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Abstract. We study the geometry of transversality of holomorphic fo-
liations of codimension one in Cn with spheres, from a viewpoint of dynamics
of anti-holomorphic maps in the projective space. A point of non-degenerate
contact of a leaf with a sphere is a hyperbolic fixed point of the corresponding
dynamics. Around a point of degenerate contact, the intersection of branches
of the variety of contacts is described as a bifurcation diagram of a neutral
fixed point of dynamics. The Morse index for the distance function from the
origin is computed as the complex dimension of an unstable manifold.

1. Introduction.

In the classical framework, given a (smooth) Morse function ϕ on a smooth Riem-
manian manifold M , a natural dynamical system is defined on M by the flow of the
gradient vector of −ϕ ([13]). The work of R. Thom ([15]) suggests a similar approach to
the case of foliated manifolds (M,F), where F is a codimension k ≥ 1 smooth foliation
on M . R. Thom’s idea is to consider a smooth function ϕ on M and, as r varies through
R, to study the variation of the foliated structures ([ϕ ≤ r],F(r)), where F(r) is the
foliation induced on [ϕ ≤ r] = {x ∈ M, ϕ(x) ≤ r} by F . After introducing three types of
critical points (of tangential or intrinsic nature) the author discusses their effect on the
pair ([ϕ ≤ r],F(r)). This proposal is not however completely developed in the paper.

For a Morse function ϕ on a foliated manifold (M,F) of real codimension one, we
can consider yet another dynamical system, i.e., the normal flow on each level surface
ϕ−1(r) ⊂ M , r ∈ R, which is a vector field obtained by projecting the normal vector of
the leaf L containing p ∈ ϕ−1(r), to the tangent space Tp(ϕ−1(r)) ⊂ Tp(M). A critical
point p of ϕ|L will be a fixed point of the normal flow in ϕ−1(r) ⊂ M , and the Morse
index m(ϕ|L; p) will be equal to the dimension of the unstable manifold.

An important class of foliated structures is given by holomorphic foliations in a
neighborhood of the origin 0 ∈ Cn, where ϕ is the euclidian distance from the origin (see
[4], [5], [6], [7], [10]). The case of (complex) one-dimensional foliations is addressed in
[1], and the codimension one case in [8]. The conclusion is that a critical point p of ϕ|L
is a fixed point of the (real) gradient flow, and the Morse index at p is equal to the real
dimension of the unstable manifold Wu(p).
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In this article we consider a codimension one holomorphic foliation F = F(ω) defined
by an integrable one-form ω =

∑n
j=1 fj(z)dzj on (an open set of) Cn, and the distance

function from the origin ϕ(z) = ‖z‖2 =
∑n

j=1 |zj |2. A level surface is a sphere ϕ−1(r2) =
S2n−1(r), for r > 0. Let Ker(ω)(p) = {v ∈ TpCn : ω(p) · v = 0}, p ∈ Cn, and
Sing(ω) = {p ∈ Cn : ω(p) = 0}. The distribution Ker(ω) is called transverse to the
sphere at a point p if p 6= 0, p 6∈ Sing(ω) and Ker(ω)(p) + Tp(S2n−1(r)) = TpR2n,
r = ‖p‖1/2, as a real subspace. The set Σ of the points p ∈ Cn where F is not transverse
to the spheres is called variety of contact ([15]), or polar variety ([10]). We have shown
in [4] that F is not transverse to the spheres at a point z ∈ Cn \ 0 if and only if there
exists λ ∈ C such that

f(z) = λz, (1)

where f(z) = (f1(z), . . . , fn(z)), z = (z1, . . . , zn). Thus Σ is a real analytic set given by

Σ = {z ∈ Cn : zjfk(z) = zkfj(z),∀j, k = 1, . . . , n}.

The scalar λ ∈ C in (1) is called conjugate-multiplier. A point p ∈ Σ0 := Σ \ (Sing(ω) ∪
{0}) is called a contact point. It is called a degenerate contact point if it is a degenerate
critical point of the distance function ϕ|Lp.

A problem in this situation is that we do not have a straightforward way to de-
fine a ‘normal flow’ on the spheres S2n−1(r). In fact, the anti-holomorphic vector field
grad(ω)(z) =

∑n
j=1 fj(z)∂/∂zj ([12]) gives rise to a real vector field on the spheres

S2n−1(r), but a contact point is not necessarily a singularity of this real flow because the
conjugate-multiplier λ in (1) is not necessarily real. On the other side, if we consider a
real 2-field on S2n−1(r) derived from grad(ω), then it is not integrable in the classical
sense of Frobenius.

1.1. Computing Morse indices and studying the contact variety.
Next we pass to describe our main results. First, we give two results showing how we

can compute the Morse index explicitly for the first time. The dynamical motivation is
as follows. Assume, for a moment, that ω =

∑n
j=1 fj(z)dzj is a homogeneous integrable

one-form on Cn, n ≥ 3, having a simple (and isolated) singularity at the origin ([3], [5]),
where fj(z) are homogeneous polynomials of a fixed degree d. By Malgrange’s theorem
[11], we may suppose without loss of generality that ω has a first integral g, ω = dg,
which is a homogeneous polynomial of degree d + 1 ([4]). The gradient field induces an
anti-holomorphic discrete dynamical system on CPn−1:

πn ◦ f ◦ π−1
n : (z1 : · · · : zn) 7→ (f1(z) : · · · : fn(z))

where πn : Cn\{0} → CPn−1 denotes the canonical projection. By (1), it is now straight-
forward to see that p ∈ Cn \ 0 is a contact point if and only if πn(p) ∈ CPn−1 is a fixed
point of πn ◦ f ◦ π−1

n .
If ω is an inhomogeneous polynomial form or a holomorphic form in general, the
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gradient vector field grad(ω) does not necessarily induce a well-defined map on CPn−1,
but we can still consider a local dynamics as follows. Let p ∈ Σ0, and

Hp = {z ∈ Cn : tp̄ · (z − p) = 0}

a hyperplane which is tangent at p to the sphere. Let

Fp = πn ◦ f ◦ (πn|Hp)−1 (2)

be a map of a neighborhood of πn(p) in CPn−1 to CPn−1. We state our first result as
follows:

Theorem 1. Let F = F(ω) be a holomorphic foliation defined by an integrable
holomorphic one-form ω in a neighborhood of the origin 0 ∈ Cn. Let p ∈ Σ0 be a contact
point, and Lp the leaf of F containing p. Then p is a non-degenerate critical point of the
distance function ϕ|Lp, if and only if πn(p) ∈ CPn−1 is a hyperbolic fixed point of the
mapping Fp. If this is the case, then we have

m(ϕ|Lp; p) = dimCWu(Fp;πn(p)).

where m(ϕ|Lp; p) denotes the Morse Index of ϕ|Lp at p, and Wu(Fp;πn(p)) is the unstable
manifold of πn(p) in the dynamics Fp.

Moreover, as for the original homogeneous case, we have the following:

Corollary 1. Let ω =
∑n

j=1 fj(z)dzj, where fj(z) are homogeneous polynomials
of a same degree d. Let p ∈ Σ0 be a contact point of the foliation F(ω) with a sphere,
and Lp the leaf containing p. Then p is a non-degenerate critical point of the distance
function ϕ|Lp if and only if πn(p) is a hyperbolic fixed point of F := πn ◦ f ◦π−1

n . In this
case, we have

m(ϕ|Lp; p) = dimCWu(F ;πn(p)).

Note that Wu(Fp;πn(p)) is a complex manifold since the twice iterate of an anti-
holomorphic map is holomorphic.

Before going further in our approach, we recall some elements from Linear Algebra
([2]). Let A ∈ GL(n,C). A scalar λ ∈ C is called a conjugate-eigenvalue of A if there
exists z ∈ Cn, z 6= 0, such that Az = λz. Note that the set of conjugate-eigenvalues
of A is not discrete but a ‘circled’ set. That is, if Az = λz, then λeθ

√−1 is also a
conjugate-eigenvalue for every θ ∈ R, indeed: A(e−θ

√−1/2z) = λeθ
√−1(e−θ

√−1/2z).
In the second part of this paper we study the variety of contact Σ around a point

of degenerate contact, under some hypotheses.

Definition 1. A holomorphic one-form ω =
∑n

j=1 fj(zj)dzj is called variable-
separated if fj(z) = fj(zj), j = 1, . . . , n, are holomorphic functions of one complex
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variable.

If ω is variable-separated, then ω is exact and has a holomorphic first integral g(z) =∑n
j=1

∫ zj fj(zj) dzj . If 0 ∈ Sing(ω), then the zj-axes

Σj = {(0, . . . , 0, zj , 0, . . . , 0) : zj ∈ C}, j = 1, . . . , n

are contained in the variety of contact Σ. It is shown that a point p ∈ Σj ∩ Σ0 with the
conjugate-multiplier λ, f(p) = λp, is a degenerate critical point of ϕ|Lp if and only if
there exists a conjugate-eigenvector v of f ′(p) belonging to λ, f ′(p)v = λv, such that v

is perpendicular to Σj (Lemma 2).

Regarding the contact variety we prove:

Theorem 2. Let F(ω) be a holomorphic foliation defined by a variable-separated
one-form ω, and suppose that the origin is an isolated singularity of ω. Let p =
(p1, 0, . . . , 0) 6= 0 be a degenerate critical point of the distance function ϕ|Lp with
conjugate-multiplier λ0 := f1(p1)/p1 6= 0. Suppose the following :

i) the space of all conjugate-eigenvectors v of the derivative f ′(p) belonging to the
conjugate-eigenvalue λ0 is a real one-dimensional subspace of 0× Cz2 × 0× · · · × 0.
That is,

|λ0| = |f ′2(0)| 6∈ {|f ′1(p1)|, |f ′3(0)|, . . . , |f ′n(0)|}.

ii) the equation |f2(z2)/z2| = |f ′2(0)| defines a local smooth curve in C = Cz2 passing
through the origin z2 = 0.

iii) the real line {z2 ∈ C : f ′2(0)z2 = λ0z2} is transverse to the curve |f2(z2)/z2| = |f ′2(0)|
at the origin z2 = 0.

Then there exist a small neighborhood U ⊂ Cn of p, a diffeomorphism ζ1 : V → ζ1(V ) ⊂ C
of a neighborhood V ⊂ C of λ0 onto a neighborhood of p1, and a real analytic function
ζ2 : V → C, ζ2(λ0) = 0, such that :

1. for each λ ∈ V , the points

p(λ) := (ζ1(λ), 0, . . . , 0),

p12(λ) := (ζ1(λ), ζ2(λ), 0, . . . , 0),

are contact points with the conjugate-multiplier λ.
2. Σ ∩ U = Σ′1 ∪ Σ′12, where Σ′1 = {p(λ) : λ ∈ V }, Σ′12 = {p12(λ) : λ ∈ V }.
3. Λ ∩ U = Σ′1 ∩ Σ′12, where Λ denotes the set of degenerate contact points of F(ω).
4. Λ∩U = {p(λ) : λ ∈ V, |λ| = |λ0|} = {p12(λ) : λ ∈ V, |λ| = |λ0|}. It is a smooth curve.
5. the Morse indices at the points z = p(λ), p12(λ), for λ ∈ V , |λ| 6= |λ0|, are given by
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m(ϕ|Lp(λ); p(λ)) =

{
m0 if |λ| > |λ0|
m0 + 1 if |λ| < |λ0|,

m(ϕ|Lp12(λ); p12(λ)) =

{
m0 + 1 if |λ| > |λ0|
m0 if |λ| < |λ0|,

(3)

where m0 = #{j = 3, . . . , n : |f ′j(0)| > |λ0|}.

Remark 1. Besides the former works [8] and [9], this paper was motivated by the
study of the Pham polynomial example in [9]. Here we denote by

ω = 3z2
1dz1 + 2z2dz2 + 5z4

3dz3.

The z1-axis Σ1 contains a circle of degeneracy contact points

{(z1, 0, 0) : |f1(z1)/z1| = |f ′2(0)|, z1 6= 0} = {(z1, 0, 0) : |3z1| = 2},

on which Σ1 meets another branch Σ12 ⊂ Σ. Nevertheless, the function f2(z2) = 2z2

is too ‘degenerate’ so that the equation |f2(z2)/z2| = |f ′2(0)| does not define a smooth
curve in C. In particular, assumption ii) of the above theorem is not satisfied. The
conjugate-multiplier λ(p) of any p ∈ Σ12 has a constant absolute value |λ(p)| = 2, so the
real two dimensional manifold Σ12 is not parametrizable by the conjugate-multiplier λ.

An example that satisfies the assumptions i)–iii) is the foliation F(ω) defined by

ω =
3∑

j=1

fj(zj)dzj , f1(z1) = z2
1 , f2(z2) = z2 + z2

2 , f3(z3) = 2z3.

The conjugate-multiplier at the degenerate contact point p = (1, 0, 0) is λ0 = f1(1)/1 = 1,
which is equal to f ′2(0) = 1. The real line z2 = z2 is transverse to the curve |1 + z2| = 1
at the origin z2 = 0.

This paper is organized as follows. In Section 2, we prove Theorem 1 and Corollary 1
by using Takagi’s Factorization Theorem [14]. In Section 3, a real analytic parametriza-
tion of the variety of contact Σ by the conjugate-multiplier λ is given by the Implicit
Function Theorem. In Section 4, we prove Theorem 2. The idea of the proof is based
on the bifurcation in the dynamics of one complex variable, where a neutral fixed point
splits into a pair of fixed points: an attracting one and a repelling one.

Acknowledgements. The authors would like to thank Professor Shu Kawaguchi
and the referee for helpful comments.

2. Dynamics and Morse theory on holomorphic foliations.

Let F be a codimension one holomorphic foliation in Cn defined by an integrable
holomorphic one-form ω =

∑n
j=1 fj(z)dzj . Consider the distance function from the origin
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ϕ(z) =
∑

j=1 |zj |2, as in the Introduction.
By applying a unitary coordinate change z = Uz̃ to the one-form

ω =
n∑

j=1

fj(z)dzj = t(dz)f(z), f(z) = t(f1(z), . . . , fn(z)), dz = t(dz1, . . . , dzn),

we have dz = U dz̃, and hence ω = t(dz̃)f̃(z̃) where f̃(z̃) = tU(f(Uz̃)). Note that this
is compatible with the unitary transformation for the dynamics of an anti-holomorphic
mapping f(z) = (f1(z), . . . , fn(z)). In fact, we obtain a mapping

f̂(z̃) = U−1(f(Uz̃)), where f̂(z̃) = Ū−1(f(Uz̃)) = tU(f(Uz̃)).

A fundamental tool for this unitary transformation is the following classical Linear
Algebra result:

Lemma 1 (Takagi’s Factorization Theorem, [9], [14]). If A is a complex sym-
metric matrix, i.e., tA = A, then there exists a unitary matrix U such that tUAU =
diag(λ1, . . . , λn) is a diagonal matrix with nonnegative entries λj ≥ 0, j = 1, . . . , n.

Now we shall prove Theorem 1.

Proof of Theorem 1. Let p ∈ Σ0. By taking a unitary coordinate transforma-
tion if necessary, we may assume that p = (p1, 0, . . . , 0), p1 > 0. Multiplying ω by a local
holomorphic function if necessary, we may assume that ω has a first integral g, ω = dg,
in a neighborhood of p. Since p is a contact point, we have a Taylor expansion

g(z) = c0 + c1(z1 − p1) +
c11

2
(z1 − p1)2 +

n∑

j=2

c1j(z1 − p1)zj +
1
2

n∑

j,k=2

cjkzjzk + h.o.t.

in a neighborhood of p, where h.o.t. stands for higher order terms, i.e., of degree greater
than 2. We may assume that c0 = 0 and cjk = ckj , j, k = 2, . . . , n. Lemma 1 implies
that by a unitary transformation on (z2, . . . , zn), we obtain

g(z) = c1(z1 − p1) +
c11

2
(z1 − p1)2 +

n∑

j=2

c̃1j(z1 − p1)zj +
1
2

n∑

j=2

bjz
2
j + h.o.t..

We may further assume that bj/c1 ≥ 0, j = 2, . . . , n.
The leaf L passing through the point p is defined by the equation g(z) = 0. It is

written as the graph of a function

z1 = z1(z2, . . . , zn) = p1 −
n∑

j=2

bj

2c1
z2
j + h.o.t., (4)
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in a neighborhood of p. Denote by zj = xj +
√−1 yj . The distance function ϕ|L is

written as

|z1|2 +
n∑

j=2

|zj |2 =
(

p2
1 − (p1/c1)

n∑

j=2

bj

(
x2

j − y2
j

)
+ h.o.t.

)
+

n∑

j=2

(
x2

j + y2
j

)

= p2
1 +

n∑

j=2

(1− p1bj/c1)x2
j +

n∑

j=2

(1 + p1bj/c1)y2
j + h.o.t..

Thus the distance function ϕ|L is non-degenerate at p if and only if

p1bj/c1 6= 1, j = 2, . . . , n. (5)

If this is the case, the Morse index is given by

m(ϕ|L; p) = #{2 ≤ j ≤ n : p1bj/c1 > 1}.

On the other hand, the hyperplane Hp is given by {(z1, . . . , zn) : z1 = p1}. The
one-form ω = dg =

∑n
j=1 fj(z) dzj is written as

f1(z) = c1 + c11(z1 − p1) +
n∑

j=2

c̃1jzj + h.o.t.

fk(z) = c̃1k(z1 − p1) + bkzk + h.o.t., k = 2, . . . , n.

Remark that the conjugate-multiplier at p is equal to c1/p1. The local dynamics Fp in
(2) is written as the complex conjugate of the mapping

Fp : (p1 : z2 : · · · : zn) 7→
(

c1 +
n∑

j=2

c̃1jzj + h.o.t. : b2z2 + h.o.t. : · · · : bnzn + h.o.t.

)
.

Thus the point πn(p) = (1 : 0 : · · · : 0) is a hyperbolic fixed point of Fp if and only
if (5) holds. The complex dimension of the unstable manifold of πn(p) is given as
dimCWu(πn(p)) = #{j = 2, . . . , n : p1bj/c1 > 1}. This completes the proof. ¤

Corollary 1 is an immediate consequence of Theorem 1 and of the paragraph that
precedes this theorem.

The following lemma is a generalization of Propositions 12–14 of [9], where we
considered the Pham polynomial and computed the Morse index m(ϕ|Lp; p) on the zj-
axis, j = 1, 2, 3.

Lemma 2. Let ω =
∑n

j=1 fj(zj) dzj be a variable-separated one-form, and suppose
that the origin is an isolated singularity of ω. Let p = (p1, 0, . . . , 0) ∈ Σ0, and Lp the
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leaf of F(ω) passing through p. Denote the conjugate-multiplier at p by λ0 := f1(p1)/p1.
Then p is a non-degenerate critical point of the distance function ϕ|Lp if and only if

|λ0| 6∈ {|f ′j(0)| : j = 2, . . . , n}.

If this is the case, then the Morse index at p is given as

m(ϕ|Lp; p) = #{j = 2, . . . , n : |f ′j(0)| > |λ0|}.

Proof. The mapping f(z) = (f1(z1), . . . , fn(zn)) on the hyperplane Hp is written
as

f(p1, z2, . . . , zn) =
(
f1(p1), f ′2(0)z2 + h.o.t., . . . , f ′n(0)zn + h.o.t.

)
.

Thus the point πn(p) = (1 : 0 : · · · : 0) is a hyperbolic fixed point of the mapping
Fp = πn ◦ f ◦ (πn|Hp)−1 if and only if |p1f

′
j(0)/f1(p1)| 6= 1, j = 2, . . . , n. If this is

the case, the dimension of the unstable manifold of πn(p) is given as #{j = 2, . . . , n :
|p1f

′
j(0)/f1(p1)| > 1}. The proof completes by applying Theorem 1. ¤

In particular cases of variable-separated one-forms, the Morse index of a contact
point p ∈ Σ1 is obtained as follows.

• If f1(z1) = c1z1 + c2z
2
1 + h.o.t., c1 6= 0, i.e. the head term of f1(z1) is linear, then

m(ϕ|Lp; p) = #{j = 2, . . . , n : |f ′j(0)| > |c1|} if |p1| 6= 0 is small.
• If f1(z1) = c2z

2
1 + c3z

3
1 + h.o.t., i.e. the head term of f1(z1) is quadratic or more,

then m(ϕ|Lp; p) = n− 1 for small |p1| 6= 0.
• If f1(z1) is a polynomial of degree ≥ 2, then m(ϕ|Lp; p) = 0 if |p1| is large.

3. Real analytic parametrization of the variety of contact.

The following lemma is found in [9].

Lemma 3. Let A ∈ GL(n,C). For λ ∈ C, the following conditions are equivalent :

1. |λ|2 is an eigenvalue of ĀA.
2. λ is a conjugate-eigenvalue of A.
3. The R-linear transformation z 7→ Az − λz in Cn is not invertible. That is, Ker(z 7→

Az − λz) 6= 0.

The following Implicit Function Theorem gives us a local (real analytic) parametriza-
tion of Σ0 by the conjugate-multiplier λ.

Lemma 4 (Implicit Function Theorem). Let z0 ∈ Σ \ {0}. Suppose that the
conjugate-multiplier λ0 of z0 is not a conjugate-eigenvalue of the derivative f ′(z0). That
is, we suppose f(z0) = λ0z0, and f ′(z0)v 6= λ0v for any v ∈ Tz0Cn, v 6= 0. Then there
exists a neighborhood V0 ⊂ C of λ0, a neighborhood U0 ⊂ Cn of z0, and a real analytic
map φ : V0 → U0 of real rank 2, such that
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1. φ(λ0) = z0, and
2. for each λ ∈ V0 and z ∈ U0, λ is a conjugate-multiplier of z if and only if z = φ(λ).

Proof. Consider the real analytic function F : Cn×C→ Cn, F (z, λ) := f(z)−λz.
We have

dF = f ′(z)dz − λdz − zdλ,

and F (z0, λ0) = 0. The R-linear operator

f ′(z0) dz − λ0 dz : Tz0Cn → T0Cn

is invertible because λ0 is not a conjugate-eigenvalue of f ′(z0). The real analytic Implicit
Function Theorem implies that there exist a neighborhood U0× V0 of (z0, λ0) and a real
analytic function φ : V0 → U0, such that for each (z, λ) ∈ U0 × V0, F (z, λ) = 0 if and
only if z = φ(λ). ¤

Next we give some examples where Σ0 has real dimension two but does not have a
natural parametrization by the conjugate-multiplier.

Example 1. Let ω =
∑n

j=1 λjzj dzj be a diagonal linear one-form, where λ1 >

λ2 > · · · > λn > 0. Then the variety of contacts Σ = ∪n
j=1Σj consists of the zj-

axes Σj , j = 1, . . . , n, and hence Σ \ 0 is a manifold of real dimension two. However,
if we denote by f(z) = (λ1z1, . . . , λnzn), the conjugate multiplier of a contact point
p = (0, . . . , reθ

√−1 , . . . , 0) ∈ Σk is equal to λke−2θ
√−1 , which is a conjugate-eigenvalue

of the constant diagonal matrix f ′(p) = diag(λ1, . . . , λn).

Example 2. Let ω = dg, where g(z1, z2, z3) = (z1 − 1) + (z1 − 1)2 + (z1 − 1)z2 +
z2
2 + 2z2

3 on C3. Then p = (1, 0, 0) ∈ Σ0 is a contact point with the conjugate-multiplier
λ = 1. The leaf Lp passing through p is written locally by the graph of the function

z1 = 1− z2
2 − 2z2

3 + h.o.t.,

thus p is a non-degenerate critical point of the distance function ϕ|Lp. Proposition 5.1
of [8] implies that Σ0 is locally a manifold of real dimension two which is transverse to
the foliation F .

However, we have

f(z) = (1 + 2(z1 − 1) + z2, (z1 − 1) + 2z2, 4z3),

so f ′(p) =
(

2 1 0
1 2 0
0 0 4

)
. By an orthogonal transformation P = 1/

√
2
( 1 −1 0

1 1 0
0 0

√
2

)
, we have

tP · f ′(p) · P = diag(3, 1, 4). Thus the conjugate-multiplier λ = 1 at p is equal to
a conjugate-eigenvalue of f ′(p), and the Implicit Function Theorem (Lemma 4) is not
applicable.
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If p ∈ Σ0 is a non-degenerate critical point of ϕ|Lp, then there exists a neighborhood
U ⊂ Cn of p such that U ∩Σ0 is a real analytic manifold of real dimension two which is
transverse to the foliation F(ω) ([8, Proposition 5.1]). The following is an example that
Σ0 is locally a real two dimensional manifold, but not transverse to F(ω) at a point of
degenerate contact p ∈ Σ0.

Example 3. Let ω = dg, g(z1, z2, z3) = (z1−1)−(z1−1)2+2(z1−1)z2+(1/2)z2
2 +

2z2
3 . Then p = (1, 0, 0) ∈ Σ0 is a contact point with the conjugate-multiplier λ = 1. The

leaf Lp passing through p is written locally as the graph of the function

z1 = z1(z2, z3) = 1− 1
2
z2
2 − 2z2

3 + h.o.t.,

thus p is a degenerate critical point of the distance function ϕ|Lp. However, we have

f(z) = (1− 2(z1 − 1) + 2z2, 2(z1 − 1) + z2, 4z3),

so f ′(p) =
(−2 2 0

2 1 0
0 0 4

)
. By a unitary transformation P = 1/

√
5
( 1 2

√−1 0

2 −√−1 0

0 0
√

5

)
, we have

tP · f ′(p) ·P = diag(2, 3, 4). Thus the conjugate-multiplier λ = 1 at p is not a conjugate-
eigenvalue of f ′(p), and the Implicit Function Theorem (Lemma 4) implies that Σ0 is
locally a manifold of real dimension two. The tangent spaces of U ∩ Σ0 and the leaf Lp

at p are written as Tp(U ∩ Σ0) = {(t√−1 , s − t
√−1 , 0) : s, t ∈ R}, Tp(Lp) = 0 × C2,

respectively, so we have Tp(U ∩ Σ0) + Tp(Lp) 6= TpC3. Thus U ∩ Σ0 is not transverse to
the foliation F(ω).

4. Morse index on the local branches of the variety of contacts.

In this section we prove Theorem 2. Let ω =
∑n

j=1 fj(zj) dzj be a variable-separated
one-form, and suppose that the origin is an isolated singularity of ω. We moreover assume
conditions i)–iii) in Theorem 2. Denote by `j(zj) = fj(zj)/zj , j = 1, . . . , n.

Lemma 5. Let f1(z) be a holomorphic function of one complex variable defined in
a neighborhood U of the origin 0 ∈ C. Let p1 ∈ U \ 0. If |f ′1(p1)| 6= |f1(p1)/p1|, the
function `1(z) := f1(z)/z is a local diffeomorphism of a neighborhood W1 3 p1 in C onto
a neighborhood V1 3 `1(p1) in C.

Proof. This is a direct proof of a special case of the Implicit Function Theorem
(Lemma 4) for the case of dimension one. Denote by z = x +

√−1 y, f1(z) = u +
√−1 v

and `1(z) = µ +
√−1 ν. We have

`1(z) = µ +
√−1 ν =

u−√−1 v

x +
√−1 y

.

The Cauchy-Riemann equations ux = vy, uy = −vx, imply that the Jacobian determinant
of the mapping (µ, ν) = (µ(x, y), ν(x, y)) is given by
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µxνy − µyνx =
|`1(z)|2 − |f ′1(z)|2

|z|2 . ¤

Denote the inverse function of `1 by ζ1 : V1 → W1.
The function `2(z2) = f2(z2)/z2 is not a local diffeomorphism of a neighborhood of

the origin z2 = 0. By blowing-up, we consider a Möbius strip coordinate

M = R× (R/2πZ)/ ∼, (r, θ) ∼ (−r, θ + π),

with

χ : M → C, χ(r, θ) = re
√−1 θ.

Suppose that we have f ′2(0)v = λ0v for v = e
√−1θ0 , θ0 ∈ R.

Lemma 6. The function λ = `2 ◦ χ(r, θ) = `2(re
√−1 θ) is a local diffeomorphism

of a small neighborhood W2 ⊂ M of (r, θ) = (0, θ0) onto a small neighborhood V2 ⊂ C of
λ0.

Proof. Let f2(z2) = c1z2 + c2z
2
2 + h.o.t.. The partial derivatives of the function

λ := `2(re
√−1 θ) = c1e

−2
√−1θ + rc2e

−3
√−1θ + h.o.t.

at (r, θ) = (0, θ0) are given as

∂λ

∂r

∣∣∣∣
(r,θ)=(0,θ0)

= c2e
−3
√−1 θ0 ,

∂λ

∂θ

∣∣∣∣
(r,θ)=(0,θ0)

= −2c1

√−1e−2
√−1 θ0 . (6)

Since f2(z2)/z2 = c1 + c2z2 + h.o.t., the curve |f2(z2)/z2| = |c1| has a tangent line
Re(c2z2/c1) = 0 at the origin z2 = 0. By the transversality assumption iii) in Theorem
2, we obtain Re(c2e

√−1θ0/c1) 6= 0. This implies that the two partial derivatives in
(6) are linearly independent over R, so that the function λ = `2(re

√−1 θ) is a local
diffeomorphism of a neighborhood of (r, θ) = (0, θ0). ¤

Let V ⊂ V1 ∩ V2 be a small neighborhood of λ0 = f1(p1)/p1. Let ρ2 = (`2 ◦ χ)−1 :
V → W2 be the inverse function given by Lemma 6. We have

`2(χ(ρ2(λ))) = λ, λ ∈ V.

Let ζ2 = χ ◦ ρ2. It is a local ‘inverse’ function of `2, which maps V 3 λ0 onto a
neighborhood of the origin by blowing-down.

Let Hp(λ) = {(z1, . . . , zn) : z1 = p(λ)} be a hyperplane. We first consider the
mapping Fp(λ) = πn ◦ f ◦ (πn|Hp(λ))−1 of a neighborhood of πn(p(λ)) in CPn−1 to
CPn−1, which can also be regarded as an approximation of the mapping Fp12(λ). It is
written as
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Fp(λ) : (ζ1(λ) : z2 : · · · : zn) 7→ (f1(ζ1(λ))) : f2(z2) : · · · : fn(zn))

= (ζ1(λ) : f2(z2)/λ : · · · : fn(zn)/λ),

since f1(ζ1(λ))) = λζ1(λ). For each λ ∈ V fixed, we denote by

φj(zj) = fj(zj)/λ, j = 2, . . . , n.

Lemma 7. In a neighborhood of the origin z2 = 0, the anti-holomorphic function
φ2(z2) = f2(z2)/λ has two fixed points z2 = 0 and z2 = ζ2(λ). If |λ| < |λ0| then z2 = 0
is a repelling fixed point, and z2 = ζ2(λ) is an attracting fixed point. If |λ| > |λ0| then
z2 = 0 is attracting and z2 = ζ2(λ) is repelling.

Proof. Let f2(z2) =
∑∞

`=1 c`z
`
2. Then the twice iterate of φ2 is a holomorphic

function

φ2(φ2(z2)) = |c1/λ|2z2 + |λ|−2(c1c2 + c2
1c2λ−1)z2

2 + h.o.t..

The transversality assumption ii) in Theorem 2 implies that c2
2c1/λ0c

2
1 6∈ R− (see Lemma

6). Thus we have c1c2 + c2
1c2λ

−1
0 6= 0, so the coefficient of z2

2 in φ2(φ2(z2)) does not
vanish if λ ∈ V is close to λ0. This implies that the function φ2 has at most two periodic
points of period two in a small neighborhood of the origin z2 = 0. They are in fact the
fixed points of φ2, i.e., the origin z2 = 0 itself and z2 = ζ2(λ).

Let λ = λ0e
√−1θ/(1 + t), where θ, t ∈ R. Note that |c1/λ|2 = (1 + t)2. By solving

the equation of z2

1 = (1 + t)2 + |λ|−2(c1c2 + c2
1c2λ−1)z2 + h.o.t.,

we obtain

ζ2(λ) = −2|λ0|2(c1c2 + c2
1c2λ

−1
0 )−1 t + o(t).

The derivative of φ2
2 is

(φ2
2)
′(z2) = |c1/λ|2 + 2|λ|−2(c1c2 + c2

1c2λ−1)z2 + h.o.t.,

thus we have

(φ2
2)
′(0) = (1 + t)2, (φ2

2)
′(ζ2(λ)) = 1− 2t + o(t).

By taking the square roots, the absolute values of the dynamical multipliers of the func-
tion φ2 at the fixed points z2 = 0 and ζ2(λ) are 1 + t and 1 − t + o(t), respectively.
Thus z2 = 0 is repelling and z2 = ζ2(λ) is attracting if t > 0; z2 = 0 is attracting and
z2 = ζ2(λ) is repelling if t < 0. This completes the proof. ¤
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Lemma 8. Let λ ∈ V , |λ| 6= |λ0|. The points πn(p(λ)), πn(p12(λ)) are hyperbolic
fixed points of the mapping Fp(λ). The complex dimensions of their unstable manifolds
are given as follows:

dimCWu(Fp(λ);πn(p(λ))) =

{
m0 if |λ| > |λ0|
m0 + 1 if |λ| < |λ0|.

dimCWu(Fp(λ);πn(p12(λ))) =

{
m0 + 1 if |λ| > |λ0|
m0 if |λ| < |λ0|.

Proof. The absolute values of dynamical multiplier of the function φ2(z2) at the
fixed points z2 = 0 and z2 = ζ2(λ) are obtained in Lemma 7.

For j = 3, . . . , n, the dynamical multiplier of the function φj(zj) at the origin zj = 0
has the absolute value |f ′j(0)/λ|, which is close to |f ′j(0)/λ0|. This completes the proof.

¤

Consider a small line segment

{λ0e
√−1 θ/(1 + t) : −ε < t < ε} ⊂ V

with θ fixed. We are going to find a good unitary transformation in computing the Morse
index at p12(λ) for λ = λ0e

√−1 θ/(1 + t), t 6= 0. Let

q = q(λ) := (‖p12(λ)‖, 0, . . . , 0).

Let Hq = {(w1, . . . , wn) : w1 = ‖p12(λ)‖} be a hyperplane. Let P := A ⊕ In−2 be a
unitary matrix, where In−2 denotes the identity matrix of size n− 2, and

A := (aj,`(λ))j,`=1,2 =
1

‖p12(λ)‖

(
ζ1(λ) −ζ2(λ)

ζ2(λ) ζ1(λ)

)
.

Then we have p12(λ) = P (q(λ)). Note that

|aj,`(λ)| =
{

1 + O(t2) if j = `

O(t) if j 6= `
(7)

as t → 0 for λ = λ0e
√−1θ/(1 + t) with θ fixed.

Let fP (w) = (tP ◦ f ◦ P )(w). The mapping FP
q := πn ◦ fP ◦ (πn|Hq)−1 of a

neighborhood of πn(q) in CPn−1 to CPn−1 is the complex conjugate of the mapping

FP
q : (‖p12(λ)‖ : w2 : · · · : wn) 7→ (

fP
1 : · · · : fP

n

)

where
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fP
ν =

{∑2
j=1 ajνfj(ζj(λ) + aj2w2), ν = 1, 2

fν(wν) ν = 3, . . . , n.

Note that we have

(
fP
1 , fP

2 , . . . , fP
n

)|(w2,...,wn)=0 = (λ‖p12(λ)‖, 0, . . . , 0)

since fj(ζj(λ)) = λζj(λ), j = 1, 2. Let ψν(w2, . . . , wn) = ‖p12(λ)‖fP
ν /fP

1 , ν = 2, . . . , n,
so that the mapping FP

q is written as

FP
q (‖p12(λ)‖ : w2 : · · · : wn) = (‖p12(λ)‖ : ψ2(w) : · · · : ψn(w)).

We have ψν(0) = 0, ν = 2, . . . , n. The absolute values of the partial derivatives ∂ψν/∂wµ

at (w2, . . . , wn) = 0 are given as

∣∣∣∣
∂ψν

∂wµ

∣∣∣∣
(w2,...,wn)=0

∣∣∣∣ =





1− t + O(t2) ν = µ = 2

|f ′ν(0)/λ| 3 ≤ ν = µ ≤ n

0 otherwise

since we have

∂ψ2

∂w2

∣∣∣∣
(w2,...,wn)=0

=
2∑

j=1

aj2aj2f
′
j(ζj(λ))/λ

with the estimates (7) and |f ′2(ζ2(λ))/λ| = 1 − t + O(t2) (see the proof of Lemma 7).
Thus we have

dimCWu
(
FP

q(λ);πn(q(λ))
)

=

{
m0 if t > 0

m0 + 1 if t < 0,

which gives (3). This completes the proof of Theorem 2. ¤
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