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Abstract. In this article, we make use of geometry of sections of elliptic
surfaces and elementary arithmetic on the Mordell-Weil group in order to study
existence problem of dihedral covers with given reduced curves as the branch
loci. As an application, we give some examples of Zariski pairs (B1, B2) for
“conic-line arrangements” satisfying the following conditions:

( i ) deg B1 = deg B2 = 7.
( ii ) Irreducible components of Bi (i = 1, 2) are lines and conics.
( iii ) Singularities of Bi (i = 1, 2) are nodes, tacnodes and ordinary triple

points.

Introduction.

Let ϕ : S → P1 be a relatively minimal elliptic surface over P1 with a distinguished
section O. Let MW(S) be the set of sections of S. It is well-known that one can define
a structure of an abelian group on MW(S) with identity element O and that MW(S) is
called the Mordell-Weil group of ϕ : S → P1. We denote the group law by +̇ and the
multiplication-by-m map (m ∈ Z) on MW(S) by [m]s for s ∈ MW(S). Also we identify
a section with its image on S.

Take s1, . . . , sk ∈ MW(S). Then
∑

i[ai]si gives another element of MW(S) and its
image on S gives rise to a new curve on S. In this article, we consider p-divisibility (p:
odd prime) of

∑
i[ai]si in MW(S) and a reduced divisor on S given by the union of [ai]si

(i = 1, . . . , k) in order to study dihedral covers of the Hirzebruch surface Σd of degree d

(d : even) or its blowing-ups Σ̂d. As an application, we give examples of Zariski pairs
of degree 7 for conic-line arrangements. This can be considered as a continuation of the
author’s previous articles ([22], [23], [24], [25]). Before we go on to explain our results
in detail, let us first recall the definition of a Zariski pair.

Definition 1. A pair (B1, B2) of reduced plane curves Bi (i = 1, 2) of degree n

in P2 = P2(C) (the base field of this article is always the field of complex numbers C) is
called a Zariski pair of degree n if it satisfies the following condition:

( i ) Bi (i = 1, 2) are curves of degree n such that the combinatorial type (see Definition
2 below) of B1 is the same as that of B2.

( ii ) (P2, B1) is not homeomorphic to (P2, B2).
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Definition 2 ([7]). The combinatorial type of a curve B is given by a 7-tuple

(Irr(B),deg,Sing(B),Σtop(B), σtop, {B(P )}P∈Sing(B), {βP }P∈Sing(B)),

where:

• Irr(B) is the set of irreducible components of B and deg : Irr(B) → Z≥0 assigns
to each irreducible component its degree.

• Sing(B) is the set of singular points of B, Σtop(B) is the set of topological types
of Sing(B), and σtop : Sing(B) → Σtop(B) assigns to each singular point its topo-
logical type.

• B(P ) is the set of local branches of B at P ∈ Sing(B), and βP : B(P ) → Irr(B)
assigns to each local branch the global irreducible component containing it.

We say that two curves B1 and B2 have the same combinatorial type (or simply the same
combinatorics) if their data of combinatorial types

(Irr(Bi),degi,Sing(Bi),Σtop(Bi), σtopi, {βi,P }P∈Sing(Bi), {Bi(P )}P∈Sing(Bi)), i = 1, 2,

are equivalent, that is, if Σtop(B1) = Σtop(B2), and there exist bijections ϕSing :
Sing(B1) → Sing(B2), ϕP : B1(P ) → B2(ϕSing(P )) (restriction of a bijection of dual
graphs) for each P ∈ Sing(B1), and ϕIrr : Irr(B1) → Irr(B2) such that deg2 ◦ϕIrr = deg1,
σtop2 ◦ϕSing = σtop1, and β2,ϕSing(P ) ◦ ϕP = ϕIrr ◦ β1,P .

Note that when Bi (i = 1, 2) are irreducible, B1 and B2 have the same combinatorics
if they have the same degree and the same local topological types for singularities. Also,
for line arrangements, B1 and B2 have the same combinatorial type if they have the same
set of incidence relations. The first example of a Zariski pair is given by Zariski ([30],
[31]), which is as follows:

Example 3. Let (B1, B2) be a pair of irreducible sextics such that (i) both of B1

and B2 have six cusps as their singularities, and (ii) the six cusp of B1 are on a conic,
while no such conic for B2 exists. Then (B1, B2) is a Zariski pair.

For these twenty years, Zariski pairs have been studied by many mathematicians
and many examples have been found (see [7] and its reference). Among them, Zariski
pairs for line arrangements of degrees 9 and 11 are considered by Artal Bartolo, Carmona
Ruber, Cogolludo Agustin and Marco Buzunariz ([5], [6]), Rybnikov ([19]) and those for
conic arrangements of degree 8 are considered by Namba and Tsuchihashi ([15]). In this
article, we study Zariski pairs for conic-line arrangements.

Remark 4. Conic-line arrangements have been studied by M. Amram, M. Fried-
man, D. Garber, M. Teicher and A. M. Uludag. They put emphasis in studying properties
of the fundamental group of the complements of conic-line arrangements ([1], [2], [3],
[9]). No example of a Zariski pair, however, seems to be given.

As we explain in [7], the study of Zariski pairs, in general, consists of two parts:
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(I) To give curves B1 and B2 having the same combinatorics, but some “different prop-
erty,” e.g., the location of singularities as in Example 3.

(II) To show (P2, B1) is not homeomorphic to (P2, B2).

One of our goals in this article is to consider a new method for (I). Namely we make
use of elementary arithmetic and geometry of sections of the Mordell-Weil group of an
elliptic surface. Let us explain how it will be done briefly.

We first recall that any elliptic surface ϕ : S → P1 with section O is always obtained
in the following way (see in Section 1, 1.2):

• Let Σd be the Hirzebruch surface of degree d (d: even).
• Let ∆0 be the section with ∆2

0 = −d and let T be a tri-section on Σd such that (i)
T has at most simple singularities and (ii) ∆0 ∩ T = ∅.

• Let f ′ : S′ → Σd be a double cover with branch locus ∆0 + T .
• Let µ : S → S′ be the canonical resolution. By our assumption, µ is the minimal

resolution and we have the following double cover diagram as in Section 1.2:

S′

f ′

²²

S
µoo

f

²²
Σd Σ̂d,q

oo

where morphisms q and f are those introduced in Section 1.2.

Under these circumstances, S is an elliptic surface over P1 such that

• the elliptic fibration ϕ : S → P1 is induced by Σd → P1 and
• ϕ has a section O which comes from ∆0.

Let ∆1 and ∆2 be sections of Σd with ∆2
i = d and ∆i ∩∆0 = ∅ (i = 1, 2). Let ∆i

(i = 1, 2) be the proper transforms of ∆i (i = 1, 2) by q, respectively. We now suppose
the following conditions are satisfied:

1. f∗(∆i) consists of two sections s±∆i
for each i.

2. Σ̂d can be blown down to P2, which we denote by q : Σ̂d → P2.

Let [2]s+
∆i

be the duplication of s+
∆i

in MW(S) for i = 1, 2. In order to give two plane
curves B1 and B2 with the same combinatorics, we make use of q ◦ f(s+

∆i
), q ◦ f([2]s+

∆i
)

(i = 1, 2), and q(∆(S/Σ̂d)), where ∆(S/Σ̂d) is the branch locus of f . We apply this
method to the case when d = 2 to construct examples of Zariski pairs for conic-line
arrangements of degree 7 (see Proposition 4.4). The author hopes that this method adds
a new viewpoint to the study of elliptic surfaces and their Mordell-Weil groups.

As for (II), we also make use of theory of dihedral covers and p-divisibility of sections
of an elliptic surface as in our previous papers ([23], [24], [25]). Our main results of this
article along this line are Theorems 3.2 and 3.3

Now let us explain conic-line arrangements of degree 7 considered in this article.
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Conic-line arrangement 1.
Let Ci (i = 1, 2) be smooth conics and let Lj (i = 1, 2, 3, 4) be lines as follows:

( i ) Both L1 and L2 meet C1 transversely. We put C1 ∩ L1 = {P1, P2}, C1 ∩ L2 =
{P3, P4}.

( ii ) C2 is tangent to C1 at two distinct points {Q1, Q2} or at one point {Q}. We call
the former type (a) and the latter type (b).

(iii) The tangent lines at C1 ∩ C2 do not pass through L1 ∩ L2.
(iv) C2 is tangent to L1 and L2.
( v ) L3 passes through P1 and P3.
(vi) L4 passes through P1 and P4.
(vii) Both L3 and L4 meet C2 transversely.

We put B1 := C1 + C2 + L1 + L2 + L3 and B2 := C1 + C2 + L1 + L2 + L4. Then B1

and B2 have the same combinatorics.

Conic-line arrangement 1 of type (a).

We now go on to explain Conic-line arrangement 2. It is obtained from Conic-line
arrangement 1 by replacing two lines L1 and L2 by a smooth conic.

Conic-line arrangement 2.

Conic-line arrangement 2 of type (a).

Let C1, C2 and C3 be smooth conics and L1 and L2 be lines as follows:

( i ) C1 and C2 meet transversely. We put C1 ∩ C2 = {P1, P2, P3, P4}.
( ii ) C3 is tangent to both C1 and C2 such that the intersection multiplicities at inter-

section points are all even. By exchanging C1 and C2 if necessary, we may assume
that there are three possibilities:
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(a) C3 ∩ C1 = {Q1, Q2}, C3 ∩ C2 = {Q3, Q4},
(b) C3 ∩ C1 = {Q1}, C3 ∩ C2 = {Q2, Q3} or
(c) C3 ∩ C1 = {Q1}, C3 ∩ C2 = {Q2}.

(iii) No tangent line at Qi is bitangent to C1 + C2.
(iv) L1 passes through P1 and P3.
( v ) L2 passes through P1 and P4.
(vi) Both of L1 and L2 meet C3 transversely.

We put B1 := C1 + C2 + C3 + L1, B2 := C1 + C2 + C3 + L2. Then B1 and B2 have
the same combinatorics.

Theorem 5. ( i ) Let (B1, B2) be the pair of Conic-line arrangement 1. Then
(B1, B2) is a Zariski pair.

( ii ) Let C1 and C2 be conics intersecting at four distinct points, P1, P2, P3 and P4 and
let L0, L1 and L2 be lines through {P1, P2}, {P1, P3} and {P1, P4}, respectively.
Choose a point zo on C1 such that the tangent line at zo to C1 is not tangent to
C2. Then there exist just three conics C

(0)
3 , C

(1)
3 and C

(2)
3 satisfying the following

conditions:
• zo ∈ C

(i)
3 for each i.

• Both C1 and C2 are tangent to C
(i)
3 for each i and the intersection multiplicities

Ix(C(i)
3 , Cj) are either 2 or 4 for ∀x ∈ C

(i)
3 ∩ Cj (j = 1, 2).

• For i, j = 0, 1, 2 (i 6= j), if both of C1 +C2 +C
(i)
3 +Li and C1 +C2 +C

(i)
3 +Lj

have the combinatoric for Conic-line arrangement 2 of the same type, then
(C1 + C2 + C

(i)
3 + Li, C1 + C2 + C

(i)
3 + Lj) is a Zariski pair.

Remark 6. The triple (C1+C2+C
(i)
3 +L0, C1+C2+C

(i)
3 +L1, C1+C2+C

(i)
3 +L2)

may be a candidate for a Zariski triple. Our method in this article, however, does not
work to see whether it is or not.

This article consists of 5 sections. In Section 1 and Section 2, we summarize some
facts and results for theory of elliptic surfaces and D2n-covers, which we need to prove our
theorem. We prove Theorem 3.2 in Section 3 and Theorem 3.3 in Section 4. In Section
5, we prove Theorem 5 and give another example of a Zariski pair by our method.

Acknowledgements. Part of this article was done during author’s visit to Uni-
versidad de Zaragoza and Ruhr Universität Bochum in September 2011. He thanks for
Professors E. Artal Bartolo, J.-I. Cogolludo and P. Heinzner for their hospitality. He also
thanks the referee for his/her valuable comments.

1. Elliptic surfaces.

1.1. General facts.
We first summarize some facts from the theory of elliptic surfaces. As for details,

we refer to [11], [13], [14], [20].
In this article, the term, an elliptic surface, always means a smooth projective surface

S equipped with a structure of a fiber space ϕ : S → C over a smooth projective curve,
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C, as follows:

( i ) There exists a non-empty finite subset, Sing(ϕ), of C such that ϕ−1(v) is a smooth
curve of genus 1 for v ∈ C \ Sing(ϕ), while ϕ−1(v) is not a smooth curve of genus
1 for v ∈ Sing(ϕ).

( ii ) ϕ has a section O : C → S (we identify O with its image).
(iii) There is no exceptional curve of the first kind in any fiber.

Under these circumstances, we first recall the basic results on invariants of S.

Proposition 1.1. Let ϕ : S → C be an elliptic surface as above. Then

( i ) χ(OS) > 0,
( ii ) O ·O = −χ(OS), and
(iii) dimH1(S,OS) = genus of C. In particular, the irregularity of S is 0 if C = P1.

Proof. Since Sing(ϕ) 6= ∅, χ(OS) > 0 by [11, Theorem 12.2]. By [12, Proposition
2.3], we have (ii) and (iii). ¤

For v ∈ Sing(ϕ), we put Fv = ϕ−1(v). We denote its irreducible decomposition by

Fv = Θv,0 +
mv−1∑

i=1

av,iΘv,i,

where mv is the number of irreducible components of Fv and Θv,0 is the irreducible
component with Θv,0 ·O = 1. We call Θv,0 the identity component. The types of singular
fibers are classified by [11]. There are two types for irreducible singular fibers. One is
a rational curve with a node, and the other is a rational curve with a cusp. The former
is called of type I1, while the latter is called of type II. The following dual graphs and
figures explain types of reducible singular fibers. Every vertex in dual graphs and every
smooth irreducible component of Type III and IV are rational curve with self-intersection
number −2.

We also define a subset of Sing(ϕ) by Red(ϕ) := {v ∈ Sing(ϕ) | Fv is reducible}.
Let MW(S) be the set of sections of ϕ : S → C. From our assumption, MW(S) 6= ∅.
By regarding O as the zero element of MW(S) and considering fiberwise addition (see
[11, Section 9] or [27, Section 1] for the addition on singular fibers), MW(S) becomes
an abelian group. We denote its addition by +̇.

Also for k ∈ Z and s ∈ MW(S), we write

[k]s :=

{
k-times addition of s if k ≥ 0

k-times addition of the inverse of s if k < 0.

The following two theorems are fundamental:

Theorem 1.2 ([20, Theorem 1.2]). Let NS(S) be the Néron-Severi group of S.
Under our assumption, NS(S) is torsion free.
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Theorem 1.3 ([20, Theorem 1.3]). Let Tϕ be the subgroup of NS(S) generated by
O, F and Θv,i (v ∈ Red(ϕ), 1 ≤ i ≤ mv − 1). Under our assumption, there is a natural
map ψ̃ : NS(S) → MW(S) which induces an isomorphisms of groups

ψ : NS(S)/Tϕ
∼= MW(S).

In particular, MW(S) is a finitely generated abelian group.

In the following, rankMW(S) means that of the free part of MW(S).

Lemma 1.4 ([20, Lemma 5.1]). Let D be a divisor on S and put s(D) = ψ(D).
Then D is uniquely written in the form:

D ≈ s(D) + (d− 1)O + nF +
∑

v∈Red(ϕ)

mv−1∑

i=1

bv,iΘv,i,

where ≈ denotes the algebraic equivalence of divisors, and d, n and bv,i are integers defined
as follows:

d = D · F n = (d− 1)χ(OS) + O ·D − s(D) ·O,

and
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


bv,1
...

bv,mv−1


 = A−1

v




D ·Θv,1 − sD ·Θv,1
...

D ·Θv,mv−1 − sD ·Θv,mv−1




Here Av is the intersection matrix (Θv,i ·Θv,j)1≤i,j≤mv−1.

For a proof, see [20].
Put NSQ := NS(S) ⊗ Q and Tϕ,Q := Tϕ ⊗ Q. Since NS(S) is torsion free under

our setting, there is no harm in considering NSQ. By using the intersection pairing, we
have the orthogonal decomposition NSQ = Tϕ,Q ⊕ (Tϕ,Q)⊥. In [20], the homomorphism
φ : MW(S) → (Tϕ,Q)⊥ ⊂ NSQ is defined as follows:

φ : MW(S) 3 s 7→ s−O − (s ·O + χ(OS))F

+
∑

v∈Red(ϕ)

(Θv,1, . . . ,Θv,mv−1)(−Av)−1




s ·Θv,1
...

s ·Θv,mv−1


 ∈ (Tϕ,Q)⊥.

Also, in [20], a Q-valued bilinear form 〈 , 〉 on MW(S) is defined by 〈s1, s2〉 := −φ(s1) ·
φ(s2), where the right hand side means the intersection pairing in NSQ. Here are two
basic properties of 〈 , 〉:

• 〈s, s〉 ≥ 0 for ∀s ∈ MW(S) and the equality holds if and only if s is an element of
finite order in MW(S).

• An explicit formula for 〈s1, s2〉 (s1, s2 ∈ MW(S)) is given as follows:

〈s1, s2〉 = χ(OS) + s1 ·O + s2 ·O − s1 · s2 −
∑

v∈Red(ϕ)

Contrv(s1, s2),

where Contrv(s1, s2) is given by

Contrv(s1, s2) = (s1 ·Θv,1, . . . , s1 ·Θv,mv−1)(−Av)−1




s2 ·Θv,1
...

s2 ·Θv,mv−1


 .

As for explicit values of Contrv(s1, s2), we refer to [20, (8.16)].

1.2. Double cover construction of an elliptic surface.
For details about this subsection, see [13, Lectures III and IV]. Let ϕ : S → C be

an elliptic surface. By our assumption, the generic fiber of ϕ can be considered as an
elliptic curve over C(C), the rational function field of C. The inverse morphism with
respect to the group law induces an involution [−1]ϕ on S. Let S/〈[−1]ϕ〉 be the quotient
by [−1]ϕ. The quotient surface S/〈[−1]ϕ〉 is known to be smooth and S/〈[−1]ϕ〉 can be
blown down to its relatively minimal model W over C satisfying the following condition:

Let us denote

• f : S → S/〈[−1]ϕ〉: the quotient morphism,
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• q : S/〈[−1]ϕ〉 → W : the blowing-down, and

• S
µ→ S′

f ′→ W : the Stein factorization of q ◦ f .

Then we have:

1. The branch locus ∆f ′ of f ′ consists of a section ∆0 and the trisection T such that its
singularities are at most simple singularities (see [8, Chapter II, Section 8] for simple
singularities and their notation) and ∆0 ∩ T = ∅.

2. ∆0 + T is 2-divisible in Pic(W ).
3. The morphism µ is obtained by contracting all the irreducible components of singular

fibers not meeting O.

Conversely, if ∆0 and T on W satisfy the above condition, we obtain an elliptic
surface ϕ : S → P1, as the canonical resolution of a double cover f ′ : S′ → W with
∆f ′ = ∆0 + T , and the diagram (see [10] for the canonical resolution):

S′

f ′

²²

S
µoo

f

²²
W Ŵ.q

oo

(1.1)

Here q is a composition of blowing-ups so that Ŵ = S/〈[−1]ϕ〉. Hence any elliptic
surface is obtained as above. In the following, we call the diagram above the double cover
diagram for S.

In the case of C = P1, W is the Hirzebruch surface, Σd, of degree d = 2χ(OS) > 0
and ∆f ′ is of the form ∆0 +T , where ∆0 is a section with ∆2

0 = −d and T ∼ 3(∆0 + df),
f being a fiber of the ruling Σd → P1. Moreover, dimH1(S,OS) = 0 by Propositon 1.1.

Remark 1.5. ( i ) For each v ∈ Sing(ϕ), the type of ϕ−1(v) is determined by
the type of singularity of T on fv and the relative position between fv and T (see
[14, Table 6.2]).

( ii ) Note that the covering transformation, σf , of f coincides with [−1]ϕ.

2. D2n-covers.

In this section, we summarize some facts on Galois covers. We refer to [21] and [7,
Section 3] for details.

We start with terminology on Galois covers. Let X and Y be normal projective
varieties with finite morphism π : X → Y . We say that X is a Galois cover of Y if
the induced field extension C(X)/C(Y ) by π∗ is Galois, where C(•) means the rational
function field of •. Note that the Galois group acts on X such that Y is obtained as
the quotient space with respect to this action (cf. [22, Section 1]). If the Galois group
Gal(C(X)/C(Y )) is isomorphic to a finite group G, we call X a G-cover of Y . The branch
locus of π : X → Y , which we denote by ∆π or ∆(X/Y ), is the subset of Y consisting
of points y of Y , over which π is not locally isomorphic. It is well-known that ∆π is an
algebraic subset of pure codimension 1 if Y is smooth ([32]).
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Suppose that Y is smooth. Let B be a reduced divisor on Y whose irreducible
decomposition B =

∑r
i=1 Bi. A G-cover π : X → Y is said to be branched at

∑r
i=1 eiBi

if (i) ∆π = B (here we identify B with its support) and (ii) the ramification index along
Bi is ei for each i, where the ramification index means the one along the smooth part of
Bi for each i. Note that the study of G-covers is related to that of the fundamental group
of the complement of B, since we have the following proposition (see [7] for details):

Proposition 2.1 ([7, Proposition 3.6]). Under the notation as above, let γi be
a meridian around Bi, and [γi] denote its class in the topological fundamental group
π1(Y \ B, po). If there exists a G-cover π : X → Y branched at e1B1 + · · ·+ erBr, then
there exists a normal subgroup Hπ of π1(Y \B, po) such that :

( i ) [γi]ei ∈ Hπ, [γi]k 6∈ Hπ, (1 ≤ k ≤ ei − 1), and
( ii ) π1(Y \B, po)/Hπ

∼= G.

Conversely, if there exists a normal subgroup H of π1(Y \B, po) satisfying the above
two conditions for Hπ, then there exists a G-cover πH : XH → Y branched at e1B1 +
· · ·+ erBr.

Let D2n be the dihedral group of order 2n. In order to present D2n, we use the
notation

D2n = 〈σ, τ | σ2 = τn = (στ)2 = 1〉.

By a D2n-cover, we mean a Galois cover whose Galois group is isomorphic to D2n. Given
a D2n-cover, we obtain a double cover, D(X/Y ), canonically by considering the C(X)τ -
normalization of Y , where C(X)τ denotes the fixed field of the subgroup generated by
τ . The variety X is an n-fold cyclic cover of D(X/Y ) and we denote these covering
morphisms by β1(π) : D(X/Y ) → Y and β2(π) : X → D(X/Y ), respectively. Here are
two propositions for later use.

Proposition 2.2. Let n be an odd integer ≥ 3. Let Z be a smooth double cover
of a smooth projective variety Y . We denote its covering morphism and covering trans-
formation by f and σf , respectively. Let D be an effective divisor on Z satisfying the
following conditions:

( i ) D and σ∗fD have no common component.
( ii ) If D =

∑
i aiDi denotes its irreducible decomposition, then gcd(ai, n) = 1 for every

i.
(iii) D − σ∗fD is n-divisible in Pic(Z).

Then there exists a D2n-cover π : X → Y such that

(a) β2(π) is branched at n((D + σ∗fD)red), and
(b) D(X/Y ) = Z and f = β2(π).

Proof. By [21, Proposition 0.4], our statements except the ramification indices
are straightforward. As for the ramification indices, it follows from the last line of the
proof of [21, Proposition 0.4]. ¤
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Proposition 2.3. Let n be an odd integer ≥ 3. Let π : X → Y be a D2n-cover
such that both Y and D(X/Y ) are smooth. Let σβ1 be the covering transform of β1(π). If
β2(π) is branched at nD for some non-empty reduced divisor D on D(X/Y ), then there
exists an effective divisor D, whose irreducible decomposition is

∑
i aiDi satisfying the

following conditions:

( i ) D and σ∗β1
D have no common component.

( ii ) D − σ∗β1
D is n-divisible in Pic(D(X/Y )).

(iii) For every i, gcd(ai, n) = 1.
(iv) D = (D + σ∗β1

D)red.

Proof. The statement essentially follows from Proposition 0.5 and its proof in
[21]. We, however, give another simple proof based on the idea of versal D2n-covers (see
[26], [28] for versal Galois covers). By [28], there exists an element ξ ∈ C(X) such that
the action of D2n on ξ is given in such a way that:





ξσ =
1
ξ

ξτ = ζnξ, ζn = exp
(

2πi

n

)
.

By using ξ, we have C(D(X/Y )) = C(Y )(ξn), C(X) = C(Y )(ξ). Put θ = ξn ∈
C(D(X/Y )). Let (θ), (θ)0 and (θ)∞ be the divisor of θ, the zero and polar divisors
of θ, respectively. Write (θ)0 in such a way that

(θ)0 =
∑

i

aiDi + nD′,

where Di’s are irreducible divisor on D(X/Y ) with 1 ≤ ai < n and D′ is an effective
divisor on D(X/Y ). Since σ induces σβ1 on D(X/Y ) and θσ(= θσβ1 ) = 1/θ, we have
equalities of divisors:

(θ)∞ =
∑

i

aiσ
∗
β1

Di + nσ∗β1
D′

(θ) = (ϕ)0 − (ϕ)∞

=
∑

i

ai(Di − σ∗β1
Di) + n(D′ − σ∗β1

D′).

Now we put D =
∑

i aiDi. Since we may assume that (θ)0 and (θ)∞ have no com-
mon components, our statements (i) and (ii) follow. Also as C(X) = C(D(X/Y ))( n

√
θ)

and X is the C(X)-normalization of D(X/Y ) and the ramification index along Di is
n/ gcd(ai, n), our statements (iii) and (iv) follow. ¤

Corollary 2.4. Under the same assumption of Proposition 2.3, if D is an ir-
reducible divisor on Y such that (β1(π))−1(D) ⊂ ∆β2(π), then β1(π)∗D consists of two
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irreducible components. In particular, in the case of dimY = 2, the intersection multi-
plicity at x, Ix(D, ∆β1(π)), is even for ∀x ∈ D ∩∆β1(π).

Proof. The first statement is immediate from Proposition 2.3. For the second
statement, let D̃ be the normalization of D. If there exists x ∈ D ∩ ∆β1(π) such that
Ix(D, ∆β1(π)) is odd, β1(π) induces a double cover of D̃ with non-empty branch set. This
means β1(π)∗D is irreducible. ¤

In [25], we introduce a notion of an elliptic D2n-cover, whose definition is as follows:

Definition 2.5. A D2n-cover π : X → Y is called an elliptic D2n-cover if it
satisfies the following condition:

• D(X/Y ) has a structure of an elliptic fiber space ϕ : D(X/Y ) → S over a projec-
tive variety S with a section O : S → D(X/Y ).

• On the generic fiber D(X/Y )η, the group law is given by regarding O as the zero
element. The involution on D(X/Y )η induced by the covering transformation
σβ1(π) coincides with the inversion with respect to the group law on D(X/Y )η.

In this article, we consider elliptic D2n-covers as follows:

( i ) D(X/Y ) has an elliptic fibration ϕ : D(X/Y ) → P1.
( ii ) β1(π) : D(X/Y ) → Y coincides with f : D(X/Y ) → Σ̂d in the double cover

diagram for ϕ : D(X/Y ) → P1.

3. Elliptic D2p-covers and p-divisibility of sections.

Let ϕ : S → P1 be an elliptic surface over P1. Let f : S → Σ̂d be the double cover
appearing in the double cover diagram (1.1) for S.

We first note that, by its definition, any elliptic D2p-cover (p: odd prime) πp : Xp →
Σ̂d satisfies the following conditions:

• S = D(Xp/Σ̂d) and β1(πp) = f .
• The branch locus of β2(πp) is of the form

D + σ∗fD + Ξ + σ∗fΞ

where
1. all irreducible components of D are horizontal with respect to the elliptic fibra-

tion and there is no common component between D and σ∗fD, and
2. all irreducible component of Ξ are vertical and there is no common component

between Ξ and σ∗fΞ.

Remark 3.1. ( i ) By Remark 1.5 (ii) and [11, Theorem 9.1], the action of σf

on irreducible components of singular fibers is described as in the table below. We
here use the labeling for irreducible components introduced in Section 1.1. Hence
possible irreducible components of Ξ can be determined.
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( ii ) Under the above notation, the case when D = ∅ (resp. = a section) is considered
in the author’s previous works ([21], [22], [23], [24]) (resp. [25]).

Type of a singular fiber The action on irreducible component

In
Θ0 7→ Θ0

Θi 7→ Θn−i i = 1, . . . , n− 1

I∗n (n: even)
Θi 7→ Θi ∀i
Θij 7→ Θij ∀i, j

I∗n (n: odd)
Θi 7→ Θi i 6= 1, 3
Θ1 7→ Θ3 Θ3 7→ Θ1

II, II∗, III, III∗ Θi 7→ Θi ∀i
IV

Θ0 7→ Θ0

Θ1 7→ Θ2 Θ2 7→ Θ1

IV∗
Θi 7→ Θi i = 0, 3, 6
Θ1 7→ Θ2 Θ2 7→ Θ1

Θ4 7→ Θ5 Θ5 7→ Θ4

In the following, we always assume that

(∗) D 6= ∅.

The proposition below, which is a generalization of [25, Propositions 4.1 and 4.2],
plays an important role in this article:

Theorem 3.2. Let p be an odd prime. Let C1, . . . , Cr be irreducible horizontal
divisors on S such that

∑r
i=1 Ci and

∑r
i=1 σ∗fCi have no common component. Then (I)

and (II) in the below are equivalent :

(I) Put C =
∑r

i=1 Ci. There exists an elliptic D2p-cover πp : Xp → Σ̂d such that
• D(Xp/Σ̂d) = S and β1(πp) = f .
• β2(πp) is branched at

p
(
(C + σ∗fC + Ξ + σ∗fΞ)red

)

for some effective divsior Ξ on S such that irreducible components of Ξ are all
vertical and there is no common component between Ξ and σ∗fΞ.

(II) Let s(Ci) = ψ̃(Ci) (i = 1, . . . , r). There exist integers ai (i = 1, . . . , r) such that
• 1 ≤ ai < p (i = 1, . . . , r) and
• ∑r

i=1[ai]s(Ci) is p-divisible in MW(S), i.e.,

r∑

i=1

[ai]s(Ci) ∈ [p]MW(S) := {[p]s | s ∈ MW(S)}.

Proof. (I) ⇒ (II) Let D be the effective divisor in Proposition 2.3. We put
D = Dhor + Dver, where the irreducible components of Dhor are all horizontal, while
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those of Dver are all in fibers of ϕ. By Proposition 2.3 (iv), (Dhor + σ∗fDhor)red =∑r
i=1 Ci +

∑r
i=1 σ∗fCi.

Claim. We may assume that Dhor is of the form Dhor =
∑r

i=1 aiCi (0 ≤ ai < p).

Proof of Claim. If σ∗fCi is an irreducible component of Dhor, then we consider

D′
hor := Dhor + (p− ai)Ci − aiσ

∗
fCi,

and put D′ = D′
hor + Dver. Then we infer that D′ also satisfies all four conditions in

Proposition 2.3. After repeating this process finitely many times, we can choose Dhor as
in Claim.

We first recall that the irregularity of S is 0 by Proposition 1.1, since we always
assume that Sing(ϕ) 6= ∅ and the base curve is P1. Hence linear equivalence coincides with
algebraic equivalence on S. By Claim and Proposition 2.3 (iii), there exists L ∈ Pic(S)
such that

r∑

i=1

ai(Ci − σ∗fCi) + Dver − σ∗fDver ∼ pL,

where ∼ means linear equivalence of divisors. This implies

ψ̃

( r∑

i=1

ai(Ci − σ∗fCi)
)

= [p]ψ̃(L) in MW(S).

As ψ̃(σ∗fCi) = [−1]s(Ci), we have

ψ̃

( r∑

i=1

ai(Ci − σ∗fCi)
)

= [2]([a1]s(C1) +̇ · · · +̇ [ar]s(Cr)).

Since p is an odd prime, we infer that [a1]s(C1) +̇ · · · +̇ [ar]s(Cr) ∈ [p]MW(S).

(II) ⇒ (I) Our proof is similar to that of [25, Proposition 4.2]. By Lemma 1.4, we
have

Ci ∼ s(Ci) + (di − 1)O + niF +
∑

v∈Red(ϕ)

mv−1∑

j=1

b
(i)
v,jΘv,i.

This implies

r∑

i=1

aiCi ∼
r∑

i=1

ais(Ci) +
r∑

i=1

ai

(
(di − 1)O + niF +

∑

v∈Red(ϕ)

mv−1∑

j=1

b
(i)
v,jΘv,j

)
.
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By our assumption, there exists so such that
∑r

i=1[ai]s(Ci) = [p]so in MW(S). By
Theorem 1.3, this implies that

r∑

i=1

ais(Ci) ∼ pso +
(
− p +

r∑

i=1

ai

)
O + noF +

∑

v∈Red(ϕ)

mv−1∑

j=1

cv,jΘv,j

for some integers no, cv,j . Hence we have

r∑

i=1

aiCi ∼ pso +
(
− p +

r∑

i=1

aidi

)
O +

(
no +

∑

i

aini

)
F

+
∑

v∈Red(ϕ)

mv−1∑

j=1

(
cv,j +

r∑

i=1

aib
(i)
v,j

)
Θv,j ,

and put

D′ :=
r∑

i=1

aiCi +
∑

v∈Red(ϕ)

mv−1∑

j=1

(
cv,j +

r∑

i=1

aib
(i)
v,j

)
σ∗fΘv,j .

Then we have

D′ − σ∗fD′ ∼ p(so − σ∗fso).

The left hand side of the above equivalence contains some redundancy in the sum for
Θv,i and σ∗fΘv,i. By taking the action of σf on Θv,i’s (see Remark 1.5) into account, we
can find divisors D =

∑r
i=1 aiCi +

∑
j kjΞj and Ξ′ on S such that

( i ) all Ξj and all irreducible components of Ξ′ are those in fibers not meeting O,
( ii ) D and σ∗fD have no common component,
(iii) 1 ≤ kj < p, and
(iv) D′ − σ∗fD′ = D − σ∗fD + pΞ′.

Now we easily infer that D satisfies the three conditions in Proposition 2.2 for p. ¤

Theorem 3.3. Let p be an odd prime such that p 6 |](MWtor). Choose two distinct
sections s1, s2 ∈ MW(S) such that si 6∈ [p]MW(S) (i = 1, 2). There exists an elliptic
D2p-cover πp : Xp → Σ̂d such that the horizontal part of ∆β2(πp) is

s1 + s2 + σ∗f (s1 + s2)

if and only if the images si (i = 1, 2) of si (i = 1, 2) in MW(S) ⊗ Z/pZ are linearly
dependent over Z/pZ.

Proof. Since p 6 |](MWtor), we have MW(S)/[p]MW(S) ∼= MW(S) ⊗ Z/pZ ∼=
(Z/pZ)⊕r. By our assumption, si 6= 0 (i = 1, 2). If s1 and s2 are linearly dependent, we
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have s1 + cs2 = 0 for some non-zero c ∈ Z/pZ. This means that there exists an integer
a (0 < a < p) such that s1 +̇ [a]s2 ∈ [p]MW(S). Hence the existence of πp : Xp → Σ̂d

as above follows from Theorem 3.2. Conversely if πp : Xp → Σ̂d exists, then s1 +̇ [a]s2 ∈
[p]MW(S) for some integer a (0 < a < p) by Thorem 3.2. This shows that s1 and s2 are
linearly dependent. ¤

4. Applications.

Let ϕ : S → P1 be an elliptic surface and we keep our notation for the double cover
diagram for S in Section 1.2. We fix an isomorphism MW(S) ∼= Mo⊕MWtor, Mo

∼= Z⊕r,
r = rank MW(S). Let us start with the following proposition:

Proposition 4.1. Choose s ∈ Mo such that Mo/Zs is free. For any finite number
of odd prime numbers p1, . . . , pl, there exists a section sp1,...,pl

satisfying the following
conditions:

( i ) 〈sp1,...,pl
, sp1,...,pl

〉 = (p1 · · · pl)2〈s, s〉.
( ii ) For any odd prime p 6∈ {p1, . . . , pl}, there exists an elliptic D2p-cover πp : Xp → Σ̂d

such that
• D(Xp/Σ̂d) = S, β1(πp) = f , and
• β2(πp) is branched at p(s+sp1,...,pl

+σ∗f (s+sp1,...,pl
)+Ξo), where all irreducible

components of Ξo are those of the singular fibers not meeting O.
(iii) For p ∈ {p1, . . . , pl}, there exists no elliptic D2p-cover πp : Xp → Σ̂d as in (ii)
(iv) {sp1,...,pl

, [−1]sp1,...,pl
} is unique up to torsion elements.

Proof. Define sp1,...,pl
:= [Πr

i=1pi]s. By Theorem 3.2, our statements (i), (ii) and
(iii) are immediate. Suppose that s′ ∈ MW(S) satisfies the statements (i), (ii) and (iii).
Put s′ = s′o + t′o, s′o ∈ Mo, t′o ∈ MWtor. Since Mo/Zs is free, we can choose a free basis
of Mo such that s1 = s, . . . , sr, r = rank MW(S). By Theorem 3.2, for p 6∈ {p1, . . . , pl},
there exists an integer a1 (1 ≤ a1, a2 < p) such that

[a1]s +̇ [a2]s′o ≡ 0 mod pMo.

Hence we infer that s′o = [b1]s1 +̇ p(
∑r

i=2[bi]si) for some integers b1, . . . , br. Since p is
any odd prime 6∈ {p1, . . . , pl}, we infer bi = 0 (2 ≤ i ≤ r). Thus

〈s′o, s′o〉 = b2
1〈s, s〉 = (p1 · · · pl)2〈s, s〉.

Since 〈s, s〉 6= 0 by the basic properties of 〈 , 〉 (see Section 1), we have b1 = ±p1 · · · pl.
Hence s′ is equal to [±1]sp1,...,pl

up to torsion elements. ¤

The following theorem is essential to prove Theorem 5.

Theorem 4.2. Choose s1, s2 ∈ Mo so that s1 and s2 are a part of a basis of Z⊕r,
i.e., Mo/Zs1 + Zs2 is free of rank r − 2. Put s3 := [2]s1. For any odd prime p with
p 6 |](MWtor), we have the following :



Sections of elliptic surfaces and Zariski pairs 629

• There exists an elliptic D2p-cover πp : Xp → Σ̂d such that the horizontal part of
the branch locus of β2(πp) is s1 + s3 + σ∗f (s1 + s3).

• There exists no elliptic D2p-cover πp : Xp → Σ̂d such that the horizontal part of
the branch locus of β2(πp) is s2 + s3 + σ∗f (s2 + s3).

Proof. We apply Theorem 3.3 to s1, s3 and s2, s3. ¤

By Proposition 2.1 and Theorem 4.2, we have:

Corollary 4.3. Let T be the trisection on Σd appearing in the double cover
diagram for S. Put ∆i := q ◦ f(si) (i = 1, 2, 3). Then there exists a D2p-cover
of Σd branched at 2(∆0 + T ) + p(∆1 + ∆3), while there exists no D2p-cover of Σd

branched at 2(∆0 + T ) + p(∆2 + ∆3). In particular, there exists no homeomorphism
h : (Σd,∆0 + ∆1 + ∆3 + T ) → (Σd,∆0 + ∆2 + ∆3 + T ) such that f(∆0) = ∆0 and
f(T ) = T .

Proof. Since every vertical component of ∆β2(πp) is mapped to a singular point
of T , our statement for D2p-covers follows. The last statement follows from Proposition
2.1. ¤

We end this section by considering the case when S is a rational elliptic surface. In
this case, as χ(OS) = 1, the ruled surface in the the double cover diagram (1.1) for S is
Σ2. Hence we have the following diagram:

S′

f ′

²²

S
µoo

f

²²
Σ2 Σ̂2.q

oo

Write q := q1 ◦ · · · ◦ qr : Σ̂2 = Σ(r)
2 → · · · → Σ(1)

2 → Σ(0)
2 = Σ2, where qi is a blowing up

at a point at Σ(i−1)
2 . Put ∆f ′ = ∆0 + T . In the following, we assume that

T has a node xo.

Note that this is equivalent to the fact that S has a singular fiber of type I2 or III by
[14, Table 6.2]. We may assume that q1 is a blowing-up at xo. Let E1 be the exceptional
divisor of q1 and let fo and T be the proper transforms of a fiber, fo, through xo and T ,
respectively. Then we have the following picture:

Note that if fo meets both of the local branches of T at xo transversely, we have the
case (a), while if fo is tangent to one of the local branches of T at xo, we have the case
(b).

Blow down fo and ∆0 in this order. Then the resulting surface is P2. We denote
this composition of blowing downs by q1 : Σ(1)

2 → P2 and put Q := q1(T ). Then Q is a
reduced quartic with the distinguished point zo := q1(fo ∪∆0). Note that q1(E1) is the
tangent line Lzo of Q at zo. Put q := q1 ◦ q2 ◦ · · · ◦ qr and we have the following diagram:
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The case (a).

The case (b).

S′′

f ′′

²²

S
µoo

f

²²
P2 Σ̂2.q

oo

Here q : S → S′′ is the Stein factorization of q ◦ f . Note that S′′ is a double cover with
branch locus Q and that the pencil of lines through zo gives rise to the elliptic fibration
of S. Now we have the following proposition.

Proposition 4.4. Let s1, s2 and s3 be sections as in Corollary 4.2 and put Ci :=
q(si) (i = 1, 2, 3). There is no homeomorphism h : (P2,Q+ C1 + C3) → (P2,Q+ C2 + C3)
such that h(Q) = Q. In particular, if (i) Q + C1 + C3 and Q + C2 + C3 have the same
combinatorics and (ii) the set of irreducible components of Q is invariant under the
induced bijection ϕIrr : Irr(Q + C1 + C2) → Irr(Q + C2 + C3) for any equivalence of the
combinatorics between Q+ C1 + C3 and Q+ C2 + C3, then (Q+ C1 + C3,Q+ C2 + C3) is
a Zariski pair.

Proof. Our statement is immediate from Proposition 2.1 and Corollary 4.2 and
the following lemma. ¤
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Lemma 4.5. Let p be an odd prime. For i = 1, 2, there exists a D2p-cover $p :
Xp → P2 of P2 branched at 2Q+p(Ci +C3) if and only if there exists an elliptic D2p-cover
πp : Xp → Σ̂2 of Σ̂2 such that the horizontal part of ∆β2(πp) is si + s3 + σ∗f (si + s3).

Proof. Suppose that there exists a D2p-cover $p : Xp → P2 branched at 2Q +
p(Ci + C3). Let $

(i)
p : X (i)

p → Σ(i)
2 be the induced D2p-cover, i.e., X (i)

p is the C(Xp)-
normalization of Σ(i)

2 . Since D(Xp/P2) = S′′ and β1($p) = f ′′, D(X (1)
p /Σ(1)

2 ) is the
C(S′′)-normalization of Σ(1)

2 . Hence ∆
β1($

(1)
p )

= ∆0 + T as q∗1Q = ∆0 + T + 2fo. This

implies that D(X (r)
p /Σ̂2) = S and β1($

(r)
p ) = f . As Ci = q ◦ f(si)(i = 1, 2, 3), $

(r)
p :

X (r)
p → Σ̂2 is an elliptic D2p-cover such that the horizontal part of ∆

β2($
(r)
p )

is si + s3 +

σ∗f (si + s3). Conversely, suppose that there exists an elliptic D2p-cover πp : Xp → Σ̂2

such that the horizontal part of ∆β2(πp) is si + s3 + σ∗f (si + s3). Since E1 gives rise to
an irreducible component “Θ1” of singular fiber of type I2 or III, the preimage of E1 in
Σ̂2 is not contained in the branch locus of πp by Corollary 2.4 and Remark 1.5. Now let
Xp be the Stein factorization of q ◦ πp. Then the induced D2p-cover πp : Xp → P2 is
branched at 2Q+ p(Ci + C3). ¤

5. Proof of Theorem 5.

Proof of Theorem 5 (i). Put Q = C1+L1+L2 and choose a point zo ∈ C1∩C2

as the distinguished point. Let f ′′Q : S′′Q → P2 be a double cover with branch locus Q
and let ϕzo

: S(Q,zo) → P1 be the rational elliptic surface as in Section 4. By our
construction of SQ,zo

, both L3 and L4 give rise to sections, which we denote by s+
Li

and
s−Li

(= σ∗fs+
Li

= [−1]sLi
) (i = 3, 4), respectively. Reducible singular fibers of ϕzo

are
of type I2 or III depending on zo. As the difference between I2 and III does not affect
computation below, we may assume that all reducible singular fibers are of type I2. By
labeling singular fibers suitably, we may assume that s+

Li
(i = 3, 4) and reducible singular

fibers meet as in the following picture:

Here we assume that Θ1,0 and O come from zo. By the explicit formula of 〈 , 〉, we
have

〈
s±Li

, s±Li

〉
=

1
2
, (i = 3, 4)

〈
s+

L3
, s+

L4

〉
= 0.
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By [16], MW(S(Q,zo)) ∼= (A∗1)
⊕2 ⊕ (Z/2Z)⊕2 and we may assume that

(A∗1)
⊕2 ∼= Zs+

L3
⊕ Zs+

L4
,

and that the 2-torsions sections arise from C1, L1 and L2.
As for (q ◦ f)∗(C2), it also gives rise to two sections s±C2

. Since C2 does not pass
through any singularities of Q and s±C2

O = 0, we have 〈s±C2
, s±C2

〉 = 2.
On the other hand, any element s ∈ MW(S(Q,zo)) with 〈s, s〉 = 2 is of the form

[2]s±Li
+̇ τ, (i = 3, 4) τ ∈ MW(S(Q,zo))tor.

If τ 6= 0, then s±C2
meets Θi,1 for some i by considering the addition on singular fibers (see

[11, Theorem 9.1] or [27, Section 1]). Hence, by the explicit formula for 〈 , 〉, we have
s±C2

O 6= 0. On the other hand, s±C2
O = 0 by our construction. Thus we infer τ = 0 and

we may assume that s+
C2

= [2]s+
L3

after relabeling ±, L3 and L4, if necessary. Therefore

s+
C2

+̇ [p− 2]s+
L3
∈ [p]MW(S(Q,zo))

for any odd prime p, while

s+
C2

+̇ [k]s+
L4
6∈ [p]MW(S(Q,zo))

for any odd prime p and 1 ≤ k ≤ p − 1. As for any equivalence of the combinatorics
between Q + C2 + L3 and Q + C2 + L4, {C1, L1, L2} is invariant under the induced
bijection ϕIrr : Irr(Q + C2 + L3) → Irr(Q + C2 + L4), by Proposition 4.4, we infer that
(Q+ C2 + L3,Q+ C2 + L4) is a Zariski pair. ¤

Proof for Theorem 5 (ii). Put Q = C1 + C2 and choose a point zo ∈ C1 ∩ C3

as the distinguished point. Let f ′′Q : S′′Q → P2 be a double cover with branch locus
Q and let ϕzo

: S(Q,zo) → P1 be the rational elliptic surface as in Section 4. By our
construction of SQ,zo

, L0, L1 and L2 give rise to sections, which we denote by s+
Li

and
s−Li

(= σ∗fs+
Li

= [−1]sLi
) (i = 0, 1, 2), respectively. Likewise our proof for Theorem 5 (i),

we may also assume that all reducible singular fibers are of type I2. By labeling singular
fibers suitably, we may assume that s+

Li
(i = 0, 1, 2) and reducible singular fibers meet

as in the following picture:
Here we assume that Θ1,0 and O come from zo. By the explicit formula of 〈 , 〉, we

have

〈
s±Li

, s±Li

〉
=

1
2
, (i = 0, 1, 2)

〈
s+

Li
, s+

Lj

〉
= 0. (i, j = 0, 1, 2, i 6= j)

By [16], MW(S(Q,zo)) ∼= (A∗1)
⊕3 ⊕ (Z/2Z) and we may assume that

(A∗1)
⊕3 ∼= Zs+

L0
⊕ Zs+

L1
⊕ Zs+

L2
,
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and that the unique 2-torsion section arises from C1.
By [11, Theorem 9.1], [2]s±Li

(i = 0, 1, 2) meet the identity component at each
singular fiber. Hence by the explicit formula for 〈 , 〉, we have [2]s±Li

O = 0 for each i.
This implies that, for each i, CLi

:= q ◦ f([2]s±Li
) is a conic not passing through Pj

(j = 1, 2, 3, 4). If CLi
and Q has an intersection point at which intersection multiplicity

is odd, then we easily see that the closure of (q ◦ f)−1(CLi \ zo) is irreducible. This is
impossible, as CLi is the image of [2]s±Li

. Hence we have three conic satisfying the first
two conditions.

Conversely, suppose that there exists a conic Co satisfying the first two conditions.
We infer that Co gives rise to two sections s±Co

. Since Co does not pass through any
singularities of Q and s±Co

O = 0, we have 〈s±Co
, s±Co

〉 = 2. On the other hand, any
element s ∈ MW(S(Q,zo)) with 〈s, s〉 = 2 is of the form

[2]s±Li
+̇ τ, (i = 0, 1, 2) τ ∈ MW(S(Q,zo))tor.

By a similar argument to that in the case of Conic-line arrangement 1, we infer that
τ = 0. Hence CLi

(i = 0, 1, 2) are only conics satisfying the first two conditions and no
other such conics. Now we may assume that C

(i)
3 := CLi

and s+

C
(i)
3

:= [2]s+
Li

(i = 0, 1, 2).

For i, j = 0, 1, 2 (i 6= j), we have

s+

C
(i)
3

+̇ [p− 2]s+
Li
∈ [p]MW(S(Q,zo))

for any odd prime p, while

s+

C
(i)
3

+̇ [k]s+
Lj
6∈ [p]MW(S(Q,zo))

for any odd prime p and 1 ≤ k ≤ p− 1.
Now suppose that both of Q+ C

(i)
3 + Li and Q+ C

(i)
3 + Lj have the combinatorics

for Conic-line arrangement 2 of the same type. Then, as for any equivalence of the
combinatorics between Q + C

(i)
3 + Li and Q + C

(i)
3 + Lj (i, j = 0, 1, 2, i 6= j), {C1, C2}

is invariant under the induced bijection ϕIrr : Irr(Q + C
(i)
3 + Li) → Irr(Q + C

(i)
3 + Lj),

(Q+ C
(i)
3 + Li,Q+ C

(i)
3 + Lj) (i, j = 0, 1, 2, i 6= j) are Zariski pairs by Proposition 4.4.

¤
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Remark 5.1. Let B be one of the conic-line arrangements as in Theorem 5. By
Corollary 2.4, if there exists a D2p-cover π : X → P2 with branch locus B, then ∆β1(π) =
L1 + L2 + C1 (resp. C1 + C2) for Conic-line arrangement 1 (resp. 2). This means that
the D2p-covers in our proof of Theorem 5 are the only possible ones. Therefore for the
fundamental group π1(P2 \B, ∗), we infer that

π1(P2 \ (C1 + C2 + L1 + L2 + L3), ∗) 6∼= π1(P2 \ (C1 + C2 + L1 + L2 + L4), ∗)

for Conic-line arrangement 1, and

π1(P2 \ (C1 + C2 + C
(i)
3 + Li), ∗) 6∼= π1(P2 \ (C1 + C2 + C

(i)
3 + Lj), ∗) (i 6= j)

for Conic-line arrangement 2. In particular, the complements are not homeomorphic for
both of Conic-line arrangements 1 and 2.

Example 5.2. Let [T, X, Z] be homogeneous coordinates of P2 and let (t, x) :=
(T/Z, X/Z) be affine coordinates for C2 = P2 \ {Z = 0} and consider a conic and four
lines as follows:

C1 : x− t2 = 0, L1 : x− 3t + 2 = 0, L2 : x + 3t + 2 = 0,

L3 : x− t− 2 = 0, L4 : x− 1 = 0.

Note that C1∩(L1∪L2) = {[±1, 1, 1], [±2, 4, 1]}. Put Q = C1+L1+L2 and choose [0, 1, 0]
as the distinguished point zo. Let S(Q,zo) be the rational elliptic surface obtained as in
Section 4. Then its generic fiber is an elliptic curve over C(t) given by the Weierstrass
equation:

y2 = (x− t2)(x− 3t + 2)(x + 3t + 2).

Under this setting, we may assume that the sections s±Li
(i = 3, 4) are as follows:

s±L3
=

(
t + 2,±2

√
2(t− 2)(t + 1)

)
, s±L4

= (1,±3(t + 1)(t− 1)).

Hence we have

[2]s+
L3

=
(

9
8
t2,

1
32

√
2t(9t2 − 16)

)
, [2]s+

L4
=

(
t2 +

1
4
,
1
2
t2 − 9

8

)
.

Now put

C2 : x− 9
8
t2 = 0, C ′2 : x− t2 − 1

4
= 0.

Then (Q+ C2 + L3,Q+ C2 + L4) is a Zariski pair for Conic-line arrangement 1 of type
(a), and (Q + C ′2 + L3,Q + C ′2 + L4) is a Zariski pair for Conic-line arrangement 1 of
type (b).
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Example 5.3. We keep the same coordinates as Example 5.2.

Conic-line arrangement 2 of type (a). Consider two conics and two lines:

C1 : x− t2 + 2 = 0, C2 : x2 − 2x + t2 − 4 = 0,

L1 : x− t = 0, L2 : x− 3t + 4 = 0.

Note that C1 ∩ C2 = {[±2, 2, 1], [±1,−1, 1]}. Put Q = C1 + C2 and choose [0, 1, 0] as
the distinguished point zo. Let S(Q,zo) be the rational elliptic surface obtained as before.
Then its generic fiber is an elliptic curve over C(t) given by the Weierstrass equation:

y2 = (x− t2 + 2)(x2 − 2x + t2 − 4).

Then we may assume that the sections s±L2
(i = 1, 2) are as follows:

s±L1
=

(
t,±√−2(t + 1)(t− 2)

)
, s±L2

=
(
3t− 4,±√−10(t− 1)(t− 2)

)
.

Thus we have

[2]s+
L1

=
(

1
2
t2 − 2,−1

4
√−2t(t2 − 4)

)
, [2]s+

L2
=

(
1
10

t2 − 2,− 3
100

√−10t(t2 + 20)
)

.

Now we put

C3 : x− 1
2
t2 + 2 = 0, C ′3 : x− 1

10
t2 + 2 = 0.

Then both (Q+ C3 + L1,Q+ C3 + L2) and (Q+ C ′3 + L1,Q+ C ′3 + L2) are Zariski pairs
for Conic-line arrangement 2 of type (a).

Conic-line arrangement 2 of type (b). Consider two conics and two lines:

C1 : x− t2 + 2 = 0, C2 : x2 − 2x + t2 − 4 = 0,

L1 : x− t = 0, L2 : x + 1 = 0.

Put Q = C1 + C2 and choose [0, 1, 0] as the distinguished point zo. Let S(Q,zo) be the
rational elliptic surface obtained as before. Then its generic fiber is an elliptic curve over
C(t) given by the Weierstrass equation:

y2 = (x− t2 + 2)(x2 − 2x + t2 − 4).

Then we may assume that the sections s±L2
(i = 1, 2) is as follows:

s±L2
=

(− 1,±√−1(t− 1)(t + 1)
)
.
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Thus we have

[2]s+
L2

=
(

t2 − 17
4

,
3
8
√−1(4t2 − 19)

)
.

Now we put

C3 : x− t2 +
17
4

= 0.

As C3 is tangent to C1 (resp. C2) at one point (resp. two distinct points), we infer that
(Q+ C3 + L1,Q+ C3 + L2) is a Zariski pair for Conic-line arrangement 2 of type (b).

Conic-line arrangement 2 of type (c). Consider two conics and two lines:

C1 : x− t2 +
1
2

= 0, C2 : x2 − x + t2 = 0,

L1 : x =
1√
2
, L2 :

√
2

4
(√−1c1 − c2

)
x + t− 1

4
(√−1c1 + c2

)
= 0,

where c1 =
√

2 + 2
√

2, c2 =
√
−2 + 2

√
2. Note that

C1 ∩ C2 =
{[
±

√
−1/2 + 1/

√
2, 1/

√
2, 1

]
,
[
±

√
−1/2− 1/

√
2,−1/

√
2, 1

]}
.

Put Q = C1 + C2 and choose [0, 1, 0] as the distinguished point zo. Let S(Q,zo) be the
rational elliptic surface obtained as before. Then its generic fiber is an elliptic curve over
C(t) given by the Weierstrass equation:

y2 =
(

x− t2 − 1
2

)
(x2 − x + t2).

Then we may assume that the sections s±L1
are as follows:

s±L1
=

(
1√
2
,±
√−1

2
(− 2t2 − 1 +

√
2
))

.

Thus we have

[2]s+
L1

=
(

t2,

√
−1

2
t2

)
.

Now we put

C3 : x− t2 = 0
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Then (Q+ C3 + L1,Q+ C3 + L2) is a Zariski pair for Conic-line arrangement 2 of type
(c).

Remark 5.4. Note that we have examples with real equations in Examples 5.2
and 5.3 except the case of Conic-line arrangement 2 of type (c).

We end this section by giving another example of a Zariski pair whose irreducible
components are all rational curves:

Proposition 5.5. Let Q be an irreducible quartic with a D4 singularity, P . Let zo

be a point on Q such that the tangent line Lzo at zo meets Q with two other distinct points.
Let L1, L2 and L3 be the three tangent lines which meet Q at P with multiplicity 4 (i.e.,
the tangent lines to the smooth branches). Then there exist three conics Ci (i = 1, 2, 3)
satisfying the following properties:

( i ) (a) zo ∈ Ci, (b) P 6∈ Ci and (c) for ∀x ∈ Ci ∩Q, Ix(Ci,Q) is even.
( ii ) For any odd prime p, there exists a D2p-cover of P2 branched at 2Q+p(Ci+Li) for

each i = 1, 2, 3, while there exists no D2p-cover of P2 branched at 2Q+ p(Ci + Lj)
for any i, j (i 6= j).

Proof. (i) Let f ′′Q → P2 be a double cover with branch locus Q and let ϕzo :
S(Q,zo) → P1 be the rational elliptic surface obtained as in Section 4. By our assumption
on Q and zo, the configuration of reducible singular fiber of ϕzo

is I∗0, I2 and three lines
Li (i = 1, 2, 3) give rise to sections s±Li

(i = 1, 2, 3), respectively. By labeling irreducible
components of singular fibers suitably, we have the following picture for s+

Li
(i = 1, 2, 3):

By the explicit formula for 〈 , 〉, we have

〈
s+

Li
, s+

Li

〉
=

1
2

(i = 1, 2, 3),
〈
s+

Li
, s+

Lj

〉
= 0 (i 6= j).

By [16], we have MW(S(Q,zo)) ∼= (A∗1)
⊕3. Hence we may assume that

MW(SQ,zo
) ∼= Zs+

L1
⊕ Zs+

L2
⊕ Zs+

L3
.

By the lattice structure of MW(SQ,zo
), all elements s ∈ MW(SQ,zo

) with 〈s, s〉 = 2
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given by [2]s±Li
(i = 1, 2, 3). By [11, Theorem 9.1], [2]s±Li

(i = 1, 2, 3) meet the identity
component at each singular fiber. Hence, [2]s±Li

O = 0 (i = 1, 2, 3) by the explicit formula
for 〈 , 〉. By our construction of S(Q,zo), ∆i := q ◦ f([2]s±Li

) ∼ ∆0 + 2f (i = 1, 2, 3).
Hence Ci := q ◦ f([2]s±Li

) (i = 1, 2, 3) are all conic and zo ∈ Ci, P 6∈ Ci. Moreover as
[2]s+

Li
6= [2]s−LI

(i = 1, 2, 3), our assertion for the intersection multiplicities follows.
(ii) By Corollary 4.2 and Lemma 4.5, our statement follows. ¤

Corollary 5.6. If Li and Lj (i 6= j) meet Ci transversely, then (Q+Li +Ci,Q+
Lj + Ci) is a Zariski pair.

Proof. Since the combinatorics of Q + Li + Ci and Q + Lj + Ci are the same,
our assertion follows from Proposition 5.5. ¤

Remark 5.7. First examples of Zariski pairs whose are all rational curves appeared
in [4].

Example 5.8. We keep the same coordinates as in Examples 5.2 and 5.3. Consider
Q,L1 and L2 as follows:

Q : fQ(t, x) := x3 +
343
64

(
121
49

t2+
768
2401

t

)
x2 +

343
64

(
384
2401

t2+
92
49

t3
)

x +
35
16

t4 +
1
7
t3 = 0

L1 : x + t = 0, L2 : x− ζ3 − 2
7

t = 0, ζ3 = exp(2πi/3).

Q is irreducible and has a D4 singularity at (0, 0). Both L1 and L2 meet Q at (0, 0) with
multiplicity 4. Choose [0, 1, 0] as the distinguished point zo. Let S(Q,zo) be the rational
elliptic surface obtained as before. Then its generic fiber is an elliptic curve over C(t)
given by the Weierstrass equation y2 = fQ(t, x). Under these circumstances, we have

s±L1
=

(
− t,±

√
343
8

t2
)

, s±L2
=

(
ζ3 − 2

7
t,±

√
71 + 39

√−3
8
√

14
t2

)
.

Then we have

[2]s+
L1

=
(

144
16807

− 127
343

t− 19
28

t2,−
√

7(55296 + 1947456t + 1450204t2 + 167649825t3)
184473632

)
.

Now put

C : x− 144
16807

+
127
343

t +
19
28

t2 = 0.

Since one can see that both of L1 and L2 meet C with two distinct points, Q+ C + L1

and Q+C +L2 have the same combinatorics. By Corollary 5.6, (Q+C +L1,Q+C +L2)
is a Zariski pair.
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