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A note on the Jensen inequality for self-adjoint operators, II
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Abstract. This is a continuation of our previous paper. We consider
a certain order-like relation for positive operators on a Hilbert space. This
relation is defined by using the Jensen inequality with respect to the square-
root function. We show that this relation is antisymmetric if the operators are
invertible.

1. Introduction.

This is a continuation of our previous paper [7]. Let f(t) be a continuous, increasing
concave function on the half line [0,∞) and let A and B be bounded self-adjoint operators
on a Hilbert space H with an inner product 〈·, ·〉. In the previous paper, we consider the
following problem. If A and B satisfy 〈f(A)ξ, ξ〉 ≤ f(〈Bξ, ξ〉) and 〈f(B)ξ, ξ〉 ≤ f(〈Aξ, ξ〉)
for any unit vector ξ ∈ H, can we conclude A = B? This problem was suggested by
Professor Bourin [4]. In [7] we solved this problem affirmatively in the finite-dimensional
case. We also dealt with some related problem in the infinite-dimensional case, but we
could not get a complete answer. In this paper we consider the case f(t) =

√
t and we

solve this problem affirmatively under the assumption that two positive operators A and
B are both invertible.

For two positive operators A and B, we introduce the new relation A E B defined
by 〈A1/2ξ, ξ〉 ≤ 〈Bξ, ξ〉1/2 for any unit vector ξ ∈ H. Using this notation, we can restate
the above problem as follows. If A and B satisfy A E B and B E A, can we conclude
A = B? We will show that this is true when A and B are both invertible. Here we
remark that by [1] if A E B and A−1 E B−1, then we have A = B. We do not know
whether B E A implies A−1 E B−1 or not.

The usual order A ≤ B implies A E B thanks to the Jensen inequality. However
the relation E is not an order relation. Indeed we will construct positive matrices A, B

and C such that both A E B and B E C hold while A E C does not hold.
The author would like to express his hearty gratitude to Professor Tsuyoshi Ando
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advice and comments. The author would like to thank the referee for careful reading our
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2. Main result.

Throughout this paper we assume that the readers are familiar with basic notations
and results on operator theory. We refer the readers to Conway’s book [5].
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We denote by H a (finite or infinite dimensional) complex Hilbert space and by B(H)
all bounded linear operators on it. The operator norm of A ∈ B(H) is denoted by ‖A‖.
The inner product and the norm for two vectors ξ, η ∈ H are denoted by 〈ξ, η〉 and ‖ξ‖
respectively. We denote the defining function for an interval [a, b) by χ[a,b)(t). We define
the absolute value for a bounded linear operator X by |X| = (X∗X)1/2.

If two positive operators A,B ∈ B(H) satisfy

〈A1/2ξ, ξ〉 ≤ 〈Bξ, ξ〉1/2

for any unit vector ξ ∈ H, we write

A E B.

The usual order A ≤ B implies that A E B. This is a consequence of the famous Jensen
inequality as follows.

〈A1/2ξ, ξ〉 ≤ 〈Aξ, ξ〉1/2 ≤ 〈Bξ, ξ〉1/2.

Here we remark that the relation E is not an order relation. Indeed there exist positive
matrices A, B and C such that both A E B and B E C hold while A E C does not hold.
See Example 2.1.

The following is the main result of this paper.

Theorem 2.1. Let A,B ∈ B(H) be two positive operators such that A is invertible.
If they satisfy A E B and B E A, then we have A = B.

Here we remark that it is hard to remove the assumption of invertibility. See Example
2.1.

Proposition 2.2 (Ando [2]). For two positive operators A,B ∈ B(H), the follow-
ing conditions are equivalent.

( i ) A2 E B2.
( ii ) A ≤ (1/2t)B2 + (t/2) for any positive number t.
(iii) There exists a contraction C satisfying CB + BC∗ = 2A.

Proof. The equivalence (i)⇔(ii) is shown in [1]. (See also [7, Lemma 3.2].)
Suppose that there exists a contraction C satisfying CB + BC∗ = 2A. Since

0 ≤ (CB − t)∗(CB − t) = BC∗CB + t2 − t(CB + BC∗),

we see that

2tA = t(CB + BC∗) ≤ BC∗CB + t2 ≤ B2 + t2.

Therefore the implication (iii)⇒(ii) holds.
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Finally we will show (ii)⇒(iii). We remark that the inequality

B2 + t2 − 2tA ≥ 0

holds for any real number t. Thus by the operator-valued Fejer-Riesz theorem ([8, The-
orem 3.3]) there exist two bounded linear operators X and Y such that

B2 + t2 − 2tA = (X − tY )∗(X − tY ) = X∗X + t2Y ∗Y − t(X∗Y + Y ∗X).

Therefore we have B = |X|, |Y | = 1 and 2A = X∗Y + Y ∗X. Here we remark that Y is
a contraction because |Y | = 1. Take the polar decomposition X = U |X| = UB where U

is a partial isometry. Then we get

2A = B(U∗Y ) + (Y ∗U)B.

Since U∗Y is a contraction, we are done. ¤

Lemma 2.3. Let c and ε be positive numbers such that ε < c. Then

2tλ− t2 > 0 and
λ2

2t
+

t

2
− (2tλ− t2)1/2 ≥ 0

for any c + ε ≤ t ≤ 2c and c + ε ≤ λ ≤ 2c. Further there exists a positive number d

satisfying

λ2

2t
+

t

2
− (2tλ− t2)1/2 ≤ d

2
(t− λ)2 (9)

for any c + ε ≤ t ≤ 2c and c + ε ≤ λ ≤ 2c.

Proof. The proof is same as that of [7, Lemma 3.4].
Since c + ε ≤ t ≤ 2c and c + ε ≤ λ ≤ 2c, we have

2tλ− t2 = t(2λ− t) ≥ (c + ε){2(c + ε)− 2c} = 2(c + ε)ε > 0.

Next by the arithmetic-geometric mean inequality we have (λ2/2t) + (t/2) ≥ λ and
obviously λ2 ≥ 2tλ− t2, so that λ ≥ (2tλ− t2)1/2.

Now we set

k(t, λ) =
d

2
(t− λ)2 − λ2

2t
− t

2
+ (2tλ− t2)1/2.

Then we compute
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∂

∂t
k(t, λ) = d(t− λ) +

λ2

2t2
− 1

2
+

λ− t

(2tλ− t2)1/2

and

∂2

∂t2
k(t, λ) = d− λ2

t3
+
−(2tλ− t2)1/2 − (λ− t)2(2tλ− t2)−1/2

2tλ− t2
.

Since c + ε ≤ t ≤ 2c and c + ε ≤ λ ≤ 2c, we see that 2tλ− t2 = t(2λ− t) ≥ (c + ε){2(c +
ε)− 2c} = 2(c + ε)ε > 0. Thus the two-variable function

−λ2

t3
+
−(2tλ− t2)1/2 − (λ− t)2(2tλ− t2)−1/2

2tλ− t2

is bounded below on the intervals c + ε ≤ t ≤ 2c and c + ε ≤ λ ≤ 2c. Therefore we can
find a positive constant d such that (∂2/∂t2)k(t, λ) > 0 on the intervals c + ε ≤ t ≤ 2c

and c+ ε ≤ λ ≤ 2c. Then k(t, λ) is convex with respect to t. Since (∂/∂t)k(t, λ)|t=λ = 0,
k(t, λ) in t is decreasing for c + ε ≤ t ≤ λ and increasing for λ ≤ t ≤ c so that k(t, λ) ≥
k(λ, λ) = 0. Thus we are done. ¤

Lemma 2.4. Let A,B ∈ B(H) be positive invertible operators such that c + ε ≤
A ≤ 2c for some positive numbers ε < c. If they satisfy

(2tA− t2)1/2 ≤ B ≤ A2

2t
+

t

2

for any positive number t on the interval c + ε ≤ t ≤ 2c, then we have A = B.

Proof. The proof is essentially same as that of [1], [6], [7].
First we will show that there exists a positive constant d satisfying

‖PBP − (PB−1P )−1‖ ≤ d‖tP −AP‖2 (1)

for any c + ε ≤ t ≤ 2c and any spectral projection P of A, where we use (PB−1P )−1 to
denote the inverse of PB−1P on PH. In the following we use commutativity of A and
P without any particular mention.

By assumption we have two inequalities

(2tA− t2)1/2 ≤ B ≤ A2

2t
+

t

2
(2)

and

2t(A2 + t2)−1 ≤ B−1 ≤ (2tA− t2)−1/2. (3)

Here we remark that (2tA− t2)−1/2 is a bounded operator because 2tA− t2 = t(2A− t)
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and 2A ≥ 2(c + ε) > 2c ≥ t > 0. On the other hand we have

(2tA− t2)1/2 ≤ A ≤ A2

2t
+

t

2
. (4)

By the inequalities (2) and (4), we see that

±(AP − PBP ) ≤ (AP )2

2t
+

t

2
P − (2tAP − t2P )1/2

and hence

‖AP − PBP‖ ≤
∥∥∥∥

(AP )2

2t
+

t

2
P − (2tAP − t2P )1/2

∥∥∥∥. (5)

By the inequality (3) we have

2t(A2 + t2)−1P ≤ PB−1P ≤ (2tA− t2)−1/2P

and hence

(2tAP − t2P )1/2 ≤ (PB−1P )−1 ≤ (AP )2

2t
+

t

2
P. (6)

By the inequalities (4) and (6) we have

±(AP − (PB−1P )−1) ≤ (AP )2

2t
+

t

2
P − (2tAP − t2P )1/2

and hence

‖AP − (PB−1P )−1‖ ≤
∥∥∥∥

(AP )2

2t
+

t

2
P − (2tAP − t2P )1/2

∥∥∥∥. (7)

By the inequalities (5) and (7) we get

‖PBP − (PB−1P )−1‖ ≤ 2
∥∥∥∥

(AP )2

2t
+

t

2
P − (2tAP − t2P )1/2

∥∥∥∥. (8)

By the inequality (8) and Lemma 2.3 we have shown the inequality (1).
By the well-known formula known as Schur complement, we have

(PB−1P )−1 = PBP − PBP⊥(P⊥BP⊥)−1P⊥BP

and hence
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PBP − (PB−1P )−1 = PBP⊥(P⊥BP⊥)−1P⊥BP (9)

with P⊥ = 1− P . Therefore by inequality (1) and (9) we see that

‖PBP⊥(P⊥BP⊥)−1P⊥BP‖ ≤ d‖tP −AP‖2. (10)

Then by the inequality (10) we compute

‖P⊥BP‖2 = ‖(P⊥BP⊥)1/2(P⊥BP⊥)−1/2P⊥BP‖2

≤ ‖B‖ · ‖(P⊥BP⊥)−1/2P⊥BP‖2

= ‖B‖ · ‖PBP⊥(P⊥BP⊥)−1P⊥BP‖
≤ d‖B‖ · ‖tP −AP‖2

and hence

‖P⊥BP‖2 ≤ d‖B‖ · ‖tP −AP‖2. (11)

For each integer n, let Pi (i = 1, 2, . . . , n−1) be the spectral projections of A correspond-
ing to the interval [c+ε+{(i− 1){2c− (c + ε)}/n}, c+ε+{i{2c− (c + ε)}/n}) and let Pn

be the spectral projections of A corresponding to the interval [2c−{(2c− (c+ ε))/n}, 2c].
Then we have

∑
i Pi = 1 and

‖tiPi −APi‖ ≤ c− ε

n
(12)

where ti = c + ε + {(i− 1){2c− (c + ε)}/n}. By the inequalities (11) and (12) we see
that

∥∥∥∥
n∑

i=1

P⊥i BPi

∥∥∥∥
2

=
∥∥∥∥
{ n∑

i=1

P⊥i BPi

}{ n∑

j=1

PjBP⊥j

}∥∥∥∥

=
∥∥∥∥

n∑

i=1

P⊥i BPiBP⊥i

∥∥∥∥

≤
n∑

i=1

‖P⊥i BPiBP⊥i ‖

=
n∑

i=1

‖P⊥i BPi‖2

≤
n∑

i=1

d‖B‖ · ‖tiPi −APi‖2
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≤
n∑

i=1

d‖B‖ · (c− ε)2

n2
= d‖B‖ · (c− ε)2

n

and hence

∥∥∥∥
n∑

i=1

P⊥i BPi

∥∥∥∥
2

≤ d‖B‖ · (c− ε)2

n
. (13)

Since

A−B =
n∑

i=1

(APi − PiBPi) +
n∑

i=1

P⊥i BPi,

by (13) we see that

‖A−B‖ ≤
∥∥∥∥

n∑

i=1

(APi − PiBPi)
∥∥∥∥ +

∥∥∥∥
n∑

i=1

P⊥i BPi

∥∥∥∥

≤ sup
i
‖APi − PiBPi‖+

(
d‖B‖ · (c− ε)2

n

)1/2

.

On the other hand by (5) and Lemma 2.3 we have

‖APi − PiBPi‖ ≤ d

2
‖tPi −APi‖2 ≤ d

2

(
c− ε

n

)2

.

Thus we get

‖A−B‖ ≤ d

2

(
c− ε

n

)2

+
(

d‖B‖ · (c− ε)2

n

)1/2

.

By tending n →∞ we see that A = B. ¤

Lemma 2.5. Let A,B ∈ B(H) be positive operators satisfying A E B. If A is
invertible, then B is also invertible.

Proof. By assumption, there exists a positive number c which satisfies c ≤ A.
Then we have

c1/2〈ξ, ξ〉 ≤ 〈A1/2ξ, ξ〉 ≤ 〈Bξ, ξ〉1/2

for any unit vector ξ ∈ H. Therefore B is invertible. ¤

Lemma 2.6. Let A be a positive operator and let C be a contraction. If they satisfy
CA + AC∗ = 2A, then we have CP = P where P is the range projection of A.
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Proof. This is a kind of triangle equality. The proof is implicitly contained in [3].
By assumption we have (C − 1)A = A(1−C∗). This means that the operator (C − 1)A
is skew-adjoint. Therefore the spectrum σ((C − 1)A) is contained in iR. On the other
hand we see that σ((C − 1)A)∪ {0} = σ(A1/2(C − 1)A1/2)∪ {0}, and by [3, Lemma 2.2]
we have σ(A1/2(C− 1)A1/2)∩ iR = {0}. Therefore we conclude that σ((C− 1)A) = {0}.
Since (C − 1)A is skew-adjoint, we see that (C − 1)A = 0. ¤

Proof of Theorem 2.1. By Lemma 2.5 we see that both A and B are invertible.
It is enough to show that two relations A2 E B2 and B2 E A2 ensure that A = B for
positive invertible operators A and B.

By Proposition 2.2 we have two inequalities

A ≤ B2

2t
+

t

2
(14)

and

B ≤ A2

2t
+

t

2
(15)

for any positive number t. Since A is positive invertible, there exists a positive number c

satisfying A > c. Let ε be a positive number with ε < c. It follows from (14) and Lemma
2.3

0 ≤ 2tA− t2 ≤ B2

for any c + ε ≤ t ≤ 2c. Then since the map X 7−→ X1/2 is order-preserving in the cone
of positive operators, we have from (15)

(2tA− t2)1/2 ≤ B ≤ A2

2t
+

t

2

for any c + ε ≤ t ≤ 2c. Let P = χ[c+ε,2c](A). Then we have

(2tAP − t2P )1/2 ≤ PBP ≤ (AP )2

2t
+

t

2
P

and (c+ε)P ≤ AP ≤ 2cP . Therefore by Lemma 2.4 we have AP = PBP . By Proposition
2.2 there exists a contraction D such that

DA + AD∗ = 2B

and hence

PDPA + APD∗P = 2PBP = 2AP.
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Then by Lemma 2.6 we see that PDP = P . Since

P = PD∗PDP ≤ PD∗DP ≤ P,

we have PD∗(1−P )DP = 0, i.e., (1−P )DP = 0 and hence DP = PDP+(1−P )DP = P .
By the same argument we see that PD = P . Therefore we have

2BP = (DA + AD∗)P = DPA + AD∗P = 2AP

and hence BP = PB. Since ε is arbitrary, we have

Aχ(c,2c](A) = Bχ(c,2c](A) = χ(c,2c](A)B.

Since χ(c,2c](A) commutes with B, so does 1 − χ(c,2c](A) = χ(2c,∞)(A). Then, the
second characterization in Proposition 2.2 clearly guarantees that the positive invertible
operators Aχ(2c,∞)(A) and Bχ(2c,∞)(A) on χ(2c,∞)(A)H satisfy

{Aχ(2c,∞)(A)}2 E {Bχ(2c,∞)(A)}2

and

{Bχ(2c,∞)(A)}2 E {Aχ(2c,∞)(A)}2.

Since Aχ(2c,∞)(A) ≥ 2cχ(2c,∞)(A), by the same argument we see that

Aχ(2c,4c](A) = Bχ(2c,4c](A) = χ(2c,4c](A)B.

Therefore by repeating this argument we have A = B. ¤

Lemma 2.7. For any operator X, we have

Re X ≤ 1
2t
|X|2 +

t

2

for any positive number t.

Proof. Since

0 ≤ (X − t)∗(X − t) = |X|2 + t2 − 2t Re X,

we are done. ¤

Example 2.1. First we will show that there exist 2×2 positive matrices A, B and
C such that both A2 E B2 and B2 E C2 hold while A2 E C2 does not hold.

We set
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X =

(√
2 1

0
√

2

)
, A = Re X =

(√
2 1/2

1/2
√

2

)
≥ 0

and

B = |X| = 1
3

(
4

√
2√

2 5

)
.

By Lemma 2.7 and Proposition 2.2 we have A2 E B2. Next we set

Y =
1
3

(
4 2

√
2

0 5

)

and C = |Y |. Since

Re Y =
1
3

(
4

√
2√

2 5

)
= B,

we have B2 E C2. Suppose that A2 E C2. Then by Proposition 2.2 we have

A ≤ 1
2t

C2 +
t

2

for any positive number t. Let E =
(

1 0
0 0

)
. Then we see that EAE =

√
2E and

E((1/2t)C2 + (t/2))E = ((1/2t)(16/9) + (t/2))E. Therefore we have

√
2 ≤ 8

9t
+

t

2

for any positive number t. This is impossible because the minimal value of the scalar on
the right hand side is 4/3 while 4/3 <

√
2.

Next we show that (A+ ε)2 E (B + ε)2 is not valid for any positive number ε. If this
were the case, then we would have

E(A + ε)E = (
√

2 + ε)E ≤ 1
2t

E(B + ε)2E +
t

2
E =

(
9ε2 + 24ε + 18

18t
+

t

2

)
E

for any positive number t. Since the minimal value of the scalar on the right hand side
is
√

9ε2 + 24ε + 18/3, we have

(
√

2 + ε)2 = ε2 + 2
√

2ε + 2 ≤
(√

9ε2 + 24ε + 18
3

)2

= ε2 +
8
3
ε + 2.
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This is obviously wrong because 2
√

2 > 8/3.
It is unclear if the invertibility assumption can be dropped in the main theorem. At

least our example shows that the standard trick of adding ε1 to A, B does not work.
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