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Abstract. The aim of this work is the description of the isomorphism
classes of all Leavitt path algebras coming from graphs satisfying Condition
(Sing) with up to three vertices. In particular, this classification recovers the
one achieved by Abrams et al. [1] in the case of graphs whose Leavitt path
algebras are purely infinite simple. The description of the isomorphism classes
is given in terms of a series of invariants including the K0 group, the socle,
the number of loops with no exits and the number of hereditary and saturated
subsets of the graph.

Introduction.

For a graph E and field K, the Leavitt path algebras LK(E) can be regarded as
both a broad generalization of the algebras constructed by W. G. Leavitt in [31], [32]
to produce rings that do not satisfy the IBN property, and as the algebraic siblings of
the graph C∗-algebras C∗(E) [24], [34], which in turn are the analytic counterpart and
descendant from the algebras investigated by J. Cuntz in [26], [27].

The first appearance of LK(E) took place in the papers [2] and [14], in the context
of row-finite graphs (countable graphs such that every vertex emits only a finite number
of edges). Although their history is very recent, a flurry of activity has followed since
the beginning of the theory, in several different directions: characterization of algebraic
properties of LK(E) in terms of graph properties of E (see for instance [2], [3], [5], [20]);
study of the modules over LK(E) in [12], [18] among others; computation of various
substructures such as the Jacobson radical, the center, the socle and the singular ideal
in [4], [16], [18], [35] respectively; investigation of the relationship and connections with
C∗(E) and general C∗-algebras [11], [14], [17], [21]; generalization to countable but not
necessarily row-finite graphs in [4], [19], [36], and then for completely arbitrary graphs
in [9], [10], [22], [29]; K-Theory [12], [13], [14]; and classification programs [1], [8].

This last line of research is the main concern of this paper. Concretely, we classify
Leavitt path algebras of graphs of up to three vertices without parallel edges or, in a more
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standard terminology, graphs satisfying Condition (Sing). Given the particular nature
of our task, we employ a taxonomic modus operandi which some people would associate
with biology rather than mathematics. Thus, in order to achieve our goal, we will apply
several known invariants for Leavitt path algebras (i.e., properties or structures that
are preserved by ring isomorphisms between Leavitt path algebras) as well as find and
prove some other completely new, thus contributing as a byproduct to finding further
characterizations and relations of algebraic properties of LK(E) with graph-theoretic
properties of E.

In particular, our classification allows to recover the result by Abrams et al. [1,
Proposition 4.2] in which they showed that the information on the K0 groups and order
unit [1LK(E)] is enough to classify purely infinite simple unital Leavitt path algebras.
We completely remove the condition of being “purely infinite simple” and find a set of
invariants (now including more that merely the basic K-theory data) that can distinguish
any two Leavitt path algebras of the graphs within our scope, building in this way the
“atlas of Leavitt path algebras of small graphs”.

Concretely, the main results of this paper can be read as follows:
“If two Leavitt path algebras in some specified class (those whose underlying graph

has three vertices or less and satisfies Condition (Sing)) have the same easily computed
ring-theoretic information, then they are isomorphic”.

Or, from a more graph-theoretic point of view:
“If two directed graphs in a specified class (those whose underlying graph has three

vertices or less and satisfies Condition (Sing)) have the same easily computed graph-
theoretic quantities, then the graphs are in the same equivalence class according to
isomorphisms of Leavitt path algebras”.

The reason why both [1, Proposition 4.2] and our results in this article (Theorems
4.7 and 4.8) focus on the family {E | E has Condition (Sing) and |E0| ≤ 3} are natural:
on the one hand it was proved in [1, Proposition 3.4] that every purely infinite simple
Leavitt path algebra is isomorphic to some other having an underlying graph that satisfies
Condition (Sing) (actually this result can be carried over for not necessarily purely infinite
Leavitt path algebras if we forget about some conditions that are not needed for our
purposes, such as the cardinals of the sets of edges). Thus, in order to classify all
the Leavitt path algebras, it is enough to classify those generated by graphs satisfying
Condition (Sing).

Moreover, in the enterprise of completing an atlas for Leavitt path algebras, the
Condition (Sing) is compulsory, because as soon as we allow arbitrary parallel edges in
our graphs, we obtain infinite families of non-isomorphic Leavitt path algebras. Indeed,
for any n ∈ N the graph

•v 44//
n)

** •w

is such that LK(En) ∼= Mn(K) and hence {LK(En) | n ∈ N} is an infinite family of
mutually non-isomorphic Leavitt path algebras of graphs of order two.

In the current state of the art concerning the classification of Leavitt path algebras,
the condition that |E0| ≤ 3 is necessary. If we think of the case n = 4, for which
there would be 3044 graphs to be studied, even though the classification would still be
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tractable from a computational point of view (because of the “not so large” size), the
difficulty arises because it is not clear which collection of invariants will be fine enough
to get this desired classification. To enlighten this statement, we refer the reader to [25],
where a first approach to this problem is tackled and where the authors explain which
are the difficulties to get the classification in the case n = 4. Note that they restrict their
attention to those Leavitt path algebras which are simple.

The way to proceed will be to use a matrix approach based on adjacency matrices
(graphs satisfying Condition (Sing) have binary adjacency matrices, that is, matrices
with entries in the set {0, 1}). The abundance of properties of LK(E) which can be
investigated directly in the graph E (or equivalently in its adjacency matrix) together
with the fact that matrices can be handled with computational techniques, imply that
matrix methods can be successfully exploited in the classification of Leavitt path algebras.

One of the drawbacks of the adjacency matrix approach is that different matrices
can represent the same graph (up to relabeling of vertices): if a matrix B can be obtained
from a matrix A by a series of (simultaneous) permutations of rows and columns, then
A and B represent isomorphic graphs, so first we have the problem of classifying orbits
of the action of the symmetric group Sn on the set of binary n× n matrices.

Once this has been done, further computational tools are applied to eliminate ma-
trices which agree after a shift process (it is known [1, Theorem 2.3] that shift graphs
produce isomorphic Leavitt path algebras although in this version additional hypothesis
on the field have been added, it is possible to use the result as whenever a linear map
is surjective, if a scalar extension of such is a monomorphism, then the original map is
also injective). Thus, after taking one representative of each orbit (under the action of
Sn) and eliminating coincident matrices (up to shift process), we get a restricted list of
matrices that represent the graphs of the Leavitt path algebras that must be classified.

In order to do that, we set up a list of invariants. Some of them are well-known,
such as the K0 groups, the socle, the order units [1LK(E)], etc.; and some of them have
been found, proved, and tailored here specifically for our purposes, such as the number of
hereditary and saturated subsets of vertices, the number of isolated loops, the quotient
modulo the only nontrivial hereditary and saturated subset (when this is the case), etc.

In any case, even graph-theoretic data in the table also have an algebraic nature:
ILN characterizes the number of ideals generated by idempotents that are isomorphic
to K[x, x−1], HS is the number of ideals generated by idempotents and MT3+L charac-
terizes primitivity. The reason to include these graph-theoretic invariants in the tables,
rather than their algebraic equivalents, is because the first ones are easily recognized and
computed for any given graph.

For all the computations we have implemented and used pieces of Magma and Math-
ematica codes, which we list in the Appendix. Specifically, and for optimization reasons,
the computation of the invariants has been performed by the Mathematica software,
whereas for the calculation of the orbits and shift graphs the Magma software has been
used instead, as it proved to be faster and more efficient for these purposes. The reading
of these codes can be of interest in order to learn how the K0 group is computed as well
as the process by which some redundant graphs (i.e., those that already belong to some
existing orbit and also those that appear as shifts of some other, as explained before)
have been eliminated and do not appear in the tables.
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1. Definitions.

In this section we collect various notions concerning graphs, after which we define
Leavitt path algebras.

A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1 together with
maps r, s : E1 → E0. The elements of E0 are called vertices and the elements of E1 edges.
For e ∈ E1, the vertices s(e) and r(e) are called the source and range of e, respectively,
and e is said to be an edge from s(e) to r(e). If s−1(v) is a finite set for every v ∈ E0,
then the graph is called row-finite.

If E0 is finite and E is row-finite, then E1 must necessarily be finite as well; in this
case we say simply that E is finite. Even though many of the results of the paper hold
for not necessarily finite or row-finite graphs, we will assume that our graphs are finite,
unless otherwise noted. By order of a finite graph E we will understand the cardinal of
E0. In what follows, for any set X, we will denote the cardinal of X by |X|.

A vertex which emits no edges is called a sink. A path µ in a graph E is a finite
sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1) for i = 1, . . . , n−1. In this case,
s(µ) = s(e1) and r(µ) = r(en) are the source and range of µ, respectively, and n is the
length of µ, denoted by l(µ). We view the elements of E0 as paths of length 0. Define
Path(E) to be the set of all paths.

If µ is a path in E, and if v = s(µ) = r(µ), then µ is called a closed path based at v.
If s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle. A cycle with
length 1 is called a loop. If the loop e is such that s−1(s(e)) = {e} = r−1(r(e)) we call it
an isolated loop. A graph which contains no cycles is called acyclic.

An edge e is an exit for a path µ = e1 . . . en if there exists i such that s(e) = s(ei)
and e 6= ei. We say that E satisfies Condition (L) if every cycle in E has an exit.

We define a relation ≥ on E0 by setting v ≥ w if there exists a path in E from v to
w. In this situation we say that v connects to w. A subset H of E0 is called hereditary
if v ≥ w and v ∈ H imply w ∈ H. A hereditary set is saturated if every regular vertex
which feeds into H and only into H is again in H, that is, if s−1(v) 6= ∅ is finite and
r(s−1(v)) ⊆ H imply v ∈ H. Denote by HE the set of hereditary saturated subsets of
E0.

The set T (v) = {w ∈ E0 | v ≥ w} is the tree of v, and it is the smallest hereditary
subset of E0 containing v. We extend this definition for an arbitrary set X ⊆ E0 by
T (X) =

⋃
x∈X T (x). The hereditary saturated closure of a set X is defined as the smallest

hereditary and saturated subset of E0 containing X. It is shown in [14], [23] that the
hereditary saturated closure of a set X is X =

⋃∞
n=0 Λn(X), where

Λ0(X) = T (X), and

Λn(X) = {y ∈ E0 | s−1(y) 6= ∅ and r(s−1(y)) ⊆ Λn−1(X)} ∪ Λn−1(X), for n ≥ 1.

Let K be an arbitrary field and E be a row-finite graph. The Leavitt path K-algebra
LK(E) is defined to be the K-algebra generated by the set E0 ∪E1 ∪ {e∗ | e ∈ E1} with
the following relations:

(V) vw = δv,wv for all v, w ∈ E0.
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(E1) s(e)e = er(e) = e for all e ∈ E1.
(E2) r(e)e∗ = e∗s(e) = e∗ for all e ∈ E1.
(CK1) e∗f = δe,fr(e) for all e, f ∈ E1.
(CK2) v =

∑
e∈s−1(v) ee∗ for every v ∈ E0 that is not a sink.

Relation (V) is related to vertices, (E1) and (E2) refer to edges, while the names
Cuntz and Krieger give rise to the letters which comprise the notation (CK1) and (CK2)
(notation which is now standard in both the algebraic and the analytic literature).

The elements of E1 are called real edges, while for e ∈ E1 we call e∗ a ghost edge.
The set {e∗ | e ∈ E1} will be denoted by (E1)∗. We let r(e∗) denote s(e), and we let
s(e∗) denote r(e). If µ = e1 . . . en is a path in E, we write µ∗ for the element e∗n . . . e∗1 of
LK(E). For any subset H of E0, we will denote by I(H) the ideal of LK(E) generated
by H. Note that if E is a finite graph, then LK(E) is unital with

∑
v∈E0 v = 1LK(E);

otherwise, LK(E) is a ring with a set of local units consisting of sums of distinct vertices.
The Leavitt path algebra LK(E) is a Z-graded K-algebra, spanned as a K-vector

space by {pq∗ | p, q ∈ Path(E)}. (Recall that the elements of E0 are viewed as paths of
length 0, so that this set includes elements of the form v with v ∈ E0.) In particular, for
each n ∈ Z, the degree n component LK(E)n is spanned by {pq∗ | p, q ∈ Path(E), l(p)−
l(q) = n}.

For a hereditary subset H of E0, the quotient graph E/H is defined as

(
E0 \H, {e ∈ E1 | r(e) 6∈ H}, r|(E/H)1 , s|(E/H)1

)
,

and [20, Lemma 2.3 (1)] shows that if H is hereditary and saturated, then LK(E)/I(H) ∼=
LK(E/H), isomorphism of Z-graded K-algebras.

Given a graph E, the adjacency matrix is the matrix AE = (aij) ∈ Z(E0×E0), given
by aij = |{edges from i to j}|.

Even though Leavitt path algebras are Z-graded K-algebras with involution ∗, all
our homomorphisms and isomorphism will be ring morphisms (not necessarily graded
morphisms, or algebra morphisms, or ∗-morphisms). In particular when we say that a
property (P) is an invariant for Leavitt path algebras we mean that if a graph E satisfies
(P) and there exists a ring isomorphism f : LK(E) → LK(F ), then F necessarily satisfies
(P). For more on the subtleties regarding the differences and connections between ring,
algebra, and *-algebra isomorphisms between LK(E) and LK(F ), we refer the reader to
[11].

2. Matrix techniques.

A useful way to work with finite order graphs is to consider their adjacency matrices.
Consider for instance the graphs

•2 •1 //oo •3 •1 •2 //oo •3

whose adjacency matrices are
(

0 1 1
0 0 0
0 0 0

)
and

(
0 0 0
1 0 1
0 0 0

)
, respectively. The two graphs are

essentially the same (i.e., they are isomorphic graphs) although the matrices are different.
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It is easy to prove that when we permute two vertices in a graph, the corresponding
adjacency matrices are related by a composition of permutations of rows and columns
(so they are similar matrices). In the example above the second matrix is obtained by
permuting rows and columns 1 and 2 of the first matrix.

If we have a graph E with vertices labeled {1, 2, . . . , n} and permute labels i and
j we get a new graph E′. Then, denoting by M and M ′ the corresponding adjacency
matrices we may relate them as follows: consider the n × n integer matrix eij with
all entries 0 except for the (i, j) one which is 1. Consider also, for i 6= j, the matrix
Iij := 1 − eii − ejj + eij + eji, that is, the identity matrix with rows i and j permuted.
We have I2

ij = 1 so that Iij ∈ GLn(Z). As it is well known, for any matrix M the new
matrix M ′ = IijMIij agrees with M except for the fact that rows and columns i and j

of M are permuted in the new matrix.
Since E and E′ are isomorphic graphs, the matrices M and M ′ represent the same

graph. In other words, the problem of classifying graphs (up to isomorphism) of a given
order is equivalent to that of studying the orbits of the subgroup 〈Iij : i 6= j〉 ≤ GLn(Z)
on Mn(Z) by the usual conjugation action.

On the other hand it is easy to check that the map 〈Iij : i 6= j〉 → Sn given by
Iij 7→ (ij) is a group isomorphism from our group of matrices to the symmetric group of
permutations of {1, . . . , n}, where (ij) denotes the permutation of elements i and j.

In other words, we are concerned with the problem of studying the action of the
symmetric group Sn on the set of binary n × n matrices, that is, on the set Mn(Z2)
which has cardinal 2n2

. To obtain some additional information on the complexity of this
problem we recall some basic results on actions of finite groups G on finite sets X. These
are given by maps G×X → X in which the action of g ∈ G on x ∈ X is denoted by gx.
Let us denote by X/G the set of orbits of X under the action of the group G. Then, as
it is well known,

|X/G| = 1
|G|

∑

g∈G

|Xg|, where Xg := {x ∈ X : gx = x}. (†)

Proposition 2.1. Denote by Φn the number of non-isomorphic graphs of order n

which satisfy Condition (Sing). Then Φ1 = 2, Φ2 = 10, Φ3 = 104 and Φ4 = 3044.

Proof. The case n = 1 is trivial. For the case n = 2 we need to calculate the
number of orbits of S2 = {1, (12)} on the set X = M2(Z2). In this case X1 = X so that
|X1| = 24 while X(12) is the set of matrices of the form

(
a b
b a

)
, which is a Z2-vector space

of dimension 2 hence has cardinal |X(12)| = 22. Therefore the number of non-isomorphic
graphs of order 2 is |X/S2| = (24 + 22)/2 = 10.

Let us consider n = 3 now. We have that Φ3 = |M3(Z2)/S3| so we must investigate
the summands Xg in formula (†), for g ∈ S3. It is worth realizing that in the formula
(†) we have |Xg| = |Xh| if g and h are conjugated. Since S3 = {1, (12), (13), (23), (123),
(132)} and the conjugacy classes in S3 are {1}, {(12), (13), (23)} and {(123), (132)}, we
have Φ3 = (|X1|+ 3|X(12)|+ 2|X(123)|)/6. On the other hand the matrices fixed by (12)

are those of the form
(

a b c
b a c
d d e

)
with a, b, c, d, e ∈ Z2. These constitute a vector space
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X(12) of dimension 5, hence |X(12)| = 25. The matrices fixed by (123) are those of the

form
(

a b c
c a b
b c a

)
with a, b, c ∈ Z2. In this case the vector space X(123) has dimension 3 and

therefore |X(123)| = 23. Thus Φ3 = (29 + 3 · 25 + 2 · 23)/3 = (512 + 96 + 16)/6 = 104.
The computations for S4 and X = M4(Z2) are as follows: there are five conjugacy

classes on S4 which are

• {1},
• {(12), (13), (14), (23), (24), (34)},
• {(123), (132), (124), (142), (134), (143), (234), (243)},
• {(12)(34), (13)(24), (14)(23)},
• {(1234), (1243), (1324), (1342), (1423), (1432)}.
Therefore Φ4 = (1/24)(X1 + 6X(12) + 8X(123) + 3X(12)(34) + 6X(1234)). Then |X1| =

|X| = 216. Moreover X(12), X(123), X(12)(34) and X(1234) are (respectively) the sets of
matrices:




a b c d

b a c d

e e x y

f f u v


 ,




λ a b z

b λ a z

a b λ z

t t t µ


 ,




a b x y

b a y x

x′ y′ c d

y′ x′ d c


 ,




λ µ γ δ

δ λ µ γ

γ δ λ µ

µ γ δ λ


 ,

where the parameters are all in Z2. Thus |X(12)| = 210, |X(123)| = 26, |X(12)(34)| = 28,
|X(1234)| = 24, and finally Φ4 = (1/24)(216 + 6 · 210 + 8 · 26 + 3 · 28 + 6 · 24) = 3044. ¤

The proposition above gives an idea of the super exponential growth of the number
of non-isomorphic graphs of a given order n satisfying Condition (Sing). In this paper,
we will deal only with the cases n = 1, 2, 3 as only those seem to be really tractable as
far as atlases are concerned.

3. Graphs of order one and two.

In this section we will classify the Leavitt path algebras of graphs with one and two
vertices satisfying Condition (Sing). The order one graphs satisfying Condition (Sing)
offer no difficulty; they are collected in the following table (it is well known that their
associated Leavitt path algebras are K and K[x, x−1]).

E LK(E)

• I1 K

• zz
I2 K[x, x−1]

Table 1. Case n = 1.

The disconnected order two graphs satisfying Condition (Sing) are:

• • • • zz • zz • zz

I1 × I1 I1 × I2 I2 × I2
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The Leavitt path algebras associated to these three graphs are non-isomorphic since
their socles (K2, K and 0, respectively) are mutually non-isomorphic. Actually, LK(I1×
I1) ∼= K ⊕K, LK(I1 × I2) ∼= K ⊕K[x, x−1] and LK(I2 × I2) ∼= K[x, x−1]⊕K[x, x−1].

Now we describe the Leavitt path algebras associated to order two connected graphs
which satisfy Condition (Sing). To this end we must study the orbits of the set S of
2 × 2 matrices with entries in Z2 under the action of the group S2 of row and column
permutation (generated by the matrix

(
0 1
1 0

)
). Thus, ruling out the matrices which stand

for disconnected graphs, the representatives of the orbits of S are

{(
1 1
1 1

)
,

(
1 1
1 0

)
,

(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
1 0
1 0

)
,

(
0 1
1 0

)
,

(
0 1
0 0

)}
.

The seven matrices above do correspond to non-isomorphic graphs. However, some
of them have isomorphic Leavitt path algebras as can be shown by using a shift graph
construction. For completeness we include here the basics of this construction and refer
the reader to [1] for more information.

Let E be a row-finite graph, and let v, w ∈ E0 be distinct vertices which are not
sinks. If there exists an injective map θ : s−1(w) → s−1(v) such that r(e) = r(θ(e)) for
every e ∈ s−1(w), we define the shift graph from v to w, denoted F = E(w ↪→ v), as
follows:

(1) F 0 = E0.
(2) F 1 = (E1 \ θ(s−1(w))) ∪ {fv,w}, where fv,w 6∈ E1, s(fv,w) = v and r(fv,w) = w.

The key result about shift graphs is [1, Theorem 2.3], which states that for any
row-finite graph E, any shift graph F = E(w ↪→ v) produces a Leavitt path algebra
isomorphic to LK(E). In what follows we will analyze the relationship between the
adjacency matrices M and N associated to the graphs E and F , respectively, when we
assume that both graphs are finite, of the same order, and satisfy Condition (Sing).

Thus, M = (mkl) and N = (nkl) are n × n-matrices with entries in Z2. For fixed
i, j ∈ {1, . . . , n}, we have N = Shij(M) (equivalently F = E(i ↪→ j)) when:

(1) mkl = nkl for all k 6= j and all l.
(2) njk = mjk −mik + δki for all k (here δ is the Kronecker delta).

In our case we find that
(

1 1
1 0

)
= Sh12

(
1 1
1 1

)
and

(
0 1
1 0

)
= Sh21

(
1 0
1 0

)
. Also, no other

shift process allows us to identify any other two matrices. Hence, after collecting one
representative of each orbit and applying the shift testing (see the Appendix for the
Magma codes), we get the following set of matrices:

{(
1 1
1 1

)
,

(
1 0
1 1

)
,

(
1 1
0 0

)
,

(
1 0
1 0

)
,

(
0 1
0 0

)}
.

These matrices correspond to the graphs we will denote II1, . . . , II5, which are given
by:

•$$ (( • zz
hh •$$ • zzoo •$$ // • •$$ •oo • // •
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With this last reduction, we have found a complete irredundant family of graphs
of order two satisfying Condition (Sing), i.e., whose Leavitt path algebras are non-
isomorphic. In order to show this we will use several invariants, namely, the K0 group,
the socle, and the cardinal of the set of hereditary and saturated subsets of vertices. We
proceed to describe each of them.

Recall that a sink in E is a vertex i ∈ E0 such that s−1(i) = ∅, that is, i does not
emit any edge. The set of sinks of E will be denoted by Sink(E). With this terminology
we can summarize the results on the K-theory of the Leavitt algebra LK(E), obtained
in [13], as follows.

Following [12] write NE and 1 for the matrices in Z(E0×E0\Sink(E)) obtained from
At

E and from the identity matrix after removing the columns corresponding to sinks.
Then there is a long exact sequence (n ∈ Z)

· · · → Kn(K)(E
0\Sink(E)) 1−NE−→ Kn(K)(E

0) −→ Kn(LK(E)) −→ Kn−1(K)(E
0\Sink(E)).

In particular K0(LK(E)) ∼= coker(1 − NE : Z(E0\Sink(E)) → Z(E0)). The effective
computation of the K0 group of a given LK(E) is explained in [1, Section 3] and in
[37, p. 32 and Example 3.31]. For self-containedness reasons we also include here an
example. Consider the graph E below

•1

•2 ++

>>~~~~~~~
•3kk

``@@@@@@@

whose adjacency matrix AE is

AE =




0 0 0
1 0 1
1 1 0


 which implies NE =




1 1
0 1
1 0


 , I =




0 0
1 0
0 1


 ,

I −NE =



−1 −1
1 −1
−1 1


 .

Applying PQ-reduction we get



−1 −1
1 −1
−1 1


 ∼




1 −1
−1 −1
−1 1


 ∼




1 −1
0 −2
0 0


 ∼




1 0
0 2
0 0


 .

Then coker(1 − NE : Z2 → Z3) agrees with the cokernel of the map Z2 → Z3 given by
(x, y) 7→ (x, 2y, 0) whose image is Z×2Z×0 and so the cokernel is (Z×Z×Z)/(Z×2Z×0) ∼=
Z2 × Z.

For a semiprime ring R, the socle is the sum of all minimal left ideals of R (equiva-
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lently, the sum of all minimal right ideals of R) and is defined to be zero if there are no
minimal one-sided ideals.

In order to compute the socle we need several results first. It has been proved in [18,
Theorem 4.2] that the socle of a Leavitt path algebra LK(E) is the ideal generated by
the so-called line points. We recall the definitions here: a vertex v in E0 is a bifurcation
(or there is a bifurcation at v) if s−1(v) has at least two elements. A vertex u in E0 will
be called a line point if there are neither bifurcations nor cycles at any vertex w ∈ T (u).
We will denote by Pl(E) the set of all line points in E0.

Our task here is to adapt [18, Theorem 4.2] to our context, concretely we are inter-
ested in finding a computational way to effectively compute the socle in the case of finite
graphs. In this situation, each line point connects to a sink, so that the ideal generated
by all the line points connected to the same sink is just the ideal generated by the sink.
Thus the socle is the ideal generated by the sinks of the graph.

Hence we must compute the ideal of LK(E) generated by a sink u. Denoting such
ideal by (u) := LK(E)uLK(E), it is clear (see [5, Lemma 3.1]) that it is generated by the
elements µτ∗ where µ, τ are paths such that r(µ) = r(τ) = u (either µ or τ can be the
trivial path u). To give an easier description of this ideal define Pu as the set of all paths
with range u. Define also for each µ, τ ∈ Pu the elements eµ,τ := µτ∗, eµ := eµ,µ = µµ∗.

All are in (u) and, moreover, it is easy to check that {eµ}µ∈Pu
is a connected set

of pairwise orthogonal idempotents, i.e., eµLK(E)eτ 6= 0 for each µ, τ ∈ Pu, because
0 6= µτ∗ = eµ(µτ∗)eτ ∈ eµLK(E)eτ . Another useful property is given in the following
lemma.

Lemma 3.1. Let E be a finite graph. For any two paths µ and τ such that r(µ)
and r(τ) are sinks we have:

eµLK(E)eτ =

{
Keµ,τ if r(µ) = r(τ),

0 otherwise.

Proof. Assume that both µ and τ are nontrivial paths. Consider a generator
ω := µµ∗(fg∗)ττ∗ of eµLK(E)eτ where f, g ∈ E1. If ω is nonzero then µ = fµ′, where
r(µ′) = r(µ) =: u (which is a sink), so ω = µµ′∗f∗fg∗ττ∗ = µµ′∗g∗ττ∗. On the other
hand, τ = gτ ′ for some path τ ′ such that r(τ ′) = r(τ) =: v (again a sink). Consequently
ω = µµ′∗g∗gτ ′τ∗ = µµ′∗τ ′τ∗.

Continuing in this way, we can keep on canceling out edges of the paths µ′ and τ ′.
If they have distinct length, say l(µ′∗) > l(τ ′) then µ′ = τ ′µ′′, with µ′′ a nontrivial path.
But this is impossible because s(µ′′) = r(τ ′) = r(τ) is a sink. Then l(µ′∗) = l(τ ′) so that
ω = µµ′∗τ ′τ∗ = µτ∗ = eµ,τ as needed. Finally, with obvious modifications, we can prove
it when either µ or τ are vertices. ¤

Recall that an idempotent e in a ring R is said to be a division idempotent if eRe is
a division ring.

Lemma 3.2. Let u be a sink of a finite graph E. Then {eµ}µ∈Pu
is a set of pairwise

orthogonal and connected division idempotents.



Atlas of Leavitt path algebras of small graphs 591

Proof. Suppose that the idempotents are not pairwise orthogonal. Then there
exist two different paths µ, τ ∈ Pu such that eµeτ = µµ∗ττ∗ 6= 0. In this situation only
two things can happen: either τ = µµ′ for some path µ′ or µ = ττ ′ for some path τ ′.
Since µ 6= τ by hypothesis, then µ′ (respectively τ ′) is nontrivial, and this is not possible
since it must start at s(µ′) = r(µ), which is a sink (respectively, at s(τ ′) = r(τ)).

Any two idempotents eµ and eτ are connected by Lemma 3.1, that is, eµLK(E)eτ =
Keµ,τ 6= 0 and each eµ is a division idempotent because eµLK(E)eµ is one-dimensional
(apply Lemma 3.1). ¤

Putting together all the information and the results above, we get the desired
computer-friendly description of the socle (see [33] for the implementations and expla-
nations of the socle-related Mathematica code).

Proposition 3.3. Let E be a finite graph and u1, . . . , un be the sinks of E. Then

Soc(LK(E)) ∼= M|Pu1 |(K)⊕ · · · ⊕M|Pun |(K),

where |Pui | = ∞ if Pui contains paths with cycles.

The final result we will introduce in this section concerns the hereditary and satu-
rated subsets of graphs whose Leavitt path algebras are isomorphic.

Proposition 3.4. Let E and F be row-finite graphs and let ϕ : LK(E) → LK(F )
be a ring isomorphism (not necessarily graded). Then:

( i ) If I is a graded ideal of LK(E), then ϕ(I) is a graded ideal of LK(F ).
( ii ) |HE | = |HF |.

Proof. (i) An ideal I in LK(E) is a graded ideal if and only if it is generated
by idempotents; in fact I = I(H), where H = I ∩ E0 ∈ HE (see the proofs of [14,
Proposition 5.2 and Theorem 5.3]). Since ring isomorphisms preserve idempotents, the
ideal ϕ(I) is generated by idempotents too, and hence it is graded.

(ii) By [14, Theorem 5.3] there exists a lattice isomorphism between HE and
Lgr(LK(E)) (the lattice of graded ideals of LK(E)). Now (i) implies the result. ¤

Definition 3.5. We define HSE (or HS when the graph is known) to be the
number |HE | − 2. By Proposition 3.4, it is an invariant for Leavitt path algebras.

The way to proceed in order to classify the Leavitt path algebras coming from order
two graphs will be to first arrange the Leavitt path algebras according to their K0 groups
and socles. Only two graphs agree on this data. For those, we compute HS in order to
distinguish their Leavitt path algebras. We collect this information in Table 2.

Further, we have included an explicit algebraic description of LK(E) when this alge-
bra is known; when it is not known we have included the symbol “−”: the eighth algebra
is L(1, 2) as can be shown by doing an out-split to the rose of 2-petals (see for instance
[1, Definition 2.6 and Theorem 2.8]); the fifth algebra is the algebraic Toeplitz algebra T
(several representations of this algebra have been given: as an algebra defined in terms
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of generators and relations in [30]; via endomorphisms of an infinite dimensional vector
space in [28], and as a Leavitt path algebra in [35]; actually an explicit isomorphism
between the Leavitt path algebra representation and the description given by Jacobson
appears in [12, Examples 4.3]); the isomorphism for the fourth one can be found in [7,
Corollary 3.4]; the rest is folklore (see for example [2]).

The lack of entries in a table (for instance, some entries are left blank in Table 2 in
the HS column) means that the data given by that particular invariant is not needed in
order to distinguish between two non-isomorphic Leavitt path algebras.

E K0 Soc HS LK(E)

• • Z2 K2 K2

• // • Z M2(K) M2(K)

•$$ • Z2 K K ⊕K[x, x−1]

•$$ •oo Z 0 0 M2(K[x, x−1])

•$$ // • Z M∞(K) T

•$$ • zz
Z2 0 K[x, x−1]2

•$$ • zzoo Z 0 1 —

•$$ (( • zz
hh 0 0 L(1, 2)

Table 2. Case n = 2.

We collect all the information above in the next theorem.

Theorem 3.6. There exist exactly 8 mutually non-isomorphic Leavitt path algebras
in the family L2 = {LK(E) | E satisfies Condition (Sing) and |E0| = 2 and a set
of graphs whose Leavitt path algebras are those in L2 is given in Table 2. A complete
system of invariants for L2 consists of the triple (K0, Soc, HS). Concretely, two Leavitt
path algebras in L2, LK(E) and LK(F ), are isomorphic as rings if and only if the data
of the previous invariants for E and F coincide.

4. Graphs of order three.

Now we investigate the Leavitt path algebras associated to graphs of three vertices
satisfying Condition (Sing). Their adjacency matrices are the elements ofM3(Z2). There
are 29 = 512 such matrices but, as in the previous section, we must consider the orbits of
this set under the action of the subgroup of GL3(Z2) generated by the matrices I12, I13,
I23. This subgroup is isomorphic to S3 and so it defines an action by conjugation on the
set of binary matrices M3(Z2). If we let the group S3 act on the set of 512 matrices we
find the representatives of the orbits, which form a set P of 104 matrices, by Proposition
2.1.

We explain below the procedure that has been used to generate the list containing
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the 104 matrices representing the graphs we are interested in (for the Magma code see the
Appendix). We create the matrix algebraM3(Z2) of order three matrices over the field of
two elements. Then S3 is the Magma name for the symmetric group S3 of permutations
of three elements and X is the underlying set of M3(Z2).

The function p2m carries out the standard isomorphism which passes from a per-
mutation of S3 to a 3× 3 matrix as indicated at the beginning of Section 2. The list gen

contains the generators of S3 in matrix form and then S3m is the subgroup of GL3(Z2)
isomorphic to S3. The function f : X × S3 → X gives the standard action of S3 on X.
Thus, we define M as the S3-set given by the action f . Finally, O is the set of orbits of
M under the action of S3 and “reducedlist” is O transformed in a list of elements.

In the set P containing the representatives of the orbits of M3(Z2), we define the
relation ∼ such that: m ∼ n if and only if n ≡ Shi,j(m) or m ≡ Shi,j(n) for some
i, j ∈ {1, 2, 3} (we use the notation ≡ to indicate that the two matrices are in the same
orbit under the action of S3).

Thus, for each matrix in p ∈ P, we compare it with all the other matrices q ∈ P
and remove q from P in case p ∼ q. In this way we obtain a smaller set Q ⊆ P whose
cardinal is 52 and with the property that no two elements in Q are related via ∼. In
this “filtering” process we choose randomly a representative in the class of all matrices q

such that q ∼ p (for a fixed p). The random character of this choice is not a restriction
when classifying since given any graph, by considering the invariants explained in the
statements of Theorems 4.8 and 4.7 for that concrete graph and the underlying Leavitt
Path algebra, it is possible to find the Leavitt Path algebra in the tables to which it is
isomorphic.

So the algebras that we must study are the Leavitt path algebras of the graphs
represented by these 52 matrices. The fact that 52 is half of 104 does not mean that
|P|/|Q| = 2 in general. In fact, applying a similar procedure to graphs of order 4 we get
|P| = 3044 and |Q| = 845.

Our final task will be to find out all the graphs corresponding to non-isomorphic
Leavitt path algebras that arise from order 3 graphs. To this end, we arrange in different
tables the Leavitt path algebras according to their K0 groups and socles (if they are
zero or not). Then, for each of these tables we compute, in a systematic way, several
invariants that will allow us to distinguish the Leavitt path algebras that are different.
For those which are indistinguishable, we actually provide ring isomorphisms between
them.

The tables are arranged as follows. In the first column we include the graphs that
we have obtained after choosing one representative of every orbit and after removing the
shift graphs. The graphs have been ordered, for an easier location, first by number of
edges and then by number of disjoint cycles (that is, cycles which do not share common
edges).

Only for the tables corresponding to nonzero socle do we include the computation
of the socles and the quotients LK(E)/Soc(LK(E)) (that we will denote by Soc and
L/Soc, respectively). The next columns will contain, only when the information is both
needed and useful (in the sense that they provide some discrimination between at least
two graphs), some other invariants that we proceed to describe here.

First we will compute the element [1LK(E)] of K0(LK(E)), which we know (see [8])
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is represented by the element (1, 1, . . . , 1)t + im(I −NE) in coker(I −NE).
The next invariant, provided by Corollary 4.4, will allow us to discriminate the

graphs that contain a different number of isolated loops. The key point will be to give a
ring-theoretic property for Leavitt path algebras that contain isolated loops (Proposition
4.2), which can be regarded as an analogue of a result that deals with graphs containing
isolated vertices (result that was proved in [6, Proposition 2.3]). We include here an
alternative proof using [18, Proposition 3.1].

Proposition 4.1. A Leavitt path algebra LK(E) contains a one-dimensional ideal
(which is isomorphic to K) if and only if E contains an isolated vertex u. In this case
LK(E) = Ku⊕ J , where J is an ideal isomorphic to LK(F ) and F is the quotient graph
E/{u}.

Proof. Suppose that I is a one-dimensional ideal of LK(E) and consider a nonzero
element x ∈ I. Applying [18, Proposition 3.1] we have two possibilities:

(i) There is a vertex u ∈ I. Then, u is the unique vertex in I because the dimension
of I is one. Moreover, I does not contain any edges whose range or source is u, because if
f is in this case, then f = fu ∈ I or f = uf ∈ I, which would imply that the dimension
of I is strictly bigger than one by [35, Lemma 1.1]. Thus u is an isolated vertex in E0.

(ii) There is a cycle c without exits based at a vertex v and a nonzero polynomial
p := p(c, c∗) ∈ I. If p is a scalar multiple of v we can argue as in case (i). So we may
suppose p 6∈ Kv. In this case it is easy to prove that {p, p2} is a linearly independent
subset of I, which is not possible by hypothesis.

Hence, I = Ku for u an isolated vertex and H := E0 \ {u} ∈ HE . Finally, the fact
that LK(E) = Ku⊕ J , where J = I(H), is straightforward.

The converse is trivial. ¤

Proposition 4.2. A Leavitt path algebra LK(E) contains a graded ideal I iso-
morphic to K[x, x−1] if and only if E contains an isolated single loop graph based at a
vertex u. In this case I ∩ E0 = {u} and LK(E) = I ⊕ J where J is an ideal of LK(E)
isomorphic to LK(F ) where F is the quotient graph E/{u}.

Proof. Suppose that LK(E) contains a graded ideal I isomorphic to K[x, x−1].
Then, by [19, Corollary 3.3 (1)], there is some u ∈ I ∩E0. Since I is a domain, it cannot
contain nontrivial orthogonal idempotents, so we have I ∩ E0 = {u}.

Apply first [15, Lemma 1.2] to get that I ∼= LK(E), where H = I ∩ E0. It is clear
that u is the only vertex contained in I (otherwise, I would contain two orthogonal
idempotents). Moreover, u cannot be an isolated vertex in E as otherwise, by Proposition
4.1, I ∼= Ku⊕LK(G) (for a certain graph G). Since I is a domain, then LK(G) = 0 and
so I ∼= Ku ∼= K 6∼= K[x, x−1].

Let f be an edge in E1 such that either s(f) = u or r(f) = u. In both cases f, f∗ ∈ I.
Since I is a domain ff∗ = f∗f = r(f) ∈ I ∩ E0 = {u}, so that r(f) = u. Note that
ff∗ = u also implies that s(f) = u, and by relation (CK2), that s−1(u) = {f}. Thus,
LK(E) = I ⊕ J , for J the graded ideal generated by the hereditary and saturated set
E0 \ {u}.

The converse is obvious. ¤
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Corollary 4.3. Let E and F be row-finite graphs such that LK(E) ∼= LK(F ) as
rings. Then E has an isolated loop if and only if so does F .

Proof. Consider ϕ : LK(E) → LK(F ), a ring isomorphism, and suppose that E

contains an isolated loop. By Proposition 4.2, LK(E) contains a graded ideal I isomor-
phic to K[x, x−1]. By Proposition 3.4 (i), ϕ(I) is a graded ideal of LK(F ). Since it is
isomorphic to K[x, x−1], another application of Proposition 4.2 gives the result. ¤

Corollary 4.4. Let E and F be row-finite graphs such that LK(E) ∼= LK(F ) as
rings. Then E has exactly n different isolated loops if and only if so does F .

Proof. Denote by nE and nF the number of isolated loops in E and F , respec-
tively.

Let f : LK(E) → LK(F ) be a ring isomorphism. If nE = 0, by Corollary 4.3,
nF = 0. Let I be an ideal of LK(E) generated by an isolated loop based at a vertex
u ∈ E0. By Proposition 4.2, LK(E) = I ⊕ A, where A ∼= LK(E/{u}). Write J = f(I).
As shown in the proof of Proposition 4.2, J is generated by an isolated loop based at a
vertex v ∈ F 0 and LK(F ) = J ⊕B, where B ∼= LK(F/{v}).

Then A ∼= B and we repeat the same reasoning taking into account that nE =
1 + n(E/{u}) and nF = 1 + n(F/{v}). If either nE or nF is finite, then a descending
process shows that nE = nF . Otherwise both are countable and hence equal. ¤

Definition 4.5. We define ILN (isolated loops number) as the number of isolated
loops in a row-finite graph E. By Corollary 4.4, this number is an invariant for Leavitt
path algebras. The ring-theoretic explanation of ILN is that it coincides with the number
of direct summands which are isomorphic to K[x, x−1].

The following invariant we will consider in our classification task will be HS, already
explained (see Definition 3.5), and in case HS = 1 we use the following result.

Proposition 4.6. Let E and F be row-finite graphs such there exists a ring iso-
morphism ϕ : LK(E) → LK(F ). Suppose that HSE = 1 = HSF and let I and J be the
only nontrivial graded ideals of LK(E) and LK(F ), respectively. Then J = ϕ(I) and
LK(E)/I ∼= LK(F )/J .

Proof. By Proposition 3.4 (1), ϕ(I) is a graded ideal, and since 0 6= I 6= LK(E)
and HSF = 1, then ϕ(I) = J . Using this fact, the result follows. ¤

Thus, the proposition above shows that the quotient LK(E)/I(H), for the case that
I(H) is the only nontrivial graded ideal, is an invariant that we will denote by L/I.

The final invariant that we will need is denoted by MT3+L, and it characterizes
when a Leavitt path algebra is primitive, as was proved in [21, Theorem 4.6]. Recall
that a graph E satisfies Condition (MT3) if for every v, w ∈ E0 there exists u ∈ E0 such
that v ≥ u and w ≥ u.

Note that this order of considering the invariants is consistent for all the cases
n = 1, 2, 3 because for the two graphs that had to be distinguished in case n = 2, namely
the fourth and the seventh graph in Table 2, they had both the same [1LK(E)], and the
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same ILN, so they gave no information.
Finally, in the last column of the tables, and as we did in the n = 2 case, we have

included an explicit algebraic description of LK(E) when this algebra is known.

4.1. Nonzero socle and K0 = Z.
In this situation, after taking one representative of every orbit and after eliminating

shift graphs as we have explained, the Magma code gave an output of 9 graphs. In the
following table we show that all of them actually provide non-isomorphic Leavitt path
algebras and that, in our list of invariants, it is enough if we stop at [1LK(E)].

The isomorphisms of the Leavitt path algebras of the first and second graphs can be
obtained by [6, Proposition 3.5]. The Leavitt path algebra of the third graph, call it E,
is the Toeplitz algebra T as follows: first we observe that the unique possible out-split
of the graph II3 gives the graph F shown after the following table

E Soc L/Soc [1] LK(E)

• // • •oo M3(K) M3(K)

•

• //

??ÄÄÄÄÄÄÄ •

__@@@@@@@
M4(K) M4(K)

•$$ // • •oo M∞(K) K[x, x−1] T
•

•$$

??ÄÄÄÄÄÄÄ •oo

__@@@@@@@
M∞(K) M2(K[x, x−1]) —

•$$ (( • zz
hh • K K ⊕ L(1, 2)

•

•$$ **

??ÄÄÄÄÄÄÄ •jj

__@@@@@@@
M∞(K) L(1, 2) 2 —

•

•$$

??ÄÄÄÄÄÄÄ •oo

__@@@@@@@ zz M∞(K) LK(II2) —

•$$ (( • ¥¥
hh // • M∞(K) L(1, 2) 0 —

•

•$$ **

??ÄÄÄÄÄÄÄ •jj

__@@@@@@@ zz M∞(K) L(1, 2) 1 —

Table 3.1. Nonzero socle and K0 = Z.
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F • ¥¥ // • // •
which it turn gives the third graph of the previous table by a shift process. Hence by [1,
Theorem 2.8] and [1, Theorem 2.3] we get that T ∼= LK(II3) ∼= LK(F ) ∼= LK(E).

4.2. Nonzero socle and K0 = Z2.
For this class we get 11 graphs; again all of them have non-isomorphic Leavitt

path algebras. However, in this case, it is enough to compute, in our ordered list of
invariants, until ILN (note that the only two graphs for which ILN is computed, cannot
be distinguished by [1], as it is (1, 1) in the two cases).

The isomorphisms here are based on previous cases (see Table 2) and on several
well-known facts such as: the decomposition of Leavitt path algebras of disconnected
graphs as direct sums of the Leavitt path algebras of the connected components; the
description of Leavitt path algebras of finite and acyclic graphs which give the finite-
dimensional ones (see [6, Proposition 3.5]); or, in more generality, the description of the
Leavitt path algebras satisfying Condition (NE) (i.e., such that no cycle in the graph has
an exit), which give the noetherian Leavitt path algebras [7, Theorems 3.8 and 3.10] as
those which are finite direct sums of finite matrices over K or K[x, x−1].

E Soc L/Soc ILN LK(E)

• • // • K ⊕M2(K) K ⊕M2(K)

• •oo // • M2(K)2 M2(K)2

• • ¥¥ •oo K M2(K[x, x−1]) K ⊕M2(K[x, x−1])

• • ¥¥ // • K ⊕M∞(K) K ⊕ T

• ¥¥ • •oo M2(K) K[x, x−1] K[x, x−1]⊕M2(K)

• ¥¥ •oo // • M2(K) M2(K[x, x−1]) M2(K)⊕M2(K[x, x−1])

• • ¥¥oo // • M∞(K)2 —

• • ¥¥ // • ¥¥
K LK(II2) —

• ¥¥ • ¥¥ // • M∞(K) K[x, x−1]2 1 K[x, x−1]⊕ T

• ¥¥ • ¥¥oo // • M∞(K) LK(II2) —

• ¥¥ // • • ¥¥oo M∞(K) K[x, x−1]2 0 —

Table 3.2. Nonzero socle and K0 = Z2.
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4.3. Nonzero socle and K0 = Z3.
In this case we find 3 graphs and also 3 different Leavitt path algebras. However,

now the socle suffices to distinguish any two of them.

E Soc LK(E)

• • • K3 K3

• • • ¥¥
K2 K2 ⊕K[x, x−1]

• • ¥¥ • ¥¥
K K ⊕K[x, x−1]2

Table 3.3. Nonzero socle and K0 = Z3.

4.4. Nonzero socle and K0 = Z× Z2.
We find only 2 graphs which again give 2 Leavitt path algebras that are not isomor-

phic. In this case the socle gives no information (both have socle equal to M∞(K)), but
the quotient modulo the socle is enough to get this conclusion.

E L/Soc LK(E)

•

• **

??ÄÄÄÄÄÄÄ •jj

__@@@@@@@
M2(K[x, x−1]) —

•

•$$ //

??ÄÄÄÄÄÄÄ •

__@@@@@@@
K[x, x−1] —

Table 3.4. Nonzero socle and K0 = Z× Z2.

4.5. Zero socle and K0 = 0.
This is a particularly interesting case, as we do obtain 3 different graphs but their

Leavitt path algebras are isomorphic (hence they all have the same invariants so that we
do not include any on Table 3.5).

The Leavitt path algebras of these graphs are purely infinite simple and have the

E LK(E)

•

vv ÂÂ@
@@

@@
@@

•$$

66

•oo zz

•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

ÂÂ@
@@

@@
@@

•$$ ** • zz
jj

• ¥¥

vv ÂÂ@
@@

@@
@@

•$$

66

** •jj
zz

L(1, 2)

Table 3.5. Zero socle and K0 = 0.
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same [1LK(E)] (equal to 0). Hence [1, Proposition 4.2] gives that they are all isomorphic
to L(1, 2). It is interesting that, at least for the case n = 3, only in this table do we
get graphs which give isomorphic Leavitt path algebras, and this happens precisely when
the algebras are purely infinite simple, so that we can make use of the aforementioned
Classification Question for purely infinite simple unital Leavitt path algebras.

4.6. Zero socle and K0 = Z.
Our simplification process shows that there are 11 different graphs in this class.

Here, and in the remaining tables, we have zero socle so that clearly the columns for
the socle and the quotient module the socle are useless, hence we must rely on the other
invariants. Actually, here we need to use all of them in order to see that the Leavitt path
algebras of these graphs are all non-isomorphic.

The explicit isomorphisms can be obtained by previous cases (see Table 2) by decom-
position into direct sums as mentioned before and by applications of [7, Theorem 3.8].
Hence, the table of the 11 cases with their corresponding set of date for the invariants is
as follows.

E [1] ILN HS L/I Primitive LK(E)

• // • ¥¥ •oo 3 M3(K[x, x−1])

•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

ÂÂ@
@@

@@
@@

•$$ •oo 4 M4(K[x, x−1])

•$$ // • ¥¥ •oo 1 0 1 K[x, x−1] No —

•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

ÂÂ@
@@

@@
@@

•$$ • zzoo 2 0 1 M2(K[x, x−1]) —

•$$ (( • zz
hh • zz

1 1 L(1, 2)⊕K[x, x−1]

•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

¹¹•$$ • zzoo

VV

2 0 1 L(1, 2) —

• ¥¥

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

ÂÂ@
@@

@@
@@

•$$ • zzoo 1 0 2 —

•$$ (( • //¥¥
hh • zz

0 0 1 —
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E [1] ILN HS L/I Primitive LK(E)

• ¥¥

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

ÂÂ@
@@

@@
@@

•$$ ** • zz
jj 1 0 1 K[x, x−1] Yes —

• ¥¥

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

¹¹•$$ • zzoo

VV

1 0 1 L(1, 2) —

•$$ (( • ¥¥
hh

(( • zz
hh 0 0 0 —

Table 3.6. Zero socle and K0 = Z.

4.7. Zero socle and K0 = Z2.
In this situation we get 5 graphs, once more providing 5 different isomorphism classes

of Leavitt path algebras. In order to prove this, two invariants ([1] and ILN) are sufficient.

E [1] ILN LK(E)

• ¥¥ • ¥¥ •oo (2, 1) K[x, x−1]⊕M2(K[x, x−1])

• ¥¥ •oo // • ¥¥
(2, 2) M2(K[x, x−1])2

• ¥¥ • ¥¥ •oo ¥¥
(1, 1) 1 —

• ¥¥ // • ¥¥ •oo ¥¥
(1, 1) 0 —

• ¥¥ • ¥¥oo // • ¥¥
(1, 0) —

Table 3.7. Zero socle and K0 = Z2.

4.8. Zero socle and K0 = Z3.
There is nothing to do in this case as we in fact obtain only one graph whose explicit

isomorphism of its Leavitt path algebra is clear.

E LK(E)

• ¥¥ • ¥¥ • ¥¥
K[x, x−1]3

Table 3.8. Zero socle and K0 = Z3.



Atlas of Leavitt path algebras of small graphs 601

4.9. Zero socle and K0 = Z2.
There are two graphs whose Leavitt path algebras are in the previous conditions,

and their Leavitt path algebras can be distinguished just by [1LK(E)].

E [1] LK(E)
•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

¹¹•$$ ** • zz
jj

VV

0 M2(L(1, 3))

• ¥¥

vv ¹¹•$$

66

** • zz
jj

VV

1 L(1, 3)

Table 3.9. Zero socle and K0 = Z2.

The Leavitt path algebra of the first graph, denote it by E, has the same K0, [1]
and det(I −NE) as the graph F given by

• // • ¥¥
QQ11

whose Leavitt path algebra is isomorphic to M2(L(1, 3)). By [8, Corollary 2.7], both are
isomorphic.

As far as the second graph is concerned, it is precisely the maximal out-split of the
graph of the rose of 3-petals given by

• ¥¥
QQ11

and hence by [1, Theorem 2.8] its Leavitt path algebra is isomorphic to the classical
Leavitt algebra of type (1, 3), namely, L(1, 3).

4.10. Zero socle and K0 = Z× Z2.
Only two graphs appear here, and they have non-isomorphic Leavitt path algebras,

as [1LK(E)] shows.
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E [1] LK(E)

•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

¹¹•$$ •oo

VV (2, 0̄) —

•

ÄÄÄÄ
ÄÄ

ÄÄ
Ä

•$$ •

__@@@@@@@ zzoo

(1, 0̄) —

Table 3.10. Zero socle and K0 = Z× Z2.

4.11. Zero socle and K0 = Z2
2.

For the remaining three cases, there is only one graph, so that there is a unique
Leavitt path algebra in each of these families too.

E LK(E)

•

vv ¹¹•

66

** •jj

VV —

Table 3.11. Zero socle and K0 = Z2
2.

4.12. Zero socle and K0 = Z3.
As mentioned, there is only one graph and therefore only one Leavitt path algebra

in this case.

E LK(E)

•

vv ¹¹•$$

66

** • zz
jj

VV L(1, 4)

Table 3.12. Zero socle and K0 = Z3.

The Leavitt path algebra of the graph in the table has the same K0, [1] and det(I−
NE) as the graph of the 4-petals rose given by

• qq
QQ11
´´

whose Leavitt path algebra is isomorphic to L(1, 4). By [8, Corollary 2.7], both are
isomorphic.
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4.13. Zero socle and K0 = Z4.
The only graph here is given in the following table.

E LK(E)

•

vv ¹¹•$$

66

** •jj

VV M2(L(1, 5))

Table 3.13. Zero socle and K0 = Z4.

The Leavitt path algebra of this graph has the same K0, [1] and det(I −NE) as the
graph given by

• // • ¥¥ qq ddQQDD

whose Leavitt path algebra is isomorphic to M2(L(1, 5)). By [8, Corollary 2.7], both are
isomorphic.

We are finally in a position to state precisely the Classification Theorem for Leavitt
path algebras of graphs of order three that satisfy Condition (Sing), which summarizes
the results that we have been obtaining throughout this section.

Theorem 4.7. There exist exactly 50 mutually non-isomorphic Leavitt path alge-
bras in the family L3 = {LK(E) | E satisfies Condition (Sing) and |E0| = 3} and a
set of graphs whose Leavitt path algebras are those in L3 is given in Tables 3.1, . . . , 3.13.
A complete system of invariants for L3 consists of the set (K0, Soc, L/Soc, [1], ILN,
HS, L/I, Primitive). Concretely, two Leavitt path algebras in L3, LK(E) and LK(F ),
are isomorphic as rings if and only if the data of the previous invariants for E and F

coincide.

Our final result puts together all the cases n = 1, 2, 3 so that we give a Classification
Theorem for Leavitt path algebras of graphs of order equal or less than three that satisfy
Condition (Sing), thus collecting all the results, information and data that we have been
developing throughout the paper.

Theorem 4.8. There exist exactly 57 mutually non-isomorphic Leavitt path alge-
bras in the family L≤3 = {LK(E) | E satisfies Condition (Sing) and |E0| ≤ 3} and a set
of graphs whose Leavitt path algebras are those in L≤3 is given in Tables 1, 2, 3.1, . . . , 3.13.
A complete system of invariants for L≤3 consists of the set (K0, Soc, L/Soc, [1], ILN,
HS, L/I, Primitive). Concretely, two Leavitt path algebras in L≤3, LK(E) and LK(F ),
are isomorphic as rings if and only if the data of the previous invariants for E and F

coincide.

Proof. It only remains to compare the different cases n = 1, 2, 3 all at once. In
order to do that, we will pick each of the 10 graphs of cases n = 1, 2 and, after computing
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the pair (K0, Soc) we compare the rest of the invariants. Concretely, for the graph I1

we have K0(LK(I1)) = Z and Soc(LK(I1)) = K. The only graph with this data is the
fifth graph in Table 3.1, call it E. However, we get that LK(I1)/ Soc(LK(I1)) = 0 6∼=
L(1, 2) = LK(E)/ Soc(LK(E)).

For I2 we have (K0(LK(I2)),Soc(LK(I2))) = (Z, 0). Again, there is only one other
graph with this data, namely, the third one in Table 3.6. Applying our list of invari-
ants, we first compute LK(I2)/ Soc(LK(I2)) = K[x, x−1]. Applying Proposition 4.3 and
Corollary 4.4 we get that the fifth one, call it F , is the only possible graph in Table 3.6
whose Leavitt path algebra could be isomorphic to LK(I2), but this does not happen as
clearly LK(I2) 6∼= LK(F ).

Let us focus on the case n = 2. Unlike the previous case, now three graphs in Table
2 will give us Leavitt path algebras which are isomorphic to some of case n = 3, whereas
the other five will produce non-isomorphic Leavitt path algebras when compared to that
of n = 3, as we will show now.

The pairs (K0,Soc) for the first two graphs in Table 2 are different to any other
such pair in the other tables, so their Leavitt path algebras are not isomorphic to anyone
appearing in the case n = 3.

The Leavitt path algebra of the third graph in Table 2 has the same (K0,Soc) as the
Leavitt path algebras of the third and eighth graphs in Table 3.2, but when we compute
L/Soc we get three non-isomorphic rings: K[x, x−1],M2(K[x, x−1]) and LK(II2).

For the fourth graph in Table 2 we have that the pair (K0,Soc) of its associated
Leavitt path algebra is (Z, 0), which could provide a Leavitt path algebra isomorphic to
the Leavitt path algebra of some graph in Table 3.6. As the quotients by their socles
(we are considering the graphs in Table 3.6) give us no known information, we jump on
to the following invariant, namely, [1LK(E)], which is 2 in this case. In this situation we
have two graphs in Table 3.6, namely, the fourth and sixth ones. We go on comparing
invariants and the three graphs have ILN = 0, but HS = 0 in our original graph while
HS = 1 for the other two.

The Leavitt path algebra of the fifth graph is the Toeplitz algebra T which appears
already in Table 3.1.

For the sixth graph I2
2 we have to focus on Table 3.7. Since [1LK(I22)

] = (1, 1), we
compute ILN, obtaining 2 for I2

2 but 0 or 1 for all the graphs in Table 3.7.
The seventh graph in Table 2 gives a Leavitt path algebra isomorphic to that of the

third graph in Table 3.6 as follows: by an out-split we obtain the graph

•$$ // • // • zz

We note that this graph is the shift graph of the third graph in Table 3.6. Then
apply [1, Theorem 2.8] and [1, Theorem 2.3].

Finally, the Leavitt path algebra of the last graph is L(1, 2) which also shows up in
Table 3.5.

Hence, out of the 62 graphs given in the tables we only obtain 2+(8−3)+(52−2) = 57
non-isomorphic Leavitt path algebras. ¤

Remark 4.9. A natural setting and a way to use the previous theorem are like
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this: we start with a graph E satisfying Condition (Sing) and such that |E0| ≤ 3 (note
that this graph might not appear in our tables). Thus Theorem 4.8 guarantees that
there is exactly one Leavitt path algebra whose graph is among the 57 referred to in the
statement, call if F , such that LK(E) ∼= LK(F ) as rings. In order to find it, we apply
systematically the list of invariants to E to narrow our search until we find F .

Remark 4.10. As a corollary of our general Classification Theorem 4.7, we can
obtain the Classification Theorem for purely infinite simple unital Leavitt path algebras
as stated in [1, Proposition 4.2], by proceeding in some other fashion, as follows: among
the 50 graphs that we have obtained for n = 3, we single out those that provide purely
infinite simple Leavitt path algebras. This task is straightforward by using the graph-
theoretic characterization of purely simple Leavitt path algebras as those whose graph has
HS = 0, satisfy Condition (L) and every vertex connects to a cycle (see [3, Theorem 11]).
One useful trick is the following: if a graph E satisfies the three conditions above, then
it cannot contain a sink and it must be connected (these obvious observations actually
rule out many graphs).

This leaves exactly 7 graphs, namely: any of those appearing in Table 3.5 (the three
have isomorphic Leavitt path algebras), the last graph in Table 3.6, and all the graphs in
Tables 3.9, 3.11, 3.12 and 3.13. Finally one checks that the data (K0(LK(E)), [1LK(E)])
is different for all these 7 cases as is shown in the tables.

We point out that just by looking at the tables one can clearly see that the informa-
tion about K0(LK(E)) and [1LK(E)] is not enough for classification of the Leavitt path
algebras that are not necessarily purely infinite simple.

Remark 4.11. The set of invariants given in the previous theorems for L≤3 is
not sufficient for the case L≤4. Given the complexity of this case, some more invariants
would be needed as suggested by the partial results in [25].

5. Appendix.

In this section we include the Magma and Mathematica codes needed for our com-
putations. They consist of a list of functions written in the order they have been used.
The computation of the invariants has been performed by the Mathematica software.
However, for the calculation of the orbits and shift graphs the Magma software has been
used instead, as it has proved to be faster and more efficient for these purposes.

5.1. Magma codes.
We provide here a list of the routines that have been used together with a brief

description of them.

• int: given a 3× 3 matrix with entries in Z2, it returns the same matrix considered
as an element in M3({0, 1}).

• zerorow: given an integer i and a matrix m, it returns TRUE if the ith row of m

is zero.
• nonzerosoc: given a matrix m gives TRUE if m has some zero row.
• test: given integers i, j and a matrix m, it returns TRUE if the ith row is nonzero

and each element in the ith row is less or equal than the corresponding element in
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the jth row.
• sing: checks if the entries of a given matrix are all ≤ 1, i.e., verifies if Condition

(Sing) is satisfied.
• sh: let m be the adjacency matrix of a direct graph of n vertices and i, j ∈
{1, . . . , n}. Then sh(i, j, m) performs the shift graph Shi,j(m). If the shift is not
possible, the function returns m.

• ish: given a matrix m, this function returns a matrix x (if it exists) such that
Shi,j(x) = m. If x does not exist, then the function returns m.

• ss: given m, it returns a list containing all the matrices produced by a shift from
m and also all those which give m by applying a shift process to it.

• comp: given two matrices x and y, it returns TRUE if there is a nonempty
intersection between ss(y) and the orbit of x (under the action of S3) or between
ss(x) and the orbit of y. Roughly speaking, this function returns TRUE if some
shift or inverse shift of x is in the same orbit as y or vice versa.

• compressto: given a matrix x and a list, the function returns TRUE if comp(x, y)
is TRUE for some y in the list.

We include the Magma code of all these functions.

int:=function(x)
return MatrixAlgebra(IntegerRing(),n)!x;
end function;

zerorow:=function(i,m)
return (m[i,1] eq 0) and (m[i,2] eq 0) and (m[i,3] eq 0);
end function;

nonzerosoc:=function(m)
return zerorow(1,m) or zerorow(2,m) or zerorow(3,m);
end function;

test:=function(i,j,m)
local logical;
logical:=true;
for k:=1 to n do; logical:=logical and (int(m)[i,k] le ent(m)[j,k]); end for;
return (logical and not zerorow(i,m)); end function;

sing:=function(x)
local logical;
logical:=true;
for i:=1 to n do;

for j:=1 to n do;
logical:=logical and (x[i,j] le 1);
end for;

end for;
return logical;
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end function;

sh:=function(i,j,m)
local s;
s:=int(m);
if test(i,j,m) then

for k:=1 to n do; s[j,k]:=s[j,k]-s[i,k]; end for;
s[j,i]:=s[j,i]+1; end if; if sing(s) then return s; else return m; end if;
end function;

ish:=function(i,j,m)
local s;
s:=int(m);
if s[j,i] eq 0 then return s;

else s[j,i]:=s[j,i]-1;
for k:=1 to n do;
s[j,k]:=s[j,k]+s[i,k];
end for;

end if;
if not zerorow(i,m) and sing(s) then return s; else return m; end if;
end function;

ss:=function(m)
local lista;
lista:={};
for i:=1 to n do;

for j:=1 to n do;
if not (i eq j) then Include(~lista,sh(i,j,m)); end if;
end for;

end for;
for i:=1 to n do;

for j:=1 to n do;
if not (i eq j) then Include(~lista,ish(i,j,m)); end if;
end for;

end for;
return lista;
end function;

comp:=function(x,y)
return (not (Orbit(S3,M,x) meet ss(y) eq {})) or

(not(Orbit(S3,M,y) meet ss(x) eq {}));
end function;

compressto:=function(x,lista)
local logical,j;
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logical:=false;
j:=1;
while (j le #lista) and not comp(x,lista[j]) do; j:=j+1; end while;
if j eq #lista+1 then return false; else return true; end if;
end function;

n:=3;
F:=FiniteField(2,1);
A:=MatrixAlgebra(F,n);
S3:=Sym(n);
X:=Set(A);
p2m:=function(p)
return PermutationMatrix(F,p);
end function;
gen:=[p2m(x): x in Generators(S3)];
S3m:=sub<GL_3(F)|gen>;
ptm:=hom<S3->S3m|x:->Transpose(PermutationMatrix(F,x))>;
f:=map<car<X,S3>->X|x:->ptm(x[2])*x[1]*ptm(x[2])^(-1)>;
M:=GSet(S3,X,f);
O:=Orbits(S3,M);
reducedlist:=[[x: x in O[i]][1]:i in [1..#O]];
reducedlist:=[int(x): x in reducedlist];
aux:=[];
while not (reducedlist eq []) do;
x:=reducedlist[1];Remove(~reducedlist,1);
if not compressto(x,reducedlist) then Include(~aux,x);
end if;
end while;

5.2. Mathematica implemented instructions.
Again, we provide first a list of the routines that have been used together with a

brief description of them.

• Gr: it represents the directed graph.
• SinkQ: checks if a vertex is a sink.
• Redu: diagonal form.
• Pmatrix: P -matrix associated to the previous diagonal form.
• K0: computes the K0 group.
• Unit: computes the unit of the K0 group.
• ConditionMT3Q: checks the Condition (MT3).
• ConditionLQ: checks the Condition (L).
• CofinalQ: checks the cofinal condition.
• Example: an example of how to construct classification tables.

Finally, we include the Mathematica code of all these functions.



Atlas of Leavitt path algebras of small graphs 609

Tograph[m ] := Module[{n, x},
n = Length[m];
x = Flatten[Table[i → j, {i, n}, {j, n}] ∗m]//Union;
If [Length[x[[1]]] == 0,Delete[x, 1], x]]

Gr[x ] :=
GraphPlot[Tograph[x],DirectedEdges → True,VertexLabeling → True]

SinkQ[x , i ] := If [x[[i]] == 0x[[i]], 0, 1];

<< Algebra‘IntegerSmithNormalForm‘

Redu[x ] := SmithForm[
Transpose[x]−DiagonalMatrix[Table[SinkQ[x, i], {i,Length[x]}]]];

Pmatrix[x ] := ExtendedSmithForm[
n = Transpose[x]−DiagonalMatrix[Table[SinkQ[x, i], {i,Length[x]}]]][[2, 1]]

Example of computing [1]

Table[{list[[i]],Gr[list[[i]]],Redu[list[[i]]],Pmatrix[list[[i]]].

„1
1
1

«
, {i,Length[list]}]

Z[x ] := Which[x == 0, Z, x == 1, 1, x > 1, Zx];

K0[m ] := Module[{x}, x = Redu[m];Product[Z[x[[i, i]]], {i,Length[x]}]]
myMod[x , y ] := If [y 6= 0,Mod[x, y], x]

Unit[x ] := Module[{v, l}, v = Pmatrix[x].

„1
1
1

«
; l = Redu[x];Table[myMod[v[[i]], l[[i, i]]], {i, 3}]]

NB[m ] :=
Module[{nm = m, l = Table[0, {k,Length[m]}], n = Length[m], s, k},
Do[s = 0;
Do[s = s + m[[i, j]], {j, n}];
If [s > 1, l[[i]] = 1;
Do[nm[[i, k]] = 0; nm[[k, i]] = 0, {k, n}]], {i, n}];
eli = Position[l, 1]; k = 0;
Do[
nm = Drop[nm, eli[[i]]− k, eli[[i]]− k]; k + +, {i,Length[eli]}];
nm
]

<< Combinatorica‘

ConditionLQ[m ] :=
AcyclicQ[FromAdjacencyMatrix[NB[m],Type → Directed]]

lr[li ?ListQ, m ] :=
Union[Flatten[
Map[Cases[m[[#]] ∗Table[j, {j,Length[m]}],Except[0]]&, li]]]

Her[li ?ListQ, m ] := Module[{H = li, G = Table[k, {k,Length[m]}]},
While[G! = H, G = H;H = Union[H, lr[H, m]]]; H]

ConditionMT3Q[m ] := Module[{n, l, re}, n = Length[m]; l = Table[i, {i, n}];
re = True;
Do[If [Intersection[Her[{l[[i]]}, m],Her[{l[[j]]}, m]] == {},
re = False;Break[]], {i, n}, {j, n}];
re]

HSC[li ?ListQ, m ] :=
Module[{X, H, G, F, n, i},
H = Her[li, m];G = Table[k, {k,Length[m]}]; F = Complement[G, H];
n = Length[F]; i = 1;
While[F! = {}&&G! = H&&i ≤ n, X = lr[{F[[i]]}, m];
If [X! = {}&&Intersection[X, H] == X, H = Union[H, {F[[i]]}];
F = Complement[G, H]; n = Length[F]; i = 1, i + +]
]; H]
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ps[k ] := Select[Subsets[Table[i, {i, k}]], 0 < Length[#] < k&]

HS[m ] := Module[{pos, l, n = 0, k = 1}, pos = ps[Length[m]]; l = Length[pos];
Do[
If [HSC[pos[[k]], m] == pos[[k]], n + +], {k, 1, l}]; n]

CofinalQ[m ] := Module[{v = Table[i, {i,Length[m]}], r = True},
Do[r = r&&HSC[{i}, m] == v, {i,Length[m]}]; r]
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[ 1 ] G. Abrams, P. N. Ánh, A. Louly and E. Pardo, The classification question for Leavitt path

algebras, J. Algebra, 320 (2008), 1983–2026.

[ 2 ] G. Abrams and G. Aranda Pino, The Leavitt path algebra of a graph, J. Algebra, 293 (2005),

319–334.

[ 3 ] G. Abrams and G. Aranda Pino, Purely infinite simple Leavitt path algebras, J. Pure Appl.

Algebra, 207 (2006), 553–563.

[ 4 ] G. Abrams and G. Aranda Pino, The Leavitt path algebras of arbitrary graphs, Houston J. Math.,

34 (2008), 423–442.

[ 5 ] G. Abrams, G. Aranda Pino, F. Perera and M. Siles Molina, Chain conditions for Leavitt path

algebras, Forum Math., 22, (2010), 95–114.

[ 6 ] G. Abrams, G. Aranda Pino and M. Siles Molina, Finite-dimensional Leavitt path algebras, J.

Pure Appl. Algebra, 209 (2007), 753–762.

[ 7 ] G. Abrams, G. Aranda Pino and M. Siles Molina, Locally finite Leavitt path algebras, Israel J.

Math., 165 (2008), 329–348.

[ 8 ] G. Abrams, A. Louly, E. Pardo and C. Smith, Flow invariants in the classification of Leavitt path

algebras, J. Algebra, 333 (2011), 202–231.

[ 9 ] G. Abrams and K. M. Rangaswamy, Regularity conditions for arbitrary Leavitt path algebras,

Algebr. Represent. Theory, 13 (2010), 319–334.

[10] G. Abrams, K. M. Rangaswamy and M. Siles Molina, The socle series of a Leavitt path algebra,

Israel J. Math., 184 (2011), 413–435.

[11] G. Abrams and M. Tomforde, Isomorphism and Morita equivalence of graph algebras, Trans.

Amer. Math. Soc., 363 (2011), 3733–3767.

[12] P. Ara and M. Brustenga, Module theory over Leavitt path algebras and K-theory, J. Pure Appl.

Algebra, 214 (2010), 1131–1151.
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