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Abstract. In this paper, by clarifying the concept of relative K-stability
in [28], we shall solve the stability part of an extremal Kähler version of
Donaldson-Tian-Yau’s Conjecture. This extends the results in [15] and [27].
We then propose a program to solve the existence part of the conjecture.

1. Introduction.

In this paper, we shall study the relative K-stability in Székelyhidi [28] and the
asymptotic relative Chow-stability in [17] (see also [11]) from the viewpoints of the
existence problem of extremal Kähler metrics on a polarized algebraic manifold (M, L).
In clarifying these concepts of relative stability, we are led to study piecewise bilinear
forms associated to toric subvarieties of the Hilbert schemes (cf. Section 3, Theorem B).
For a maximal compact connected subgroup K of the group Aut(M) of all holomorphic
automorphisms of M , we here consider the extremal Kähler vector field V ∈ k := Lie K

for the class c1(L)R. Let

T ∈ Tex(M, L),

i.e., T is an algebraic torus in Aut(M) such that the maximal compact subgroup of
T sits in K and that T contains the one-dimensional algebraic torus generated by V.
Then in terms of these concepts of relative stability, we propose in the last section a
program to solve the following extremal Kähler version (cf. [28]) of Donaldson-Tian-
Yau’s Conjecture:

Conjecture A. A polarized algebraic manifold (M, L) admits an extremal Kähler
metric in the class c1(L)R if and only if (M, L) is K-stable relative to T above.

The “only if” part of this conjecture will be proved affirmatively in Section 6, Theo-
rem C, extending the results in [15] and [27]. In particular, our result solves the stability
part of the original Donaldson-Tian-Yau’s Conjecture, since by assuming the existence
of constant scalar curvature Kähler metrics in c1(L)R, we obtain T = {1} ∈ Tex(M, L).
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2. Background materials.

Here a polarized algebraic manifold (M, L) means a pair of a connected projective
algebraic manifold M , defined over C, and a very ample holomorphic line bundle L over
M . Put n := dimCM . For a maximal connected linear algebraic subgroup G of Aut(M),
the Chevalley decomposition allows us to write G as a semidirect product

G = RC n U

of a reductive algebraic group RC and the unipotent radical U of G. Let g := Lie G and
r := Lie RC be the Lie algebras of G and RC, respectively. Then we may assume that r is
a complexification of k in the introduction. As in [5], consider the Lie algebra characters

Fp : g → C, p = 1, 2, . . . , n,

defined as obstructions to asymptotic Chow semistability of (M, L), where F1 is the
classical Futaki character of M . For the center z of r, define a subspace a of z consisting
of all A ∈ z such that

Fp(A) = 0, for all p = 1, 2, . . . , n.

By setting zZ := {X ∈ z; exp(2π
√−1 X) = idM}, we have an integral structure of z.

Then by the nondegenerate symmetric bilinear form 〈 , 〉0 on g as in [6], we define a
complex Lie algebra

b0 := a⊥0

to be the orthogonal complement, defined over Q, of a in z consisting of all B ∈ z such
that 〈A,B〉0 = 0 for all A ∈ a. Since KerF1 is perpendicular to tex := CV by 〈 , 〉0, we
see that

tex ⊂ b0. (2.1)

Let Tex(M, L) be the set of all algebraic tori T in G such that the maximal compact
subgroup of T sits in K and that t := Lie T satisfies

tex ⊂ t.

Now the infinitesimal action of the Lie algebra g on M lifts to an infinitesimal bundle
action of g on L. Then by setting

Vm := H0(M,O(Lm)), m = 1, 2, . . . ,

we view g as a Lie subalgebra of sl(Vm) by considering the traceless part. We now define
a symmetric bilinear form 〈 , 〉m on sl(Vm) by
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〈X, Y 〉m = Tr(XY )/mn+2, X, Y ∈ sl(Vm),

whose asymptotic limit as m →∞ plays an important role (cf. [28]) as in Theorem B in
Section 3. Since 〈 , 〉m restricted to the Lie subalgebra z of sl(Vm) is nondegenerate for
each positive integer m, we can define a complex Lie algebra

bm := a⊥m

as the orthogonal complement, defined over Q, of a in z consisting of all B ∈ z such that
〈A,B〉m = 0 for all A ∈ a. Let tmin denote the complex Lie subalgebra, defined over Q,
of z generated by all

bm, m = 0, 1, . . . ,

in the center z. For instance, if the obstruction Obstr(M, L) in [5] and [10] vanishes,
then we have tmin = {0}. Let Tmin(M, L) denote the nonempty set of all algebraic tori T

in G such that the maximal compact subgroup of T sits in K and that t := Lie T satisfies

tmin ⊂ t,

where we need Tmin(M, L) only in the last section. For a maximal element Tmax of
Tmin(M, L), we see that Tmax is a maximal algebraic torus in G satisfying tmin ⊂ tmax :=
Lie Tmax. Let Tex be the one-dimensional algebraic torus in G generated by V, so that
Lie Tex = tex. By (2.1), we have tex ⊂ tmin. Hence

Tmin(M, L) ⊂ Tex(M, L).

For each T ∈ Tex(M, L), let Tm denote the associated algebraic torus in SL(Vm) such
that tm := Lie Tm is the Lie subalgebra of sl(Vm) infinitesimally induced by t = Lie T .
Then by the Tm-action on Vm,

Vm =
νm⊕

k=1

V (χm;k),

where V (χm;k) := {v ∈ Vm; g · v = χm;k(g)v for all g ∈ Tm} with mutually distinct
multiplicative characters χm;k ∈ Hom(Tm,C∗), k = 1, 2, . . . , νm. Consider the algebraic
subgroup Sm of SL(Vm) defined by

Sm :=
νm∏

k=1

SL(V (χm;k)),

where each SL(V (χm;k)) acts on Vm fixing V (χm;i) if i 6= k. The centralizer Hm of Sm in
SL(Vm) consists of all diagonal matrices in SL(Vm) acting on each V (χm;k) by constant
scalar multiplication. Hence the centralizer Z(Tm) of Tm in SL(Vm) is Hm · Sm with Lie
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algebra

z(tm) = hm + sm,

where sm := Lie Sm and hm := Lie Hm. In general, for a complex Lie subalgebra x of
sl(Vm), we denote by xZ the kernel of the map

x 3 X 7→ exp
(
2π
√−1 X

) ∈ SL(Vm),

and if x is abelian, we regard xR := xZ⊗ZR as a real Lie subalgebra of x. In particular, for
x = hm, we view (hm)R := (hm)Z⊗ZR as a real Lie subalgebra of hm. For the orthogonal
complement t⊥m of tm (= t) in hm by the nondegenerate bilinear form 〈 , 〉m above, let
T⊥m denote the corresponding algebraic torus sitting in Hm. We now define an algebraic
subgroup Gm of Z(Tm) by

Gm := T⊥m · Sm.

3. Piecewise bilinear forms on (hm)R.

In this section, let T ∈ Tex(M, L), and by fixing a positive integer m arbitrarily, we
set NR := (hm)R/g• and ÑR := (hm)R/t•, where g• := g∩(hm)R and t• := tR = t∩(hm)R.
We now consider the fan ∆ in NR associated to the toric varietyH obtained as the closure
of Hm ·γM in the Hilbert scheme HilbP∗(Vm). Here γM denotes the point in HilbP∗(Vm)
associated to the polarized subvariety (M, Lm) of (P∗(Vm),OP∗(Vm)(1)) in terms of the
Kodaira embedding

Φm : M ↪→ P∗(Vm)

by the complete linear system |Lm|. Note that the Lie algebra of the isotropy subgroup
of Hm at γM is just the complexification in hm of the real Lie algebra g•. Let

π : (hm)R → NR, π̃ : (hm)R → ÑR, pr : ÑR → NR

be the natural projections. Then ∆ is a collection of strongly convex rational polyhedral
cones Cj (cf. [21]), j = 1, 2, . . . , r, in NR such that

NR =
r1⋃

j=1

Cj ,

where {C1, C2, . . . , Cr1} denotes the set of all Cj ’s in ∆ such that dimCj = dim NR. For
each j = 1, 2, . . . , r, by setting

Σj := π−1(Cj) and C̃j := pr−1(Cj),
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we consider the open face Σ0
j of Σj . Let θ be a collection of continuous maps θj :

Σj × Σj → R, j = 1, 2, . . . , r1, which are symmetric, i.e., θj(X, Y ) = θj(Y, X) for all
(X, Y ) ∈ Σj × Σj . Put Σij := Σi ∩ Σj .

Definition 3.1. θ is said to be a piecewise bilinear form if each θj extends to a
symmetric bilinear form, denoted by the same θj by abuse of terminology, on (hm)R such
that

θi|Σij×Σij
= θj |Σij×Σij

, i, j ∈ {1, 2, . . . , r1}. (3.2)

In view of the inclusion H ⊂ HilbP∗(Vm), the universal family over the Hilbert
scheme HilbP∗(Vm) restricts to a family

p : Z → H

over H such that, via the Hm-actions on H and also on P∗(Vm), the subscheme Z of
H× P∗(Vm) is preserved by the Hm-action with fibers

Zs ⊂ {s} × P∗(Vm) = P∗(Vm), s ∈ H, (3.3)

regarded as the corresponding subschemes of P∗(Vm). Here for each s ∈ H, we denote
by Zs := p−1(s) the scheme-theoretic fiber of p over the point s. For simplicity, we put
L := p∗2OP∗(Vm)(1), where p2 : Z → P∗(Vm) is the restriction to Z of the projection of
H× P∗(Vm) to the second factor P∗(Vm). For each X ∈ z(tm)Z, by setting

ϕX(t) := exp{(log t)X}, t ∈ C∗, (3.4)

we have an algebraic group homomorphism ϕX : C∗ → Z(Tm). Hereafter until the end
of this section, we assume that X ∈ (hm)Z. We now observe that (hm)R is a disjoint
union of all Σ0

j , j = 1, 2, . . . , r, where for each such j, as long as X ∈ Σ0
j ∩ (hm)Z, the

limit

γj := lim
t→0

ϕX(t) · γM

depends only on j, and is independent of the choice of X in Σ0
j ∩ (hm)Z. In (3.3), by

setting s = γj , we have the fiber Zj := Zγj
of Z over γj . For each j = 1, 2, . . . , r,

we put Lj := L|Zj
and let Gj be the algebraic torus in Hm generated by Σ0

j ∩ (hm)Z.
Then the Gj-action on (Z,L) preserves the polarized subvariety (Zj ,Lj), where (M, Lm)
degenerates to (Zj ,Lj) as t → 0 for the action of the one-parameter group

ϕX : C∗ → Hm, t 7→ ϕX(t),

provided that X ∈ Σ0
j ∩ (hm)Z. On the other hand, the real subspace gjR of (hm)R

generated by Σ0
j ∩ (hm)Z is expressible as



540 T. Mabuchi

gjR = (hm)R, if 1 ≤ j ≤ r1. (3.5)

For positive integers `, we consider the direct image sheaves E` := p∗L` over H. In this
paper, locally free sheaves and holomorphic vector bundles are used interchangeably. If
` À 1, then E` is a vector bundle over Z and the fiber (E`)γj

over γj is identified with
H0(Zj ,L`

j). Put

d` := dim(E`)γj
= dim V`m.

For each X, Y ∈ gjR, consider endomorphisms X`;j , Y`;j ∈ End(E`)γj
induced by X,

Y , respectively. For each 1 ≤ j ≤ r and ` À 1, we have a symmetric bilinear forms
θ
(`)
j : gjR × gjR → R, defined over Q, by

θ
(`)
j (X, Y ) := Tr(X̂`;j Ŷ`;j)/(`m)n+2, (3.6)

where X̂`;j , Ŷ`;j ∈ sl (E`)γj
are traceless parts of X`;j , Y`;j defined by

X̂`;j = X`;j − Tr(X`;j)
d`

id(E`)γj
, Ŷ`;j = Y`;j − Tr(Y`;j)

d`
id(E`)γj

.

For Cj , Ck ∈ ∆, suppose that Ck is a face of Cj . Then by choosing an element X of
Σ0

j ∩ (hm)Z, we see that (Zk,Lk) degenerates to (Zj ,Lj) as t → 0 for the action of the
one-parameter group ϕX(t), t ∈ C∗, in Hm. Since E` can be Gj-equivariantly trivialized
for degeneration along the one-parameter group, we hence obtain

θ
(`)
j (X, Y ) = θ

(`)
k (X, Y ), X, Y ∈ gkR. (3.7)

Then by (3.5) and (3.7), θ(`) = {θ(`)
j ; j = 1, 2, . . . , r1} is a piecewise symmetric bilinear

form, since for i, j ∈ {1, 2, . . . , r1} with Σij 6= ∅,

θ
(`)
i (X, Y ) = θ

(`)
k (X, Y ) = θ

(`)
j (X, Y ), X, Y ∈ Σij ,

where k ∈ {1, 2, . . . , r} is such that Ck = Ci ∩Cj . Now for ` = 1, it is easy to check that
the piecewise bilinear form θ(1) = {θ(1)

j } coincides with 〈 , 〉m on (hm)R. On the other
hand, for ` →∞, we obtain

Theorem B. The limit θ = {θj ; j = 1, 2, . . . , r1} given by

θj(X, Y ) := lim
`→∞

θ
(`)
j (X, Y ), X, Y ∈ Σj ,

is a well-defined piecewise bilinear form such that each θj extends to a positive semidefi-
nite bilinear form, defined over Q, on (hm)R.
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Proof. It suffices to show that, for each j ∈ {1, 2, . . . , r1}, the bilinear form θ
(`)
j

on (hm)R converges as ` →∞ and also that the limit θj is a positive semidefinite bilinear
form defined over Q. Let us now define a quadratic form Q` on hm by

Q`(X) := θ
(`)
j (X, X), X ∈ (hm)R (= gjR).

By the identity 2θ(`)
j (X, Y ) = Q`(X+Y )−Q`(X)−Q`(Y ), the proof of the convergence of

θ
(`)
j as ` →∞ is reduced to showing the convergence of the sequence {Q`(X); ` = 1, 2, . . . }

for each fixed X ∈ (hm)R. In view of [28] (see also [4]) and the definition (3.6) of θ
(`)
j , the

function `n+2Q`(X) in ` À 1 is a polynomial of degree n + 2 with a leading coefficient α

independent of the choice of ` À 1, so that we can write

Q`(X) = α + O(`−1),

where α =
∫
Zj

h 2
Xωn

FS for some real Hamiltonian function hX on Zj ↪→ P∗(Vm) associated
to X. Hence Q`(X) converges to α as ` →∞. Thus

θj(X, X) = α ≥ 0.

Moreover if X ∈ (hm)Z, then `n+2Q`(X) is a polynomial in ` À 1 with rational co-
efficients, so that its leading coefficient α sits in Q. Hence the limit θj on (hm)R is a
well-defined positive semidefinite bilinear form defined over Q, as required. ¤

Since g• ⊂ Σij ⊂ Σj for all i, j ∈ {1, 2, . . . , r1}, it follows from (3.2) that there exists
a continuous map u : g• × (hm)R → R such that

u|g•×Σj
= θj , j = 1, 2, . . . , r1,

and that the restriction of u to g• × g• is the positive definite symmetric bilinear form
〈 , 〉0 as in [6] (see the remark in [28]). In view of t• ⊂ g•, the positive definiteness allows
us to write (hm)R as a direct sum

(hm)R = t• ⊕ t•⊥j , (3.8)

where t•⊥j is the orthogonal complement of t• in (hm)R by the symmetric bilinear form
θj . In (3.8), let prj : (hm)R → t•⊥j be the projection to the second factor. On the other
hand, by viewing the vector space (hm)R as a (not necessarily unique) direct sum ÑR⊕t•,
we see that

t⊥m
′ :=

r1⋃

j=1

prj(Σj)

sitting in (hm)R is a piecewise linear (and hence continuous) graph over ÑR. Thus the
restriction of π̃ : (hm)R → ÑR to t⊥m

′ is bijective, so that its inverse defines a continuous
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cross-section ι : ÑR → (hm)R to π̃. Now by setting (t⊥m
′)Z := t⊥m

′ ∩ (hm)Z, we define a
subset (g′m)Z of z(tm)Z by

(g′m)Z := (t⊥m
′)Z + (sm)Z =

{
X ′ + X ′′;X ′ ∈ (t⊥m

′)Z, X
′′ ∈ (sm)Z

}
,

where (sm)Z denotes the set of all semisimple elements X ′′ in sm such that the equality
exp(2π

√−1 X ′′) = idVm
holds.

Remark 3.9. The piecewise bilinear form θ above in Theorem B is essentially the
same as the bilinear pairing by Székelyhidi [28] for C∗-actions on a test configuration.

4. Relative K-stability.

In this section, we use test configurations introduced by Donaldson [3] (see also
[29]). For a complex affine space A1 := {s ∈ C} ∼= C, the algebraic torus C∗ acts on A1

by multiplication of complex numbers,

C∗ × A1 → A1, (t, z) 7→ tz.

Fix an element T of Tex(M, L), and let X ∈ z(tm)Z. Then C∗ acts on Vm and also on
P∗(Vm) via the algebraic group homomorphism

ϕX : C∗ → Z(Tm)

as in (3.4). Here for a positive integer α, if X is replaced by αX, then by the base
change, the algebraic torus C∗ is replaced by its unramified cover of order α. The
DeContini Procesi family (cf. [23]) associated to X is the test configuration (MX ,LX)
of (M, Lm) endowed with the C∗-equivariant projective morphism of algebraic varieties,

πX : MX → A1,

where MX is the subvariety of A1 × P∗(Vm) obtained as the closure of the union⋃
z∈C∗MX

z of the fibers

MX
z = π−1

X (z) = {z} × {ϕX(z) · Φm(M)}.

Furthermore, we put LX := p∗2(OP∗(Vm)(1)) for the restriction p2 toMX of the projection
of A1 × P∗(Vm) to the second factor P∗(Vm). For the open subset C∗ of A1, we see that
the holomorphic map ~ : C∗ → HilbP∗(Vm) sending each z ∈ C∗ to ~(z) := p2(MX

z ) ∈
HilbP∗(Vm) extends to a holomorphic map

~̄ : A1 → HilbP∗(Vm),

and hence, we can view MX as the pullback, by ~̄, of the universal family over
HilbP∗(Vm). For each positive integer `, we have
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(MX
z , (LX

z )`
) ∼= (M, L`m), z ∈ C∗,

and hence (MX , (LX)`) is a test configuration of (M, Lm) of exponent `. We first let
` = 1. Since A1 ×OP∗(Vm)(−1) is viewed as the blow-up of A1 × Vm along A1 ×{0}, and
since MZ is an algebraic subvariety of A1 × P∗(Vm), we have a C∗-action on (MX ,LX)
induced by

C∗ × (A1 × Vm) → A1 × Vm, (t, (z, v)) 7→ (tz, ϕX(t)v).

Since T also acts on A1×Vm by operating only on the second factor, the induced T -action
on A1 × P∗(Vm) preserves the subvariety MX , so that we have a natural T -action on
(MX ,LX) commuting with the C∗-action on (MX ,LX). For the scheme-theoretic fiber
MX

0 of πX over the origin 0 ∈ A1, let LX
0 denote the restriction of LX to MX

0 . Let EX
`

be the vector bundle over A1 associated to the direct image sheaf (πX)∗{(LX)`}. Then
the fiber (EX

` )0 of EX
` over the origin is

(EX
` )0 ∼= H0(MX

0 , (LX
0 )`),

for all integer ` À 1. Note that d` = dim V`m = dim(EX
` )0. Consider the endomorphism

X` ∈ End(EX
` )0 of (EX

` )0 induced by X. Let w` be the weight of the C∗-action on
(EX

` )0. Then for all ` À 1,

{
d` = an`n + an−1`

n−1 + · · ·+ a1` + a0,

w` = Tr(X`) = bn+1`
n+1 + bn`n + · · ·+ b1` + b0,

(4.1)

where rational numbers ai, bj ∈ Q are independent of the choice of `. Note here that
an = mnc1(L)n[M ]/n! > 0. Then for all ` as above,

w`/`d` = F0 + F1`
−1 + F2`

−2 + · · · (4.2)

with coefficients Fi = Fi(MX ,LX) ∈ Q independent of the choice of `. In particular

F1 = F1(MX ,LX) =
anbn − an−1bn+1

a2
n

is called the Donaldson-Futaki invariant (cf. [3]) for the test configuration (MX ,LX) of
(M, Lm).

Let ν : M̃X → MX be the normalization of MX , and we consider the pullback
L̃X := ν∗LX . Recall that (M̃X , L̃X) is trivial if there exists a C∗-equivariant isomor-
phism

(M̃X , L̃X) ∼= (A1 ×M, A1 × Lm),

where on the right-hand side, the group C∗ acts on the second factors M and Lm trivially.
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Now, the relative K-stability in [28] (see also [8], [26]) is formulated as follows:

Definition 4.3. (1) (M, L) is called K-semistable relative to T if F1(MX ,LX) ≤ 0
for all X ∈ (g′m)Z and all positive integers m.

(2) Let (M, L) be K-semistable relative to T . Then (M, L) is called K-stable relative
to T , if F1(MX ,LX) < 0 for all X ∈ (g′m)Z \ g, m = 1, 2, . . . , as long as (M̃X , L̃X) is
nontrivial.

5. Asymptotic relative Chow-stability.

In this section, let T ∈ Tex(M, L), and consider the T -equivariant Kodaira embed-
ding Φm : M ↪→ P∗(Vm) associated to the complete linear system |Lm| on M . Let δ(m)
be the degree of the image Φm(M) in P∗(Vm). Take the δ(m)-th symmetric tensor prod-
uct Sδ(m)(Vm) of Vm. For the dual W ∗

m of Wm := Sδ(m)(Vm)⊗n+1, we have the Chow
form

M̂m ∈ W ∗
m

for the irreducible reduced algebraic cycle Φm(M) on P∗(Vm), so that the corresponding
element [M̂m] in P∗(Wm) is the Chow point for the cycle Φm(M). Consider the natural
action of SL(Vm) on W ∗

m induced by the action of SL(Vm) on Vm.

Definition 5.1. (1) (M, Lm) is said to be Chow-stable relative to T if the orbit
Gm · M̂m is closed in W ∗

m.
(2) (M, L) is said to be asymptotically Chow-stable relative to T if (M, Lm) is Chow-

stable relative to T for all integers m À 1.

6. Extremal Kähler metrics.

For the “only if” part of Conjecture A, the algebraic torus T should be chosen as
small as possible. For instance, the result of Stoppa and Székelyhidi [27] solves the case
T = Tmax, which does not cover the stability part of the original Donaldson-Tian-Yau’s
Conjecture unless Aut(M) is discrete. In this section, by improving the arguments in [15],
we shall prove the following theorem by showing relative stability for all T ∈ Tex(M, L) on
a polarized algebraic manifold (M, L) with an extremal Kähler metric ω. Since we may
assume that the compact group K in the introduction acts isometrically on ω (cf. [1]),
the associated extremal Kähler vector field V belongs to k.

Theorem C. A polarized algebraic manifold (M, L) with an extremal Kähler met-
ric in c1(L)R is K-stable relative to every T ∈ Tex(M, L).

Proof. Fix an element X in (g′m)Z and let ω be an extremal Kähler metric in the
class c1(L)R. Choose a Hermitian metric h for L such that ω = c1(L;h). It then suffices
to show the following:

i) F1(MX ,LX) ≤ 0;
ii) If F1(MX ,LX) = 0, then X ∈ g as long as (M̃X , L̃X) is nontrivial.
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Hence by replacing the line bundle Lm by L, we may assume that m = 1 without loss of
generality.

Step 1: In this step, following [12, Section 2], we study the asymptotic weighted Bergman
kernel for the extremal Kähler polarized algebraic manifolds (M, L`) as ` → +∞. Since
the maximal compact subgroup of T sits in K, the corresponding Lie algebra t satisfies√−1 tR ⊂ k. We now define a Hermitian pairing 〈 , 〉L2(h) for V` by

〈σ, σ′〉L2(h) :=
∫

M

(σ, σ′)hωn, σ, σ′ ∈ V`, (6.1)

where (σ, σ′)h is the pointwise Hermitian inner product of σ, σ′ by the `-multiple of h.
Then by this Hermitian pairing 〈 , 〉L2(h), we have

V (χ`;i) ⊥ V (χ`;j), i 6= j,

where V (χ`;k) is as in Section 2. Put n`;i := dimC V (χ`;i). Let P` be the set of all
pairs (i, α) of integers such that 1 ≤ i ≤ ν` and 1 ≤ α ≤ n`;i. For the pairing (6.1), we
say that an orthonormal basis {σi,α; (i, α) ∈ P`} for V` is admissible, if σi,α ∈ V (χ`;i)
for all (i, α) ∈ P`. Fix an admissible orthonormal basis {σi,α; (i, α) ∈ P`} for V` with
〈 , 〉L2(h). By setting β`;i := exp{−q2(χ`;i)∗(

√−1V)} − 1, we define the asymptotic
weighted Bergman kernel Z`(ω), ` À 1, by

Z`(ω) := n!qn

ν∑̀

i=1

n`;i∑
α=1

(1 + β`;i) |σi,α|2h, (6.2)

where we put q := `−1 and |σ|2h := (σ, σ)h for all σ ∈ V`. We write the sections
σ̃i,α := (1 + β`;i)

1/2σi,α as σ̃j(i,α) by introducing the notation

j(i, α) := α +
i−1∑

k=1

n`;i,

so that the basis {σ̃i,α; (i, α) ∈ P`} for V` is written as S̃ := {σ̃j ; j = 1, 2, . . . , d`}, and
the Kodaira embedding Φ` : M ↪→ P∗(V`) is given by

M ↪→ Pd`−1(C), p 7→ Φ`(p) := (σ̃1(p) : σ̃2(p) : · · · : σ̃d`
(p)),

where P∗(V`) and Pd`−1(C) = {(ζ1 : ζ2 : · · · : ζd`
)} are identified by the basis S̃. For

later purposes, rewrite the homogeneous coordinates ζj , 1 ≤ j ≤ d`, as ζi,α, 1 ≤ i ≤ ν`,
1 ≤ α ≤ n`,i, by setting

ζi,α := ζj(i,α).
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Put r0 := {2c1(L)n[M ]}−1{nc1(L)n−1c1(M)[M ] +
√−1

∫
M

h−1(Vh)ωn}. Then by The-
orem B (see also p. 579) in [11], the asymptotic weighted Bergman kernel Z`(ω), ` À 1,
for the extremal Kähler metric ω satisfies

Z`(ω)− (1 + r0q) = O(q2). (6.3)

Here (6.3) means that |L.H.S.| ≤ C1q
2 for some positive constant C1 independent of `.

For the Fubini-Study form

ωFS :=
(√−1/2π

)
∂∂̄ log

( d∑̀

j=1

|ζj |2
)

on P∗(V`) (= Pd`−1(C)), the pullback Φ∗`ωFS is (
√−1/2π)∂∂̄ log Z`(ω), and hence by

(6.3), we obtain

Φ∗`ωFS − `ω = O(q2). (6.4)

Put b`;i := −q(χ`;i)∗(
√−1V) ∈ R. Note also that, as in [14, Lemma 2.6], there exists

a positive constant C2 independent of the choice of ` À 1 and i such that |b`;i| ≤ C2.
Hence

|β`;i| = b`;iq + O(q2) = O(q) for all ` À 1 and i. (6.5)

Step 2: Let X ∈ (g′1)Z, so that we consider the test configuration (MX ,LX) for (M, L)
of exponent 1. Recall that the vector bundle EX

` over A1 associated to the direct image
sheaf (πX)∗{(LX)`} admits a C∗-equivariant trivialization (cf. [4, Lemma 2])

EX
`
∼= A1 × (EX

` )0. (6.6)

For each z ∈ A1, let (EX
` )z denote the fiber of the vector bundle EX

` over z. Then by
(6.6), we may assume that the Hermitian metric ρ1 := 〈 , 〉L2(h) on V` = (EX

` )1 induces
a Hermitian metric ρ0 on the central fiber (EX

` )0 which is preserved by the action of
S1 ⊂ C∗. Now,

W` := Sδ(`)((EX
` )0)

⊗n+1 ∼= Sδ(`)(V`)⊗n+1 (6.7)

admits the Chow norm (cf. [32, 1.5]; see also Section 4 in [11])

W ∗
` 3 w 7→ ‖w‖CH(ρ0) ∈ R≥0.

In view of the definition in Section 5, let M̂` ∈ W ∗
` denote the Chow form for the

irreducible reduced algebraic cycle γ := Φ`(M) on P∗(V`), where P∗(V`) is viewed as
P∗((EX

` )0) by the identification
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V` = (EX
` )1 ∼= (EX

` )0

induced by the trivialization (6.6). Since the C∗-action on EX
` preserves (EX

` )0, we have
a natural representation

ψ` : C∗ → GL
(
(EX

` )0
)

(= GL(d`;C))

induced by the C∗-action on EX
` . By the complete linear systems |(LX

` )z|, z ∈ A1, we
have the relative Kodaira embedding

MX ↪→ P∗(EX
` )

over A1, where by (6.6) the projective bundle over A1 is regarded as the product bundle
A1 × P∗((EX

` )0). Then each fiber P∗((EX
` )z) over z ∈ A1 is naturally identified with

P∗((EX
` )0), so that all MX

z , z ∈ A1, are regarded as subschemes of P∗((EX
` )0). Namely,

MX
t = ψ`(t) · MX

1 , t ∈ C∗,

where on the right-hand side, the element ψ`(t) in GL((EX
` )0) acts naturally on

P∗((EX
` )0) as the corresponding projective linear transformation. Note thatMX

1 is noth-
ing but γ as an algebraic cycle, and thatMX

0 is preserved by the C∗-action on P∗((EX
` )0).

Consider the d`-fold covering T̂ := {t̂ ∈ C∗} of the algebraic torus T := {t ∈ C∗} by
setting

t = t̂d` ,

for the coordinates t and t̂, where d` = dim V`. Then the mapping ψSL
` : T̂→ SL((EX

` )0)
(= SL(d`;C)) defined by

ψSL
` (t̂) :=

ψ`(t̂d`)
det(ψ`(t̂))

=
ψ`(t)

det(ψ`(t̂))
, t̂ ∈ T̂,

is also an algebraic group homomorphism. In view of (6.7), the group SL((EX
` )0) acts

naturally on W ∗
` . We then consider the function

f`(s) := log ‖ψSL
` (exp(ŝ)) · M̂`‖CH(ρ0), s ∈ R,

by setting ŝ := s/d`. Note that X = X ′+X ′′, where X ′ ∈ (t⊥1
′)Z and X ′′ ∈ (s1)Z. Let X̂ ′

`,
X̂ ′′

` , V̂` ∈ sl (EX
` )0 be the endomorphisms of (EX

` )0 induced by X ′, X ′′, V, respectively.
Then for a suitable choice of an admissible orthonormal basis {σi,α; (i, α) ∈ P`} for V`,
we obtain

X̂ ′
`(σi,α) = −e′`;iσi,α, X̂ ′′

` (σi,α) = −e′′`;i,ασi,α, q
√−1 V̂`(σi,α) = −b`;iσi,α
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for some positive integers e′`;i and e′′`;i,α satisfying Σν`
i=1Σ

n`;i
α=1e

′
`;i = 0 and Σn`;i

α=1e
′′
`;i,α = 0

for all i. We now give an estimate of the first derivative ḟm(0) at s = 0. In view of [32]
(see also [11]),

ḟ`(0) = (n + 1)!
∫

M

∑ν`

i=1

∑n`;i
α=1 e`;i,α|σ̃i,α|2h∑ν`

i=1

∑n`;i
α=1 |σ̃i,α|2h

Φ∗`ω
n
FS (6.8)

where e`;i,α := e′`;i + e′′`;i,α. Again by [14, Lemma 2.6], we obtain |e′`;i| = O(`) and
|e′′`;i,α| = O(`), i.e., there exist positive constants C3, C4 independent of `, i, α such that
|e′`;i| ≤ C3` and |e′′`;i,α| ≤ C4`. Now,

ν∑̀

i=1

n`;i∑
α=1

e`;i,αb`;i =
ν∑̀

i=1

n`;ie
′
`;ib`;i = q Tr

(√−1 V̂`X̂
′
`

)
= O(`n), (6.9)

where the last equality follows from the fact that X ′ ∈ (t⊥1
′)Z, since by θ(

√−1V, X ′) = 0,
we have (cf. [28])

Tr
(V̂`X̂

′
`

)
= θ

(√−1V, X ′)`n+2 + O(`n+1) = O(`n+1).

Since
∑ν`

i=1

∑n`;i
α=1 |σ̃i,α|2h = (`n/n!)Z`(ω), by using

∑ν`

i=1

∑n`;i
α=1 e`;i,α = 0 and |e`;i,α| =

O(`), we see from (6.3), (6.4), (6.5), (6.8) and (6.9) that

ḟ`(0) = (n + 1)!
∫

M

∑ν`

i=1

∑n`;i
α=1 e`;i,α(1 + β`;i)|σi,α|2h

(`n/n!){1 + r0q + O(q2)} {`ω + O(q2)}n

= (n + 1)!
∫

M

∑ν`

i=1

∑n`;i
α=1 e`;i,αβ`;i|σi,α|2h

(`n/n!){1 + r0q + O(q2)} {`ω + O(q2)}n

=
(n + 1)!
1 + r0q

ν∑̀

i=1

n`;i∑
α=1

e`;i,αb`;iq + O(`n−1) = O(`n−1).

Recall the well-known fact (cf. [32]; see also [11, 4.5]) that f` is a convex function, i.e.,
f̈`(s) ≥ 0 for all s ∈ R. Now by (8.8) in Appendix 1,

lim
s→−∞

ḟ`(s) = (n + 1)!anF1`
n + O(`n−1). (6.10)

Let ` → ∞. Then in view of ḟ`(0) = O(`n−1), the monotonicity of the function ḟ`(s)
implies that

F1(MX ,LX) ≤ 0.

Step 3: To complete the proof of Theorem C, by assuming that the invariant F1(MX ,LX)
vanishes, it suffices to show that X ∈ g unless (M̃X , L̃X) is trivial. Then by
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F1(MX ,LX) = 0 and (6.10), we obtain

lim
s→−∞

ḟ`(s) = O(`n−1), ` À 1. (6.11)

For a sufficiently small positive real constant C5 independent of `, we put ε := C5(log `)q.
Consider the local one-parameter group

gs,` := ψSL
` (exp(ŝ)), −ε ≤ s ≤ 0.

In terms of the natural action of SL(d`,C) on Pd`−1(C), by setting ωs,` := q(gs,`◦Φ`)∗ωFS,
we see that the family of Kähler manifolds

(M, ωs,`), −ε ≤ s ≤ 0, ` = 1, 2, . . . , (6.12)

has bounded geometry as in Appendix 2. Let us now consider the holomorphic vector
field X (`) induced by (ψSL

` )∗(∂/∂s) on Pd`−1(C) which generates the local one-parameter
group g`,s, −ε ≤ s ≤ 0. For each s ∈ [−ε, 0], we consider the holomorphic tangent bundle
TMs of Ms := gs,`(Φ`(M)). For the Fubini-Study metric, let TM⊥

s denote the orthogonal
complement of TMs in TPd`−1(C)|Ms

, where TPd`−1(C) is the holomorphic tangent
bundle of Pd`−1(C). Hence TPd`−1(C)|Ms

is differentiably a direct sum TMs ⊕ TM⊥
s ,

and we can uniquely write

X (`)
|Ms

= X (`)
TMs

+ X (`)

TM⊥
s

, (6.13)

where X (`)
TMs

and X (`)

TM⊥
s

are C∞ sections of TMs and TM⊥
s , respectively. Note that

TM⊥
s is regarded as the normal bundle of Ms in Pd`−1(C). Consider the exact sequence

of holomorphic vector bundles

0 → TMs → TPd`−1(C)|Ms
→ TM⊥

s → 0

over Ms. Then the pointwise estimate (cf. [24, (5.16)]) of the second fundamental form
for this exact sequence is valid also in our case (cf. [13, Step 2]), and as in [24, (5.15)],
we obtain the inequality

∫

Ms

∣∣X (`)

TM⊥
s

∣∣2
ωFS

ωn
FS ≥ C6

∫

Ms

∣∣∂̄X (`)

TM⊥
s

∣∣2
ωFS

ωn
FS, (6.14)

where C6 is a positive constant independent of the choice of s and `. The space Θ :=
H0(M, C∞(TM)) of C∞ sections of TM has the Hermitian L2-pairing

〈Y1, Y2〉s,` :=
∫

M

(Y1, Y2)ωs,`
ωn

s,`, Y1, Y2 ∈ Θ,

where (Y1, Y2)ωs,`
denotes the pointwise Hermitian pairing of Y1 and Y2 by the Kähler
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metric ωs,`. For the subspace Γ := H0(M,O(TM)) of Θ, we consider its orthogonal
complement Γ⊥s,` in Θ by the pairing 〈 , 〉s,`. Then X (`)

TMs
in (6.13) is expressible as

X (`)
TMs

= X ◦s,` + X •s,`,

where X ◦s,` and X •s,` belong to (gs,` ◦Φ`)∗Γ and (gs,` ◦Φ`)∗Γ⊥s,`, respectively. Recall that
the second derivative f̈`(s) is given by

f̈`(s) =
∫

Ms

∣∣X (`)

TM⊥
s

∣∣2
ωFS

ωn
FS ≥ 0, (6.15)

see for instance [11, Theorem 4.5]. Since ḟ`(0)− ḟ`(−ε) =
∫ 0

−ε
f̈`(s)ds ≥ 0, we see from

ḟ`(0) = O(`n−1) and (6.10) that

O(`n−1) = ḟ`(0)− lim
s→−∞

ḟ`(s) ≥ ḟ`(0)− ḟ`(−ε)

=
∫ 0

−ε

f̈`(s)ds ≥ f̈`(s`)ε, (6.16)

where s`, ` À 1, are real numbers at which the functions f̈`(s), −ε ≤ s ≤ 0, attain their
minima, i.e., f̈`(s`) = min−ε≤s≤0 f̈`(s). By

f̈`(s`) = `n+1

∫

Ms`

∣∣X (`)

TM⊥
s`

∣∣2
qωFS

(qωFS)n,

it follows from (6.16) and ε = O(q log `) that

∫

Ms`

∣∣X (`)

TM⊥
s

∣∣2
qωFS

(qωFS)n = O(q/ log `), ` À 1. (6.17)

Since the left-hand side of (6.13) is holomorphic, by operating the ∂̄-operator of the
holomorphic vector bundle TPd`−1(C)|Ms

, we obtain

∂̄X (`)

TM⊥
s

= −∂̄X (`)
TMs

= −∂̄X •s,`. (6.18)

Let ∆TM ;s,` denote the Laplacian on the space of C∞ sections of the holomorphic tangent
bundle TM of the Kähler manifold (M, ωs,`). Since the family (6.12) has bounded
geometry, the first positive eigenvalue of the operator −∆TM ;s,` on A0,0(TM) is bounded
from below by some positive constant C7 independent of the choice of s and `. Hence

∫

Ms`

∣∣∂̄X •s`,`

∣∣2
qωFS

(qωFS)n ≥ C7

∫

Ms`

∣∣X •s`,`

∣∣2
qωFS

(qωFS)n. (6.19)

From (6.14), (6.18) and (6.19), we obtain
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∫

Ms`

∣∣X (`)

TM⊥
s

∣∣2
qωFS

(qωFS)n ≥ C6C7 q

∫

Ms`

∣∣X •s`,`

∣∣2
qωFS

(qωFS)n. (6.20)

Then from (6.17) and (6.20), it now follows that

∫

Ms`

∣∣X •s`,`

∣∣2
qωFS

(qωFS)n = O(1/ log `), ` À 1. (6.21)

Put τ` := (
∑ν`

i=1

∑n`;i
α=1 e`,i,α|ζi,α|2)/(`

∑ν`

i=1

∑n`;i
α=1 |ζi,α|2) on Pd`−1(C). Then by setting

c(τ`) := {∫
Ms`

(qωFS)n}−1
∫

Ms`

τ`(qωFS)n, we define uniformly bounded real-valued C∞

functions η`, ` À 1, on M by

η` := {(gs`,` ◦ Φ`)∗τ`}|M − c(τ`), ` À 1,

which are uniformly bounded on M by |e`,i,α| = O(`) (cf. Step 2). Hereafter, replace the
sequence s`, ` À 1, by its suitable subsequence s`j , j = 1, 2, . . . , if necessary. We write
`j , `−1

j , s`j
, 〈 , 〉s`j

,`j
, gs`j

,`j
, ωs`j

,`j
, Φ`j

, η`j
as `(j), q(j), s(j), 〈 , 〉(j), g(j), ω(j), Φ(j),

η(j), respectively. Since the family (6.12) has bounded geometry, we may assume that
ω(j) converges to the extremal Kähler metric ω in C∞, as j →∞ (see Appendix 2). For
simplicity, we further put





XTM (j) := (Φ(j)−1)∗(g(j)−1)∗X (`j)
TMs

`j

,

X ◦(j) := (Φ(j)−1)∗(g(j)−1)∗X ◦s`j
,`j

,

X •(j) := (Φ(j)−1)∗(g(j)−1)∗X •s`j
,`j

.

Then the following cases 1 and 2 are possible:

Case 1: I◦j :=
∫

M
|X ◦(j)|2ω(j)ω(j)n, j = 1, 2, . . . , are bounded. In this case, since

|XTM (j)|2ω(j) = |X ◦(j)|2ω(j) + |X •(j)|2ω(j), (6.21) together with the boundedness of I◦j
implies that

∫

M

|XTM (j)|2ω(j)ω(j)n, j = 1, 2, . . . , are bounded. (6.22)

Since ω(j) → ω in C∞, in view of (6.22) and |XTM (j)|2ω(j) = |∂̄η(j)|2ω(j), we see that∫
M
|∂̄η(j)|2ωωn, j = 1, 2, . . . , form a bounded sequence. Hence η(j), j = 1, 2, . . . , are

bounded in the Sobolev space L1,2(M, ωn). Then replacing η(j), j = 1, 2, . . . , by its
subsequence if necessary, we may further assume that, for some real-valued function
η∞ ∈ L2(M, ωn),

η(j) → η∞ strongly in L2(M, ωn), as j →∞. (6.23)

Put ω(∞) := ω. Then for j = 1, 2, . . . , and also for j = ∞, the Lichnerowich operator Λj :
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C∞(M)C → C∞(M)C for the Kähler manifold (M, ω(j)) is an elliptic operator, of order
4, with kernel consisting of all Hamiltonian functions for the holomorphic Hamiltonian
vector fields on (M, ω(j)). Let Λ#

j : C∞(M)C → C∞(M)C be the formal adjoint of
the operator Λj on the Kähler manifold (M, ω(j)). Now, to each smooth function f ∈
C∞(M)C, we associate a complex vector field Vf,j of type (1, 0) on M such that

i(Vf,j)ω(j) =
√−1 ∂̄f, j = 1, 2, . . . ,

where we can easily check that Vη(j),j coincides with 2πXTM (j). Hence for all f ∈
C∞(M)C, we can write

∫
M

(Λ#
j f)η(j)ω(j)n as

(
Λ#

j f, η(j)
)
L2(M,ω(j)n)

= (f,Λjη(j))L2(M,ω(j)n) =
〈
∂̄Vf,j , ∂̄Vη(j),j

〉
(j)

= 2π
〈
∂̄Vf,j , ∂̄{XTM (j)}〉

(j)
= 2π

〈
∂̄Vf,j , ∂̄{X •(j)}

〉
(j)

.

Here the last equality follows from the identities XTM (j) = X ◦(j)+X •(j) and ∂̄X ◦(j) =
0. Hence, for each fixed f in C∞(M)C, we obtain





∣∣∣∣
∫

M

(
Λ#

j f
)
η(j)ω(j)n

∣∣∣∣ = 2π
∣∣〈∆jVf,j ,X •(j)〉(j)

∣∣

≤ 2π

{ ∫

M

|∆jVf,j |2ω(j) ω(j)n

}1/2√
I•j ,

(6.24)

where I•j := {∫
M
|X •(j)|2ω(j)ω(j)n}1/2 and ∆j := ∆TM ;s(j),`j

. In (6.24), let j → ∞.
Since I•j → 0 by (6.21), and since ω(j) → ω in C∞, by passing to the limit as j → ∞,
we see from (6.23) and (6.24) that

∫

M

(
Λ#
∞f

)
η∞ωn = 0

for all f ∈ C∞(M)C. This shows that η = η∞ is a weak solution for the elliptic equation

Λ∞η = 0,

and hence is a strong solution. Thus we have a holomorphic vector field W on M such
that i(2πW )ω = ∂̄η∞. Then by Appendix 3, under the assumption that (M̃X , L̃X) is
nontrivial, we obtain X ∈ g as required.

Case 2: I◦j → +∞ as j → ∞. Here we replace I◦j , j = 1, 2, . . . , by its subsequence if
necessary. In this case, X̂ ◦(j) := X ◦(j)/√

I◦j satisfies

∫

M

|X̂ ◦(j)|2ω(j)ω(j)n = 1, j = 1, 2, . . . ,

so that in view of the convergence ω(j) → ω in C∞, as j →∞, we may assume that
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X̂ ◦(j) → X̂ ◦∞ (6= 0) in g, as j →∞, (6.25)

for some X̂ ◦∞ ∈ g. Put η̂(j) := η(j)/
√

I◦j and X̂ •(j) := X •(j)/√
I◦j . Since η(j), j =

1, 2, . . . , are uniformly bounded on M , we see that

η̂(j) → 0 in C0(M), as j →∞. (6.26)

Let η̂◦(j) and η̂•(j) be the Hamiltonian functions associated to the vector fields X̂ ◦(j)
and X̂ •(j), respetively, on the Kähler manifold (M, ω(j)), so that

{
i(2πX̂ ◦(j))ω(j) =

√−1 ∂̄(η̂◦(j)),

i(2πX̂ •(j))ω(j) =
√−1 ∂̄(η̂•(j)),

where the functions η̂◦(j) and η̂•(j) are normalized by the vanishing of the integrals∫
M

η̂◦(j)ω(j)n and
∫

M
η̂•(j)ω(j)n, respectively. Then

η̂(j) = η̂◦(j) + η̂•(j). (6.27)

Now by (6.25), there exists a non-constant C∞ function ρ̂ on M such that i(2πX̂ ◦∞)ω =√−1 ∂̄ρ̂ and that

η̂◦(j) → ρ̂ in C∞(M), as j →∞.

Hence by (6.26) and (6.27), we see that

η̂•(j) → −ρ̂ in C0(M), as j →∞.

On the other hand, by (6.21), we see that
∫

M
|∂̄η̂•(j)|2ω(j)ω(j)n → 0 as j →∞, and hence

for each fixed smooth (0, 1)-form θ on M , we have

∣∣(η̂•(j), ∂̄(j)∗θ)L2(M,ω(j)n)

∣∣ =
∣∣∣∣
∫

M

(∂̄η̂•(j), θ)ω(j)ω(j)n

∣∣∣∣

≤
{ ∫

M

|∂̄η̂•(j)|2ω(j)ω(j)n

}1/2{ ∫

M

|θ|2ω(j)ω(j)n

}1/2

→ 0,

where for j ∈ Z+ ∪ {∞}, we denote by ∂̄(j)∗ the formal adjoint of the operator ∂̄ on
functions for the Kähler manifold (M, ω(j)). Then by letting j → ∞, we obtain the
vanishing for the Hermitian L2-inner product of functions ρ̂ and ∂̄(∞)∗θ,

(ρ̂, ∂̄(∞)∗θ)L2(M,ωn) = 0,

for every smooth (0, 1)-form θ on M , i.e., ∂̄ρ̂ = 0 in a weak sense, and hence in a strong
sense. Thus we conclude that ρ̂ is constant on M in contradiction to X̂ ◦∞ 6= 0. This
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completes the proof of Theorem C. ¤

7. A program to solve Conjecture A.

As far as the K-stability of (M, L) relative to T ∈ Tex(M, L) is concerned, the
stability condition is weakest in the case T = Tmax. Hence by Theorem C, it suffices to
show the existence of an extremal Kähler metric in c1(L)R under the assumption that
(M, L) is K-stable relative to Tmax, or more generally relative to T ∈ Tmin(M, L). Thus
in this section, by assuming T ∈ Tmin(M, L), we discuss Conjecture A by dividing it into
the following three parts:

Part 1. If (M, L) is K-stable relative to T , then (M, L) is asymptotically Chow-
stable relative to T .

Part 2 (cf. [17]). If (M, L) is asymptotically Chow-stable relative to T , then for
all m À 1 there exist a series of weighted balanced metrics ωm, m À 1, such that the
m-th asymptotic Bergman kernel Bm(ωm) is

(mn/n!) + fmmn−1 + O(mn−2), m À 1, (7.1)

for some uniformly bounded real Hamiltonian function fm on the Kähler manifold
(M, ωm) associated to a holomorphic vector field in t.

Part 3. The Kähler metric ωm in Part 2 converges to a Kähler metric ω∞ on M

in C∞, as m →∞.

Here Part 1 will be treated in [19], while Part 2 is proved in [17]. Note that Part 3 is
studied by many authors, say, by Chen and Donaldson in the case dimM ≤ 3. For Part
3, we have some idea, though it will be discussed elsewhere (cf. [18]). If these three parts
are done, then by dim t < +∞ and also by the uniform boundedness (cf. [17, Theorem
A]) of fm in (7.1), replacing fm, m = 1, 2, . . . , by its suitable subsequence if necessary,
we may assume that fm converges to some real Hamiltonian function f∞ on the Kähler
manifold (M, ω∞) associated to a holomorphic vector field in t. Now by a theorem of
Catlin-Lu-Tian-Yau-Zelditch ([2], [9], [30], [31]), we see from (7.1) that

fm = σ(ωm)/2, (7.2)

where for every Kähler metric ω in c1(L)R, we denote by σ(ω) the scalar curvature of
ω. In (7.2), let m → ∞. Then we obtain f∞ = σ(ω∞)/2, and hence ω∞ is an extremal
Kähler metric in c1(L)R, as required.

Since the statement of Conjecture A is supposed to be valid for all T ∈ Tex(M, L),
it suggests the following:

Conjecture D. A polarized algebraic manifold (M, L) is K-stable relative to Tex

if and only if (M, L) is K-stable relative to Tmax.

Finally we observe that Conjecture A includes, as a special case, Donaldson-Tian-
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Yau’s conjecture on the existence of constant scalar curvature metrics. This is seen from
the fact that, if (M, L) is K-stable, then the classical Futaki invariant (cf. [7]) of (M, L)
vanishes so that any extremal Kähler metric on (M, L) has constant scalar curvature.

8. Appendix 1.

In this Appendix 1, we shall give another interpretation of the invariants Fj , j =
1, 2, . . . , for test configurations by discussing the unpublished result (4.9) in [15]. Let
(M,L) be a test configuration for (M, L) of exponent m in Donaldson’s sense, so that
there exists a C∗-equivariant projective morphism of algebraic varieties,

π : M→ A1,

with a relatively very ample line bundle L on the fiber space M over A1 = {s ∈ C} such
that the C∗-action on M lifts to a C∗-linearization of L with isomorphisms of polarized
algebraic manifolds,

(Ms,Ls) ∼= (M, Lm), s 6= 0.

Here C∗ acts on A1 by multiplication of complex numbers as in Section 4. Let E`,
` = 1, 2, . . . , be the holomorphic vector bundle over A1 associated to the direct image
sheaves π∗L`. Then as in (6.6), we have a C∗-equivariant trivialization

E`
∼= A1 × (E`)0 (8.1)

such that a Hermitian metric ρ1 for (E`)1 = V`m = H0(M, L`m) induces a Hermitian
metric ρ0 on the central fiber (E`)0 which is preserved by the action of S1 ⊂ C∗. Now
for δ(`) in Section 5, the vector space W` := {Sδ(`)((E`)0)}⊗n+1 admits the Chow norm

W ∗
` 3 w 7→ ‖w‖CH(κ0) ∈ R≥0,

as in Section 6. Let M̂` ∈ W ∗
` be such that the associated element [M̂`] in P∗(W`) is the

Chow point for the reduced effective algebraic cycle

γ1 := Φ`m(M)

on P∗((E`)0) for the Kodaira embedding Φ`m : M ↪→ P∗(V`m) associated to the complete
linear system |L`m| on M . Here each (E`)s, s 6= 0, is identified with (E`)0 via the
trivialization (8.1), and by letting s = 1, we regard Φ`m(M) on P∗(V`) as the algebraic
cycle γ1 on P∗((E`)0). Since the T -action on E` preserves (E`)0, we have a representation

ψ` : C∗ → GL((E`)0) (8.2)

induced by the C∗-action on E`. Note that this C∗-action on (E`)0 naturally induces
a C∗-action on P∗((E`)0). By the complete linear systems |L`

s|, s ∈ A1, we have the
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relative Kodaira embedding

M ↪→ P∗(E`),

over A1, where by (8.1) the projective bundle P∗(E`) over A1 is viewed as product bundle
A1 × P∗((E`)0). Then each fiber P∗(E`)s of P∗(Em) over s ∈ A1 is naturally identified
with P∗((E`)0), so that all Ms, s ∈ A1, are regarded as subschemes of P∗((E`)0). Then

Mt = ψ`(t) · M1, t ∈ C∗, (8.3)

where on the right-hand side, the element ψ`(s) in GL((E`)0) acts naturally on P∗((E`)0)
as a projective linear transformation. Note that M1 is nothing but γ1 as an algebraic
cycle, and that M0 is preserved by the T -action on P∗((E`)0). Let d` := dim(E`)0 be as
in (4.1), and we consider the d`-fold unramified covering T̂ := {t̂ ∈ C∗} of the algebraic
torus T := {t ∈ C∗} by setting

t = t̂d`

for t and t̂. Then the mapping ψSL
` : T̂→ SL((E`)0) defined by

ψSL
` (t̂) :=

ψ`(t̂d`)
det(ψ`(t̂))

=
ψ`(t)

det(ψ`(t̂))
, t̂ ∈ T̂, (8.4)

is also an algebraic group homomorphism. Both ψ`(t) and ψSL
` (t̂) induce exactly the

same projective linear transformation on P∗((E`)0). Let γt be the algebraic cycle on
P∗((Em)0) obtained as the image of γ1 by this projective linear transformation. Now
by (8.3), the algebraic cycle γt is nothing but Mt viewed just as an algebraic cycle on
P∗((E`)0). Then as t → 0, we have a limit algebraic cycle

γ0 := lim
t→0

γt (8.5)

on P∗((E`)0). Here γ0 is the T-invariant algebraic cycle on P∗((E`)0) associated to the
subscheme M0 counted with multiplicities. Then let M̂

(0)
` denote the element in W ∗

`

such that [M̂ (0)
` ] ∈ P∗(W`) is the Chow point for the cycle γ0 on P∗((E`)0). Then (8.5)

is interpreted as

lim
t̂→0

[
ψSL

` (t̂) · M̂`] =
[
M̂

(0)
`

]
(8.6)

in P∗(W`). Here by (8.2), the group SL((E`)0) acts naturally on W ∗
` , and hence acts also

on P∗(W`). As in Section 6, we consider the function

f`(s) := log
∥∥ψSL

` (exp(ŝ)) · M̂`

∥∥
CH(ρ0)

, s ∈ R, (8.7)

by setting ŝ := s/d`. Consider the first derivative ḟ`(s) := (df`/ds)(s). The purpose
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of this appendix is to show the following (see Phong and Sturm [25, equation 7.29] for
the leading term; see also [4, pp. 464–467]):

Theorem E. Let an and Fj be as in Section 4. Then the function ḟ`(s) has a
limit, as s → −∞, written in the following form for ` À 1 :

lim
s→−∞

ḟ`(s) = (n + 1)! an(F1`
n + F2`

n−1 + F3`
n−2 + . . . )

= (n + 1)! an

(
w`

`d`
− F0

)
`n+1. (8.8)

Proof. Since γ0 is preserved by the T̂-action on (E`)0, the Chow point [M̂ (0)] for
γ0 is fixed by the T̂-action on P∗(W`), i.e.,

ψSL
` (t̂) · M̂ (0)

` = t̂λ`M̂
(0)
` , t ∈ C∗,

for some λ` ∈ Z. Since the T̂-action on W ∗
` is diagonalizable, we can write M̂` in the

form

M̂` = Σν
α=1uα, (8.9)

where 0 6= uα ∈ W ∗
` , α = 1, 2, . . . , ν, are such that, for an increasing sequence of integers

r1 < r2 < · · · < rν , the equality

ψSL
` (t̂) · uα = t̂rαuα (8.10)

holds for all α ∈ {1, 2, . . . , ν} and t̂ ∈ T̂. In particular, in view of (8.6), we can find a
complex number c 6= 0 such that

M̂
(0)
` = c u1,

and hence λ` coincides with r1. Then we may assume c = 1 without loss of generality.
In view of (8.9) and (8.10), we can write f`(s) as

log
∥∥∥∥ exp

(
λ`

d`
s

)
· (u1 + O(t̂))

∥∥∥∥
CH(ρ0)

=
λ`

d`
s + log

∥∥(u1 + O(t̂))
∥∥

CH(ρ0)
,

so that by t̂ = exp(s/d`), letting s → −∞, we obtain

lim
s→−∞

ḟ`(s)
(

=
r1

d`

)
=

λ`

d`
. (8.11)

Hence it suffices to show that λ`/d` admits the asymptotic expansion as in the right-hand
side of (8.8) above. Consider the graded algebra
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∞⊕

k=0

(Ek`)0,

where via ψSL
` , the group T̂ acts on (E`)0 and hence on (Ek`)0. Then by Mumford [20,

Proposition 2.11], the weight τk for the T̂-action on det(Ek`)0 satisfies the following:

τk +
λ`

(n + 1)!
kn+1 = O(kn), k À 1, (8.12)

i.e., there exists a constant C > 0 independent of k, possibly depending on `, such that
the left-hand side of (8.12) has absolute value bounded by Ckn for positive integers k.
Let w` be as in (4.1). Then by the expression of ψSL

` in (8.4), the weight τk for det(Ek`)0
induced by the T̂-action on (E`)0 via ψSL

` is expressible as

τk = d`wk` − k w`dk`. (8.13)

Here the term d`wk` on the right-hand side of (8.13) is the weight in t̂ for det(Ek`)0
induced from the action of the numerator ψ`(t) of (8.4) on (E`)0, since it is nothing
but the weight in t̂ for the action of ψk`(t) on det(Ek`)0, while in view of the natural
surjective homomorphism

Sk((E`)0) → (Ek`)0, ` À 1,

the term k w`dk` is just the weight in t̂ induced from the scalar action on (E`)0 by the
denominator of (8.4). Then for k À 1, by (8.13) and (4.2), we obtain

τk = d`wk` − k w`dk` = (k`)d`dk`

{
wk`

(k`)dk`
− w`

`d`

}

= (k`)d`dk`

{ ∑

j≥0

Fj(k`)−j −
∑

j≥0

Fj`
−j

}

= −(k`)d`dk`{(F1`
−1 + F2`

−2 + F3`
−3 + · · · ) + O(k−1)}

= −kn+1and`{(F1`
n + F2`

n−1 + F3`
n−2 + · · · ) + O(k−1)},

where the last equality follows from dk` = (k`)n{an+O(1/k)} obtained from (4.1) applied
to k` in place of `. Then by comparing this expression of τk with (8.12), and then by
(4.2), we obtain

λ`

d`
= (n + 1)! an(F1`

n + F2`
n−1 + F3`

n−2 + · · · )

= (n + 1)! an

(
w`

`d`
− F0

)
`n+1.
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9. Appendix 2.

In this Appendix 2, we shall show that the family of Kähler manifolds

(M, ωs,`), −ε ≤ s ≤ 0, ` = 1, 2, . . . ,

in (6.12) has bounded geometry in the sense that there exists a positive real constant R

satisfying (cf. [24, p. 702])

a) ωs,` −R−1ω is positive definite on M ;
b) ‖ωs,` − ω‖C4(ω) < R,

where ω is as in the proof of Theorem C. By (6.6), we identify P∗(EX
` ) with A1 ×

P∗((EX
` )0), and let pr2 : P∗(EX

` ) → P∗((EX
` )0) denote the projection to the second

factor. Then for the relative Kodaira embedding MX ↪→ P∗(EX
` ) as in Section 6, the

pullback

H := pr∗2OP∗((EX
` )0)

(1)

to P∗(EX
` ) of the the hyperplane bundle OP∗((EX

` )0)(1) on P∗((EX
` )0) has the restriction

H|MX = (LX)`. (9.1)

Recall that the action of T = {t ∈ C∗} on MX lifts to a T-linearization of LX , and hence
T acts on EX

` = A1 × (EX
` )0 by

T× (A1 × (EX
` )0) → A1 × (EX

` )0, (t, (s, e)) 7→ (ts, ψ`(t) · e),

where ψ` is as in Section 6. This induces a T-action on P∗(EX
` ). Let L̄X denote the

complex conjugate of LX . By

T× LX → LX , (t, λ) 7→ gL(t) · λ,

we mean the T-action on LX , and the associated T-action on the real line bundle |LX |2 :=
LX ⊗ L̄X on MX will be denoted by

T× |LX |2 → |LX |2, (t, ξ) 7→ g|L|2(t) · ξ.

This T-action on |LX |2, covering the T-action on MX , is independent of the choice of
`. In view of the definition of gs,`, both ψ`(exp(s)) and gs,` induce the same projective
linear transformation on (EX

` )0. Note also that ε = C3(log `)q, ` À 1, and −ε ≤ s ≤ 0.
Then by setting θ := 1− e−C3(log `)q, we obtain

1− θ ≤ exp(s) ≤ 1, (9.2)

where 0 < θ ¿ 1. As in Section 6, let {σi,α; (i, α) ∈ P`} be an admissible orthonormal
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basis for V` (= (EX
` )1), and by the identification

(EX
` )1 ∼= (EX

` )0,

the corresponding orthonormal basis for (EX
` )0 will be denoted by {σi,α; (i, α) ∈ P`}. In

terms of these bases, both P∗((EX
` )0) and P∗((EX

` )1) (= P∗(V`)) are identified with

Pd`−1(C) = {(z1 : z2 : · · · : zd`
)}.

Then (n!/`n)Σd`
α=1|zα|2 is regarded as a section for |H|2 := H⊗H̄, while by (9.1), we can

write on MX

qωFS =
(√−1/2π

)
∂∂̄ log ΩFS,`.

Here ΩFS,` denotes the positive real smooth section of |LX |2 obtained as the restriction of
{(n!/`n)Σd`

α=1|zα|2}q to MX . Put t := exp(s) for simplicity. In view of (9.1), identifying
M with MX

1 , we easily see that

ωs,` =
(√−1/2π

)
∂∂̄ log

{
g|L|2(t)

∗ΩFS,`

}
, (9.3)

when restricted to MX
1 ↪→ Pd`−1(C). Here g|L|2(t)

∗ΩFS,` is regarded as a positive real
section of |gL(t)∗LX |2 on MX

1 ↪→ Pd`−1(C). Consider the dual h∗ of the Hermitian
metric h, where h is such that ω = c1(L;h) is the original extremal Kähler metric on M .
Now by a theorem of Catlin-Lu-Tian-Zeldich ([2], [9], [30], [31]), we obtain

ΩFS,` → h∗ in C∞, (9.4)

as ` → ∞. In view of t = exp(s), −ε ≤ s ≤ 0, and (9.2), when restricted to MX
1 (=

M) ↪→ Pd`−1(C), the difference between g|L|2(t)
∗ΩFS,` and ΩFS,` is small enough in the

sense that its C∞-norm on M is uniformly bounded from above by a constant C(θ)
depending only on θ such that C(θ) → 0 as θ → 0. Thus we conclude from (9.3) that
the family of Kähler manifolds (M, ωs,`) in (6.12) has bounded geometry.

Remark 9.5. By ε = C3(log `)q and −ε ≤ s` ≤ 0, we see that θ above satisfies
θ → 0 as ` →∞, and hence ω(j) → ω as j →∞ in Section 6.

10. Appendix 3.

In the Case 1 of Step 3 of Section 6 in the proof of Theorem C, we assume that
(M̃X , L̃X) is nontrivial. Then by using [16], we shall show X ∈ g as follows. Let η◦(j)
and η•(j) be the Hamiltonian functions associated to the vector fields X ◦(j) and X •(j),
respetively, on the Kähler manifold (M, ω(j)). Then
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{
i(2πX ◦(j))ω(j) =

√−1 ∂̄(η◦(j)),

i(2πX •(j))ω(j) =
√−1 ∂̄(η•(j)),

where the functions η◦(j) and η•(j) are normalized by the vanishing of the integrals∫
M

η◦(j)ω(j)n and
∫

M
η•(j)ω(j)n, respectively. Then η(j) = η◦(j) + η•(j), where by

(6.21) and the assumption of Case 1,

I•j → 0 as j →∞; (10.1)

{I◦j }j=1,2,... is a bounded sequence. (10.2)

In view of (10.2), replacing ω(j), j = 1, 2, . . . , by its suitable subsequence if necessary,
we may assume that

X ◦(j) → X ◦∞ in g, as j →∞,

for some X ◦∞ ∈ g. Hence there exists a C∞ function ρ on M such that i(X ◦∞)ω =
√−1 ∂̄ρ

and that

η◦(j) → ρ in C∞(M), as j →∞.

This together with (6.23) implies

η•(j) → η•∞ in L2(M, ωn), as j →∞,

where η•∞ := η∞−ρ. Let θ be an arbitrary smooth (0, 1)-form θ on M . Then from (10.1)
and I•j =

∫
M
|∂̄η•(j)|2ω(j)ω(j)n, it follows that

∣∣(η•(j), ∂̄(j)∗θ)L2(M,ω(j)n)

∣∣ =
∣∣∣∣
∫

M

(∂̄η•(j), θ)ω(j) ω(j)n

∣∣∣∣

≤
{ ∫

M

|∂̄η•(j)|2ω(j)ω(j)n

}1/2{ ∫

M

|θ|2ω(j)ω(j)n

}1/2

→ 0,

as j →∞. Then by letting j →∞, we obtain

(
η•∞, ∂̄(∞)∗θ

)
L2(M,ωn)

= 0,

for every smooth (0, 1)-form θ on M , i.e., ∂̄η•∞ = 0 in a weak sense, and hence in a strong
sense. Thus η•∞ is constant on M , so that

0 = η•∞ = η∞ − ρ.

By setting X (j) := (g(j)−1)∗X (`j)

|Ms
`j

and X TM⊥(j) := (g(j)−1)∗X (`j)

TM⊥
s`j

, we now have the

expression
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X (`j)

|Φ(j)(M) = X (j) = X TM⊥(j) + Φ(j)∗X ◦(j) + Φ(j)∗X •(j).

Let j →∞. Then by [16], we conclude from (6.17) and (10.1) that

X = W ∈ g

in the Lie algebra sl(V1), as required.

Remark 10.3. The essential point of [16] is Appendix in Section 5, in which by
using the normality of M implicitly, we observed that the nontriviality of ΨSL

1,X′ induces
a nontrivial birational C∗-action of an n-dimendsional irreducible component of F of
M0 (see [16, pp. 22–23]). However, since M is not necessarily normal, it can occur that
the induced birational C∗-action on each n-dimendsional irreducible component of F
of M0 is trivial, in which case the test configuration is trivial up to codimension ≥ 2
subvarieties of M. Now by [26], our argument in [16] is still valid even if the revised
version (cf. Definition 4.3) of K-stability due to [8] is used.
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