (rτ).
Fix an asymptotic cone (M∞,m∞) of M for a divergent sequence of positive num-

bers Ri: (M, m,R−1
i dM ) → (M∞,m∞). Note that by the assumption VM > 0, we

have (M, m,R−1
i dM , volR

−2
i gM ) → (M∞,m∞,Hn). On the other hand, by [5, Theorem

7.6], we see that there exists a compact geodesic space X with diamX ≤ π such that
(M∞,m∞) is isometric to (C(X), p).

Let R > 0, 0 < r < R and let u be a Lipschitz function on BR(p). Assume that u

is harmonic on BR(p). Put, for r ∈ (0, R),

Iu(r) := r1−n

∫

∂Br(p)

u2dHn−1, Du(r) := r2−n

∫

Br(p)

|du|2dHn

and

Uu(r) :=
Du(r)
Iu(r)

if Iu(r) 6= 0, Uu(r) := 0 if Iu(r) = 0.

By Proposition 7.6, we see that the function

Fu(r) := r3−n

∫

∂Br(p)

〈drp, du〉2dHn−1

is well defined for a.e. r ∈ (0, R).

Remark 3.3. Let R > 0 and let {ui}i<∞ be a sequence of harmonic functions ui

on BgM

RRi
(m). Assume that supi |(ui)Ri |

L∞(B
R
−2
i

gM
r (m))

< ∞ for every 0 < r < R. Then
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we have supi Lip
(
(ui)Ri

|
B

R
−2
i

gM
r (m)

)
< ∞ for every 0 < r < R. The proof is as follows.

Fix r̂ with r < r̂ < R. Since Br(p) is convex, it is not difficult to see that there exists

i0 such that Image(γi) ⊂ B
R−2

i gM

r̂ (m) for every i ≥ i0, every x1(i), x2(i) ∈ B
R−2

i gM

r (m)
and every minimal geodesic γi from x1(i) to x2(i). Therefore, by Cheng-Yau’s gradient
estimate, we have lim supi→∞ Lip

(
(ui)Ri

|
B

R
−2
i

gM
r (m)

)
< ∞ for every 0 < r < R.

Proposition 3.4. Let R > 0 and let {ui}i<∞ be a sequence of harmonic
functions ui on BgM

RRi
(m) and u∞ a Lipschitz function on BR(p). Assume that

supi |(ui)Ri
|
L∞(B

R
−2
i

gM
t (m))

< ∞ and (ui)Ri
→ u∞ on Bt(p) for every 0 < t < R.

Then, we have

lim
i→∞

sup
t∈[r,s]

∣∣∣DR−2
i gM

(ui)Ri
(t)−Du∞(t)

∣∣∣ = 0 and lim
i→∞

sup
t∈[r,s]

∣∣∣IR−2
i gM

(ui)Ri
(t)− Iu∞(t)

∣∣∣ = 0

for every 0 < r < s < R.

Proof. Let r, s be positive numbers with r < s < R. Fix positive numbers r̂, ŝ

with r̂ < r < s < ŝ < R. Let L ≥ 1 with ‖u∞‖L∞(Bŝ(x∞)) + Lipu∞ ≤ L. Fix ε > 0 with
ε ¿ min{r̂, R − ŝ}. Then, by the proof of Lemma 3.2, there exists R1(ε) > 1 such that
BgM

(1−ε2)R(m) ⊂ {bgM ≤ R} ⊂ BgM

(1+ε2)R(m) and

1
vol{bgM ≤ R}

∫

bgM≤R

∣∣|∇gM bgM |2 − 1
∣∣2 ≤ ε8

for every R > R1(ε). The Cauchy-Schwartz inequality yields

1
vol{bgM ≤ R}

∫

bgM≤R

∣∣|∇gM bgM |2 − 1
∣∣ ≤ ε4

and

1
vol{bgM ≤ R}

∫

bgM≤R

∣∣|∇gM bgM | − 1
∣∣ ≤ ε2.

For every 0 < t < R, let

Fi(t) :=
∫

bR
−2
i

gM≤t

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣2d volR

−2
i gM .

Then, we have

dFi

dt
(t) =

∫

bR
−2
i

gM =t

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣d volR

−2
i gM

n−1 = I
R−2

i gM

(ui)Ri
(t)tn−1.

Thus, we have
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d2Fi

dt2
(t) = 2tn−1

D
R−2

i gM

(ui)Ri
(t)

t
+ (n− 1)IR−2

i gM

(ui)Ri
(t)tn−2

= 2
∫

bR
−2
i

gM≤t

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM

+
n− 1

t

∫

bR
−2
i

gM =t

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣2d volR

−2
i gM

n−1 .

Recall that for every a, s, t ∈ R, and every C2-function f on R, we have

f(t) = f(a) + (t− a)f ′(a)−
∫ t

a

(s− t)f ′′(s)ds.

Therefore, for every 0 < t < R, we have

∣∣∣∣
Fi(t + ε)− Fi(t)

ε
−

∫

bR
−2
i

gM =t

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣d volR

−2
i gM

∣∣∣∣

≤
∫ t+ε

t

2
∫

bR
−2
i

gM≤a

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM da

+ (n− 1)
∫ t+ε

t

a−1

∫

bR
−2
i

gM =a

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣d volR

−2
i gM da

≤ 2ε

∫

bR
−2
i

gM≤t+ε

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM

+
n− 1

t

∫

t≤bgM≤t+ε

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣2d volR

−2
i gM .

By [38, Proposition 2.4], there exists i0 ∈ N such that Rir̂ ≥ 10R1(ε),
‖(ui)Ri

‖
L∞(B

R
−2
i

gM
ŝ (m))

≤ 10L and

sup
a∈[0,R]

∣∣ volR
−2
i gM B

R−2
i gM

a (m)−Hn(Ba(p))
∣∣ < ε2

for every i ≥ i0. Then, since Hn(BR(p)) = RnHn(B1(p)) ≤ RnC(n), Cheng-Yau’s
gradient estimate yields

∫

bR
−2
i

gM≤t+ε

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM ≤

∫

B
R
−2
i

gM
(1+ε)(t+ε)(m)

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM

≤ C(n,L, R)

for every i ≥ i0 and every r < t < s. Moreover, we have
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∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri

∣∣∇R−2
i gM bR−2

i gM
∣∣2d volR

−2
i gM

≤
∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri
d volR

−2
i gM

+
∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri

∣∣|∇R−2
i gM bR−2

i gM |2 − 1
∣∣d volR

−2
i gM

≤
∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri
d volR

−2
i gM +100L2 volR

−2
i gM

{
t ≤ bR−2

i gM ≤ t + ε
}

≤ 200L2 volR
−2
i gM

{
t ≤ bR−2

i gM ≤ t + ε
}

≤ 200L2 volR
−2
i gM A

R−2
i gM

m

(
(1− ε2)t, (1 + ε2)(t + ε)

)

≤ 200L2Hn
(
Ap((1− ε2)t, (1 + ε2)(t + ε))

)
+ 300L2ε2.

On the other hand, we have

Fi(t + ε)− Fi(t)
ε

=
1
ε

∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri
d volR

−2
i gM

± 1
ε

∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri

∣∣|∇R−2
i gM bR−2

i gM |2 − 1
∣∣d volR

−2
i gM ,

and

1
ε

∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri

∣∣∣∣∇R−2
i gM bR−2

i gM
∣∣2 − 1

∣∣d volR
−2
i gM

≤ 100L2

ε

∫

bR
−2
i

gM≤t+ε

∣∣∣∣∇R−2
i gM bR−2

i gM
∣∣2 − 1

∣∣d volR
−2
i gM

≤ 100L2

ε
ε2 volR

−2
i gM

{
bR−2

i gM ≤ t + ε
}

≤ 100L2ε
volgM BgM

(1+ε2)(t+ε)Ri
(m)

Rn
i

≤ εC(n,L, R).

Note that
∣∣∣∣
∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri
d volR

−2
i gM −

∫

A
R
−2
i

gM
m (t,t+ε)

(ui)2Ri
d volR

−2
i gM

∣∣∣∣

≤ 100L2 volR
−2
i gM

({
t ≤ bR−2

i gM ≤ t + ε
}4A

R−2
i gM

m (t, t + ε)
)
,

where A4B = (A \B) ∪ (B \A).
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Claim 3.5. We have

{
t ≤ bR−2

i gM ≤ t + ε
}4A

R−2
i gM

m (t, t + ε)

⊂ A
R−2

i gM
m

(
(1− ε2)(t + ε), (1 + ε2)(t + ε)

) ∪A
R−2

i gM
m

(
(1− ε2)t, (1 + ε2)t

)

for every i ≥ i0 and every r < t < s.

The proof is as follows. Put Aε
i(t) := {t ≤ bR−2

i gM ≤ t + ε}4A
R−2

i gM
m (t, t + ε). Let

y ∈ {t ≤ bR−2
i gM ≤ t + ε/2} ∩ Aε

i(t). Then we have y ∈ B
R−2

i gM

(1+ε2)(t+ε/2)(m). In particular,
we have

m, yR−2
i gM ≤ (1 + ε2)

(
t +

ε

2

)
< t + ε.

Since y ∈ M \A
R−2

i gM
m (t, t + ε), we have y ∈ B

R−2
i gM

t (m). Thus, we have {t ≤ bR−2
i gM ≤

t + ε/2} ∩ Aε
i(t) ⊂ B

R−2
i gM

t (m) \ B
R−2

i gM

(1−ε2)t(m). Similarly, we have {t + ε/2 ≤ bR−2
i gM ≤

t + ε} ∩Aε
i(t) ⊂ B

R−2
i gM

(1+ε2)(t+ε)(m) \B
R−2

i gM

t+ε (m). Therefore, we have

{
t ≤ bR−2

i gM ≤ t + ε
} ∩Aε

i(t) ⊂ A
R−2

i gM
m ((1− ε2)t, t) ∪A

R−2
i gM

m (t + ε, (1 + ε2)(t + ε)).

Let x ∈ Aε
i(t) ∩A

R−2
i gM

m (t, t + ε/2). Then we have

bR−2
i gM (x) ≤ (1 + ε2)m,xR−2

i gM ≤ (1 + ε2)(t + ε/2) < t + ε.

Since x ∈ M \ {t ≤ bR−2
i gM ≤ t + ε}, we have bR−2

i gM (x) < t. Therefore, we have

x ∈ B
R−2

i gM

(1+ε2)t(m). Thus, we have A
R−2

i gM
m (t, t + ε/2) ∩ Aε

i(t) ⊂ A
R−2

i gM
m (t, (1 + ε2)t).

Similarly, we have A
R−2

i gM
m (t+ε/2, t+ε)∩Aε

i(t) ⊂ A
R−2

i gM
m (t+ε, (1+ε2)(t+ε)). Therefore

we have Claim 3.5.
By Claim 3.5 and Bishop-Gromov volume comparison theorem, we have

ε−1 volR
−2
i gM

({
t ≤ bR−2

i gM ≤ t + ε
}4A

R−2
i gM

m (t, t + ε)
)

≤ ε−1 volR
−2
i gM

(
A

R−2
i gM

m

(
(1− ε2)(t + ε), (1 + ε2)(t + ε)

))

+ ε−1 volR
−2
i gM

(
A

R−2
i gM

m

(
(1− ε2)t, (1 + ε2)t

))

≤ 3ε−1ε2 volR
−2
i gM

n−1

(
∂B

R−2
i gM

(1−ε2)(t+ε)(m) \ Cm

)
+ 3ε−1ε2 volR

−2
i gM

n−1

(
∂B

R−2
i gM

(1−ε2)t(m) \ Cm

)

≤ 6ε vol ∂BR(0n).

Therefore we have
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∣∣∣∣
∫

t≤bR
−2
i

gM≤t+ε

(ui)2Ri
d volR

−2
i gM −

∫

A
R
−2
i

gM
m (t,t+ε)

(ui)2Ri
d volR

−2
i gM

∣∣∣∣

≤ 600L2ε2 vol ∂BR(0n)

for every i ≥ i0 and every r < t < s.
Define an 1-Lipschitz map πt from C(X) to Bt(p) by πt(s, x) := (π̂t(s), x), where

π̂t(s) = s if s ≤ t, and π̂t(s) = t if s > t. Put ut
∞ := (u∞)2 ◦ πt. Then Proposition 7.6

yields

∣∣∣∣
∫ t+ε

t

∫

∂Ba(p)

(u∞)2dHn−1da−
∫ t+ε

t

∫

∂Ba(p)

ut
∞dHn−1da

∣∣∣∣

≤
∫

Ap(t,t+ε)

∣∣(u∞)2 − ut
∞

∣∣dHn

≤ Lip(u∞)2εHn(Ap(t, t + ε))

for every r < t < s. On the other hand, we have

∫ t+ε

t

∫

∂Ba(p)

ut
∞dHn−1da =

∫ t+ε

t

(
a

t

)n−1 ∫

∂Bt(p)

(u∞)2dHn−1da

=
∫

∂Bt(p)

(u∞)2dHn−1

∫ t+ε

t

(
a

t

)n−1

da

= Iu∞(t)
(t + ε)n − tn

n

= Iu∞(t)(εtn−1 ±Ψ(ε;n,R)ε).

Therefore we have

lim
i→∞

sup
t∈[r,s]

∣∣∣IR−2
i gM

(ui)Ri
(t)− Iu∞(t)

∣∣∣ = 0.

Finally, we will show

lim
i→∞

sup
t∈[r,s]

∣∣∣DR−2
i gM

(ui)Ri
(t)−Du∞(t)

∣∣∣ = 0.

We use the same notations as above. It is clear that

t2−n

∫

B
R
−2
i

gM

(1−ε2)t
(m)

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM

≤ D
R−2

i gM

(ui)Ri
(t) ≤ t2−n

∫

B
R
−2
i

gM

(1+ε2)t
(m)

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM
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holds for every i ≥ i1 and every r < t < s. On the other hand, we have

∫

A
R
−2
i

gM
m ((1−ε2)t,(1+ε2)t)

∣∣∇R−2
i gM (ui)Ri

∣∣2d volR
−2
i gM (m)

≤ C(n,L, R) volR
−2
i gM A

R−2
i gM

m ((1− ε2)t, (1 + ε2)t)

≤ C(n,L, R)
(
Hn(Ap((1− ε2)t, (1 + ε2)t)) + ε

)
.

Therefore, by [38, Corollary 4.7], we have the assertion. ¤

Let 0 < r < R, and let u be a harmonic function on {bgM < R}. Put

EgM
u (r) := r2−n

∫

bgM≤r

|∇gM u|2|∇gM bgM |2d volgM .

It is easy to check that Eτ−2gM
uτ

(r) = τ−2EgM
u (τr) for every r > 0 with R > rτ . By [16,

Proposition 3.3] and the proof of Proposition 3.4, we have the following:

Proposition 3.6. With the same assumption as in Proposition 3.4, we have

lim
i→∞

sup
t∈[r,s]

∣∣∣ER−2
i gM

(ui)Ri
(t)−Du∞(t)

∣∣∣ = 0

for every 0 < r < s < R.

We now introduce an important result [21, Theorem 2.1] for harmonic functions on
asymptotic cones by Ding:

Theorem 3.7 (Ding, [21]). Let R > 0 and let u∞ be a harmonic function on
BR(p). Then u∞ is Lipschitz on Br(p) for every r < R. Moreover, for every 0 < r <

s < R, there exist a subsequence {i(j)}j of N and a sequence of harmonic functions ui(j)

on B
R−2

i(j)gM

s (m) such that ui(j) → u∞ on Br(x∞).

Proof. We give an outline of the proof only. Let r, s be positive numbers with
r < s < R. First, we will show that u∞ is Lipschitz on Bs(p). By [45, Proposition 5.1],
for every u ∈ H1,2(M) and every R̂ > 0, we have

∫

M

u(y)2HR̂−2gM (t, y, x)d volR̂
−2gM

y

≤ 2t

∫

M

∣∣dR̂−2gM u
∣∣2d volR̂

−2gM
y +

( ∫

M

u(y)HR̂−2gM (t, y, x)d volR̂
−2gM

y

)2

for a.e. x ∈ M , where HR̂−2gM (t, y, x) is the heat kernel of a rescaled manifold
(M, R̂−2gM ). By [3, Lemma 10.3] and [20, Theorem 5.54], for every u ∈ K(C(X)),
we have
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∫

C(X)

u(y)2H∞(t, y, x)dHn(y)

≤ 2t

∫

C(X)

|du|2dHn(y) +
( ∫

C(X)

u(y)H∞(t, y, x)dHn(y)
)2

for a.e. x ∈ C(X), where H∞ is as in [20, Theorem 5.54]. Since K(C(X)) is a dense
subspace of H1,2(C(X)), the inequality above holds for every u ∈ H1,2(C(X)). Fix x ∈ X

and 0 < t < R. It is easy to check that Hn(Bt((1, x))) ≥ C(n, VM )tn. For every R > 0,
define a map φR from Ap(R−t, R+t) to Ap(1−(t/R), 1+(t/R)) by φR((t̂, x)) = (t̂/R, x).
Since Hn(φR(A)) = RnHn(A) for every Borel subset A of Ap(R − t, R + t), we have
Hn(Bt(R, x)) = RnHn(Bt/R(1, x)) ≥ C(n, VM )tn. Therefore, (C(X),Hn) is an Ahlfors
n-regular metric measure space. By [20, Theorem 6.1], [20, Theorem 6.20] and [45,
Theorem 1.1], we see that u∞ is a locally Lipschitz function on BR(p). By the convexity
of Bs(p) and the proof of [45, Theorem 1.1], we see that u∞ is Lipschitz on Bs(p).

Let L ≥ 1 with Lip(u∞|Bs(p)) + ‖u∞‖L∞(Bs(p)) ≤ L. Without loss of generality, we

can assume that there exists a sequence of Lipschitz functions fi on B
R−2

i gM

s (m) such
that Lip fi + |fi|L∞(Bs(p)) ≤ 10L and fi → u∞ on Bs(p). Let ui be a harmonic function

on B
R−2

i gM
s (m) satisfying that ui|

∂B
R
−2
i

gM
s (m)

= fi|
∂B

R
−2
i

gM
s (m)

in the sense of Perron’s

method for fi.
We now give a short review of Perron’s method for subharmonic functions in this

setting. See for instance Section 2.8 in [28] for the detail. For f ∈ C0(BR−2
i gM

s (m)), we

say that f is subharmonic (superharmonic) in B
R−2

i gM
s (m) if for every w ∈ B

R−2
i gM

s (m),

every r1 > 0 with B
R−2

i gM

r1
(w) ⊂ B

R−2
i gM

s (m), and every h ∈ C0(B
R−2

i gM

r1
(w)) satisfy-

ing that h|
B

R
−2
i

gM
r1 (w)

is harmonic and that h|
∂B

R
−2
i

gM
r1 (w)

≤ (≥)f |
∂B

R
−2
i

gM
r1 (w)

, we also

have h ≤ (≥)f on B
R−2

i gM
r1 (w). For g ∈ C0(B

R−2
i gM

s (m)), we say that g is a subfunc-
tion (superfunction) relative to fi|

B
R
−2
i

gM
s (m)

if g|
B

R
−2
i

gM
s (m)

is a subharmonic function

(superharmonic function) and g|
∂B

R
−2
i

gM
s (m)

≤ (≥)fi|
∂B

R
−2
i

gM
s (m)

. Let Sfi
denote the

set of subfunctions relative to fi|
B

R
−2
i

gM
s (m)

. Define a function ui on B
R−2

i gM
s (m) by

ui(w) = supv∈Sfi
v(w). By an argument similar to that of the proof of [28, Theorem

2.12], it is easy to check that ui is harmonic on B
R−2

i gM
s (m).

Fix τ > 0, x ∈ ∂Bs(p) and z ∈ ∂B2s(p) with τ < 2R and p, x + x, z = p, z. Let

{x(i)}i, {z(i)}i be sequences of points x(i) ∈ ∂B
R−2

i gM
s (m), z(i) ∈ ∂B

R−2
i gM

2s (m) with
x(i) → x and z(i) → z. Then it is easy to check that C1(n,R)x, α2 ≤ z, α − z, x ≤ x, α

for every α ∈ Bs(p). Fix α ∈ Br(p). Let {α(i)}i be a sequence of points αi ∈
B

R−2
i gM

s (m) with α(i) → α. Define a function bi on B
R−2

i gM
s (m) by bi = (rR−2

i gM

z(i) )2−n −
(rR−2

i gM

z(i) )2−n(x(i)). By Laplacian comparison theorems on manifolds, for every suffi-
ciently large i, we see that bi is a superharmonic, fi(x(i)) + 100Lτ + C(n,L, R)bi/τ2 is a
superfunction relative to fi|

∂B
R
−2
i

gM
s (m)

, and that fi(x(i)) − 100Lτ − C(n,L, R)bi/τ2 is
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a subfunction relative to fi|
∂B

R
−2
i

gM
s (m)

. By an argument similar to that of the proof of

[28, Lemma 2.13], we have

|fi(x(i))− ui(α(i))| ≤ C(n,R, L)τ +
C(n,R, L)

τ2
x(i), α(i)

R−2
i gM

for every sufficiently large i. On the other hand, by Cheng-Yau’s gradient estimate and
[38, Corollary 4.7], without loss of generality we can assume that there exists a harmonic
function û∞ on Bs(p) such that û∞|Bŝ(p) is a Lipschitz function and that ui → u∞ on
Bŝ(p) for every 0 < ŝ < s. Thus we have

|u∞(x)− û∞(α)| ≤ C(n,R, L)τ +
C(n,R, L)

τ2
x, α

for every α ∈ Bs(p). For every x ∈ ∂Bs(p) and every α ∈ Bs(p), by letting τ = x, α1/3,
we have

|u∞(x)− û∞(α)| ≤ C(n,R, L)x, α1/3.

Since û∞ ∈ H1,2(Bŝ(p)) for every 0 < ŝ < s, and that u∞ is Lipschitz on Bs(p), by
[64, Cororally 6.6], we have supBs(p) |u∞ − û∞| = limŝ→s(sup∂Bŝ(p) |u∞ − û∞|) = 0.
Therefore, we have the assertion. ¤

From now on, we will replace the most of many important statements about har-
monic functions on manifolds given in [15] with corresponding statements on asymptotic
cones:

Proposition 3.8. For every 0 < r < s < R and every harmonic function u∞ on
BR(p), we have

Du∞(r) ≤
(

r

s

)2−n

Du∞(s)

and

Iu∞(s)− Iu∞(r) = 2
∫ s

r

Du∞(t)
t

dt.

Moreover, if Iu∞(r) > 0, then we have

Iu∞(s) = exp
(

2
∫ s

r

Uu∞(t)
t

dt

)
Iu∞(r).

Proof. By Theorem 3.7, without loss of generality, we can assume that the as-
sumption of Proposition 3.4 holds. Since
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D
R−2

i gM

(ui)Ri
(r) ≤

(
r

s

)2−n

D
R−2

i gM

(ui)Ri
(s),

by letting i →∞, Proposition 3.4 yields the first assertion. Similarly, since

I
R−2

i gM

(ui)Ri
(s)− I

R−2
i gM

(ui)Ri
(r) = 2

∫ s

r

D
R−2

i gM

(ui)Ri
(t)

t
dt,

by letting i → ∞ the second assertion follows from Proposition 3.4 and the dominated
convergence theorem. Especially, we see that Iu∞ is a continuous function and that a
monotonicity Iu∞(r) ≤ Iu∞(s) holds.

Finally, we now check the third assertion. By Proposition 3.4 and the monotonicity

of Iu∞ , we have lim infi→∞
(
infα∈[r,s] I

R−2
i gM

(ui)Ri
(α)

)
> 0. Therefore, Cheng-Yau’s gradient

estimate and Remark 3.3 yield

lim sup
i→∞

(
sup

α∈[r,s]

U
R−2

i gM

(ui)Ri
(α)

)
< ∞.

On the other hand, since

I
R−2

i gM

(ui)Ri
(s) = exp

(
2

∫ s

r

U
R−2

i gM

(ui)Ri
(t)

t
dt

)
I

R−2
i gM

(ui)Ri
(r),

by letting i → 0, the dominated convergence theorem and Proposition 3.4, we have the
third assertion. ¤

Corollary 3.9. Let 0 < r < R and let u∞ be a harmonic function on BR(p). If
Uu∞(r) = 0, then u∞ is a constant function on Br(p).

Proof. First, assume Iu∞(r) = 0. Then, by Proposition 3.8, we have Du∞(t) = 0
for a.e. 0 < t < r. Since Du∞ is continuous, we have Du∞(r) = 0. Thus, by the weak
Poincaré inequality of type (1, 2) on C(X), we have

1
υ(Br(p))

∫

Br(p)

∣∣∣∣f −
1

υ(Br(p))

∫

Br(p)

fdυ

∣∣∣∣dυ

≤ C(n,R)r

√
1

υ(Br(p))

∫

Br(p)

(Lip f)2dυ = 0.

Since f is Lipschitz on Br(p), we see that f is a constant function on Br(p). Next, assume
Uu∞(r) = 0 and Iu∞(r) > 0. Then, by the definition, we have Du∞(r) = 0. Therefore,
by the argument above, we have the assertion in this case. ¤

The following corollary follows directly from Proposition 3.8 and the continuity of a
function: t 7→ Hn(Bt(p)).
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Corollary 3.10. Let R > 0 and let u∞ be a harmonic function on BR(p). Then
we see that Iu∞ is a C1-function on (0, R). Moreover we have

dIu∞

dt
(t) =

2Du∞(t)
t

.

Let 0 < r < R and let u be a harmonic function on BgM

R (m) with u 6≡ 0 on BgM

R (m).
Put

W gM
u (r) :=

EgM
u (r)

IgM
u (r)

.

Note that with the same assumption as in Proposition 3.4, if u∞ is not a constant function
on Br(p), then Proposition 3.4 and Proposition 3.6 yield

lim
i→∞

W
R−2

i gM

(ui)Ri
(r) = Uu∞(r).

Proposition 3.11. Let 0 < r < s < R and let u∞ be a harmonic function on
B7R(p). Then we have

Uu∞(r) ≤ Uu∞(s).

Proof. By Theorem 3.7, without loss of generality, we can assume that Uu∞(r) >

0 and that there exists a sequence of harmonic functions ui on BgM

6RRi
(m) such that

supi Lip(ui)Ri
< ∞ and (ui)Ri

→ u∞ on B6R(p). Fix ε > 0. We now use the same
notation as in [15, Proposition 4.11]. Put Ω0 := s/r, γ := Du∞(2s)/Du∞(r) + 1. Let
R̂ := R(m, γ, ε,Ω0) as in [15, Proposition 4.11]. By Proposition 3.4, there exists i0 such
that Rir > R̂ and

DgM
ui

(2Ω0Rir)
DgM

ui (Rir)
=

DgM
ui

(2Ris)
DgM

ui (Rir)
=

D
R−2

i gM

(ui)Ri
(2s)

D
R−2

i gM

(ui)Ri
(r)

≤ γ

for every i ≥ i0. Therefore [15, Proposition 4.11] yields

∫ Ris

Rir

d log W gM
ui

dt
dt ≥ −ε,

i.e.,

log W gM
ui

(Ris)− log W gM
ui

(Rit) ≥ −ε.

Since W gM
ui

(Ris) = W
R−2

i gM

(ui)Ri
(s), by letting i →∞, we have

log Uu∞(s)− log Uu∞(r) ≥ −ε.
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Since ε is arbitrary, we have the assertion. ¤

Remark 3.12. The most of important results given in [15] are about global har-
monic functions on M . However, by the proofs, they also hold for harmonic functions on
a big domain as in the proof of Proposition 3.11. We will often use these facts without
an attention.

We recall that Hd(M∞) is the space of harmonic functions u∞ on M∞ satisfying
that there exists C > 1 such that |u∞(x)| ≤ C(1+m∞, xd) for every x ∈ M∞. The next
proposition follows directly from the proof of [16, Lemma 1.29] via Propositions 3.8 and
3.11:

Proposition 3.13. We have Uu∞(t) ≤ d for every t > 0 and every u∞ ∈ Hd(M∞).

Proposition 3.14. Let 0 < s < t < α < R and let u∞ be a harmonic function on
B7R(p). Then we have

Iu∞(t) ≤
(

t

s

)2Uu∞ (α)

Iu∞(s).

Proof. First, assume that u∞ is not a constant function on Bs(p). By Theorem
3.7, without loss of generality, we can assume that there exists a sequence of harmonic
functions ui on BgM

6RRi
(m) such that supi Lip(ui)Ri

< ∞ and (ui)Ri
→ u∞ on B6R(p).

Fix ε > 0. By the assumption and Corollary 3.9, there exists 0 < r < s such that
Uu∞(r) > 0. We now apply [15, Corollary 4.37]. Put Ω0 := 2α/r, Ω = α/r and
γ := Du∞(2Ωr)/Du∞(r) + 1. Let R̂ := R(m, γ, ε,Ω0) as in [15, Corollary 4.37]. There
exists i0 such that Rir > R̂ and

D
R−2

i gM

(ui)Ri
(2Ωr)

D
R−2

i gM

(ui)Ri
(r)

< γ

for every i ≥ i0. Thus [15, Corollary 4.37] yields

IgM
ui

(Rit) ≤
(

Rit

Ris

)2(1+ε)W
gM
ui

(ΩRir)

IgM
ui

(Ris).

Thus by letting i →∞ and ε → 0, we have the assertion.
Next assume that u∞ is a constant function on Bs(p). Put ŝ := sup{β ∈ [0, R];u∞

is a constant function on Bβ(p)}. If ŝ ≥ t, then, since Iu∞(t) = Iu∞(s), we have the
assertion. Thus assume ŝ < t. Let s̃ > 0 with ŝ < s̃ < t. Then, by the argument above,
we have

Iu∞(t) ≤
(

t

s̃

)2Uu∞ (α)

Iu∞(s̃).

Since s ≤ ŝ and Iu∞(s) = Iu∞(ŝ), by letting s̃ → ŝ, we have the assertion. ¤
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Corollary 3.15. Let 0 < s < R and let u∞ be a harmonic function on B7R(p).
Assume Uu∞(s) = 0. Then u∞ is a constant function on BR(p).

Proof. First, assume that Iu∞(s) = 0. Then, by Proposition 3.14, we have
Iu∞(t) = 0 for every s < t < R. Therefore, the assertion follows from Proposition 3.9.

Next, assume Iu∞(s) > 0 and Uu∞(s) = 0. If we put û∞ := u∞ − u∞(p), then
û∞ ≡ 0 on Bs(p). Since Iû∞(s) = 0, by the argument above, we have the assertion. ¤

Proposition 3.16. Let R > 0 and let u∞ be a harmonic function on B7R(p) with
u∞(p) = 0. Assume u 6≡ 0 on BR(p). Then, we have

Uu∞(s) ≥ 1

for every 0 < s < R.

Proof. By Theorem 3.7, without loss of generality, we can assume that there
exists a sequence of harmonic functions ui on BgM

6RRi
(m) such that supi Lip(ui)Ri

< ∞,
(ui)Ri

→ u∞ on B6R(p), and (ui)Ri
(m) = 0. Note that by Corollary 3.15, we have

Uu∞(r) > 0 for every 0 < r < R. Fix a sufficiently small ε > 0. We now apply [15,
Corollary 4.40]. Let ΩL := ΩL(n, ε) ≥ 2 as in [15, Corollary 4.40] (or [15, Corollary
3.29]). Put Ω0 := 5ΩL, r := s/2(2ΩL)2 < s and γ := Du∞(s)/Du∞(r) + 1. Let
R̂ := R(m, γ, ε,Ω0) as in [15, Corollary 4.40]. Then there exists i0 such that Rir > R̂

and

DgM
ui

(2(2ΩL)2Rir)
DgM

ui (Rir)
=

D
R−2

i gM

(ui)Ri
(2(2ΩL)2r)

D
R−2

i gM

(ui)Ri
(r)

≤ γ

for every i ≥ i0. Then [15, Corollary 4.40] yields

1− 3ε ≤ UgM
ui

(2ΩLRir) = U
R−2

i gM

(ui)Ri
(2ΩLr).

By letting i →∞, Proposition 3.4 and Proposition 3.11, we have 1− 3ε ≤ Uu∞(2ΩLr) ≤
Uu∞(s). Since ε is arbitrary, we have the assertion. ¤

Proposition 3.17. Let 0 < r < s < R, δ > 0, d0 > 0 and let u∞ be a harmonic
function on B7R(p). Assume that Uu∞(s) ≤ d0,

∣∣∣∣ log
Uu∞(s)
Uu∞(r)

∣∣∣∣ < δ

and that u∞ is not a constant function on BR(p). Then, we have

∫

Ap(r,s)

r−n
p

∣∣rp〈drp, du∞〉 − Uu∞(rp)u∞
∣∣2dHn ≤ Ψ(δ;n, d0)Iu∞(s).
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Proof. By Theorem 3.7, without loss of generality, we can assume that there
exists a sequence of harmonic functions ui on BgM

6RRi
(m) such that supi Lip(ui)Ri

< ∞
and (ui)Ri → u∞ on B6R(p). We now apply [15, Proposition 4.50]. Put Ω0 := 2s/r,
Ω := s/r and γ := Du∞(2Ωr)/Du∞(r) + 1 as in [15, Proposition 4.50]. Then, by
Proposition 3.4, there exists i0 such that

D
R−2

i gM
u∞ (2Ωr)

D
R−2

i gM
u∞ (r)

≤ γ, max
r≤t≤Ωr

U
R−2

i gM

(ui)Ri
(t) ≤ 2d0

and

∣∣∣∣∣ log
U

R−2
i gM

(ui)Ri
(Ωr)

U
R−2

i gM

(ui)Ri
(r)

∣∣∣∣∣ ≤ δ

for every i ≥ i0. Thus, by [15, Proposition 4.50], we have

∫

rRi≤bgM≤sRi

(bgM )−n

(
bgM

∂ui

∂n
− UgM

ui
(bgM )|∇gM bgM |

)2

d volgM ≤ Ψ(δ;n, d0)IgM
ui

(Ris)

for every sufficiently large i. On the other hand, Cheng-Yau’s gradient estimate yields

∣∣∇R−2
i gM bR−2

i gM
∣∣ =

VM

(n− 2) volB1(0n)

∣∣bR−2
i gM

∣∣n−1∣∣∇R−2
i gM GR−2

i gM (m, ·)
∣∣

≤ VM

(n− 2) volB1(0n)
2
(
r

R−2
i gM

m

)n−1
C(n)

(
r

R−2
i gM

m

)−1∣∣GR−2
i gM (m, ·)∣∣

≤ C(n)
(
r

R−2
i gM

m

)−1(
r

R−2
i gM

m

)n−1(
r

R−2
i gM

m

)2−n

≤ C(n)

on A
R−2

i gM
m (r, s) for every sufficiently large i. Thus by [38, Corollary 4.7] and Theorem

3.1, we have (bR−2
i gM , dbR−2

i gM ) → (rp, drp) on Ap(r, s). On the other hand, note that

∫

r≤bR
−2
i

gM≤s

(
bR−2

i gM
)−n

(
bR−2

i gM (R−2
i gM )

(∇R−2
i gM (ui)Ri ,∇R−2

i gM bR−2
i gM

)

− U
R−2

i gM

(ui)Ri
(bR−2

i gM )
∣∣∇R−2

i gM bR−2
i gM

∣∣2
)2

d volR
−2
i gM

=
∫

rRi≤bgM≤sRi

(bgM )−n|∇bgM |2
(

bgM
∂ui

∂n
− UgM

ui
(bgM )|∇gM bgM |

)2

d volgM

≤ C(n)
∫

rRi≤bgM≤sRi

(bgM )−n

(
bgM

∂ui

∂n
− UgM

ui
(bgM )|∇gM bgM |

)2

d volgM
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≤ Ψ(δ;n, d0)IgM
ui

(Ris) = Ψ(δ;n, d0)I
R−2

i gM

(ui)Ri
(s)

for every sufficiently large i. Therefore, by letting i → ∞, [38, Corollary 4.4] and
Proposition 3.4 yield the assertion. ¤

The following corollary follows directly from Proposition 3.17.

Corollary 3.18. Let r, s, R be positive numbers and let u∞ be a harmonic func-
tion on B7R(p) with r < s < R and u∞(p) = 0. Assume Uu∞(r) = Uu∞(s). Then we
have

rp(w)〈du∞, drp〉(w) = Uu∞(s)u∞(w)

for a.e w ∈ Ap(r, s).

Proposition 3.19. With the same assumption as in Corollary 3.18, we have

u∞(t̂, x) =
u∞(t, x)

tC
t̂C

for every r ≤ t ≤ t̂ ≤ s and every x ∈ X, where C = Uu∞(r).

Proof. Define a Borel function a on Ap(r, s) by

a(t, x) := lim sup
h→0

u∞(t + h, x)− u∞(t, x)
h

.

By [38, Theorem 3.3] and Corollary 3.18, there exists a Borel subset A of Ap(r, s) such
that Hn(Ap(r, s) \ A) = 0 and 〈drp, du∞〉(z) = a(z) = Cu∞(z)/rp(z) for every z ∈ A.
Fix r0, s0 with 0 < s ≤ r0 ≤ s0 ≤ s and define a bi-Lipschitz map φ from Ap(r0, s0) to
[r0, s0]×X by φ(t, x) = (t, x). Then we have Hn([r0, s0]×X \ φ(A)) = 0. Therefore by
Fubini’s theorem, there exists a Borel subset X̂ of X such that Hn−1(X \ X̂) = 0 and
H1([r0, s0] × {x} \ φ(A)) = 0 for every x ∈ X. Thus we have H1(φ−1([r0, s0] × {x} \
φ(A))) = 0 for x ∈ X̂. For every x ∈ X̂, Rademacher’s theorem yields

u∞(s0, x)− u∞(r0, x) =
∫ s0

r0

a(t, x)dt

=
∫

rp(φ−1([r0,s0]×{x}∩φ(A)))

a(t, x)dt

=
∫

rp(φ−1([r0,s0]×{x}∩φ(A)))

Cu∞(t, x)
t

dt

=
∫ s0

r0

Cu∞(t, x)
t

dt.

Note that for every x ∈ X, there exists a sequence of points xi in X̂ such that xi → x.



Harmonic functions 93

Therefore by the dominated convergence theorem, the equality above holds for every
x ∈ X. Thus, for every x ∈ X, we see that a function fx(t̃) = u∞(t̃, x) on [r, s] is a
C1-function. Moreover we have

dfx

dt̃
(t̃) =

Cfx(t̃)
t̃

.

Therefore, we have the assertion. ¤

Proposition 3.20. Let r, s, δ, R, d0 be positive numbers with 0 < r < s < R, and
u∞, v∞ harmonic functions on B7R(p). Assume that maxr≤t≤s Uv∞(t) ≤ d0,

∣∣∣∣ log
Uv∞(s)
Uv∞(r)

∣∣∣∣ < δ

and that v∞ is not a constant function on BR(p). Then, we have

∣∣∣∣s1−n
0

∫

∂Bs0 (p)

u∞v∞dHn−1 − exp
(

2
∫ s0

r0

Uv∞(ŝ)
ŝ

dŝ

)
r1−n
0

∫

∂Br0 (p)

u∞v∞dHn−1

∣∣∣∣
2

≤ Ψ(δ;n, d0)
(

s0

r0

)6d0+3

Iu∞(s0)Iv∞(s0)

for every r ≤ r0 ≤ s0 ≤ s.

Proof. By Theorem 3.7, without loss of generality, we can assume that there
exist sequences of harmonic functions ui, vi on BgM

6RRi
(m) such that supi(Lip(ui)Ri +

Lip(vi)Ri
) < ∞, (ui)Ri

→ u∞, (vi)Ri
→ v∞ on B6R(p). By the proof of Proposition

3.17, there exists i0 such that

∫

rRi≤bgM≤sRi

(bgM )−n

(
bgM

∂vi

∂n
− UgM

vi
(bgM )|∇gM bgM |

)2

d volgM ≤ Ψ(δ;n, d0)IgM
vi

(Ris)

for every i ≥ i0. Thus, [15, Corollary 5.24] yields

∣∣∣∣(Ris0)1−n

∫

bgM =Ris0

uivid volgM

n−1

− exp
(

2
∫ s0Ri

r0Ri

UgM
vi

(ŝ)
ŝ

dŝ

)
(Rir0)1−n

∫

bgM =Rir0

uivid volgM

n−1

∣∣∣∣
2

≤ Ψ(δ;n, d0)
(

s0

r0

)6d0+3

IgM
ui

(Ris0)IgM
vi

(Ris0)

for every i ≥ i0. Thus, we have
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∣∣∣∣∣s
1−n
0

∫

bR
−2
i

gM =s0

(ui)Ri
(vi)Ri

d volR
−2
i gM

n−1

− exp

(
2

∫ s0

r0

U
R−2

i gM

(vi)Ri
(ŝ)

ŝ
dŝ

)
r1−n
0

∫

bR
−2
i

gM =r0

(ui)Ri
(vi)Ri

d volR
−2
i gM

n−1

∣∣∣∣∣

2

≤ Ψ(δ;n, d0)
(

s0

r0

)6d0+3

I
R−2

i gM

(ui)Ri
(s0)I

R−2
i gM

(vi)Ri
(s0).

On the other hand, Proposition 3.4 yields

∫

bR
−2
i

gM =s0

(ui)Ri(vi)Rid volR
−2
i gM

n−1

=
1
2

∫

bR
−2
i

gM =s0

((ui)Ri + (vi)Ri)
2
d volR

−2
i gM

n−1 −1
2

∫

bR
−2
i

gM =s0

(ui)2Ri
d volR

−2
i gM

n−1

− 1
2

∫

bR
−2
i

gM =s0

(vi)2Ri
d volR

−2
i gM

n−1

i→∞−−−→ 1
2

∫

∂Bs0 (p)

(u∞ + v∞)2dHn−1 − 1
2

∫

∂Bs0 (p)

u2
∞dHn−1 − 1

2

∫

∂Bs0 (p)

v2
∞dHn−1

=
∫

∂Bs0 (p)

u∞v∞dHn−1.

Therefore we have the assertion. ¤

The following is a direct consequence of Proposition 3.20:

Corollary 3.21. Let r, s, R be positive numbers with 0 < r < s < R, and u∞, v∞
harmonic functions on B7R(p). Assume that Uv∞(r) = Uv∞(s) and that v∞ is not a
constant function on BR(p). Then, we have

s1−n
0

∫

∂Bs0 (p)

u∞v∞dHn−1 =
(

s0

r0

)2C

r1−n
0

∫

∂Br0 (p)

u∞v∞dHn−1

for every r ≤ r0 ≤ s0 ≤ s, where C = Uv∞(r).

We now consider a convergence of F :

Proposition 3.22. With the same assumption as in Proposition 3.4, we have

lim
i→∞

∫ s

r

F
R−2

i gM

(ui)Ri
(t)dt =

∫ s

r

Fu∞(t)dt

for every 0 < r < s < R.
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Proof. Since (bR−2
i gM , dbR−2

i gM ) → (rp, drp) on Ap(r, s), by [38, Corollary 4.5],
we have

∫ s

r

F
R−2

i gM

(ui)Ri
(t)dt

=
∫ s

r

t3−n

∫

bR
−2
i

gM =t

(R−2gM )
(
∇R−2

i gM (ui)Ri
,
∇R−2

i gM bR−2
i gM

|∇R−2
i gM bR−2

i gM |

)2

×
∣∣∇R−2

i gM bR−2
i gM

∣∣d volR
−2
i gM dt

=
∫

r≤bR
−2
i

gM≤s

(R−2gM )
(
∇R−2

i gM (ui)Ri
,
∇R−2

i gM bR−2
i gM

|∇R−2
i gM bR−2

i gM |

)2

× ∣∣∇R−2
i gM bR−2

i gM
∣∣2(bR−2

i gM )3−nd volR
−2
i gM

=
∫

r≤bR
−2
i

gM≤s

(R−2gM )
(∇R−2

i gM (ui)Ri ,∇R−2
i gM bR−2

i gM
)2(bR−2

i gM )3−nd volR
−2
i gM

i→∞−−−→
∫

Ap(r,s)

r3−n
p 〈du∞, drp〉2dυ =

∫ s

r

Fu∞(t)dt. ¤

Proposition 3.23. Let 0 < r < s < R and let u∞ be a harmonic function on
B7R(p). Then we have

Du∞(s)−Du∞(r) =
∫ s

r

2Fu∞(t)
t

dt.

Proof. Without loss of generality, we can assume that the assumption of Propo-
sition 3.4 holds. By (4.3) in [15], we have

E
R−2

i gM

(ui)Ri
(s)− E

R−2
i gM

(ui)Ri
(r)

=
∫ s

r

2F
R−2

i gM

(ui)Ri
(t)

t
dt +

∫ s

r

2E
R−2

i gM

(ui)Ri
(t)

t
dt

−
∫ s

r

t1−n

∫

bR
−2
i

gM≤t

2
∣∣∇R−2

i gM (ui)Ri

∣∣2d volR
−2
i gM dt

±
∫ s

r

t1−n

∫

bR
−2
i

gM≤t

∣∣∣∣ HessR−2
i gM

(bR
−2
i

gM )2

(∇R−2
i gM (ui)Ri

,∇R−2
i gM (ui)Ri

)

− 2(R−2
i gM )

(∇R−2
i gM (ui)Ri

,∇R−2
i gM (ui)Ri

)∣∣∣∣d volR
−2
i gM dt.

By [38, Corollary 4.5] and Theorem 3.1, we have
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lim
i→∞

∫

bR
−2
i

gM≤t

|d(ui)Ri
|2d volR

−2
i gM =

∫

Bt(p)

|du∞|2dHn.

By the dominated convergence theorem, we have

lim
i→∞

∫ s

r

t1−n

∫

bR
−2
i

gM≤t

2
∣∣∇R−2

i gM (ui)Ri

∣∣2d volR
−2
i gM dt =

∫ s

r

t1−n

∫

Bt(p)

2|du∞|2dH2dt

=
∫ s

r

2Eu∞(t)
t

dt.

On the other hand, since

lim
R→∞

1
volgM ({bgM ≤ R})

∫

bgM≤R

|Hess(bgM )2 −2gM |d volgM = 0,

we have

lim
i→∞

∫

bR
−2
i

gM≤t

∣∣∣∣ HessR−2
i gM

(bR
−2
i

gM )2

(∇R−2
i gM (ui)Ri

,∇R−2
i gM (ui)Ri

)

− 2(R−2
i gM )

(∇R−2
i gM (ui)Ri ,∇R−2

i gM (ui)Ri

)∣∣∣∣d volR
−2
i gM dt = 0.

Therefore we have the assertion. ¤

We now give a short review of important results given by Ding in [20], [21]. We
denote the differential of a Lipschitz function f on X by dXf . For every i ≥ 0, let
φi be an i-th eigenfunction of the Laplacian ∆X associated with the i-th eigenvalue
λi = λi(X) ≥ 0: ∆Xφi = λiφi, 0 = λ0 < λ1 ≤ λ2 ≤ · · · . Define αi ≥ 0 by satisfying
λi = αi(αi + n − 2). According to [21], we see that vi(r, x) = rαiφi(x) is harmonic
on C(X) for every i. In fact, by [20, Theorem 4.15] and Proposition 7.6, for every
f ∈ K(C(X) \ {p}), we have

∫

C(X)

〈df, dvi〉dHn

=
∫ ∞

0

∫

∂Br(p)

(
− αi(αi − 1)rαi−2fφi − n− 1

r
αir

αi−1 +
1
r2
〈dXf, dXφi〉

)
dHn−1dr

=
∫ ∞

0

∫

∂Br(p)

(
− αi(αi − 1)rαi−2fφi − (n− 1)αir

αi−2fφi + λir
αi−2fφi

)
dHn−1dr

= 0.

Thus, vi is harmonic on C(X) \ {p}. Therefore [20, Corollary 4.25] yields that vi is
harmonic on C(X). By Theorem 3.7, we see that vi is locally Lipschitz. Especially, we
see that φi is Lipschitz and that λ1 ≥ n − 1. See [21, Corollary 2.4] and [21, Corollary
2.5] for the details. On the other hand, it is easy to check Uvi

(s) = αi for every s > 0.



Harmonic functions 97

We say that vi is a homogeneous harmonic function with growth αi. Our goal in the
following argument is to show that we can apply [20, Theorem 4.15] for every d ≥ 0 and
every u∞ ∈ Hd(M∞). As a corollary, we will prove Theorem 1.1.

Let ord∞ u∞ := limr→∞ Uu∞(r) and ord0 u∞ := limr→0 Uu∞(r) for every harmonic
function u∞ on C(X). Then the following proposition follows directly from Proposition
3.16:

Proposition 3.24. For every non-constant harmonic function u∞ on C(X) with
u∞(p) = 0, we have

ord0 u∞ ≥ 1.

By an argument similar to that of the proof of [15, Lemma 1.36], we have the
following proposition:

Proposition 3.25. Let u∞, v∞ be harmonic functions on C(X). Then we have

ord∞(u∞ + v∞) ≤ max{ord∞ u∞, ord∞ v∞}.

Definition 3.26. Let u∞, v∞ be harmonic functions on C(X). We say that u∞
and v∞ are orthogonal if

∫

∂B1(p)

u∞v∞dυ = 0.

The proof of the next proposition is little more delicate than that of [15, Lemma
1.49]:

Proposition 3.27. Let u∞ be a harmonic function on C(X). Assume that
ord∞ u∞ = d < ∞ and that v and u∞ are orthogonal for every homogeneous harmonic
function v with growth α satisfying α < d. Then, we have

Du∞(s) ≥
(

s

r

)2d

Du∞(r)

for every 0 < r < s < ∞.

Proof. Corollary 3.21 yields

∫

∂Bt(p)

viu∞dHn−1 = 0

for every t > 0 and every αi < d. Let λ := d(d + n − 2). Note that αi < d holds if and
only if λi < λ holds. Let id := max{i ∈ N |αi < d}. Thus, we have λid

< λ ≤ λid+1.
Note
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λid+1 = inf
{∫

X
|dXu|2dHn−1

∫
X

u2dHn−1

∣∣∣∣u ∈ H1,2(X), u 6= 0,

∫

X

uφjdHn−1 = 0 for every 0 ≤ j ≤ id

}
.

Since the k-th eigenvalue λt
k of ∆∂Bt(p) is equal to t−2λk, we have

∫
∂Bt(p)

|d∂Bt(p)u∞|2dHn−1

∫
∂Bt(p)

(u∞)2dHn−1
≥ λ

t2
,

where d∂Bt(p)f is the differential of a Lipshitz function f |∂Bt(p). On the other hand,
by [38, Theorem 3.21] and Proposition 7.6, for a.e. t > 0, we have |du∞|2(w) =
(〈drp, du∞〉(w))2 + |d∂Br(p)u∞|2(w) for a.e. w ∈ ∂Bt(p). Therefore, we have

∫

∂Bt(p)

(|du∞|2 − 〈drp, du∞〉2)dHn−1 ≥ λ

t2

∫

∂Bt(p)

u2
∞dHn−1

i.e.

t3−n

∫

∂Bt(p)

|du∞|2dHn−1 − Fu∞(t) ≥ λIu∞(t)

for a.e. t > 0. We now use the notation: f ′ := df/dt for a locally Lipschitz function f

on R. By Proposition 3.23, we see that Du∞ is a locally Lipschitz function on (0,∞).
Proposition 7.6 and Rademacher’s theorem yield

D′
u∞(t) = (2− n)t1−n

∫

Bt(p)

(Lipu∞)2dHn + t2−n

∫

∂Bt(p)

(Lipu∞)2dHn−1

for a.e. t > 0. Therefore, we have

tD′
u∞(t)− (2− n)Du∞(t)− Fu∞(t) ≥ λIu∞(t)

for a.e. t > 0. On the other hand, Proposition 3.23 yields D′
u∞(t) = 2Fu∞(t)/t for a.e.

t > 0. Therefore, we have

t

2
D′

u∞(t)− (2− n)Du∞(t) ≥ λIu∞(t)

for a.e. t > 0. Thus we have

D′
u∞(t)

Du∞(t)
− 2(2− n)

t
≥ 2λIu∞(t)

tDu∞(t)
≥ 2λ

dt

for a.e. t > 0. Therefore, we have
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D′
u∞(t)

Du∞(t)
≥ 1

t

(
2λ

d
+ 2(2− n)

)

=
1
t

2λ + 4d− 2nd

d

=
1
t

2d(d + n− 2) + 4d− 2nd

d

=
2d

t

for a.e. t > 0. Integrating the both sides of the inequality above on [r, s] yields the
assertion. ¤

Proposition 3.28. Let g be a Lipschitz function on X and f a C2-function on
R>0. Assume that f(1) = 1, limr→0 f(r) = 0, g 6≡ 0 and that a function u(r, x) =
f(r)g(x) on C(X) \ {p} is locally Lipschitz and harmonic. Then there exists λ > 0 such
that λ ≥ n − 1, ∆Xg = λg and f(r) = rq for every r > 0, where q ≥ 0 satisfying
λ = q(q + n− 2).

Proof. Let g =
∑∞

i=1 aiφi in H1,2(X). For every function h on X, define a
function hr on ∂Br(p) by hr(r, x) = h(x). Let φr

i be an i-th eigenfunction of ∆∂Br(p) on
∂Br(p) associated with the eigenvalue λr

i . It is clear that gr =
∑∞

i=1 aiφ
r
i in H1,2(∂Br(p)),

∆∂Br(p)φ
r
i = λr

i φ
r
i and λr

i = r−2λi. [20, Theorem 4.15] and [38, Corollary 4.7] yield

0 =
∫

C(X)

〈du, dφ〉dHn

=
∫ ∞

0

∫

∂Br(p)

(
φ

(
− d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x)

)

+ 〈d∂Br(p)φ, d∂Br(p)g
r〉f(r)

)
dHn−1dr

=
∫ ∞

0

∫

∂Br(p)

φ

(
− d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) + f(r)

∞∑

i=1

aiλ
r
i φ

r
i

)
dHn−1dr

for every φ ∈ K(C(X) \ {p}). Therefore, we have

∫ ∞

0

a(r)
∫

∂Br(p)

b(x)
(
− d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) + f(r)

∞∑

i=1

aiλ
r
i φ

r
i

)
dHn−1dr = 0

for every a ∈ K(R>0) and every Lipschitz function b on X. Since

∞∑

i=1

(λr
i )

2a2
i

∫

∂Br(p)

(φr
i )

2dHn−1 =
∫

∂Br(p)

|d∂Br(p)g
r|2dHn−1 < ∞,

a function
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−d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) + f(r)

∞∑

i=1

aiλ
r
i φ

r
i

on ∂Br(p) is in L2(∂Br(p)). Since the space of Lipschitz functions on ∂Br(p) is dence in
L2(∂Br(p)), we have

0 =
∫ ∞

0

a(r)
∫

∂Br(p)

∣∣∣∣−
d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) + f(r)

∞∑

i=1

aiλ
r
i φ

r
i

∣∣∣∣
2

dHn−1dr

=
∫ ∞

0

a(r)
∫

∂Br(p)

∣∣∣∣−
d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) +

f(r)
r2

∞∑

i=1

aiλiφi(x)
∣∣∣∣
2

dHn−1dr.

On the other hand, it is easy to check that a function on R>0:

r 7→
∫

∂Br(p)

∣∣∣∣−
d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) +

f(r)
r2

∞∑

i=1

aiλiφi(x)
∣∣∣∣
2

dHn−1

is continuous. Therefore for every r > 0, there exists a Borel subset A(r) of X such that
Hn−1(X \A(r)) = 0 and that

−d2f

dr2
(r)g(x)− n− 1

r

df

dr
(r)g(x) +

f(r)
r2

∞∑

i=1

aiλiφi(x) = 0

for every x ∈ A(r). Let

λ :=
d2f

dr2
(1) + (n− 1)

df

dr
(1).

Then, for every Lipschitz function φ on X, we have

∫

X

λgφdHn−1 =
∫

X

φ
∞∑

i=1

aiλiφidHn−1 =
∫

X

〈dXφ, dXg〉dHn−1.

Thus, g is a λ-eigenfunction of ∆X . Therefore, we have λ ≥ n− 1. For every r > 0, we
have

0 = −d2f

dr2
(r)

∫

X

g2dHn−1 − n− 1
r

df

dr
(r)

∫

X

g2dHn−1 +
f(r)
r2

∫

X

g
∞∑

i=1

aiλiφi(x)dHn−1

= −d2f

dr2
(r)

∫

X

g2dHn−1 − n− 1
r

df

dr
(r)

∫

X

g2dHn−1 +
f(r)
r2

∫

X

|dXg|2dHn−1

= −d2f

dr2
(r)

∫

X

g2dHn−1 − n− 1
r

df

dr
(r)

∫

X

g2dHn−1 +
f(r)
r2

λ

∫

X

g2dHn−1.
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Thus, we have

−d2f

dr2
(r)− n− 1

r

df

dr
(r) +

f(r)
r2

λ = 0.

Therefore, we have the assertion. ¤

Next corollary follows from Propositions 3.19 and 3.28 directly:

Corollary 3.29. Let u∞ be a nonconstant harmonic function on C(X) with
u∞(p) = 0. Assume that ord0 u∞ = ord∞ u∞ = d < ∞. Then, we have the following :

1. A function g(x) = u∞(1, x) on X is a d(d + n− 2)-eigenfunction of ∆X .
2. u∞(r, x) = rdg(x).

By Corollary 3.29, the following follows directly from an argument similar to that
of the proof of [15, Corollary 1.63].

Corollary 3.30. Let u∞ be a nonconstant harmonic function on C(X). As-
sume that u∞(p) = 0, ord∞ u∞ = d < ∞ and that v and u∞ are orthogonal for every
homogeneous harmonic function v with growth α satisfying α < d. Then, we have the
following :

1. A function g(x) = u∞(1, x) on X is a d(d + n− 2)-eigenfunction of ∆X .
2. u∞(r, x) = rdg(x).

We now give a proof of Theorem 1.1:

A proof of Theorem 1.1. Theorem 1.1 follows directly from the results given
in this section and an argument similar to that of the proof of [15, Theorem 1.67]. ¤

4. Weyl type asymptotic bounds.

Our goal in this section is to give a proof of Theorem 1.2.

Proposition 4.1. Let d ≥ 0, and let M̂ be an n-dimensional complete non-
negatively Ricci curved manifold with VM̂ > 0, and (M̂∞, m̂∞) an asymptotic cone of
M̂ . Then we have dim Hd(M̂∞) ≤ C(n)dn−1. Moreover, for every V > 0, there exists
d(V, n) > 1 such that

dimHd(M∞) ≤ C(n)VMdn−1

for every n-dimensional complete nonnegatively Ricci curved manifold M with VM ≥ V ,
every d > d(V, n) and every asymptotic cone (M∞,m∞) of M .

Proof. The assertion follows from Theorem 1.1 and arguments similar to that
of the proofs of [18, Proposition 3.1] and [18, Proposition 6.1]. We now only introduce
important ideas used in the proofs of their propositions and give an outline of a proof
of our assertion. Fix V > 0, an n-dimensional complete nonnegatively Ricci curved
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manifold M with VM ≥ V , and (M∞,m∞) = (C(X), p) ∈ M̂M . Let d1 := d1(n) ≥ 1
with d(d + n− 2) ≤ 2d2 for every d ≥ d1. Let φi be a λi(X)-eigenfunction of ∆X with

∫

X

φiφjdHn−1 = δij

for every i, j. Let Nd := max{l ∈ N ;λl(X) ≤ d(d + n− 2)}. Then we have

∫

X

|dφi|2dHn−1 = λi(X) ≤ d(d + n− 2)

for every 1 ≤ i ≤ Nd. On the other hand, by Proposition 7.9 and the proof of [18,
Proposition 6.1], there exists d2 := d2(n, VM ) ≥ d1 such that for every d ≥ d2 and every
{yi}1≤i≤l ⊂ X which is a maximal 1/d-separated subset of X, we have l ≤ C(n)VMdn−1.
Fix C > 1 and d ≥ d2 (we will choose C depending only on n later). Let {xj}1≤j≤l be a
maximal 1/(Cd)-separated subset of X and V := span{φi; 1 ≤ i ≤ Nd}. Define a linear
map M from V to Rl by

M(v) =
( ∫

B2/Cd(x1)

vdHn−1, . . . ,

∫

B2/Cd(xl)

vdHn−1

)
.

Let K := KerM, and let {wj}1≤j≤k be an L2-orthonormal basis of K, and
{wj}k+1≤j≤Nd

⊂ V satisfying that {wi}1≤i≤Nd
is a L2-orthonormal basis of V. By

the weak Poincaré inequality of type (1, 2) on X, we have

∫

B2/Cd(xi)

w2
j dHn−1 ≤ C(n)

(Cd)2

∫

B2/Cd(xi)

|dwj |2dHn−1

for every 1 ≤ j ≤ k and every 1 ≤ i ≤ l. Therefore, we have

1 ≤
l∑

i=1

∫

B2/Cd(xi)

w2
j dHn−1 ≤ C(n)

(Cd)2

l∑

i=1

∫

B2/Cd(xi)

|dwj |2dHn−1

≤ C(n)
(Cd)2

∫

X

|dwj |2dHn−1

for every 1 ≤ j ≤ k. Thus we have

k ≤ C(n)
(Cd)2

k∑

j=1

∫

X

|dwj |2dHn−1 ≤ C(n)
(Cd)2

Nd∑

j=1

∫

X

|dwj |2dHn−1

≤ C(n)
(Cd)2

2d2Nd ≤ C(n)
C2

Nd.

Let C :=
√

2C(n), where C(n) is as above. Then we have k ≤ Nd/2. Since Nd =
k + dim(ImageM), we have Nd ≤ 2l ≤ C(n)VMdn−1. On the other hand, by Theorem
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1.1, we have dim Hd(M∞) ≤ Nd. Therefore, we have the assertion. ¤

Note that Theorem 1.2 follows directly from Proposition 4.1 and the following:

Proposition 4.2. For every V > 0, there exists d(V, n) > 1 such that the following
holds: Let M be an n-dimensional complete nonnegatively Ricci curved Riemannian man-
ifold with VM ≥ V . Then, for every d ≥ d(V, n) and every asymptotic cone (M∞,m∞)
of M , we have

dimHd(M∞) ≥ C(n)VMdn−1.

Proof. Fix V > 0, an n-dimensional complete nonnegatively Ricci curved mani-
fold M with VM ≥ V , and X ∈ MM . The next claim follows directly from Proposition
7.9.

Claim 4.3. Let ε > 0, k ∈ N and {xi}1≤i≤k ⊂ X. Assume that {xi}1≤i≤k is an
ε-separated subset of X. Then we have k ≤ C(n)/εn−1.

We give an upper bound of the first eigenvalue with respect to the Dirichlet problem
on Br(x)(⊂ X):

Claim 4.4. We have

inf
k∈K(Br(x)),k 6≡0

∫
Br(x)

|dk|2dHn−1

∫
Br(x)

k2dHn−1
≤ C(n)

r2

for every x ∈ X and every 0 < r ≤ π.

The proof is as follows. Define a Lipschitz function k on X by k(w) := max{r/2−
x,w, 0}. By the definition, we have k ∈ K(Br(x)),

∫

Br(x)

|dXk|2dHn−1 = Hn−1(Br/2(x))

and

∫

Br(x)

k2dHn−1 ≥
∫

Br/4(x)(x)

k2dHn−1 ≥
∫

Br/4(x)

r2

16
dHn−1 ≥ r2

16
Hn−1(Br/4(x)).

Proposition 7.9 yields

∫
Br(x)

|dk|2dHn−1

∫
Br(x)

k2dHn−1
≤ 16

r2

Hn−1(Br/2(x))
Hn−1(Br/4(x))

≤ C(n)
r2

.

Thus, we have Claim 4.4.



104 S. Honda

Claim 4.5. We have

lim sup
r→0

Hn−1(Br(x))
rn−1

≤ C(n)

for every x ∈ X.

The proof is as follows. For every sufficiently small r > 0, let Ar := {(s, w) ∈
C(X); 1− r ≤ s ≤ 1 + r, w ∈ Br(x)}. Proposition 7.6 yields

Hn(B5r(1, x)) =
∫ 1+r

1−r

Hn−1(∂Bt(p) ∩B5r(1, x))dt

≥
∫ 1+r

1−r

Hn−1(∂Bt(p) ∩Ar)dt

≥ C(n)rHn−1(Br(x)).

Since

lim
r→0

Hn(Br(1, x))
Hn(Br(0n))

≤ 1,

where 0n ∈ Rn, we have Claim 4.5.

Claim 4.6. We have

λd(X) ≤ C(n)
(

d

Hn−1(X)

)2/(n−1)

for every d ≥ 1.

The proof is as follows. Fix 0 < C < 1 (we will choose C depending only on n later).
Let

ε := C

(
Hn−1(X)

d

)1/(n−1)

and let {xi}1≤i≤k be a maximum ε-separated subset of X. By Claim 4.3, we have
k ≤ C(n)/εn−1 ≤ C(n)dn−1/(Cn−1Hn−1(X)). On the other hand, we have

k∑

i=1

Hn−1(B2ε(xi)) ≥ Hn−1(X).

By Claim 4.5 and Proposition 7.9, we have Hn−1(B5ε(xi)) ≤ C(n)εn−1. Thus, we have

Hn−1(X) ≤
k∑

i=1

Hn−1(B2ε(xi)) ≤ kC(n)εn−1.
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Therefore, we have

k ≥ C1(n)Hn−1(X)
εn−1

=
C1(n)
Cn−1

Hn−1(X)d
Hn−1(X)

≥ C1(n)
Cn−1

d,

where C1(n) is a sufficiently small positive constant depending only on n. Let C :=
C1(n)1/(n−1)/2. Then we have k ≥ 2d (≥ d+1). By Claim 4.4, for every 1 ≤ i ≤ k, there
exists φi ∈ K(Bε/10(xi)) such that φi 6≡ 0 and

∫
Bε/10(xi)

|dφi|2dHn−1

∫
Bε/10(xi)

(φi)2dHn−1
≤ C(n)

ε2
.

Since {Bε/10(xi)}i is a pairwise disjoint collection, we see that {φi}i are linearly inde-
pendent in L2(X). For every (a1, . . . , ak) ∈ Rk \ {0n}, we have

∫

X

∣∣∣∣d
( k∑

i=1

aiφi

)∣∣∣∣
2

dHn−1 =
k∑

i=1

∫

X

|d(aiφi)|2dHn−1

≤
k∑

i=1

C(n)
ε2

∫

X

(aiφi)2dHn−1

=
C(n)
ε2

∫

X

∣∣∣∣
k∑

i=1

aiφi

∣∣∣∣
2

dHn−1.

Thus, we have λk−1(X) ≤ C(n)/ε2. Therefore, we have

λd(X) ≤ λk−1(X) ≤ C(n)
ε2

≤ C(n)
(

d

Hn−1(X)

)2/(n−1)

.

Thus, we have Claim 4.6.
The assertion follows directly from Claim 4.6 and Theorem 1.1. ¤

5. Gromov-Hausdorff topology on the moduli space of asymptotic cones.

In this section, we will study the moduli space of asymptotic cones of a fixed non-
negatively Ricci curved manifold M with Euclidean volume growth. In general, the
asymptotic cones of M are not unique. See [6] and [59] for such examples. Therefore we
now consider the set of compact geodesic spaces X such that (C(X), p) are asymptotic
cones of M , denoted by MM . Define a topology on MM by the Gromov-Hausdorff
distance dGH . On the other hand, let M̂M := {(C(X), p);X ∈ MM} and define a
topology on M̂M by the pointed Gromov-Hausdorff topology. Then the canonical map
π : MM → M̂M defined by π(X) = (C(X), p) is a homeomorphism. Note that Gromov’s
compactness theorem yields that M̂M is compact. Thus MM is compact.
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5.1. Continuity of eigenvalues.
The main result in this subsection is the following theorem. We can regard it as

a “MM -version” of [26, (0.4) Theorem] by Fukaya or of [8, Theorem 7.9] by Cheeger-
Colding.

Theorem 5.1. Assume that Xi converges to X∞ in MM . Then (Xi,H
n−1) con-

verges to (X∞,Hn−1). Moreover, we have

lim
i→∞

λk(Xi) = λk(X∞)

for every k ≥ 1, where λk(X) is the k-th eigenvalue of ∆X .

Proof. Let {xi}i be a sequence of points xi ∈ Xi with xi → x∞, and r, ε positive
numbers. Let Ar

ε(xi) := {(t, x) ∈ C(Xi);x ∈ Br(xi), 1 − ε ≤ t ≤ 1 + ε.}. Then, by [38,
Proposition 4.7], we have

lim
i→∞

Hn(Ar
ε(xi)) = Hn(Ar

ε(x∞)).

On the other hand, by Proposition 7.6, we have

Hn(Ar
ε(xi)) =

∫ 1+ε

1−ε

Hn−1(∂Bt(pi) ∩Ar
ε(xi))dt = C(n)εHn−1(BXi

r (xi))

for every 1 ≤ i ≤ ∞, where pi is the pole of C(Xi). Thus, we have (Xi,H
n−1) →

(X∞,Hn−1).
We now give a proof of the second assertion by induction for k. Fix a subsequence

{i(j)}j of N . Let f
i(j)
1 be a λ1(Xi(j))-eigenfunction on Xi(j) with

1
Hn−1(Xi(j))

∫

Xi(j)

(f i(j)
1 )2dHn−1 = 1.

Thus we have

1
Hn−1(Xi(j))

∫

Xi(j)

|df i(j)
1 |2dHn−1 = λ1(Xi(j)).

Define a harmonic function u
i(j)
1 on C(Xi(j)) by u

i(j)
1 (r, x) := rα

i(j)
1 f

i(j)
1 (x), where α

i(j)
1 ≥

0 with λ1(Xi(j)) = α
i(j)
1 (αi(j)

1 +n− 2). Note that λ1(Xi(j)) ≥ n− 1 and α
i(j)
1 ≥ 1. Then,

[38, Proposition 3.21] and Proposition 7.6 yield

∫

B7(pi(j))

(
Lipu

i(j)
1

)2
dHn

=
∫ 7

0

∫

∂Br(pi(j))

(
α

i(j)
1

)2(
rα

i(j)
1 −1

)2(
f

i(j)
1

)2
dHn−1dr
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+
∫ 7

0

∫

∂Br(pi(j))

r2α
i(j)
1 −2

∣∣dXf
i(j)
1

∣∣2dHn−1dr

=
∫ 7

0

(
α

i(j)
1

)2
r2α

i(j)
1 −2rn−1Hn−1(Xi(j))dr

+
∫ 7

0

r2α
i(j)
1 +n−1−2λ1(Xi(j))Hn−1(Xi(j))dr

= Hn−1(Xi(j))
(

72α
i(j)
1 +n−2(αi(j)

1 )2

2α
i(j)
1 + n− 2

+
7α

i(j)
1 +nλ1(Xi(j))

2α
i(j)
1 + n− 2

)
.

By Li-Schoen’s mean value inequality and Theorem 3.7, we have

Lip
(
u

i(j)
1 |B2(pi(j))

) ≤ C(n)
Hn(B7(pi(j)))

∫

B7(pi(j))

(
Lipu

i(j)
1

)2
dHn.

On the other hand, Claim 4.6 yields

λl(Xi(j)) ≤ C(n)
(

l

Hn−1(Xi(j))

)2/(n−1)

for every l. Thus, we have

Lip
(
u

i(j)
1 |B2(pi(j))

) ≤ C(n, VM ).

Then there exist a subsequence {j(l)}l of {i(j)}i, a Lipschitz harmonic function u∞1 on
B2(p∞), a Lipschitz function f∞1 on X∞ and α∞1 ≥ 0 such that u

j(l)
1 → u∞1 on B2(p∞),

f
j(l)
1 → f∞1 on X∞ and α

j(l)
1 → α∞1 . Thus, we see that u∞1 (r, x) = rα∞1 f∞1 (x) on B2(p∞),

and

lim
i→∞

∫

Xm(i)

(fm(i)
1 )2dHn−1 =

∫

X∞
(f∞1 )2dHn−1.

On the other hand, Proposition 3.4 and Theorem 3.7 yield

lim
l→∞

∫ 1

1−ε

t3−n

∫

∂Bt(pj(l))

∣∣d∂Bt(pj(l))u
j(l)
1

∣∣2dHn−1dt

= lim
l→∞

( ∫ 1

1−ε

tD
u

j(l)
1

(t)dt−
∫ 1

1−ε

F
u

j(l)
1

(t)dt

)

=
∫ 1

1−ε

tDu∞1 (t)dt−
∫ 1

1−ε

Fu∞1 (t)dt

=
∫ 1

1−ε

t3−n

∫

∂Bt(p∞)

|d∂Bt(p∞)u
∞
1 |2dHn−1dt
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for every 0 < ε < 1. Since |d∂Bt(pj(l))u
j(l)
1 |2 = t2α

j(l)
1 −2|dX(j(l))u

j(l)
1 |2, we have

∫ 1

1−ε

t3−n

∫

∂Bt(pj(l))

∣∣d∂Bt(pj(l))u
j(l)
1

∣∣2dHn−1dt

=
∫ 1

1−ε

t3−nt2α
j(l)
1 −2tn−1

∫

Xj(l)

∣∣dXj(l)u
j(l)
1

∣∣2dHn−1dt

=
∫ 1

1−ε

t2α
j(l)
1 λ1(Xj(l))Hn−1(Xj(l))dt

=
1− (1− ε)2α

j(l)
1 +1

2α
j(l)
1 + 1

λ1(Xj(l))Hn−1(Xj(l)).

Similarly, we have

∫ 1

1−ε

t3−n

∫

∂Bt(p∞)

|d∂Bt(p∞)u
∞
1 |2dHn−1dt =

1− (1− ε)2α∞1 +1

2α∞1 + 1

∫

X∞
|df∞1 |2dHn−1.

Therefore, we have

lim
l→∞

1
Hn−1(Xj(l))

∫

Xj(l)

∣∣df j(l)
1

∣∣2dHn−1 = lim
l→∞

λ1(Xj(l)) =
1

Hn−1(X∞)

∫

X∞
|df∞1 |2dHn−1.

Since {i(j)}j is arbitrary, we have

lim inf
i→∞

λ1(Xi) ≥ λ1(X∞).

On the other hand, by [8, Theorem 7.1], we have

lim sup
i→∞

λ1(Xi) ≤ λ1(X∞).

Therefore we see that

lim
i→∞

λ1(Xi) = λ1(X∞),

and that f∞1 is a λ1(X∞)-eigenfunction.

Next, fix an integer k ≥ 2. Assume that the following hold:

1. limi→∞ λj(Xi) = λj(X∞) holds for every 1 ≤ j ≤ k − 1.
2. For every subsequence {i(j)}i of N , there exist a subsequence {j(l)}l of {i(j)}j , a

λm(Xj(l))-eigenfunction f
j(l)
m on Xj(l) and a λm(X∞)-eigenfunction f∞m on X∞ for

every 1 ≤ m ≤ k − 1 such that the following hold:
(a) f

j(l)
m → f∞m on X∞.
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(b) Lip(f j(l)
m |B2(pj(l))) ≤ C(n,m, VM ) for every 1 ≤ m ≤ k − 1.

(c)
1

Hn−1(Xj(l))

∫

Xj(l)

f j(l)
s f

j(l)
t dHn−1 = δst

holds for every 1 ≤ s ≤ t ≤ k − 1.

Fix a subsequence {i(j)}j of N . Let {j(l)}l, {f j(l)
m }l∈N ,m≤k−1 be as above, and

{f j(l)
k }l<∞ a sequence of λk(Xj(l))-eigenfunctions f

j(l)
k with

1
Hn−1(Xj(l))

∫

Xj(l)

(f j(l)
k )2dHn−1 = 1.

Define a harmonic function u
j(l)
k on C(Xj(l)) by u

j(l)
k (r, x) := rα

j(l)
k f

j(l)
k (x), where α

j(l)
k ≥

0 with α
j(l)
k (αj(l)

k + n− 2) = λk(Xj(l)).
By an argument similar to that of the case k = 1, without loss of generality, we

can assume that there exist a Lipschitz harmonic function u∞k on B2(p∞), a Lipschitz
function f∞k on X∞ and α∞k ≥ 0 such that Lip

(
u

j(l)
k |B2(pj(l))

) ≤ C(n, k, VM ), Lip f
j(l)
k ≤

C(n, k, VM ), u
j(l)
k → u∞k on B2(p∞), f

j(l)
k → f∞k on X∞ and α

j(l)
k → α∞k . Thus, we have

u∞k (r, x) = rα∞k f∞k (x). By an argument similar to that of the case k = 1, we have

lim
l→∞

∫

Xj(l)

∣∣df j(l)
k

∣∣2dHn−1 =
∫

X∞
|df∞k |2dHn−1.

On the other hand, we have

lim
l→∞

∫

Xj(l)

f j(l)
s f

j(l)
t dHn−1 =

∫

X∞
f∞s f∞t dHn−1

for every 1 ≤ s ≤ t ≤ k. Thus, we have f∞k ∈ (span{1, f∞1 , . . . , f∞k−1})⊥ and f∞k 6≡ 0.
Therefore, we have

λk(X∞) ≤
∫

X∞
|df∞k |2dHn−1.

Since {i(j)}j is arbitrary, we have

lim inf
i→∞

λk(Xi) ≥ λk(X∞).

On the other hand, [8, Theorem 7.1] yields

lim sup
i→∞

λk(Xi) ≤ λk(X∞).

Therefore, we see that
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lim
i→∞

λk(Xi) = λk(X∞),

and that f∞k is a λk(X∞)-eigenfunction. Thus we have the assertion. ¤

Remark 5.2. By the proof of Theorem 5.1, we also have the following: With the
same assumption as in Theorem 5.1, if a sequence of λk(Xi)-eigenfunctions f i

k on Xi

converges to a Lipschitz function f∞k on X∞, then f∞k is also an λk(X∞)-eigenfunction.

5.2. Spectral convergence.
In this subsection, we now study a convergence of the heat kernel hX(t, x, y) of X ∈

MM with respect to the Gromov-Hausdorff topology via spectral convergence introduced
by Kasue-Kumura in [42], [43]. See for instance [68], [69], [70] for the heat kernels on
metric measure spaces. See also [65] for the case of Alexandrov spaces.

Definition 5.3 (Spectral distance, [42], [43]). Let X, X̂ ∈ MM . A Borel map
f : X → X̂ is called an ε-spectral approximation if it satisfies et+1/t|hX(t, x1, x2) −
hX̂(t, f(x1), f(x2))| < ε for every t > 0 and every x1, x2 ∈ X. We define the spectral
distance SD(X, X̂) between X and X̂ by the infimum of ε > 0 such that both ε-spectral
approximations f : X → X̂ and g : X̂ → X exist.

See [42], [43] for fundamental properties of this spectral distance. The following
theorem is the main result in this section. Note that the following implies directly
Theorem 5.1.

Theorem 5.4. Let Xi → X∞ in MM . Then SD(Xi, X∞) → 0.

Proof. By Theorems 1.1, 1.2 and the compactness of MM , it is not difficult to
check that

pX(t, x, x) ≤ C1(n, VM )t−C2(n,VM )

for every t > 0, every X ∈ MM , and every x ∈ X. Then, by Theorem 5.1 and an
argument similar to that in Section 2 in [43], we have the assertion. ¤

6. A dimension comparison theorem and a Liouville type theorem.

In this subsection, we will give a comparison theorem (Theorem 6.1) between the
dimension of a space of harmonic functions on a fixed nonnegatively Ricci curved manifold
with Euclidean volume growth, and that on an asymptotic cone of the manifold. Essential
tools to show it are [14, Lemma 3.1] (or [15, Lemma 7.1]) and Proposition 3.4. We apply
Theorem 6.1 to give a new Liouville type theorem (Theorem 1.3) and an alternative proof
of Colding-Minicozzi’s result about Weyl type asymptotic bounds for harmonic functions
on manifolds in [18]. Fix an n-dimensional complete nonnegatively Ricci curved manifold
M with VM > 0.

Theorem 6.1. Let d, ε be positive numbers and k, l nonnegative integers with
0 ≤ l ≤ k ≤ dimHd(M)− 1. Then, there exists (M∞,m∞) ∈ M̂M such that
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l ≤ dimH(k/(k−l+1))(d−1+(n/2))+1−(n/2)+ε(M∞)− 1.

Proof. Without loss of generality, we can assume l ≥ 1. Let {uj}1≤j≤k be a
collection of linearly independent harmonic functions in Hd(M) with ui(m) = 0. Put

Jr(ui, uj) :=
∫

bgM≤r

〈dui, duj〉d volgM .

For every r > 0 and every i, j ∈ {1, . . . , k}, define a harmonic function wi,r and a real

number λji(r) so that uî =
∑î−1

ĵ=1
λĵî(r)uĵ + wî,r for every î, and that Jr(wĩ,r, wj̃,r) = 0

for every ĩ 6= j̃. Let

fi(r) :=
∫

bgM≤r

|dwi,r|2d volgM .

Claim 6.2. We have the following :

1. There exists K > 0 such that fi(r) ≤ K(r2d−2+n + 1) for every i and every r > 0.
2. fi(r) > 0 for every i and every r > 0.
3. fi(r) ≤ fi(s) for every i and every r ≤ s.
4. For every i, fi is a barrier for tn−2DgM

wi,s
(t) at every s > 0. Here, for functions g, h

on R and a real number r, we say that f is a barrier for g at r if f(r) = g(r) and
f(s) ≤ g(s) for s < r (see [14, Definition 4.6]).

Claim 6.2 follows from the trivial monotonicity of tn−2DgM
u (t) and an argument

similar to that of the proof of [15, Proposition 8.6] (or [14, Proposition 4.7]).
Let λ := k/(k − l + 1). By [14, Lemma 3.1], for every N ≥ 2, there exist a

subsequence {m(N, i)}i∈N of N and pairwise distinct integers αN
1 , . . . , αN

l ∈ {1, . . . , k}
such that fj(Nm(N,i)+1) ≤ 2Nλ(2d−2+n)fj(Nm(N,i)) for every j ∈ {αN

1 , . . . , αN
k } and

every i ∈ N . Without loss of generality, we can assume that αN
i = i for every 1 ≤ i ≤ l.

Claim 6.2 yields

fj(Nm(N,i)+1)
fj(Nm(N,i))

≥
(Nm(N,i)+1)n−2DgM

w
j,Nm(N,i)+1

(Nm(N,i)+1)

(Nm(N,i))n−2DgM
w

j,Nm(N,i)+1 (Nm(N,i))
.

Thus, we have

DgM
w

j,Nm(N,i)+1
(Nm(N,i)+1)

DgM
w

j,Nm(N,i)+1 (Nm(N,i))
≤ 2Nλ(2d−2+n)+2−n.

Define a harmonic function wN,i
j on B

(Nm(N,i))−2gM

N/10 (m) by
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wN,i
j (w) := wj,Nm(N,i)+1

×
(

Nm(N,i)

√
1

volgM {bgM ≤ Nm(N,i)}
∫

bgM≤Nm(N,i)

∣∣dwj,Nm(N,i)+1

∣∣2d volgM

)−1

.

Assume that N is sufficiently large. Then Li-Schoen’s mean value inequality yields

∣∣wN,i
j (x1)− wN,i

j (x2)
∣∣

≤ sup
B

Nm(N,i) N
5

(m)

|∇wj,Nm(n,i)+1 |x1, x2
gM

×
(

Nm(N,i)

√
1

volgM {bgM ≤ Nm(N,i)}
∫

bgM≤Nm(N,i)

∣∣dwj,Nm(N,i)+1

∣∣2d volgM

)−1

≤ C(n)

√
1

volgM {bgM ≤ Nm(N,i)2N/3}
∫

bgM≤Nm(N,i)2N/3

∣∣dwj,Nm(N,i)+1

∣∣2d volgM

×
(√

1
volgM {bgM ≤ Nm(N,i)}

∫

bgM≤Nm(N,i)

∣∣dwj,Nm(N,i)+1

∣∣2d volgM

)−1

× x1, x2
(Nm(N,i))−2gM

≤ C(n)Nλ(d−1+n/2)+1−n/2x1, x2
(Nm(N,i))−2gM

for every x1, x2 ∈ B
(Nm(N,i))−2gM

N/10 (m). Without loss of generality, there exist {XN}N≥2 ⊂
MM and a collection {wN,∞

j }1≤j≤l,N≥2 of Lipschitz functions wN,∞
j on BN/10(pN ) such

that (M, m, (Nm(N,i))−1dM ) → (C(XN ), pN ) and that wN,i
j → wN,∞

j on BN/10(pN ). On
the other hand, we have

1

vol(N
m(N,i))−2gM B

(Nm(N,i))−2gM

1 (m)

×
∫

B
(Nm(N,i))−2gM
1 (m)

∣∣d(Nm(N,i))−2gM wN,i
j

∣∣2d vol(N
m(N,i))−2gM

=
1

volgM BNm(N,i)(m)

∫

B
Nm(N,i) (m)

|dwj,Nm(N,i)+1 |2(Nm(N,i))2d volgM

×
(

N2m(N,i) 1
volgM {bgM ≤ Nm(N,i)}

∫

bgM≤Nm(N,i)
|dwj,Nm(N,i)+1 |2d volgM

)−1

= 1±Ψ(i−1;n,N).

By [38, Corollary 4.7] and Theorem 3.1, we have
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1
Hn(B1(pN ))

∫

B1(pN )

∣∣dwN,∞
j

∣∣2dHn = 1.

Similarly, we have

∫

B1(pN )

〈
dwN,∞

i , dwN,∞
j

〉
dHn = 0

for every i 6= j. Therefore, we see that {wN,∞
j }j is a collection of linearly independent

harmonic functions. Proposition 3.11 yields

IwN,∞
j

(N/100)

IwN,∞
j

(1)
=

UwN,∞
j

(1)

UwN,∞
j

(N/100)

DwN,∞
j

(N/100)

DwN,∞
j

(1)

≤
DwN,∞

j
(N/100)

DwN,∞
j

(1)
≤ 2Nλ(2d−2+n)+2−n.

Therefore, by Proposition 3.8, we have

exp
( ∫ N/100

1

2
UwN,∞

j
(t)

t
dt

)
≤ 2Nλ(2d−2+n)+2−n.

Thus, by Proposition 3.11, for every 1 ≤ l̂ < N/100, we have

(
N

100l̂

)2U
w

N,∞
j

(l̂)

≤ 2Nλ(2d−2+n)+2−n

i.e.

2UwN,∞
j

(l̂) ≤ log N

log N − log(100l̂)
+

log N

log N − log(100l̂)
(λ(2d− 2 + n) + 2− n).

Therefore, for every l̂ ≥ 1, there exists Nl̂ such that UwN,∞
j

(a) ≤ λ(d−1+n/2)+1−n/2+ε

for every N ≥ Nl̂ and every 1 ≤ a ≤ l̂. Let x1 ∈ Bl̂/10(pN ). Li-Schoen’s mean value
inequality and Theorem 3.7 yield

LipwN,∞
j (x1) ≤ C(n)

√
1

Hn(Bl̂(pN ))

∫

Bl̂(pN )

(
LipwN,∞

j

)2
dHn

≤ C(n, VM )

√
l̂−n

∫

Bl̂(pN )

∣∣dwN,∞
j

∣∣2dHn



114 S. Honda

≤ C(n, VM , λ, d)

√
l̂−1−n

∫

∂Bl̂(pN )

∣∣wN,∞
j

∣∣2dHn

≤ C(n, VM , λ, d)l̂−1

√
1

Hn−1(∂Bl̂(pN ))

∫

∂Bl̂(pN )

∣∣wN,∞
j

∣∣2dHn.

On the other hand, by Proposition 3.11, we have

IwN,∞
j

(l̂) = exp
( ∫ l̂

1

2UwN,∞
j

(t)

t
dt

)
IwN,∞

j
(1)

≤ exp
( ∫ l̂

1

λ(2d− 2 + n) + 2− n + 2ε

t
dt

)
IwN,∞

j
(1)

≤ l̂λ(2d−2+n)+2−n+2εIwN,∞
j

(1)

for every N ≥ Nl. By Proposition 3.16, we have

0 ≤ IwN,∞
j

(1) ≤ IwN,∞
j

(1)UwN,∞
j

(1) ≤ DwN,∞
j

(1) = 1.

Thus, we have IwN,∞
j

(l̂) ≤ l̂λ(2d−2+n)+2−n+2ε. Therefore, we have

Lip
(
wN,∞

j |Bl̂/10(pN )

) ≤ C(n, VM , λ, d)l̂λ(d−1+n/2)−n/2+ε.

Since MM is compact, without loss of generality, we can assume that there ex-
ist X∞ ∈ MM and a collection of locally Lipschitz harmonic functions {w∞j }j ⊂
Hλ(d−1+n/2)+1−n/2+ε(C(X∞)) such that XN → X∞ and wN,∞

j → w∞j on BR(p∞) as
N →∞ for every j and every R > 0. [38, Corollary 4.7] yields

1
Hn(B1(p∞))

∫

B1(p∞)

〈dw∞j , dw∞i 〉dHn = δij .

In particular, we see that {w∞j }j is a collection of linearly independent nonconstant
harmonic functions. Therefore we have the assertion. ¤

As a corollary of Theorem 6.1, we will give an alternative proof of the following
important result by Colding-Minicozzi:

Corollary 6.3 (Colding-Minicozzi, [18]). For every V > 0, there exists d(V, n) >

1 such that

dimHd(M) ≤ C(n)VMdn−1

for every d > d(V, n) and every n-dimensional complete nonnegatively Ricci curved man-
ifold M with VM ≥ V .
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Proof. By letting k = l = [(dimHd(M) − 1)/2], where [a] := inf{l ∈ Z; a ≤ l}
for every a ∈ R, the assertion follows from Theorems 1.2 and 6.1. ¤

We now give a proof of Theorem 1.3:

A proof of Theorem 1.3. Let λ1 := inf{λ1(X);X ∈MM} and

d1 :=
−(n− 1) +

√
(n− 2)2 + 4λ1

2
≥ 1.

By Theorems 3.27, 5.1 and the compactness of MM , we have the following:

1. Hd(M∞) = {constant functions} for every (M∞,m∞) ∈ M̂M and every 0 < d < d1.
2. Hd1(M̂∞) 6= {constant functions} for some (M̂∞, m̂∞) ∈ M̂M .

Assume that there exists d > 0 such that d < d1 and dimHd(M∞) > 1. Let ε > 0 with
ε < d1−d. Applying Theorem 6.1 as k = l = 1 yields that there exists (M∞,m∞) ∈ M̂M

such that 2 ≤ dimHd+ε(M∞). This is a contradiction. ¤

We end this subsection by giving the following. See also [16, Conjecture 0.9].

Corollary 6.4. Let d be a positive number and u ∈ Hd(M). Then we have

lim inf
t→∞

(
sup
s∈K

UgM
u (ts)

)
≤ d

for every compact subset K of (0,∞).

Proof. Without loss of generality, we can assume that u is not a constant func-
tion. By the proof of Theorem 6.1, for every ε > 0, there exist sequences of positive
numbers {Ri}i, {R̂i}i, an asymptotic cone (M∞,m∞) of M and a nonconstant harmonic
function u∞ ∈ Hd+ε(M∞) such that Ri →∞, R̂i →∞, (M, m,R−1

i dM ) → (M∞,m∞),
supi LipR−1

i dM
(
(u)R̂i

|
B

R
−1
i

dM
R (mi)

)
< ∞ for every R > 0, and that (u)R̂i

→ u∞ on

M∞. By the definition of UgM
u (t), we have U

R−2
i gM

(u)R̂i

(s) = U
R−2

i gM
u (s) = UgM

u (Ris) for

every s > 0 and every i. Thus, since limi→∞
(
sups∈K

∣∣UR−2
i gM

(u)R̂i

(s) − Uu∞(s)
∣∣) = 0 and

Uu∞ ≤ d + ε, we have lim inft→∞(sups∈K UgM
u (ts)) ≤ d + ε. Therefore, we have the

assertion. ¤

7. Appendix: a co-area formula on metric cones.

In this section we will prove a co-area formula for the distance function from the pole
on a noncollapsed metric cone used in the previous sections. See Proposition 7.6 for the
precise statement. Throughout this subsection, we fix a pointed metric measure space
(Y, y, υ) which is the Gromov-Hausdorff limit of a sequence of n-dimensional complete
Riemannian manifolds {(Mi,mi, vol / volB1(mi))}i<∞ with RicMi

≥ −(n− 1). Assume
that the following hold:
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1. There exists a compact geodesic space X such that diamX ≤ π and (Y, y) = (C(X), p).
2. dimH X = n− 1, where dimH X is the Hausdorff dimension of X.

Remark 7.1. We use the renormalized measure vol := vol / volB1(m) here in
order to apply several results given in [36] directly.

Note that by [6, Theorem 5.9], there exists C > 0 such that υ = CHn. First, we
recall the following definitions of lower dimensional Hausdorff measures associated to υ,
and of standard (spherical) Hausdorff measures. See Section 2 in [7]. For convenience,
we use the notaion: r−αυ(Br(x)) = 0 if r = 0. For every α ≥ 0, every δ > 0 and every
subset A of Y , let

(υ−α)δ(A) := inf
{ ∞∑

i=1

r−α
i υ(Bri(xi)); xi ∈ Y, 0 ≤ ri < δ, A ⊂

∞⋃

i=1

Bri(xi)
}

,

(Hα)δ(A) := inf
{ ∞∑

i=1

ωαrα
i ; xi ∈ Y, 0 ≤ ri < δ, A ⊂

∞⋃

i=1

Bri(xi)
}

and

υ−α(A) := lim
δ→0

(υ−α)δ(A), Hα(A) := lim
δ→0

(Hα)δ(A),

where ωα = 2πα/2/Γ(1 + α/2) and Γ(t) is the gamma function. On the other hand, for
every subset A of {1} ×X(⊂ C(X)), let

(υ−α)X,δ(A) :=
{ ∞∑

i=1

r−α
i υ(Bri(xi)); xi ∈ {1} ×X, 0 ≤ ri < δ, A ⊂

∞⋃

i=1

Bri(xi)
}

,

(Hα)X,δ(A) :=
{ ∞∑

i=1

ωαrα
i ; xi ∈ {1} ×X, 0 ≤ ri < δ, A ⊂

∞⋃

i=1

Bri(xi)
}

and

(υ−α)X(A) := lim
δ→0

(υ−α)δ(A), Hα
X(A) := lim

δ→0
(Hα)δ(A).

Note that it is easy to check the following:

1. We have υ−α(A) ≤ (υ−α)X(A) and Hα(A) ≤ Hα
X(A) for every subset A of {1} ×X.

2. Let φ be a map from (X, dX) to ({1} ×X, dC(X)) defined by φ(x) = (1, x). Then we
have Hn−1(A) = Hn−1

X (φ(A)) for every subset A of X.

Lemma 7.2. We have υ−1(A) = (υ−1)X(A) for every Borel subset A of {1} ×X.

Proof. Fix δ, ε > 0. Then, there exists an open covering {Bri(xi)}i of A such
that 0 ≤ ri < δ, xi = (ti, wi) ∈ C(X)(= R≥0 × X/({0} × X)) and

∣∣(υ−1)δ(A) −∑∞
i=1 r−1

i υ(Bri
(xi))

∣∣ < ε. Without loss of generality, we can assume that Bri
(xi)∩A 6= ∅
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for every i. Let yi = (1, wi) ∈ C(X) and ŷi = (1, wi) ∈ (R×X,
√

d2
R + d2

X). It is easy to
check that the map Φi(s, z) = (s, z) from B5ri

(xi) to R×X is an (1±Ψ(δ))-bi-Lipschitz
embedding. Therefore, we have Bri(xi) ∩ ({1} ×X) ⊂ B

(1+Ψ(δ))
√

r2
i−xi,yi

2(ŷi). On the

other hand, since |ti − 1| ≤ δ, the map Φ̂i(t, w) = (t + ti − 1, w) from B(1+Ψ(δ))ri
(ŷi) to

C(X) is an (1 ± Ψ(δ))-bi-Lipschitz embedding. Since Φ̂i(ŷi) = xi, we have Image Φ̂ ⊂
B(1+Ψ(δ))ri

(xi). Therefore Bishop-Gromov volume comparison theorem for Hn yields
Hn(B(1+Ψ(δ))ri

(ŷi)) ≤ (1 + Ψ(δ))Hn(B(1+Ψ(δ))ri
(xi)) ≤ (1 + Ψ(δ))Hn(Bri

(xi)). Thus,
since υ = CHn, we have

(υ−1)X,(1+Ψ(δ))δ(A) ≤
∞∑

i=1

((1 + Ψ(δ))ri)−1CHn(B(1+Ψ(δ))ri
(ŷi))

≤ (1 + Ψ(δ))
∞∑

i=1

r−1
i CHn(Bri(xi))

≤ (1 + Ψ(δ))((υ−1)X,δ(A) + ε).

By letting ε → 0 and δ → 0, we have the assertion. ¤

Similarly, we have the following:

Lemma 7.3. We have Hn−1
X (A) = Hn−1(A) for every Borel subset A of {1} ×X.

Remark 7.4. It is easy to check that there exists C1 > 1 such that C−1
1 υ−1(A) ≤

Hn−1(A) ≤ C1υ−1(A) for every Borel subset A of C(X). The proof is as follows. By
Bishop-Gromov volume comparison theorem for υ, there exists V > 1 such that V −1 ≤
limr→0 υ(Br(x))/rn ≤ V for every x ∈ B2(p). On the other hand, since υ = CHn, we
have limr→0 υ(Br((t, w)))/rn = limr→0 υ(Br((s, w)))/rn for every 0 < s < t < ∞ and
every w ∈ X. Then the assertion follows from these facts.

Lemma 7.5. The product measure H1 ×Hn−1 on R×X is equal to Hn.

Proof. Fix a Borel subset A of X. It suffices to check that Hn([0, a] × A) =
aHn−1(A) for every a > 0. Note that there exists a Borel subset X̂ of X such that the
following hold:

1. Hn−1(X \ X̂) = 0.
2. For every x ∈ X̂ and every ε > 0, there exists rε

x > 0 such that for every 0 < r < rε
x,

there exist a compact subset Cx
r of Br(x) and an (1 ± ε)-bi-Lipschitz embedding φx

r

from Cx
r to Rn−1 such that

Hn−1(Br(x) \ Cx
r )

Hn−1(Br(x))
≤ ε.

For every x ∈ X̂ and every ε > 0, by Fubini’s theorem, we have
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Hn([0, a]× Cx
r ) = (1±Ψ(ε;n))Hn([0, a]× φx

r (Cx
r ))

= (1±Ψ(ε;n))aHn−1(φx
r (Cx

r ))

= (1±Ψ(ε;n))aHn−1(Cx
r )

= (1±Ψ(ε;n))aHn−1(Br(x))

for every sufficiently small r > 0. On the other hand, by the proof of [37, Lemma 5.2],
we have Hn([0, a]× Â) ≤ C(n)aHn−1(Â) for every Borel subset Â of X. Thus, we have

lim
r→0

Hn([0, a]×Br(x))
aHn−1(Br(x))

= 1

for every x ∈ X̂. Therefore, there exists a Borel subset Â of A such that Hn−1(A\Â) = 0,

lim
r→0

Hn([0, a]×Br(x))
aHn−1(Br(x))

= 1

and

lim
r→0

Hn−1(A ∩Br(x))
Hn−1(Br(x))

= 1

for every x ∈ Â. Note that Hn([0, a] × (A \ Â)) ≤ C(n)aHn−1(A \ Â) = 0. Fix
a sufficiently small ε > 0. By a standard covering argument (c.f. [38, Proposition
2.2]), there exists a pairwise disjoint collection {Bri(xi)}i such that xi ∈ Â, ri < ε,
Â \⋃N

i=1 Bri
(xi) ⊂

⋃∞
i=N+1 B5ri

(xi) for every N ∈ N , and that

∣∣∣∣
Hn([0, a]×Bri

(xi))
aHn−1(Bri

(xi))
− 1

∣∣∣∣ +
∣∣∣∣
Hn−1(A ∩Bri

(xi))
Hn−1(Bri

(xi))
− 1

∣∣∣∣ < ε

for every i. Let N0 ∈ N with
∑∞

i=N0+1 Hn−1(Bri(xi)) < ε. Then, we have

Hn([0, a]× Â) ≤
N0∑

i=1

Hn([0, a]×Bri
(xi)) +

∞∑

i=N0+1

Hn([0, a]×B5ri
(xi))

≤
N0∑

i=1

Hn([0, a]×Bri
(xi)) + aC(n)

∞∑

i=N0+1

Hn−1(B5ri
(xi))

≤
N0∑

i=1

Hn([0, a]×Bri
(xi)) + Ψ(ε;n, a, C1)

≤ a(1 + ε)
N0∑

i=1

Hn−1(Bri(xi)) + Ψ(ε;n, a, C1)

≤ a(1 + ε)2(Hn−1(Â) + ε) + Ψ(ε;n, a, C1).
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Therefore, by letting ε → 0, we have

Hn([0, a]×A) ≤ aHn−1(A).

On the other hand, we have

aHn−1(A) = a

( N0∑

i=1

Hn−1(Bri
(xi)) + Ψ(ε;n,C1)

)

≤ (1 + ε)
N0∑

i=1

Hn([0, a]×Bri
(xi)) + Ψ(ε;n, a, C1)

and

Hn([0, a]× (Bri(xi) \A))
Hn([0, a]×Bri(xi))

≤ C(n)(1 + ε)
aHn−1(Bri(xi) \A)

aHn−1(Bri(xi))
≤ Ψ(ε;n).

Therefore, we have

aHn−1(A) ≤ (1 + ε)
N0∑

i=1

Hn([0, a]×Bri
(xi)) + Ψ(ε;n, a, C1)

≤ (1 + Ψ(ε;n))
N0∑

i=1

Hn
(
[0, a]× (Bri(xi) ∩A)

)
+ Ψ(ε;n, a, C1)

≤ (1 + Ψ(ε;n))Hn([0, a]×A) + Ψ(ε;n, a, C1).

Therefore, by letting ε → 0, we have

aHn−1(A) ≤ Hn([0, a]×A).

Thus, we have the assertion. ¤

We now give a co-area formula on C(X):

Proposition 7.6. We have
∫

C(X)

fdHn =
∫ ∞

0

∫

∂Bt(p)

fdHn−1dt

for every f ∈ L1(C(X)).

Proof. By [36, Theorem 5.2] and Remark 7.4, it suffices to check that

lim
r→0

1
Hn(Br(x))

∫ ∞

0

Hn−1(∂Bt(p) ∩Br(x))dt = 1



120 S. Honda

for every x ∈ C(X) \ {p}. Fix x ∈ C(X) \ {p} and a sufficiently small positive number
r. Let R := p, x > 0. Then, since the map Φ(t, w) = (t, w) from Br(x) to R ×X is an
(1±Ψ(r))-bi-Lipschitz embedding, we have

B(1−Ψ(r))r(Φ(x)) ⊂ Φ(Br(x)) ⊂ B(1+Ψ(r))r(Φ(x)).

On the other hand, Lemma 7.5 and Fubini’s Theorem yield

Hn
(
B(1+Ψ(r))r(Φ(x))

)
=

∫ R+(1+Ψ(r))r

R−(1+Ψ(r))r

Hn−1
(
({t} ×X) ∩B(1+Ψ(r))r(Φ(x))

)
dt.

Since Φ(∂Bt(p) ∩Br(x)) ⊂ ({t} ×X) ∩B(1+Ψ(r))r(Φ(x)), we have

Hn
(
B(1+Ψ(r))r(Φ(x))

) ≥ (1−Ψ(r;n))
∫ R+(1+Ψ(r))r

R−(1+Ψ(r))r

Hn−1(∂Bt(p) ∩Br(x))dt.

Therefore, we have

1 ≥ lim sup
r→0

1
Hn(Br(x))

∫ ∞

0

Hn−1(∂Bt(p) ∩Br(x))dt.

Similarly, we have

1 ≤ lim inf
r→0

1
Hn(Br(x))

∫ ∞

0

Hn−1(∂Bt(p) ∩Br(x))dt.

Therefore, we have the assertion. ¤

Proposition 7.7. We have υ−1(A) = C(n)CHn−1(A) for every Borel subset A

of {1} ×X.

Proof. By [12], we have

lim
r→0

Hn(Br(z))
ωnrn

= 1

for every z ∈ Rn(Y ). Since Rn(Y ) ∩ ({1} ×X) = {1} × Rn−1(X), by Proposition 7.6,
we have Hn−1(X \ Rn−1(X)) = 0. Fix ε, δ, τ > 0. Let

Aε
τ :=

{
a ∈ A ∩ ({1} ×Rn−1(X));

∣∣∣∣
Hn(Br(a))

ωnrn
− 1

∣∣∣∣ < ε for every 0 < r ≤ τ

}
.

By the definition of υ−1, there exists an open covering {Bri
(xi)}i of Aε

τ such that xi ∈ Aε
τ ,

ri < min{δ, τ} and
∣∣υ−1(Aε

τ )−∑∞
i=1 r−1

i υ(Bri
(xi))

∣∣ < ε. Thus, we have
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(Hn−1)δ(Aε
τ ) ≤

∞∑

i=1

ωn−1r
n−1
i

≤
∞∑

i=1

ωn−1

ωn
r−1
i (1 + ε)Hn(Bri

(xi))

=
∞∑

i=1

ωn−1

ωn
(1 + ε)r−1

i C−1υ(Bri
(xi))

≤
∞∑

i=1

ωn−1

ωn
(1 + ε)C−1(υ−1(Aτ ) + ε).

By letting δ → 0, τ → 0 and ε → 0, we have

CHn−1(A) ≤ ωn−1

ωn
υ−1(A).

Claim 7.8. Let Z = Rn(Y )∩ ({1}×X). Then we have Hn−1(({1}×X) \Z) = 0
and

lim
r→0

Hn−1(Br(z) ∩ ({1} ×X))
ωn−1rn−1

= 1

for every z ∈ Z.

The proof is as follows. Let x ∈ X and let {ri}i be a sequence of positive num-
bers with ri → 0. Assume that there exists a tangent cone (TxX, 0x) of X at x such
that (X, x, r−1

i dX) → (TxX, 0x). By [6, Theorem 5.9] and [37, Claim 4.5], we have
(C(X), r−1

i dC(X), (1, x),Hn) → (R × TxX, (0, 0x),Hn). Moreover, since TxX is Hn−1-
rectifiable (see [38, Corollary 3.53]), by an argument similar to that in the proof of
Lemma 7.5, we have H1×Hn−1 = Hn on R×TxX. Since ([−ri, ri]×B

dX

ri
(x), r−1

i dC(X))
Gromov-Hausdorff converges to [−1, 1]×B1(0x) as i →∞, [38, Proposition 4.12] yields

lim
i→∞

Hn
(
[−ri, ri]×B

dX

ri
(x)

)
= Hn

(
[−1, 1]×B1(0x)

)
.

By Proposition 7.6, we have Hn([−ri, ri]×B
dX

ri
(x)) = (1±Ψ(ri;n))2Hn−1(B

r−1
i dX

1 (x)).
In particular, we have

lim
i→∞

Hn−1
(
B

r−1
i dX

1 (x)
)

= Hn−1(B1(0x)).

Therefore, we have Claim 7.8.
Let W := Leb(A ∩ Z) with respect to the (n − 1)-dimensional Hausdorff mea-

sure Hn−1. By a standard covering argument, there exists a pairwise disjoint collection
{Bri

(ai)}i such that ai ∈ W , ri < δ/100, W \⋃N
i=1 Bri

(ai) ⊂
⋃∞

i=N+1 B5ri
(ai) for every

N , and
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∣∣∣∣
Hn(Bri(ai))

ωnrn
i

− 1
∣∣∣∣ +

∣∣∣∣
Hn−1(Bri(ai) ∩W )

ωn−1r
n−1
i

− 1
∣∣∣∣ < ε

for every i. Let N0 ∈ N with
∑∞

i=N0+1 Hn−1(Bri(ai) ∩ W ) < ε. Then, we
have

∑∞
i=N0+1 Hn−1(B5ri

(ai) ∩ W ) < Ψ(ε;n,C1). By the assumption, we have∑∞
i=N0+1 ωn−1r

n−1
i ≤ Ψ(ε;n,C1). Therefore, we have

(υ−1)δ(W ) ≤
N0∑

i=1

r−1
i υ(Bri

(ai)) +
∞∑

i=N0+1

(5ri)−1υ(B5ri
(ai))

≤
N0∑

i=1

r−1
i CHn(Bri(ai)) +

∞∑

i=N0+1

C(n)Crn−1
i

≤
N0∑

i=1

r−1
i CHn(Bri

(ai)) + Ψ(ε;n,C, C1)

≤
N0∑

i=1

Cωnrn−1
i (1 + ε) + Ψ(ε;n,C, C1)

≤ Cωn

ωn−1
(1 + ε)

N0∑

i=1

Hn−1(Bri
(ai) ∩W ) + Ψ(ε;n,C, C1)

≤ Cωn

ωn−1
(1 + ε)Hn−1(W ) + Ψ(ε;n,C, C1).

By letting δ → 0 and ε → 0, we have

υ−1(A) ≤ Cωn

ωn−1
Hn−1(A).

Thus, we have the assertion. ¤

We end this section by giving a proof of the following proposition:

Proposition 7.9. We have

Hn−1(Bt(x)) ≤ C(n)
tn−1

sn−1
Hn−1(Bs(x))

for every 0 < s < t ≤ π and every x ∈ X.

Proof. Note that there exists a universal constant C2 > 1 such that for every
metric space X̂, the bi-Lipschitz map from X̂ to {1} × X̂ ⊂ C(X̂) defined by fX̂(x̂) =
(1, x̂) satisfies Lip fX̂ + Lip f−1

X̂
≤ C2. Therefore, by [36, Theorem 5.7] and Proposition

7.6, we have
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Hn−1(Bt(x)) ≤ C(n)Hn−1(BC2t(1, x) ∩ ({1} ×X))

= C(n)C−1υ−1(BC2t(1, x) ∩ ({1} ×X))

≤ C(n)υ(Cp(BC2t(1, x) ∩ ({1} ×X)) ∩Ap(max{0, 1− C2t}, 1))
C volAp(max{0, 1− C2t}, 1)

≤ C(n)
Ct

υ(B5C2t(1, x))

≤ C(n)
Ct

tn

sn
υ
(
BC−1

2 s(1, x)
)

≤ C(n)
tn−1

sn

∫ 1+C−1
2 s

max{0,1−C−1
2 s}

Hn−1
(
∂Br(p) ∩BC−1

2 s(1, x)
)
dr

≤ C(n)
tn−1

sn

∫ 1+C−1
2 s

max{0,1−C−1
2 s}

rn−1Hn−1
(
∂B1(p) ∩BC−1

2 s(1, x)
)
dr

≤ C(n)
tn−1

sn
sHn−1

(
∂B1(p) ∩BC−1

2 s(1, x)
)

≤ C(n)
tn−1

sn−1
Hn−1

(
∂B1(p) ∩BC−1

2 s(1, x)
)

≤ C(n)
tn−1

sn−1
Hn−1(Bs(x)). ¤
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