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Region crossing change is an unknotting operation
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Abstract. A region crossing change is a local transformation on a knot
or link diagram. We show that a region crossing change on a knot diagram is
an unknotting operation, and we define the region unknotting number for a
knot diagram and a knot.

1. Introduction.

An unknotting operation is a local transformation of a knot diagram such that any
diagram can be transformed into a diagram of the trivial knot by a finite sequence of
these operations. Unknotting operations play an important role in knot theory, and
many unknotting operations have been studied. For example, it is well-known that the
crossing change, indicated in Figure 1, is an unknotting operation. It is also known that
the ]-move, indicated in Figure 1, is an unknotting operation [6], and that an n-gon
move, indicated in Figure 1, is an unknotting operation [1], [7]. Let D be a link diagram

Figure 1.

on S2, and |D| be the four-valent graph obtained from D by replacing each crossing
with a vertex. We call each component of S2 − |D| a region of D. A diagram D with
c crossings has 2c edges and, therefore, c + 2 regions because the Euler characteristic
of S2 is 2. For example, the diagram D with three crossings in Figure 2 has six edges
and five regions R1, R2, . . . and R5. A region crossing change at a region R of D is
the local transformation on D by the changing all the crossings on ∂R. For example
in Figure 3, we obtain D′ (resp. E′) from D (resp. E) by applying a region crossing
change at R (resp. S). A ]-move and an n-gon move on a knot diagram are examples
of region crossing changes. We remark that we can apply a region crossing change on a
non-alternating region even though we cannot apply an n-gon move. The region crossing
change was proposed by K. Kishimoto in a seminar at Osaka City University in 2010.
Kishimoto raised the following question: Is a region crossing change on a knot diagram
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Figure 2.

Figure 3.

an unknotting operation? This means, “Can we transform any diagram into a diagram
of the trivial knot by region crossing changes”. We will prove the following theorem in
this paper:

Theorem 1.1. Let D be a knot diagram, and c a crossing point of D. Let D′

be the diagram obtained from D by the crossing change at c. Then, there exist region
crossing changes which transform D into D′.

The proof is given in Section 3. Since a crossing change on a knot diagram is an unknot-
ting operation, we have the following corollary of Theorem 1.1 which answers Kishimoto’s
question:

Corollary 1.2. A region crossing change on a knot diagram is an unknotting
operation. Therefore, we can transform any diagram into a diagram of the trivial knot
by region crossing changes.

Remark 1.3. For a link diagram, the answer to Kishimoto’s question is negative.
For example, the link diagram in Figure 4 can not be transformed into a diagram of a
trivial link by any number of region crossing changes.

Figure 4.

We define the region unknotting number uR(D) of a knot diagram D to be the minimum
number of region crossing changes necessary to obtain a diagram of the trivial knot from
D. For example, we have uR(D) = 1 for the diagram D in Figure 3. H. A. Miyazawa
showed in [1] that for any knot K, there exists an integer n such that a diagram of K

can be transformed into a diagram of the trivial knot by one n-gon move. Therefore,
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every knot K has a diagram D such that uR(D) = 1. We define the region unknotting
number uR(K) of a knot K to be the minimal uR(D) for all minimal crossing diagrams
D of K. We have the following theorem:

Theorem 1.4. Let K be a knot and c(K) be the crossing number of K, then

uR(K) ≤ c(K)
2

+ 1.

The proof is given in Section 4. The rest of this paper is organized as follows: In Section
2, we develop the properties of region crossing changes that are used in proving Theorem
1.1. In Section 3, we prove Theorem 1.1. In Section 4, we consider the region unknotting
number and prove Theorem 1.4. In the appendix, we discuss minimal crossing diagrams
on S2 for prime alternating knots.

2. Properties of region crossing changes.

In this section, we discuss the properties of region crossing changes on a link diagram.
Let D be a link diagram and R a region of D. We denote by D(R) the diagram obtained
from D by the region crossing change on R. For two regions R1 and R2 of D, we denote
by D(R1, R2) the diagram obtained from D by the region crossing changes first on R1,
and then on R2. We have D(R1, R2) = D(R2, R1) and D(R, R) = D because the result
of crossing changes does not depend on the order, and two crossing changes at a crossing
point cancel. For regions R1, R2, . . . and Rn of D, the set of regions P = R1∪R2∪· · ·∪Rn

allows us to denote by D(P ) the diagram obtained from D by region crossing changes
on R1, R2, . . . and Rn. We have the following lemma:

Lemma 2.1. Let D be a link diagram, and R1, R2 regions of D (R1 6= R2). Let c

be a crossing point of D. If c satisfies c ∈ ∂R1 ∩ ∂R2, then the region crossing changes
on R1 and R2 do not change c.

A link diagram D on S2 is reducible if D has a crossing as shown in Figure 5, where
each square means a diagram of a tangle. A link diagram D on S2 is reduced if D is not
reducible. We call such a crossing a reducible crossing, and the set of a reducible crossing
and one of the squares a reducible part. We have the following proposition:

Figure 5.

Proposition 2.2. A link diagram D is a reducible link diagram if and only if there
exists a crossing c of D such that the regions R1, R2, R3 and R4 around c as shown in
Figure 6 satisfy R1 = R3 or R2 = R4.

We can shade some regions of D so that each two regions which are adjacent by an edge
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Figure 6.

of |D| are shaded and unshaded. We call such shading a checkerboard coloring. From
Lemma 2.1 and Proposition 2.2, we have the following corollary:

Corollary 2.3. Let D be a reduced link diagram with a checkerboard coloring,
and D′ the diagram obtained from D by region crossing changes at all the shaded regions.
Then, D = D′.

We remark that Corollary 2.3 does not hold for a reducible link diagram (see, for example,
the diagram E in Figure 3). From Corollary 2.3, we have the following corollary:

Corollary 2.4. Let D be a reduced link diagram, and B the set of all the regions
of D shaded in a checkerboard coloring. Let P be a subset of B consisting of non-empty
regions of D. Then, D(P ) = D(B − P ).

From Corollary 2.4, we have the following corollary:

Corollary 2.5. Let D be a reduced link diagram, and P a set of regions of D.
Then there exist just one or three sets Pi (i = 1 or i = 1, 2, 3) of regions of D such that
D(P ) = D(Pi), where P 6= Pi, Pi 6= Pj (i 6= j, i, j = 1, 2, 3).

From Lemma 2.1 and that D(R, R) = D, we have the following corollary:

Corollary 2.6. Let D be a link diagram, and c a crossing point of D. Let
R1, R2, R3 and R4 be regions of D around c as shown in Figure 6. If R1 6= R3 and
R2 6= R4, then the region crossing changes at R1, R2, R3 and R4 do not change c.

3. Proof of Theorem 1.1.

In this section, we prove Theorem 1.1.

Proof of Theorem 1.1. Let D be a knot diagram, and c a crossing point of D.
We show that we can make the crossing change at c by region crossing changes by an
induction on the number k of reducible crossings of D. If k = 0, i.e., D is a reduced
diagram, we can obtain the regions of D such that we can change only c by region crossing
changes at the regions by the following procedure:

Step 1: We splice D at c by giving D an orientation (see Figure 7). Then, we obtain a
diagram Ds = D1 ∪D2 of a two-component link.

Step 2: We apply a checkerboard coloring for one component D1 of Ds by ignoring
another component D2 so that the region R in Figure 7 is unshaded.
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Figure 7.

Step 3: We take the regions of D corresponding to the shaded regions of Ds. An example
of the above procedure is shown in Figure 8. By Lemma 2.1 and Corollary 2.6, a crossing

Figure 8.

point of D which corresponds to a self-crossing point of D1 or D2 is not changed by
the region crossing changes at the regions. By Lemma 2.1, a crossing point of D which
corresponds to a crossing point between D1 and D2 is not changed by the region crossing
changes at the regions. Hence we can change only c. Therefore, the theorem holds for
reduced knot diagrams.

We remark that if Ds has a reducible crossing d (6= c), d corresponds to a crossing on
∂R1 ∩ ∂R3 in D. That is why we apply the checkerboard coloring so that R is unshaded
in Step 2.

Here, we consider a special case D has just one reducible crossing and c is the
reducible crossing. Apply the checkerboard coloring to one reducible part as shown in
Figure 9. Then we can change only c by the region crossing changes at the shaded regions.

Figure 9.

We next consider the other case. We assume that the theorem holds for all the
knot diagrams with k reducible crossings (k ≥ 0). Now we consider knot diagrams
with k + 1 reducible crossings. In this case, there exists a reducible crossing p of an
innermost reducible part S which does not include c. By splicing D at p, we obtain
a non-connected link diagram consisting of a knot diagram D1 with c and k reducible
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crossings and a reduced knot diagram D2. By the assumption, D1 has regions such that
we can change only c by the region crossing changes at the regions. We call such set of
regions P . We obtain a set Q of regions of D from P by the following rules: Let A be
the region of D1 which includes D2, and B the opposite region of D1 (see Figure 10).
Let Q includes regions corresponding to P \A, and

Figure 10.

( i ) If A ∈ P and B 6∈ P , all the regions of S in A is in Q.
( ii ) If A 6∈ P and B ∈ P , the shaded regions of S with the checkerboard coloring such

that the outer region of S is white are in Q.
(iii) If A ∈ P and B ∈ P , then the shaded regions of S in A with the checkerboard

coloring such that the outer region of S is black are in Q.
(iv) If A 6∈ P and B 6∈ P , all the regions of S in A is not in Q (see Figure 11).

Then, Q is the set of regions which change only c. ¤

Figure 11.

4. Region unknotting number.

In this section, we discuss the region unknotting number of a knot diagram and a
knot. We have the following lemma:

Lemma 4.1. Let D be a reduced knot diagram, and c(D) the crossing number of
D. Then we have

uR(D) ≤ c(D)
2

+ 1.

Proof. For a reduced knot diagram D with a checkerboard coloring, we denote
by b (resp. w) the number of regions colored black (resp. white). We have
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uR(D) ≤
⌊

b

2

⌋
+

⌊
w

2

⌋

≤ b + w

2

because of Corollary 2.4, where bxc = max{n ∈ Z|n ≤ x}. Since b+w means the number
of regions of D, we have

uR(D) ≤ c(D) + 2
2

. ¤

Remark 4.2. From the proof of Lemma 4.1, it can also be said that the region
unknotting number of a reduced knot diagram D is less than or equal to half the number
of regions of D.

Remark 4.3. The equality in Lemma 4.1 does not hold if c(D) is even and both
b and w are odd, or c(D) is odd.

We show an example of region unknotting numbers of knot diagrams.

Example 4.4. In Figure 32, we list all the knot diagrams based on Rolfsen’s knot
table [8] with crossing number eight or less and their region unknotting numbers. We
denote by Dm

n the diagram of mn in Rolfsen’s knot table (for example, we denote by D3
1

the diagram of 31).

We prove Theorem 1.4 by using Lemma 4.1:

Proof of Theorem 1.4. For a knot K and a minimal crossing diagram D of K,
we have

uR(K) ≤ uR(D) ≤ c(D)
2

+ 1 =
c(K)

2
+ 1

because D is a reduced knot diagram. ¤

In the following example, we show the region unknotting numbers of all the prime knots
with crossing number nine or less:

Example 4.5. The knots 71, 82, 87, 89, 818, 91, 93, 96, 935, 940 have region unknot-
ting numbers two. The other prime knots with crossing number nine or less have the
region unknotting number one.

Remark 4.6. For the above knots in Example 4.5, the region unknotting num-
bers are realized by the diagrams in Rolfsen’s knot table. We note that the knots
71, 82, 87, 89, 818, 91, 93, 935, 940 have only one minimal crossing diagrams, respectively
up to horizontal mirror image and vertical mirror image, where the horizontal mirror
image of a knot diagram D is obtained from D by reflecting D across a vertical plane,
and the vertical mirror image of D is obtained from D by changing all the crossings of D.
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The knot 96 has just two minimal crossing diagrams, whose region unknotting numbers
are two (see Figure 12). We will discuss how to obtain all minimal crossing diagrams
on S2 of prime alternating knots in the appendix. We remark that there exist minimal

Figure 12.

crossing diagrams of prime alternating knots which do not realize the region unknotting
numbers. For example, J. Banks suggested that the two minimal crossing diagrams D

and E of 926 in Figure 13 have uR(D) = 1 and uR(E) = 2.

Figure 13.

For twist knots, we have the following proposition:

Proposition 4.7. A twist knot K has uR(K) = 1.

Proof. From the minimal crossing diagram of K in Figure 14, we can obtain a
diagram of the trivial knot by a region crossing change at the region P or Q. ¤

Figure 14.

For (2, 2n + 1)-torus knots, we have the following proposition:

Proposition 4.8. If a knot K is the (2, 4m−1)-torus knot or the (2, 4m+1)-torus
knot (m = 1, 2, . . . ), then uR(K) = m.

Proof. First of all, we remark that the (2, 2n+1)-torus knot has only one minimal
crossing diagram on S2 as shown in Figure 15 (see the appendix), and the region crossing



Region crossing change is an unknotting operation 701

change at P or Q in Figure 15 is of no use because it always transforms a diagram into
just the vertical mirror image. We prove that the (2, 4m− 1)-torus knot has the region

Figure 15.

unknotting number m by an induction. When m = 1, the trefoil knot has the region
unknotting number one. We assume that in the case of m = k, the (2, 4k− 1)-torus knot
K has the region unknotting number k. We shall prove for the case of m = k + 1, that
the (2, 4k + 3)-torus knot K ′ has the region unknotting number k + 1.

• First, we prove that uR(K ′) ≤ k + 1. Let D be the minimal crossing diagram
of K. We add two full twists to a pair of edges of D which bound a bigonal
region as shown in Figure 16 so that we obtain the minimal crossing diagram D′

of K ′. Since we obtain D from D′ by a region crossing change at any region in

Figure 16.

the two full twists and Reidemeister moves of type II (see Figure 17), we have
uR(K ′) ≤ uR(K) + 1 = k + 1.

Figure 17.

• Next, we prove uR(K ′) ≥ k +1 by an indirect proof. We assume that uR(K ′) ≤ k.
Let D′ be the minimal crossing diagram of K ′. Let R′ be a set of uR(K ′) regions
of D′ such that D′(R′) represents the trivial knot. Since the number of bigonal
regions of D′ is 4k+3 and uR(K ′) = uR(D′) ≤ k, there exist connected four bigonal
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regions satisfying the following condition: One region R1
′ of them is in R′, and the

other three regions of them are not in R′. By applying a region crossing change at
R1

′, we obtain from D′ a diagram D′(R1
′) which represents the knot K, and by

applying Reidemeister moves of type II, we obtain from D′(R1
′) a minimal crossing

diagram D of K. By region crossing changes at the regions of D which corresponds
to the regions R′−R1

′ of D′, we obtain from D a diagram representing the trivial
knot. Hence uR(K) ≤ uR(K ′) − 1 ≤ k − 1 which contradicts uR(K) = k. Hence
we have uR(K ′) ≥ k + 1, and therefore uR(K ′) = k + 1. The (2, 5)-torus knot has
the region unknotting number one, and we can prove similarly for (2, 4m+1)-torus
knots. ¤

From Proposition 4.8, we have the following corollary:

Corollary 4.9. For an arbitrary non-negative integer n, there exists a knot K

which satisfies uR(K) = n.

Appendix.

In this appendix, we explain how to obtain another minimal crossing diagram by
a flyping from a minimal crossing diagram of a prime alternating knot. Then we show
how to obtain all the minimal crossing diagrams of a prime alternating knot. In this
appendix, a tangle is a portion of a knot diagram from which there emerge just four arcs
pointing in the four compass directions NW, NE, SW, and SE. For a tangle T , we denote
by Th (resp. Tv) the result of rotation in a horizontal (resp. vertical) axis, and −T that
of crossing changes at all the crossing points of T as shown in Figure 18. We denote by

Figure 18.

1 (resp. 0) the tangle with one crossing (resp. no crossings) as shown in the left side
(resp. right side) of Figure 19. For two tangles A and B, we define the sum A + B of A

Figure 19.

and B to be the result of the operation of Figure 20. We also denote by A−B the sum
of A and −B. A tangle T is a tangle sum if T = T1 + T2, where neither T1 nor T2 is the
tangle 0.
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Figure 20.

Let D be a knot diagram which includes a tangle 1 + T or −1 + T . Flyping is a local
transformation on D which replaces 1 + T by Th + 1, or −1 + T by Th − 1 as shown
in Figure 21. W. Menasco and M. Thistlethwaite showed that Tait’s third conjecture is

Figure 21.

true, that is, we can change D1 into D2 by performing a finite number of flypings for
any two reduced alternating diagrams D1 and D2 of an alternating knot K [4]. Hence
we can obtain all the minimal crossing diagrams of a prime alternating knot K from a
minimal crossing diagram of K by flypings. Let D be a minimal crossing diagram of a
non-trivial knot, and c a crossing point of D. Let T be a tangle in D whose NW arc and
SW arc meet at c as shown in Figure 22. Since c can be considered as the tangle 1 or

Figure 22.

−1, we can apply a flyping there. We call such a flyping flyping at c and T . A flyping
on a knot diagram is trivial if we obtain D or the (vertical, horizontal, or vertical and
horizontal) mirror image of D from D by the flyping. When we can apply a non-trivial
flyping at a crossing point c and a tangle T of a diagram D, we say that D admits a
non-trivial flyping at c (and T ). Now we explain how to obtain all the tangles T such
that D admits non-trivial flypings at a crossing point c and T for a knot diagram D.

From a knot diagram D on S2 and a crossing point c of D, we obtain two tangles
T+

c and T−c such that we obtain D from 1 + T+
c (resp. −1 + T−c ) by connecting the NW

arc and the NE arc, and the SW arc and the SW arc (see Figure 23), where we remark
that the tangle 1 (resp. −1) corresponds to c. We note that T+

c and T−c are unique
by regarding that ±1 + T ε

c hv is equivalent to ±1 + T ε
c on S2 (ε = +,−). We remark

that a flyping at c and T+
c or T−c is trivial because it comes out just horizontal mirror

image of D. Hence if neither T+
c nor T−c is a tangle sum, the diagram D does not admit

a non-trivial flyping at c. When T ε
c is a tangle sum of tangles T1 and T2 (ε = +,−),

we can apply a flyping at c and T1. Remark that a flyping at c and T1 is equivalent to
a flyping at c and T2hv up to horizontal mirror image (see Figure 24). Then we shall
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Figure 23.

Figure 24.

consider flypings at c and only T1. For T ε
c = T1 + T2, the flyping at c and T1 is trivial

if T1 or T2 is the sum of some tangles ε1 (ε = +,−) as shown in Figure 25. The flyping

Figure 25.

at c and T1 is also trivial if T1 and T2 satisfy T1hv = T1 and T2v = T2, or T1v = T1 and
T2hv = T2 (see Figure 26). Then, to obtain all the minimal crossing diagrams on S2 of a
reduced alternating knot K, we will consider all the flypings at all the crossing points c

and all the tangles T1 such that T ε
c = T1 + T2 (ε = +,−) of a minimal crossing diagram

D of K except the following three cases:

(i): the tangle T ε
c is not a tangle sum (ε = +,−),

(ii): the tangle T1 or T2 is the sum of some tangles ε1 (ε = +,−),
(iii): the tangles T1 and T2 satisfy T1hv = T1 and T2v = T2, or T1v = T1 and T2hv = T2.

In the following examples, we will find all the minimal crossing diagrams of some knots
by the above procedure.

Example 4.10. A (2, 2n + 1)-torus knot has only one minimal crossing diagram
D on S2: Let D in Figure 27 be the minimal crossing diagram of a (2, 2n+1)-torus knot
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Figure 26.

(n = 1, 2, . . . ). For every crossing point c, we obtain the same tangles T+
c and T−c as

shown in Figure 27. The tangle T+
c is a sum of two tangles T1 and T2, where T1 is k half

Figure 27.

twists and T2 is 2n− k half twists (k = 1, 2, . . . , 2n− 1). The tangle T−c is not a tangle
sum. Then T+

c and T−c satisfy the cases (ii) and (i), respectively. therefore, we can not
apply non-trivial flypings on D.

Similarly, we have the following example:

Example 4.11. A knot K with Conway’s notation mn or m,n has only one min-
imal crossing diagram on S2 (m,n 6= 0 ∈ Z,mn > 0).

We show that the knot 82 has only one minimal crossing diagram on S2:

Example 4.12. For the minimal crossing diagram D of the knot 82 in Figure 28,
we call each crossing point a, b, . . . and h as shown in the figure. Neither T−a , T−b , T+

c ,
T−d , T−e , T−f , T−g nor T−h is a tangle sum, T+

a and T+
b are the tangle sums which consist

of a tangle and the tangle 1, and T−c is the tangle sum of the two tangles with vertical
twists T1 and T2 satisfying T1hv = T1 and T2v = T2. The tangles T+

d , T+
e , T+

f , T+
g and

T+
h are always tangle sums T1 + T2 such that T1 or T2 is the sum of k tangles 1 (k ≥ 1)

(see Figure 29). Hence D admits no non-trivial flypings, and therefore 82 has only one
minimal crossing diagram D on S2.
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Figure 28.

Figure 29.

We next show that the knot 96 has just two minimal crossing diagrams on S2:

Example 4.13. For the minimal crossing diagram D of 96 in Figure 30, we call
each crossing a, b, . . . and i as shown in the figure. Then D admits non-trivial flypings
only at c and the tangle T c

1 and at d and T d
1 , and we obtain another diagram D′ in

Figure 31 by the flyping at c and T c
1 and at d and T d

1 , respectively, where we denote by
T−c = T c

1 + T c
2 and T−d = T d

1 + T d
2 the tangles in Figure 30. The diagram D′ with the

crossing points a′, b′, . . . and i′ in Figure 31 admits non-trivial flypings only at c′ and
T ′c

′
11, c′ and T ′c

′
12, d′ and T ′d

′
11, and d′ and T ′d

′
12 as depicted in Figure 31, and we obtain

the diagram D in Figure 30 by flyping there, respectively. Hence 96 has just two minimal
crossing diagrams D and D′ on S2.
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Figure 32.




