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Abstract. We study the fixed point subalgebra of a certain class of
lattice vertex operator algebras by an automorphism of order 3, which is a
lift of a fixed-point-free isometry of the underlying lattice. We classify the
irreducible modules for the subalgebra. Moreover, the rationality and the Cs-
cofiniteness of the subalgebra are established. Our result contains the case of
the vertex operator algebra associated with the Leech lattice.

1. Introduction.

Let V be a vertex operator algebra. For an automorphism g of V of finite
order, the space V9 = {v € V | gv = v} of fixed points is a subalgebra of V
called an orbifold of the vertex operator algebra V. It is conjectured in [7] that
every irreducible V9-module is contained in some irreducible untwisted or twisted
V-module. It is also conjectured that if V' is rational and Cs-cofinite, then so is
V9. These conjectures have important meanings in the theory of vertex operator
algebras. However, it is difficult to investigate an orbifold in general, even if the
original vertex operator algebra V is well understood.

In the case where V is the lattice vertex operator algebra Vr associated with
a positive definite even lattice I' and the automorphism ¢ is a canonical lift 6 of
the —1 isometry a — —a of the lattice I, the orbifold V¥ = Vi has been studied
extensively. In fact, the representation theory of Vi, that is, the classification of
irreducible modules [3], [19] and the determination of fusion rules [1], [4], together
with the Cy-cofiniteness [2], [38] of V¥ are established.

In this paper we study an orbifold of a certain class of lattice vertex operator
algebras by an automorphism of order 3. We start with a lattice L = /2 (Aa-
lattice) and a fixed-point-free isometry 7 of L of order 3. There are 12 cosets of
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L in its dual lattice L. Using an even Zy x Zo-code C' of length ¢ and a self-
orthogonal Zsz-code D of the same length, we construct a positive definite even
lattice Loxp C (L4)®¢ of rank 2¢ from the 12 cosets of L in L. We also consider
an action of 7 on Zy X Zs. The isometry 7 induces a fixed-point-free isometry
(r,...,7) of Loxp provided that C' is invariant under the corresponding action of
(7,...,7) on (Zg x Z3)*. For simplicity of notation, we denote (7,...,7) by 7 also.

Our main concern is to classify the irreducible modules for the orbifold V[
of the lattice vertex operator algebra Vi, , by an automorphism 7 of order 3
which is a lift of the isometry 7 of Loxp. The vertex operator algebra Vi,
is simple, rational, Cy-cofinite, and of CFT type. The dual lattice (Loxp)t of
Loxp is equal to Lowypr, where C* (resp. D*) is the dual code of C (resp.
D). Then Vi, o)y im» A+ C € CH/C, v+ D € D' /D form a complete set
of representatives of equivalence classes of irreducible Vi, ,-modules. Such a
VLisicyw(vepy 18 T-stable if and only if A € C'. One can also construct irreducible
ri-twisted VL., ,-modules VLTC’ZD (%), n € D+ (mod D) fori = 1,2 by the method
of [12], [29].

The orbifold V7 _ _ is a simple vertex operator algebra. The following is a
list of known irreducible V7_ -modules. Let (3 = exp(2mv/—1/3).

(1) Vieyoim(€) ={u€ Vi, (1p, | Tu=C5u}, v+ D € DF/D, e € Zs.

(2) Vigiorwany 0 A +C € (CH/C)=,, v+ D € D+/D, where (C+/C)=, is
the set of T-orbits in C+/C.

(3) V&I (r))e] = {u € V" (7)) | T'u = (§u}, n € D+ (mod D), ¢ € Zs,
1=1,2.

These irreducible V7  -modules are inequivalent each other [20], [34]. The
above mentioned conjecture says that any irreducible V7 -module is isomorphic
to one of these.

In our argument we deal with not only simple current extension [13] but
also certain nonsimple current extension. Simple current extension is rather easy,
whereas nonsimple current extension is complicated and difficult to study. In
order to avoid the difficulty, we restrict ourselves to the special case where C' is
a 7-invariant self-dual Zy X Zs-code with minimum weight at least 4 and D is
a self-dual Zs-code. In this case the lattice Loy p is unimodular and there is
a unique irreducible Vi, ,-module, namely, Vi, ., itself. Likewise, there is a
unique irreducible Ti-twisted V7., ,-module VLTc’OxD(Ti), i = 1,2, where 0 is the
zero codeword. Under this hypothesis we have the following theorem (Theorem
7.10).

THEOREM. Suppose C is a T-invariant self-dual Zo X Zs-code with minimum
weight at least 4 and D is a self-dual Zs-code. Then the vertex operator algebra
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Vi, s simple, rational, Ca-cofinite, and of CFT type. Moreover, every irre-

ducible V. -module is isomorphic to one of Vi, ,(€), VLTC’[lD(Ti)[E], € € Zs,
i=1,2.

One of the most important examples of orbifold is the fixed point subalgebra
V¢ of the Leech lattice vertex operator algebra V by the automorphism 6 of order
2. This orbifold was first studied by I. Frenkel, J. Lepowsky and A. Meurman, and
in fact it was used for the construction of the moonshine vertex operator algebra
V% [22]. We note that the Leech lattice A can be expressed as Loxp for some C
and D which satisfy the hypothesis of the theorem (Remark 7.11).

A remarkable property of V! is that its automorphism group Aut V¥ is isomor-
phic to the Monster M. The construction of V¥ in [22] is based on a 2B-element
of M. In [22, Introduction], it is suggested that an analogous construction may
be possible for some appropriate elements in M of order 3, 5, 7, and 13. The
classification of irreducible modules, the determination of fusion rules, the ratio-
nality and the Cy-cofiniteness for the orbifold V{ by such an element g should play
an important role in those expected construction. This is the motivation for the
present work.

The organization of the paper is as follows. Section 2 is devoted to the prelim-
inaries. In Section 2.1 we collect basic terminology for later use. In Section 2.2 we
introduce the lattice Loy p and study its properties. In Section 2.3 we introduce
a central extension I:CX p of Loxp by a group (kse) of order 36 and discuss an
action of a lift of the isometry 7 of the lattice Loxp. In Section 2.4 we study the
vertex operator algebra Vi, , and its irreducible modules. The automorphism 7
of szX p naturally induces an automorphism of Vi, of order 3, which is again
denoted by 7.

In Section 3 we discuss in detail the irreducible T-twisted Vi, ,-modules
VI (71), i = 1,2, which are obtained by the method of [12], [29]. We describe

Loxp
those irreducible 7i-twisted V7. ,-modules as modules for (V] )®* (Theorem 3.13).

The classification of irreducible modules for the orbifold V; was accomplished in
[36]. Our argument here is based on the result.

In Section 4 we determine certain fusion rules for V;/ (Proposition 4.5), which
will be necessary in Section 5. In fact, these fusion rules are crucial for our argu-
ments.

The proof of the main theorem is divided into three steps. In Section 5 we be-
gin with the classification of irreducible modules for the orbifold V/, (Proposition
5.3). This is the case where both of C' and D are the zero code. The rationality
and the Ch-cofiniteness of V], are also obtained. Moreover, some of the fusion
rules are computed (Proposition 5.7).

In Section 6 we classify the irreducible modules for V7 = (Theorem 6.2),
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which is the case where C is the zero code {0}. In this case only simple current
extension is involved and the argument is relatively straightforward. The ratio-
nality and the Cy-cofiniteness of V7 (Theorem 6.2), together with some of the
fusion rules are also obtained (Proposition 6.3).

Section 7 consists of two subsections. In Section 7.1 we use Zhu’s theory to
study the irreducible V/g,-modules contained in a VLTC(MXO—module, where C(u)
is the Zgo X Zs-code generated by p and 7(p). The results obtained here will be
necessary in Section 7.2. We do not discuss the classification of irreducible modules
nor the rationality for the vertex operator algebra V7~ . Note that V7 is

1) X0 C(u)x0
a nonsimple current extension of V/g,.

In Section 7.2 we study the orbifold V/_ _ and prove the main theorem
(Theorem 7.10) under the hypothesis that C is a 7-invariant self-dual Zg x Zs-
code with minimum weight at least 4 and D is a self-dual Zs-code. We need to
assume that D is self-dual for the proof of Proposition 7.8. Our argument fails if
the minimum weight of C' is 2 (Remark 7.2). The case Loxp = Fs-lattice is such
an example (Remark 7.12).

We should make a few remarks on the simplicity and the CF'T type property.
Most of the vertex operator algebras discussed in this paper are clearly simple and
of CFT type. In such a case we omit the proof of these properties.

This paper is the detailed version of our paper [37].

2. Preliminaries.

Throughout this paper, (,, = exp(2mv/—1/n) is a primitive n-th root of unity
for a positive integer n. For simplicity, 0,1 and 2 are sometimes understood to be
elements of Zs.

2.1. Basic terminology.

Let g be an automorphism of a vertex operator algebra (V,Y,1,w) of finite
order T. Set V" ={v € V' | gv = (yv}, so that V =D, 777 V"

For subsets A, B of V and a subset X of a weak g-twisted V-module M, set
A- B =spanc{u,v | u € A,v € Byn € Z} and A- X = spanc{u,w | u € A,w €
X,n € (1/T)Z}. Then it follows that (A-B)-X = A - (B - X) by [32, Lemma
3.12] and [36, Lemmas 2.5 and 2.6].

Let N be the set of nonnegative integers. A (1/7)N-graded weak g-twisted
V-module here is called an admissible g-twisted V-module in [14]. Without loss
we can shift the grading of a (1/7)N-graded weak g-twisted V-module M so that
M(0) # 0 if M # 0. We call such an M(0) the top level of M.

A vertex operator algebra V' is said to be rational if every N-graded weak V-
module is a direct sum of irreducible N-graded weak V-modules. If the dimension
of the quotient space V/spans{u_sv | u,v € V} is finite, V is said to be Co-
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cofinite [39]. If V.= @, ,V,, and Vy = C1, then V is said to be of CFT type.
Here V,, = {u € V | wiu = nu} is the homogeneous subspace of weight n. If V
is Ca-cofinite and of CFT type, then the classification of irreducible V-modules
means the classification of irreducible weak V-modules [2, Proposition 5.6 and
Corollary 5.7].

For h € AutV and a weak (resp. (1/T)N-graded weak) g-twisted V-module
(M, Ya), we define a weak (resp. (1/7)N-graded weak) h~!gh-twisted V-module
(M o h,Ypron) by M o h = M as vector spaces and Yasop(u, ) = Y (hu,z). If M
is irreducible, so is M o h.

Let G be an automorphism group of V and V& the vertex operator subalgebra
of G-invariants of V. A set S of irreducible V-modules is said to be G-stable if for
any M € S and h € G there exists W € S such that M o h =2 W. An irreducible
V-module M is said to be G-stable if M o g = M for all g € G. It is shown in [17,
Theorem 4.4] that if V' is simple and G is of finite order, then V& is simple.

We denote by Iy ( le\4 13\/[2) the set of all intertwining operators of type ( M]lw j\/p)
[21]. Let M be the set of all irreducible V-modules up to isomorphism and ZM
be a free Z-module with basis M. For M, M? € M,

: M?
M'x M2 = ) dlmCIV<M1 M2>M3 € ZM
M3eM

is the fusion rule. We write >, v SuM > 3 3,0 v TnuM when Sy > Ty for
all M € M.

2.2. Lattice Lexp-

We follow the notation in [10], [24], [25], [36]. Let (L, (-, -)) be v/2 times
an ordinary root lattice of type As and let {81, B2} be a Z-basis of L such that
(B1, B1) = (B2, B2) = 4 and (B, f2) = —2. Set By = —1— 2. Let 7 be an isometry
of L induced by the permutation 81 — B — By — (1. Then 7 is fixed-point-free
and of order 3.

There are 12 cosets of L in its dual lattice L+ = {a € Q®z L | (o, L) C Z}.
These 12 cosets are parametrized by Zsy x Zy and Zs. Let (L)% be an orthogonal
sum of £ copies of L. We shall construct a lattice Loy p in (L+)®* from those 12
cosets of L by using a Zy X Zs-code C' and a Zsz-code D. We shall also introduce
certain isometry groups of (L1)®¢,

First, 7 can be extended to an isometry of L. Let H, be a direct product
of ¢ copies of the group (7) generated by 7. Each element g = (g1,...,9¢) of
Hy transforms o = a3 + -+ ap € (L)% as gla) = gi(a1) + -+ + ge(aw),
where g; € (7) and a; is the s-th component of a. For convenience, we denote
(7,...,7) € Hy simply by 7 also. A symmetric group &, of degree £ acts on (L*+)®*
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by permuting the components. Let G be an isometry group of (L)% generated
by Hy; and &y, which is a semidirect product Hy x &, of Hy by &y.

Now, we discuss a Zy X Zs-code and a Zgz-code. A Zo X Zs-code of length
¢ means an additive subgroup of K, where K = {0,a,b, c} = Zy x Zy is Klein’s
four-group. We call it a K-code also. Note that b4+ ¢ = a in K. For z,y € I,
define

{1 ife#y, ©#0, y#0,

0 otherwise.
We have
Ty =ming + mong (mod 27) (2.1)

if x = myc+ mob, y = nic+ ngb € K with my, ma,n1,ng € Z.

For A = (Ai,..., M), o= (ptr, ..., pe) € Kb et (N, ) = Zle Ai g € Zo.
The orthogonal form (A, u) — (), u)xc on K¢ was used in [24], [27]. For a K-code
C of length ¢, we define its dual code by

Ct={\eK'| A\ =0forall uecC}.

A K-code C is said to be self-orthogonal if C C C+ and self-dual if C = C*.
For A = (A1,..., ) € KF, its support is defined to be suppy(A\) = {i | A\; # 0}.
The cardinality of supp,(A) is called the weight of \. We denote the weight of A
by wti(A). In the case £ = 1, we have wtx(z) = 0 or 1 according to z = 0 or
x € {a,b,c}. A K-code C is said to be even if wtx(A) is even for every A € C.

We consider an action of 7 on K such that 7(0) =0, 7(a) = b, 7(b) = ¢, and
7(c) = a. Moreover, we consider a componentwise action of H, on K’ so that 7
acts on Kf by 7(A1,...,A) = (7(M\1),...,7(A\¢)). Then G, acts on K naturally.
We denote by (K*)=_ the set of all 7-orbits in K*. For simplicity of notation, we
sometimes denote a 7-orbit in K¢ by its representative A € K.

The first assertion of the next lemma is [27, Lemma 2.8]. The second assertion
follows from the fact that (A, 7(A))x = wtx(A) (mod 2Z) for A € K.

LEMMA 2.1.  Let C be a K-code of length ¢.

(1) If C is even, then C is self-orthogonal.
(2) If C is T-invariant, then C is even if and only if C is self-orthogonal.

A Zs-code of length £ is a subspace of the vector space Z§. For v =
(Y1, ,%e), & = (01,...,0¢) € Z& we consider the ordinary inner product
(v,0)z, = Zle vi0; € Zsz. The dual code D of a Zsz-code D is defined to
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be
D+ ={ye€Z§| (v,0)z, =0 for all 6 € D}.

Then D is said to be self-orthogonal if D C D+ and self-dual if D = D+.

We define the support and the weight of v = (y1,...,7) € Zg in the same
way as before. Thus suppg, (v) = {i | 7 # 0} and wtz,(v) is the cardinality
of suppy, (7). Note that wtz,(v) = (v,7) (mod 3Z). Then the following lemma
holds.

LEMMA 2.2.  Let D be a self-orthogonal Zs-code of length £. Then wtz, (d
— ) = wtz, (0) (mod 3Z) for any v € D and § € D*.

We consider the trivial action of 7 on Zs, that is, 7(j) = j for j € Z3. Then
Hy acts trivially on Z§ and Gy acts on Z§ naturally.

Take a Z-basis 3; = B1/2, By = (81 — 32)/6 of L*. Note that {231, 652} is a
Z-basis of L. For o = mlﬁl + mg/@g, 0= nlﬁl + ngﬁg € L', we have

ming +many = Mang
2 3

(o, B) = miny + (2.2)

We also have 7‘(/6)1) = (3 — 30, and T(BQ) = By — 235. We use the same notation
as in [10], [24], [25], [36] to denote the 12 cosets L\®% z € K, i € Zs of L in its
dual lattice Lt. For each x € K we assign 8(z) € Lt by 8(0) = 0, 8(a) = (2/2,
B(b) = Bo/2, and B(c) = $1/2. Then

B+
i B1 52+

L&Y = B(z) 3

L. (2.3)
Since 31 = B(c) € L9 and Bg =B0) + (=B + B2)/3+ 1 € LY we can
describe L(®% by using the basis {1, f2} of L*.

LEmMMA 2.3. Forx € K and i € Zs,
@) — {mlﬁl + mgﬁg €Lt | £ = mic+ mab in K and i = ma + 3Z}.

We also have the following lemma.
LEMMA 24. Let a € L™ and g € LW9) with z,y € K, i,j € Zs.

(1) {o,8) =z -y/2+1ij/3 (mod Z).
(2) (o, a) = wtie(x) — 2i?/3 (mod 27).
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For A= (A1,...,Ar) € KX and y = (1, ..., %) € Z§, let
Ly = L) g g LG (LL)EBe.

Moreover, for u € K¢, 6 € Z§, P C K, and Q C Z§, set

Lixg = J Ly Lexs=J Love, Lexa= |J Loy
YEQ AEP AEPYEQ

For a K-code C' of length ¢ and a Zs-code D of the same length, Loy p is an
additive subgroup of (L+)®¢. However, Loy p is not an integral lattice in general.
In the case where C' = K and D = Z§, Loxp coincides with (L+)®¢. If C = {0}
and D = {0}, then Lioyx101 = Lo,0) = L%, where 0 = (0,...,0). In the case
of ¢ = 1, we note that Lixo = ZB + Z(3Bg), Loxz, = Z(2B1) + Z(QBQ), and
L = Loxo = Z(261) + Z(632).

Let (Loxp)t = {a € (Q®z L)®* | (a, Lcxp) C Z}. The following lemma is
a consequence of Lemma 2.4 (1).

LEMMA 2.5. (Loxp)t = Leoiyxpe-

Thus Loxp is an integral lattice if and only if both of C' and D are self-
orthogonal. The first assertion of the next lemma follows from Lemma 2.4 (2).
The second assertion is a special case of the above lemma (see also [24, Theorems
5.6, 5.7]).

LEMMA 2.6. (1) If C is even and D is self-orthogonal, then Loxp is an
even lattice.
(2) If C and D are self-dual, then Loxp is a unimodular lattice.

2.3. Central extensions f)cXD, .tCXD’Ti, 1 =1,2.

Suppose C is a T-invariant even C-code of length ¢ and D is a self-orthogonal
Zs-code of the same length. Then Lo« p is a positive definite even lattice by
Lemma 2.6. The isometry 7 of L' permutes the cosets L(#, x € K, i € Zg of L
in L. In fact, 7(L®9) = L(T(®):) by our definition of the action of 7 on L*, K
and Zg introduced in Section 2.2. In particular, 7 induces an isometry of Lo p,
for we are assuming that C'is 7-invariant. Note that 7 is fixed-point-free on Loy p.
We also have g(Loxp) = Lgcyxg(p) for g € Go.

For any positive integer n, let (k,,) be a cyclic group of order n with generator
Kn. We assume that r,"/™ = k,, if m is a divisor of n. We shall construct three
central extensions ECXD and ECXD?TM i = 1,2 of Loxp by (ksg) which will be
used in later sections. We realize each of these central extensions as a subgroup
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of a central extension of (L)% by (k3g).
Define Z-bilinear forms €1, 6275-?/2, c1,¢a,ch: LY x Lt — 7,/367Z as follows. For
o =m1B1 4+ mafa, B =n1f1 +nzf € L, set

e1(a, B) = 27ming + 27many + 9mang + 36Z, (2.4)

ea(a, B) = 6mying + 6maong + 14maong + 362, (2.5)

eh(a, B) = 6miny + 156myng + 27many + 14mans + 367, (2.6)
and

C1 (OZ, /6) = 51(CK, 5) - 51(6) a) = 9m1n2 + 27m2n1 + 3627 (27)

CZ(CY’ 6) = 82(0&, ﬁ) - 52(57 Oé) = 30m1n2 + 6m2n1 + 362’ (28)

cy(a, B) = eh(a, B) — e5(8, ) = 24myng + 12many + 36Z. (2.9)

We also set

Co(Oé, ﬂ) = ].8<Oé, ﬂ> + 362
= 18mini1 + 9ming + 9mong + 6meong + 36Z. (2.10)
All of these Z-bilinear forms are 7-invariant. Since e; is Z-bilinear, it is a

2-cocycle. Let Lt = (ksg) x L. We simply write xhge® for (khg, a) € Li.

particular, rhy = (k%4,0) and e* = (1,a). Define a multiplication on the set L+
by

(kBge®) - (rkige”) = ﬁgérq+sl(a’ﬁ)eo‘+5. (2.11)

Take e5 (resp. €4) in place of €;. Then we obtain a multiplicative group L+,

(resp. Lt,2). We use the same notation rhse® to denote its element. As to its
multiplication, we write X, (resp. X;2) so that

(kBge™) % (kdge?) = ghdatez(enf) gacts, (2.12)

(KBee) X2 (”“gﬁeﬁ) = “gérq“é(a*ﬁ)emrﬂ. (2.13)

For a,b € L+ or L+, i = 1,2, we simply write ab for the product in the
group when there is no ambiguity. Define ~—: L+ — L* (resp. Lt. — L) by

khge® = a. Then L+ (resp. L+,, L+ 2) is a central extension of L+ by (k36) with
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associated commutator map c; (resp. ca, ¢b) ([22, Sections 5.1, 5.2], [30, Section
6.4]).
Note that

o~

e“el =P in L+ (2.14)

for o, 8 € Loxz, = Z(231) + Z(2(3:) by (2.11).

—

Define an automorphism of the group L+ (resp. L/ITZ-, 1 =1,2) of order 3 by

K36 — K36,
(2.15)

e — e‘r(a)

for « € L*. Since €; (resp. €9, €}) is T-invariant, the map is in fact an automor-
phism of the group Lt (resp. Li, L1.2) of order 3. By abuse of notation, we
denote it by 7 also.

REMARK 2.7. In [11, Remark 2.2], three bilinear forms &g, ¢y and ¢ were
considered. Apply [11, (2.9), (2.10), (2.13)] to Lt in place of L with v = 7 or 72,
p =3 and ¢ = 36. Then the bilinear form c° of [11, (2.9)] is identical with our .
Moreover, €p and cf become

go(a, ) = 30{e, 7(B)) + 36Z
= 21m1n1 + 21m2n1 + 317712712 + 362, (216)

b (a, B) = 30{a, 72(3)) + 367Z
= 21miny + 21ming + 31lmons + 367, (2.17)

cg (e, B) = 12(r(a) + 27°(a), B) + 36Z
= 18miny + 30myns + 24mony + 30meons + 367Z, (2.18)

2

& (a, ) =12(r%(a) + 27" (), B) + 36Z
= 18myny + 24mynsg + 30mong + 30mons + 367 (2.19)

for o = m1B1 + mafBa, B = ni1B1 + naBs € LL. Here we write eg for gg of [11,
(2.13)] in the case v = 72. Note that g of [11, Remark 2.2] should be a multiple of
12 by (2.10). We take ¢ = 36 so that every coefficient of m;n; in (2.16) and (2.17)
is an integer. These bilinear forms are related to our ones as follows.
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eo(a, B) = e1(a, B) — e2(a, B),

eo(@, B) = e1(a, B) — e5(a, ),

cola, B) = e1(e, B) — 36{cx, 7(B))  (mod 36Z),
g (e, B) = c2(a, B) + 36(er, 7(B))  (mod 36Z),
(o, B) = éy(a, B) + 36{a, 7(8)) (mod 36Z).

o1 2
We extend the Z-bilinear forms e, €9, ), c1, €2, Ch, Co, €0, €4, €5, ¢ on Lt to
(L*)®* naturally. For example,

4
e1(a, ) = Zgl(a(s)ﬁ(s))
s=1

for a = Z§:1 al®) 3= Z§:1 B e (LY)®¢, where a®) and 3 are in the s-th
entry of (LL)W . These Z-bilinear forms are all 7-invariant.

REMARK 2.8. If (a,7(8)) € Z, then Remark 2.7 implies that ¢;(o, 8) =
co(a; B), ea(a, B) = cf (e, B), cy(ev, B) = ¢ (o, 3) and

Eo(a,ﬁ) - 50(6’04) = Co(a,ﬁ) - cg(a,ﬁ),

, (2.20)
eo(a, B) — €0(B, ) = co(a, B) — ¢ (o, B).

Let (l//I)Z be a direct product of ¢ copies of L% and let T be a subgroup in
the center of (LL)! generated by s (E)71, 1 < rys < €, where k) denotes
k36 € Lt in the s-th entry of (ﬁ-)e. We consider (I/JI)Z/T For simplicity of
notation, we write e***tt for (e®t ... )T and rhy for (/i:(,)t-))pT in (I/JI)K/T.
Then any element of (I//I)Z /T can be expressed uniquely in the form kfze® with
p € Z/36Z and a € (L+)%¢.

By (2.11) we have

eve

e (2.21)
in (I//I)E/T. For rhge® € (I//I)Z/T, let khge® = a € (L)®¢. Then

1 — (kgg) — (L1)Y)T = (LH)® — 1
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is a central extension of (L+)®* by (k3s) with associated commutator map ¢;. We
denote (L1)¢/T by (L+)®¢ also.
By (2.15), Gy acts on the group (L+)®¢ naturally. In particular, 7 = (7,...,7)

acts on (L+)®¢ as an automorphism of order 3. We have g(a) = g(a) for g € Gy

and a € (L1)®¢.
By (2.10) and Remark 2.7, we have

I{gg(aﬂ) _ Hg%(aﬁ) _ Hé{lﬂ)

if (o, 7(0)) is an integer. This is the case for o, € Lcxp, since Loxp is a
T-invariant integral lattice.

For any subset Q of (L)%, we set Q = {a € (L/iﬁf | a € @Q}. In particular,
[A/CXD = {CL S (ﬁ)\@[ | ac LCXD}~ Then

1 — (ksg) — Loxp — Loxp — 1 (2.22)

is a central extension of Loy p by (k3) with associated commutator map c;.
Replace L1 with L+, (resp. L1 ,2) and e; with &5 (resp. £5) in the above argu-
ment. Then we obtain a central extension (LL)®¢_ (resp. (L+)®¢ ;) of (L)% by

(Kk36) With associated commutator map cy (resp. cj). We have e®e” = ng(aﬂ)ea-w

in (L/J-ﬁﬂ by (2.12) (resp. e%ef = né%(a’ﬁ)e‘”'@:n\(mﬂz by (2.13)) for
o, € (LH)®. We also consider Qi = {a € (L), | a € Q}, i = 1,2

similarly for a subset @Q of (L+)®¢.
Note that 7 induces an automorphism of Loy p of order 3. Let 0 € Aut Loy p
be a distinguished lift of the isometry —1 of Loxp defined by [22, (10.3.12)]

0: Loxp — Loxp; a— ailnéa@m. (2.23)

Then 6% = 1,0(a) = —a fora € -i/Cny and 0(ksg) = k36. Moreover, 7 = 76 since
(-, -) is 7-invariant. Thus we have obtained the following lemma.

LEMMA 2.9. Lcoxp is a central extension of Loxp by (k3e) with commuta-
tion relation

ab = néa’5>ba, a,b € Lexp. (2.24)

Moreover, T and 0 are automorphisms of Lexp such that 78 = 62 = 1, 7(ksg) =

O(kss) = ksg, 7(a) = 7(a), O(a) = —a for a € Lexp, and 61 = 6.
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The sublattice Lox p of Lok p has nice properties. For a, 8 € Loxp, we have
e“e = evtF by (2.14) and 7(e®) = 7(®) by (2.15). Furthermore, 8(e®) = e~ by
(2.23), since (o, ) € 4Z for a € Loxp.

Now, set C{(L1)®*} = C[(Wq/(ﬁ??ﬁ — ng)(C[(L/J-)\@Z], which is a twisted
group algebra of (L*)®‘. By abuse of notation, we denote the image of e* €
(ﬁ)\@@ in C{(L*)®} by the same symbol e® for a € (L+)®*. The automorphisms
7 and @ also induce automorphisms of C{(L*)®‘}. We use the same symbols
7 and 6 to denote those automorphisms. For any subset P of (L)% we set
C{P} = spanc{e® | a € P} C C{(L+)®}.

The following lemma is a direct consequence of Lemma 2.9.

LEMMA 2.10. C{Lcxp} is a twisted group algebra of Loxp such that
e’ = (—1)<°"ﬁ>eﬁea, a,B € Loxp.

Moreover, T and 0 are automorphisms of C{Lcxp} such that 7 = 0% = 1 and
0r = 76.

2.4. Vertex operator algebra Vi, .

We use the standard notation for the vertex operator algebra (Vpr,Y (-, x))
associated with a positive definite even lattice I" and its module V. ([22, Chapter
8], [30, Section 6.4]). Let C be a 7-invariant even K-code of length ¢ and D be
a self-orthogonal Zs-code of the same length. Thus the lattice Loxp is a 7-
invariant positive definite even lattice by Lemma 2.6. We use the twisted group
algebra C{Lcxp} of Lemma 2.10 for the vertex operator algebra V., ,, = M(1)®
C{Lcxp}. We identify Vie: with V2% and V{z1)ee with V2L

Recall the action of the group G, on (L*+)® K and Z§ discussed in Section
2.2. For g € Gy, define a linear isomorphism on V{z1yee = M(1) @ C{(L*+)%} by

al(=n1) - o (=ny)e? = (ga)(=n1) - (g (—ni)g(e”).

For simplicity of notation, we denote it by g also. Then

IV Lewp)t (4, )0) = YL, ) o))t (U, ) gV

foru € Vi, , and v € V(. )+ Hence g: Voo, , = Vi o), 1S an isomor-
phism of vertex operator algebras. In particular, 7 is an automorphism of V., .
Our purpose is the classification of irreducible modules for the fixed point subal-
gebra Vi ={u€ VL., , | Tu=u} of VL., , by the automorphism .

We also note that
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9: Vipiorxany ™ VEoy+a@n)xam+ao

for A € C*+ and v € Dt is a map from V,,,_,-modules to VL, (cyxopy-modules. In
the case where C' and D are g-invariant, we have

~ —1 _
VL(A+C)><('V+D) ©g=4g (VL()\+C)X(’Y+D)) = VL(Q*I(X)+C)><(g*1(w)+D) . (225)

By [8, Theorem 3.1] and Lemma 2.5, we have the following proposition.

PROPOSITION 2.11.  {VL 0 (ip, | A+ C € CH/C,y+ D € D+/D} is a
set of all irreducible Vi, , -modules up to isomorphism.

The following lemma is a straightforward consequence of (2.25).

LEMMA 2.12. We have VL o) (o0 OT = VL . In particular,

is T-stable if and only if A € C.

(=71 +O)x (v+D)
VLtorx i)
— — — €
For e = 0,1,2, let Voo ., () ={u € Voo, p | Tu = (Su}. These are
irreducible V;_ _-modules.
oxp e
The following proposition is clear.

LEMMA 2.13.  As (V)®*-modules, we have

Vigioywaen = @ VL5
HEX+C5€v+D

The fusion rules for Vi, , are known by [11, Corollary 12.10].

LEMMA 2.14.  For A\', A2 € C+ and v',~* € D+, we have
Vigiioatem X VEozioazem = Vet ioxai o

3. Irreducible Ti-twisted Vieyp-modules, i = 1,2.

As before, we assume that C' is a 7-invariant even KC-code of length £ and D is
a self-orthogonal Zs-code of the same length. We shall describe a decomposition
of every irreducible T-twisted Vi, ,-module constructed by the method of [12],
[29] into a direct sum of irreducible (V7 )®“modules, i = 1,2. The argument in
the 72-twisted case is parallel to that in the 7-twisted case. Thus we deal with
mainly the 7-twisted ones. -

By our construction L®¢ (resp. L®¢.) is a subgroup of Lesp (resp. [A/CXD,T).



Fized point subalgebras of lattice vertex operator algebras 1183

In [10], [36], we have considered irreducible 7-twisted Vz-modules VLT (1), j =
0,1,2. In order to apply the results obtained in these prgv\ious papers, we need to
examine the relation between L (resp. L,) of [10] and L®¢ (resp. L®L.).

In [10, (2.1)], L was a central extension of L by (k) with trivial associated
commutator map L X L — Z/6Z and a section L — L; o — e® was chosen so
that e®e® = e*t8 and 7(e®) = €™(®. In our case we have e®e? = e**# and
() = e™(@) in LL for a,f € L by (2.14) and (2.15). Thus for each 1 < s < ¢,
the map

6
/ﬁ;ﬁ — 536 = K67

e — (1,...,e%..., )T

is an injective group homomorphism of L to L/@, where (1,...,e%,...,1) is the
element of (ZEI)Z whose s-th component is e* and the other components are 1.
This injective homomorphism /15\ compatible with the action of 7.

The embedding of L into L#* gives rise to an embedding v — 1®-- - ®UV®---®Q1
of the vertex operator algebra Vi, into VLW & Viee which maps Vi, isomorphically
to the s-th component of VEM for each 1 < s < /. This embedding is again
compatible with the action of 7.

We denote the bilinear form ey on L of [10, (4.4)] by &’ for a while. Thus
e'(a, B) = 5(m%a, 3) + 6Z. In [10], the multiplications a x b in L and a x; b in
L, are related as a x b = nzl(a’b)a X b. Since ng‘é(a’ﬁ) = nz/(a’ﬁ) for a, 0 € L by
(2.16), it follows from (2.20) that the map kg — K35 = Kg, €* > e for a € L is
an injective group homomorphism of L, to the s-th component of l//@\fT for each
1<s </

Now, V2 = Ve C Vi, - Since 7 = (1,...,7) and since the irreducible
T-twisted Vz-modules VLTXj (1), 4 = 0,1,2 of [10], [36] were constructed by the
same method as in [12], [29], the above argument shows that the action of V7, on

VLT *7 (1) is realized in the action of the s-th component of V¢ on the irreducible
T-twisted Vi, ,-modules VI:‘FC’ZD (7) constructed by (3.24) below.

We can verify the following properties of the Z-bilinear form co. In fact, it is
sufficient to show the assertions for the case £ = 1. Note that Lemma 2.3 implies

l
Liexo = { 30 (57 + 3057 |l ) € 2.

s=1

LEMMA 3.1. (1) For o € (L)%Y, we have ca(a, 3) = 0 for all B € L% if
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and only if @ € Lyeyq-
(2) For a = Z§=1 (m(ls)@s) + 3m§s)ﬁ~és)) € Lirxo and B € Lo with v € Z,
we have

caler, B) = 12(m)_y,7)z, + 362,
(3) For a € Lixg, B € L0y with A\, € ICt, we have
ca(a, B) = 18(\, ) + 36Z.

We now follow [29]. The commutator map C(a,3) of [29] is k3s°(*?) in
our notation. Let h = C ®z Loxp, so that h = (C ®z L)®*. We extend 7 to an
isometry of b linearly. Then 7 is fixed-point-free on h and N of [29] is identical
with Loy p in our case.

Let R = {a € Loxp | c2(a,8) = Oforall 8 € Loxp} be the radical of
the alternating Z-bilinear form ¢y on Loy p, which is identical with the R of [29,
Section 6]. Since C is self-orthogonal, Lemma 3.1 implies the following assertion.

LEMMA 3.2.  The radical R of the alternating Z-bilinear form cs on Loxp
consists of the elements

¢
> (VB +3my” 5Y) € Loxo

s=1

with mgs),mgs) € Z such that (mgs) +32)¢_, € D*.

By Lemma 3.1 we also have the following lemma. Thus we can choose Lc o
as the group A of [29, Proposition 6.2].

LEMMA 3.3. Lgxo is a subgroup of Loxp which is mazimal subject to the
condition that the alternating Z-bilinear form co is trivial on it.

We shall consider (1—7)Loxp = U y)ecxp(1—T7)L(x,), which corresponds
to the subgroup denoted by M in [29, Section 6]. For mi, ms € Z, we have

(1 —7)(m1 By + mafa) = —mafy + 3(m1 + ma)Ba

and hence (1 — 7) L+ = Lxxo and (1 — 7)L = Z(6/31) + Z(632). More precisely,
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(1-17) <_ﬂl3+ﬁ2> = 20; — 60,

(1-7)(B(a)) = B(c) + 2B1 — 652,
(1—7)(B(b)) = B(a) + 261 — 631 + 632,
(1= 7)(B(c)) = B(b) + 261

Then we see from (2.3) that

(1 —7) L™ = wtie () (B(7%(x)) + 261) + 2iB1 + Z(6B1) + Z(632) (3.1)
for x € K and i € Z3, where wtc(z) = 1 if « € {a,b,c} and 0 otherwise. Thus,
¢
(=)L = Y (woe ) (B2 () +2617)
s=1
+ 29,817 + Z(65”) + 2(655”)) (3.2)
for A= ()l € Kf and v = (v,)%_, € Z§. We also note that

L@0 = (1 - L@ Y (1 - 1) LED U (1 - 7) L& (3.3)

is a disjoint union for z € K by (2.3) and (3.1). Thus,

Lcoxo = U (1 - T)L()\;y); disjoint. (34)
AeC
YEZ

Define a Z-linear map ¢: L+ — Zs by
@(m1 Py +mafa) = my + 3Z (3.5)

for my,my € Z. We can verify that ¢(3(%(z)) + 261) = 0 if « € {a,b, c}. Hence
(3.1) implies the following lemma.

LEMMA 3.4. (1 —7)L@D) = {2i} forx €K, i € Z3.

We extend : Lt — Z3 to a homomorphism of additive groups ¢: (L)% —

Z& componentwise, so that it maps the s-th component Lt to Z3 by (3.5). Set
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My = (1 —=7)Lexo and M = (1 — 7)Lexp. By Lemma 3.4, we have ¢((1 —
T)L(xq) = {27} for A € KY and y € Z§. Thus the following lemma holds by (3.4)
and Lemma 3.2.

LEMMA 3.5.  The restriction ¢|ro.o: Loxo — Zg of p to Loxo 1s a surjec-
tive homomorphism and its kernel is My. Moreover, o(M) = D and o(R) = D+.
That is, ¢ gives the following surjections.

My C M C R C Lcxo

@: | l 1 1 (3.6)
{0} ¢ D c D+ c Z&.

Since 63 = 38'*) and 63" = B — B4, My contains g{* — g{*), p{*) — g{*)
and Sﬁgs), i=0,1,2by (3.2). Let vy = (v1,...,%) € Z§. Then the inverse image of
{27} under ¢|L.,, is Zi:l ’Vsﬁi(s) +Mj. By Lemma 3.5, ¢ induces an isomorphism
Lexo/My & Zg. Taking the inverse image of D, D+ and Zg, respectively, we have
the following coset decompositions.

M= B+ 78 + M), (3.7)
yeD
R=J 8"+ + 28" + M), (3:8)
~yeD+
Lexo = U (7151-(1) +o wﬁi(z) + My). (3.9)
VEZ]

Recall that @, denotes the inverse image of ( under the homomorphism
ﬁCXD + — Loxp for a subset Q of Loy p. Lemma 3.3 implies that the inverse
image LC><0 + of Loy is isomorphic to Leyo X (k36), which is a maximal abelian
subgroup of LC><D +. The inverse image R of R is the center of the group LCXD ,

A central subgroup K defined in [12, Remark 4.2] is crucial for the con-
struction of a certain class of irreducible f/cX D, ~~-modules (see also [22, Section
7.4], [29, Section 6]) Let K = {ar(a)™' | @ € Loxp.~}. Then K is a sub-
group of the center R, of LC><D - and K N {k3g) = 1 [12, Remark 4.2]. Indeed,
at(a)™' =a—7(@) € M. If ar(a)™" € (k3¢), then @ = (@) and so @ = 0. Hence
a € (ksg) and a7(a)”' = 1. Thus K N (k3s) = 1. Since K lies in R,, br(b)~
commutes with 7(a)~! for a,b € IA/CXDJ and

at(a) (b))~ = abr(b) "' 7(a) "' = abr(ab)". (3.10)
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Thus K is a group. Now the inverse image MT of M in IA/CXD,T is K x (k3g) =
M x (ks6). Clearly, K is m-invariant. Moreover, K is f-invariant since 6 commutes
with 7.

We shall construct an irreducible iCx p, ~-module Ty, as in [29, Proposition
6.2]. Since M, =K x (K36), there is a unique group homomorphism p: M, — CX
such that p(k3g) = (36 and p(a) = 1 for a € K. Note that (1 +7 + 7%)a = 0
for &« € Lexp. Thus p is the homomorphism denoted by 7 in [29, Proposition
6.1]. Let x: R, — C* be a homomorphism extending p and : I:CXO)T — C*
be a homomorphism extending x. Then 1(kss) = (36 and ¥ is 1 on K. Such an
extension 1 exists, since in the central extension

1 — (k3e) — fJCxD,r/K — Lexp/M — 1

with associated commutator map ¢, defined by ¢a(a + M, 3+ M) = ca(«, 3), the
subgroup I:CXO,T/K splits by Lemma 3.3. That is, IA/CXO’T/K >~ (Loxo/M) x
(k36) and R, /K = (R/M) x {(r36). Let Cy be a one dimensional Lo, --module
with character ¢ and T, = (C[IA/CXDJ] ®OCioxo. -] Cy be the f/CXD,T—module
induced from C,.

We need to know ¢ and Ty, in detail. For this purpose, set Ky = {a7(a)
a € IA/CXO,T}. Then Kj is a subgroup of K with MOJ = Ky X (k3g), where MO,T
denotes the inverse image of My in ﬁCX D, r- Moreover, Ky is - and 7-invariant.

We shall describe the group f/ch,T/Ko explicitly.
We can verify that eo(a, 7(a)) = e2(a, @) and e*r(e*)~t = e~ in L1,
for a € L+ by (2.5), (2.12) and (2.15). Hence

-

Ar(ef) ™t =e1=m8 i (LL)e (3.11)
for 8 € (L+)®*. In the case of 3 = —615) + ﬁés), we have
e () T = T in Lo, (3.12)
For v = (y1,...,v) € D, set
¢ (s) (s)
=B+ B
a(’Y) = Z]s% S L0><D, (313)

s=1

where j; = 0, 1,2 such that v5 = js + 3Z. These a(y),y € D form a complete set
of coset representatives of Loy in Loxp, and so
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i/CXD,T — U ea(W)-i/Cxo,-p (314)
yeD

Then using (3.10) we see that

K = | e"@r(er™)~K,. (3.15)
yeD

Moreover, it follows from (3.11) that
e r(esM)~1 = DDA Loxp. s (3.16)
Now, using (2.5) and (2.12) we can verify that
(efym = m?(mfl)emﬂ’i in I//IT (3.17)

formeZ,i=0,1,2.
By (2.15), (3.12) and (3.17), we have the following lemma.

LEMMA 3.6.  The following assertions hold in IA/CXDVT for1 <s< /.
(1) A7 = B = 7 (mod Kjy).
(2) (rze ) =307 € Ky, i =0,1,2.

(s) DI

(3) (kgeli )™l = /ﬁl3€_ﬁ£ ), 1=0,1,2.

By (3.17), (ngﬁf’)m = ngnzemﬁz(s) in Loxp, - for any integer m. Now, let

4 s 1 I3 ~

ms € Z,1 < s < {. Then ezgzlmsﬁzU = emlﬁg : ~~em‘*ﬁz‘<) in Lexp, -, since

52(@'(5)’@(”) =0if s #t. Thus

2

&) 0] e () .
(/{geﬁil )ml (/{geﬁig )W = /<;32°‘:1 M e maBT gy Lexp, - (3.18)

for any (mi,...,mg) € Z*. The above lemma implies that (Iﬁlgﬂi(s))mKo and
e K, depend only on m (mod 3Z). Hence (3.18) is reduced to

(,136,6§1>)w o (Rse,@y))wKO _ Hé%’ﬁzg, eTion 'ysﬁis)KO (3.19)

modulo Ky for v = (y1,...,7v) € Z. If v € D, then (v,7)z, = 0 since D is
self-orthogonal. Therefore, (3.15) and (3.16) give that
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K= U (/{39651))71 (ng,@g“)wKo. (3.20)
yeD

Motivated by the above result, we set

K= | (ree®) " (mae?”) " Ko, (3.21)
yeDL

Ko= | (rse®™)™ o (mse””) " Ko (3.22)
YEZY

with v = (71, ...,7¢). Then the following lemma holds.

LEMMA 3.7. (1) K3 is a subgroup of IA/CXOJ such that Ko N (k3s) = 1 and
Lo, » = Ko x (ksg). Moreover,

K /Ko = (ke Ko/ Ko) x - x (mye® Ko/ o),

which is isomorphic to Lexo/Mo = Z5.
(2) K is a subgroup of Ko such that R, = K1 X (ksg). Moreover, K;/Kj is
isomorphic to R/My = D+.

Let #: [A/CXO,T — C* be a homomorphism of abelian groups such that
Y(kss) = (36 and P(a) = 1 for a € Ky. Then ¢(I€3€B'§S)) =¢F,1<s</{
for some n = (1,...,m) € Z§ by Lemma 3.7. We denote such a homomorphism
¥ by ¢,. In fact, n — 1), is an isomorphism of the additive group 7% onto the
multiplicative group of all homomorphisms : fzoxo,r — C* with t¥(kss) = (36
and ¥(a) = 1 for a € Ky. The homomorphism ), is determined by the three

conditions (i) ¥y (k36) = (36, (il) ¥y is 1 on Ky, and (iii) wn(n36ﬁ§5)) =(5".

REMARK 3.8. The conditions (i), (ii), and (iii) for 1, are consistent with
the conditions for x; in [10, Section 4].

As before, let C,, be a one dimensional IA/CXO, ~~module affording the char-
acter ¢, and Ty, = C[Lcoxp, ] Ocioxo -] Cy,, be the Lcxp,,-module induced
from Cy,. It follows from (3.14) that {e*™) ® 1, | v € D} is a basis of Ty, ,
where 1, denotes a fixed nonzero vector in Cy, . For b € IA/CXOJ, we have

bet() = mgé(g’a('me“(”f)b and the action of b on e*) ® 1, is

b- (ea(v) ®1,) = Cgé(bﬂ(v))wn(b)(ea(v) ®1,).
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For 6 € D, we have e*9¢e2(7) ¢ e“(‘s"’V)ﬁCXO,T by (2.12) since a(d) + a(y) =
a(6+7) (mod L®*). Then Ty, is an irreducible Lex p, 7-module and the following
lemma holds.

LEMMA 3.9. (1) k36 and Ky act on Ty, as (3¢ and 1, respectively. Moreover,
K (resp. K1) acts on Ty, as 1 if and only if n € D+ (resp. n € D).

(2) For n,n' € Z&, the IAJCXDJ—modules Ty, and Ty,, are equivalent if and
only if n =n' (mod D), which is also equivalent to the condition that v, and i,y
agree on K.

(3) The action of ngeiBES) on e ® 1, is such that

ngiﬁz‘(S) . (ea('y) ® 1?7) _ Csi(ns—’)’s)ea('y) ® 177'

That is, Ce*") & 1, is a one dimensional f/CXO,T—module with character 1, _.

()
By the above lemma, e*%  acts on e* ® 1,, € Ty, as

287 (e @ 1,) = (7 EP e g1, (3.23)

REMARK 3.10. Ty, ,n € D+ are exactly the modules T' of [29, Proposition
6.2] in our case.

Recall that h = C ®z Loxp = (C ®z L)®’. As before, we use a®) to denote
the element o € C ®z L in the s-th entry of (C ®z L)%*. Let

W =287+ GBY +GBY), s =S8 + 6B + 6657

1 1
3 3

Then 72\ = ¢4h\”, (h{) 1) = 0, and (A{”, hY) = 28,,. Set

by ={a€b|Ta=(a}

for n € Z. The index n of h,) is considered to be modulo 3. Then b5y = 0 and
h = by ® ha) with b,y = CAY @ - @ ChY, n = 1,2. If a € b, we write o)
for the component of a in f,). In this notation we have (ﬁi(s))(l) = Cg_lhgs) and
B =G h i=0,1,2.

The 7-twisted affine Lie algebra h[7] is defined to be
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br] = (@ bin) ® t”/?’) @ Ce

ne”Z

with the bracket

[‘T ¥ty ® tn} = m(‘%" y>5m+n,oc

for x € Hzm), ¥ € Hzn), m, n € (1/3)Z and [c, 6[7‘]] = 0. The isometry 7 acts on
b[r] by 7(z @ t"/3) = (Faz @ t"/3 and 7(c) = c. Set

birI" =P b @ "%, blr]” =P b @t", br]° =Ce

n>0 n<0

and consider the h[7]-module
Slr] = U(G[TD QU (hir+ @) C

induced from the h[7]* @& h[r]°-module C, where h[7]T acts as 0 and h[]° acts as 1
on C. The weight gradation on S[r] is given by wt(z ® t") = —n and wt(1) = £/9
for n € (1/3)Z and x € b3, [12, (4.6), (4.10)]. For o € b and n € (1/3)Z, we
write a(n) for the operator on S[7] induced by the action of a(s,) ®t". The weight

of the operator hz(-s) (/3 +mn) is —i/3 —n. The group H, acts as
(le,...,T”)(hl(»s) <3 +n>) :CSS hgs) (3 +TL)

Vo (1) = ST @ Ty, (3.24)

Loxp

Set

for n € Dt. By [12, Theorem 7.1] and [29, Proposition 6.2], we can de-
fine a 7-twisted vertex operator Y7 (-, z): Vi, — End(V,"" (7)){z} so that

Lexp

(VI (1),Y7), n € D+ is an irreducible 7-twisted V., ,-module. The weight of

Lexp
any element in 7Ty, is defined to be 0. Hence the weight of elements in VLTC’ZD(T)
is given by wt(u ® v) = wt(u) for u € S[r] and v € Ty, .
We define an action of H, on Ce®™) ® 1, by

. . Y _
(7_]1 e, T]g)(ea('y) ® 177) _ C;((Js)szpﬂ Vs ea('y) ® 177
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and extend to Ty, = G}WGD(Cea("’) ® 1, by linearity. Note that Lemma 2.2 implies
7(e*™ ® 1,) = C;w% () gaty) ® 1, for v € D. Thus 7 acts on Ty, as a scalar
C; WtZB(n), which depends only on the coset n+ D € D+ /D. The group H, acts on

the vector space VLTC’"XD(T) by

g9(u®v) = g(u) ®g(v) (3.25)

for g € Hy, uw € S[r] and v € Ty,. Then, 7(Y7(u,z)w) = Y7 (1u,z)Tw for
u€ Vi, , and w € VLTC’ZD(T) by [11, Section 4].

We have discussed only irreducible T-twisted Vz,.,, ,-modules so far. Now, we
deal with irreducible 72-twisted ones. Actually, we can construct |D+/D| inequiv-
alent irreducible 72-twisted Vi, ,-modules (VLTC’ZD(7'2)7Y72), n € DY (mod D)
similarly. Indeed, replace 7 with 72 in the above argument and proceed in the
same way. We can construct a class of irreducible L¢ p r2-modules T&W n € D*.
Let hy® = hy and hy¥ = h{”, 1 < s < £ Set b, = {a € h | %a = Ja}

for n € Z (see [10, Section 4.3]). Take hll(s) and h;(s) instead of hgs) and hés),
respectively and consider S[r2]. Then

Vi () =S eT), .

Lexp

We define an action of H, on Ce®") @ 1, by
(1, () @ 1) = U T e g 1,

and extend to T{M = @WGDCe“(V) ® 1, by linearity. Thus 72(v) = ;W%(n)v for

v €Ty, . Now, Hy acts on the vector space VLTC’ZD(TQ) by

g(u®v) = g(u) ®g(v) (3.26)

for g € Hy, u € S[r?] and v € Ty, - We have (Y™ (u,x)w) = Y™ (ru, z)Tw for
uw€ Vi, , and w € VLTC’ZD(TQ).

Since Vi, ,, is rational and Ca-cofinite, the number of irreducible 7-twisted
Viey p-modules is bounded above by the number of 7-stable irreducible V., -
modules by [15, Theorem 10.2] for each i = 1,2. Now, {Vi, . | 7 € D+
(mod D)} is the set of all T-stable irreducible Vi, ,-modules up to isomorphism.
Hence we have the following theorem.
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THEOREM 3.11.  For i = 1,2, there are exactly |D*/D| inequivalent ir-
reducible T'-twisted Vi, ,-modules. They are represented by (VLTC’”XD(Ti),YTl),
n € D+ (mod D).

The map L/@T — ECxo,T/Ko; a — aKj is surjective by (3.9) and (3.11). For
a € Lixo, note that @ € L if (1 — 7)a € L. Then

{ax, (@) |a€ Lixor} N Ly ={ax,7(a)" |a€L,}

and the following lemma holds.

LEMMA 3.12.  The map L9, — ZCXO,T; a — a induces an isomorphism
Lo [{ax,m(a)™ |a € L9}~ Layor/Ko.

Fori=1,2 and € € Zg, set

Vo (el = {ue VT (1) | Tiu = Gul.

Lexp Lexp

These are irreducible V/ -modules.
In the case where £ = 1 with C' = {0} and D = {0}, V,"" (7%)[¢] reduces

Lexp

to V7 (r9)[e], 5 = 0,1,2. The relation between our V;'7(7%)[e] and VLTXj (1)(e),
T,
V, 7 (72)(€) in [10], [36] is as follows (see [36, (1-1)] also).

for € € Z3. Recall that the action of 7 on T, and Tx; was defined to be 1 in

[10], [36], while T acts on Ty, (resp. T}, ) as ;Wtz?’(n) (resp. . The new

notation is suitable for the description of the fusion rules in later sections.

C;Vtz3 (m) )

Since Vier = VL@’Z is a vertex operator subalgebra of V.. ., VLC’ZD(T) is

a T-twisted Vpec-module and for each v € D, S[7] ® (e?™) ® 1,)) is a T-twisted
Vpse-submodule of V;/*" (). By Lemma 3.9 (3) and Lemma 3.12, the Lcxo,,-

module Ce*™) @ 1, is isomorphic to Cy, _ as L®% __modules. This implies that
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Sir]® (ev™M ®1,) = VLT@Z? 7(1) as T-twisted Vyec-modules. Thus,

Vil (r) = @ Vit (3.27)
~YED

as T-twisted Vi ee-modules. For p = (p1,...,ps) € Z, Hy acts on VLTG;’Z(T). Note
that Hy is an automorphism group of Vier and g(Y7 (u, z)w) = Y7 (gu, xz)gw for
g € Hy, uw € Vo and w € VLTeﬂ( ) by the definition of (VLT®€( ), Y7). Thus,
VLTeg’j(T) og g_l(VLTéi(T)) VL@e( 7) for g € Hy. Note that (Vye:)Ht = (V)@
We have the following decomposition of VLT@i( ) into a direct sum of irreducible
(V7)®%-modules.

1 G I 45 N e Co | P =R i CO o) (3.28)

(e1,..-,82)EZY

It follows from [34, Theorem 2] that V""" (7)[e1]®@- - - @V, **(7)[ed], (€1, ..., &0) €
Z4 in (3.28) are all inequivalent irreducible (V; )®f—modules.

The corresponding results for 72-twisted V7, ,-modules can be verified by a
similar argument as above. Thus we have obtained the following theorem.

THEOREM 3.13.  For i = 1,2 and n = (m,...,n¢) € D' (mod D), the
irreducible Tt -twisted V..., ,-module (VL:FC’ZD(Ti),YTl) s decomposed into a direct
sum of irreducible (V] )®*-modules as follows.

N GO S N <> I A G ST RN v GOl ST
(715--7)ED (e1,...,80) EZL
Moreover, for the irreducible VY,  -module VLC’Z (t9[r], r = 0,1,2 we have
Vi, (7]

= P ) Ve e @ @ VT (1Y) [ed):

(V1,--y72)ED €14+ +e¢=r (mod 3)

4. Modules of V[ .

In this section we recall the classification of irreducible V7 -modules in [36]
and compute some fusion rules for V.
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PROPOSITION 4.1 ([36)). V7 is a simple, rational, Ca-cofinite, and CFT
type vertex operator algebra. There are exactly 30 inequivalent irreducible V; -
modules. Their representatives are V. (€), Ve and V,"F(r)[e] for i = 1,2
and j,k,e =0,1,2.

We need the structure of each irreducible V7 -module to compute certain fusion
rules. Let M}, Wi, M}, W}, M?(e) and W?(e) be as in [10], [36]. Then M, M?(0)
and M are simple vertex operator algebras. Set M° = M?(0) ® MY and W° =
WP(0) @ WP. Then VJ = M°® W? and

Vi (€) 2 MY (e) @ M) @ W(e) @ W,
Vien EME@ M e WE@W!, j,e=0,1,2 (4.1)
as M°-modules [36, Section 4].

Moreover, let Mz(1%), Wr (%), Mz (7%)(¢) and Wr(7%)(g) be as in [10], [36].

Then, for j,e € Zs,
Ve (7)) = Mr(r)(e) @ My @ W (r)(e) @ Wy,
VL (7)[e] 2 Mr(7%) () @ MY & W (72)(e) ® W (4.2)

as M%-modules [36, Section 4].

PROPOSITION 4.2 ([10]). MP(0) is a simple, rational, Ca-cofinite, and
CFT type vertex operator algebra. There are exactly 20 inequivalent irreducible
MP(0)-modules. Their representatives are Mp(g), W (e), Mg, W, My (7)(¢), and
Wy (%) (e) fore =0,1,2 and i = 1,2.

PROPOSITION 4.3 ([33]). M} is a simple, rational, Co-cofinite, and CFT
type vertex operator algebra. There are exactly 6 inequivalent irreducible My -
modules. Their representatives are Mt] and th for 7 =0,1,2. The fusion rules
for MY are as follows.

M} x M} = M,
M x W) =wit,
Wi x Wi =M™ +wjt (4.3)

fori,7=0,1,2.
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We compute some fusion rules for V.

LEMMA 4.4. Lete,e1,€9,5,71,72,k € Zs and i = 1,2. Then

Vi (€1) X Vi, (€2) < V01440 (€1 + €2), (4.4)
Vi (€) X Vitedn) < Vites+ia, (4.5)
2
Vi X Ve < Z Vi1 +i2) (p) + 2V (i +42) s (4.6)
p=0
Vi (e1) x VI*(rh)[ea) < V9 (77 [ier + 2], (4.7)
2
Viewn X VIR <Y V() ). (4.8)
p=0

PROOF.  We have the following fusion rules of irreducible M?(0)-modules.

M(e1) x M(e2) = M} (e1 + &2),
My () x My = M,

2
M x Mg = 37 M{(p) + 2Mf,
p=0

M(e1) x Mr(7")(e2) < My (7")(ie1 + €2),

M x My (r')(e) < Y Mr(7")(p). (4.9)
p=0

The first three fusion rules can be found in [35, Theorem 4] and we can show
the last two formulas by applying the same method used there. We shall sketch
the proof. In [385], M?(0) and M} (¢) are denoted by W and M,S(E), respectively,
and M is used instead of M¢. Let A(MP(0)) be the Zhu algebra of M?(0) and
let A(MP(e1)), A(ME) be the A(Mp(0))-bimodules introduced in [23]. In [10], it
is shown that A(MP(0)) is generated by two elements [w] and [J]. Their action on
the top level of every irreducible M, ,8 (0)-module are also computed there. Using
these data and [31, Proposition 2.10], the same argument as in [35, Theorem 4]
shows the last two formulas in (4.9).

By (4.3), (4.9), and [18, Proposition 2.10], we have fusion rules for M° as
follows.



Fized point subalgebras of lattice vertex operator algebras 1197

Mp(e1) ® M x M (e2) ® M[? = M (e1 + £2) ® M2,

MP(e) ® Mf* x Mg ® Mf* = M @ Mf*+e,
2
M @ M x M@ M =7 M{(p) @ M + 2M @ M+,
p=0

Mp(e1) ® M x Mrp(r)(e2) ® M < Myp(r%)(iey + £2) @ M2,

2
Mg ® Mf* x Mp(r)(e) © Mf2 <3 Mp(r) (o) @ M+, (4.10)
p=0

where ki, ke € Z3. Let N be an irreducible V/-module. By Propositions 4.1-4.3,
(4.1), (4.2), and [36, (3.25)], there exist irreducible M°-modules My and Wy such
that

N =My Wy,
WOXMN:WN,
WO x Wy = My + Wy

as M°-modules. These My and Wy are uniquely determined by N.
For V7 -modules N1, N and N3,

. N3 . N3
dimc vy <N1 N2) < dimc¢ I0 (MNI MN2> (4.11)

by [11, Proposition 11.9] and

N3 My Wi
I ~J 1 4.12
Mo <MN1 MN2> Mo (MNl MN2> EB Mo <MN1 MNZ) ( )
as vector spaces. The assertion follows from (4.1), (4.2), (4.10), (4.11), and (4.12).
O

For u € Kf, CO(u) denotes the K-code generated by p and 7(u). Note that
C(p) is T-invariant since p + 7 (1) + 72(u) = 0, where 0 = (0, ..., 0). For v € Z§,
D(~) denotes the Zs-code generated by . These symbols will be used in this
section, Sections 5, and 7.

PrOPOSITION 4.5.  Let €,e1,€2, 7, J1, J2, k€Zs andi=1,2. Then
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Vi (€1) X Vi) (€2) = Vi1 +i2) (€1 + €2), (4.13)
VLw,jl)(E) X Vitein) = Viteii+in), (4-14)
2
Vi X Vi = Z Vit () + 2V +i), (4.15)
p=0
Vo (e1) x V() ea] = VIR (1)) ie) + €3], (4.16)
2
Vieea x VIRl =D VIR ()], (4.17)
p=0

PrOOF. Restricting intertwining operators for Vi, in Lemma 2.14 to V-
modules, we have

Vi (1) X Vi) (€2) > Vo +i2) (€1 + €2),

VL(0>.71)(€) X VL(Cij) > VL(&J‘1+J‘2)7

2
VL(GJ‘1) X VL(CJZ) > Z VL(0,.7’1+.7‘2)(/)) + 2VL(CV.J’1+J‘2)3 (418)
p=0

where dimc IVLT (V VL(“”'l‘jJQ) ) > 2 follows from the same arguments as in the
r(ed1) V(e d2)

proof of [35, Lemma 6 (2)]. By Lemma 4.4 and (4.18), we have (4.13)—(4.15).

We shall show (4.16) and (4.17) for i = 1. Note that Lgxp(ey and
L (esyx p(16) are even lattices by Lemma 2.6, where (%) = (¢, ¢,c,c,c,c) € KO and
(1%) = (1,1,1,1,1,1) € ZS. We use the lattice vertex operator algebras VLOXD(IG)
and VLC(CG)XD(IG) instead of Vlwpu) and VLC(C)XD(I) since the lattices Loy p(1) and
Lc(eyxp(1) are not even. By Theorem 3.13,

2 6
) ~ —k
VL::)SD(lﬁ) (T) = @ @ ® VIT (T)[ps]. (4.19)
k=0 (p1,...,p6) €L 5=1

For j,k,e1,e2 € Z3,
Vi (1) VM (7)[e2]®0 € V() [e1 + 2)®°

in VLT’O (7) by (4.7) and (4.19). Since VLT’O (1) is irreducible, we have

oxD(16)
Vi VIR )] =V, (1) and

oxD(16) 0x D(16)
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Vi (1) - VL (1) [ea) 0 = V¥ (1) [er + £2)®° (4.20)
1 T, T k—j oo
in VLOSD(15)(T). Let pr: VLU(:D<1G)(T) — V. " (7)[e1 + £2]®% be a projection.
For u € Vi (1), v € V"F(1)[e2]®5, set f(u,z)v = prYro () (W, )v.
L

0_><D(16)
VEETI(r)[e1+e2] 90 )
V. (0.4 (€1)®6 VLT’k(T)[52]®6

for (V7)®% by (4.20). It follows from [11, Proposition 11.9] and [18, Proposition
2.10] that (4.16) holds for i = 1.
By Theorem 3.13,

Then f(-,z) is a nonzero intertwining operator of type (

6

D D Kvi®iowl (4.21)

2
k=0 (p1,..., ps)GZg m=1

I

T,0
VLC(CG)XD(16) (T)

Since VLc<C is simple, it follows from Lemma 2.13 and (4.5) that

6)x D(16)

6
®6  _ y/®6
( ® Vio.o (Vm)> ’ V[,(c,j) - VL(c,j)
m=1

in VLC(CS)XD(IS) for v, ... s € Z3z. Therefore,

6
VEE VIR ()] = ( ( QR Viwo (vm)) : Vg‘??,j)) VR[] ®°
m=1

N (® Vio.o (l/m)> (VS ViR ()[E)®°) (4.22)

in VLTCZ? (7). For j,k,e € Z3, (4.8) and (4.21) imply

6)x D(16)

6
Tk T k—j
VEe, Vit@mE® e @ @ Vet (n)loml (4.23)
(p1;-.-06) €L M=1
and for vy,...,vg,p1,...,p6 € Z3, (4.7) implies

6 6 ) 6 )
( X VL<o.o><um>) - ( Qv ”“J(ﬂ[pm]) C R VI I ()i + p]  (4.20)

m=1 m=1
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T,0 T,0 ®6 Tk ®6 ;
in VLC(rG)xD(lﬁ)( 7). Since VLC(rG)XD(IG)(T) is irreducible, V0 ;) - V7 (7)[g]¥° is a
T,

nonzero (V;)®%-module. Since @° _, V¥ (1) [pm], (p1,-- ., p6) € ZS, are all in-
equivalent irreducible (V7 )®6(= VL(0,0)( )®6)-modules, there exists (p},...,p§) €
Z§ such that

Ve, VEHG ®63®v”ﬂ i

by (4.23). By (4.22) and (4.24), we have

Tk T, k—
Vg, Vet mE® = P ® VIR (1) (o) (4.25)
(p1,---,p6) €L M=1

For p = (p1,...,p6) € Zg, let pr, 'VLT’O (r) — ®fn:1 VLT’kfj(T)[pm]

C(c8)x D(16)

be a projection. For u € VL‘%?”, v € VLT’k(T)[&:}@G, set fo(u,x)v =

pr, Y, To . )(u,as)v. Then f,(-, ) is a nonzero intertwining operator
Lo(c6yx D(16)

fola) : VES | — Home (vLT H)Ee, @ Vi ”“--f<7>[pm]){x}

m=1

for (V7)®% by (4.25). Thus,

Vi x Vi * ZV” 7

holds by [11, Proposition 11.9] and [18, Proposition 2.10] and hence (4.17) holds
by (4.8). We can show (4.16) and (4.17) for ¢ = 2 similarly. O

REMARK 4.6.  We can show that the equalities hold in the last two formulas
in (4.9) by using (4.2), (4.10), Proposition 4.5 and [11, Proposition 11.9].

5. Modules of VIZ-W

Let £ be a positive integer. In this section we discuss V/g,-modules, namely
the case C'= {0} and D = {0}. We shall determine some fusion rules for V/,.

In view of Proposition 4.5, we introduce a new index set K = {0,1,2,a,b,c}
and define a new commutative binary operation on K by



Fized point subalgebras of lattice vertex operator algebras 1201

i+j=1i+4+j (mod3) fori,j=0,1,2
jtr==x for j=0,1,2, z =a,b,c,
z+x=0 for x = a, b, c,

a+b=c, b+c=a, c+a=0.

Then, K contains Zs and K. Note that this binary operation is not associative.
We use K to describe fusion rules for (V7 )¢ in (5.4). Define an action of 7 on K
by 7(a) = b, 7(b) = ¢, 7(¢) = a, and 7(j) = j, j = 0,1, 2, which is compatible with
the action of 7 on Zs and K. This action of 7 preserves the binary operation on K.
The set of T-orbits on K is {0,1,2,¢}. We consider the componentwise action of
Hy; on K and the componentwise binary operation on K. The symmetric group
Sy acts on K¢ by permuting the components and so Gy acts on K¢ naturally. For
A=(A1,..., ) € K¢, its support is defined to be suppg(A) = {i | i € {a,b,c}}.
The cardinality of suppg () is called the weight of X. We denote the weight of
by wtg(A). For AL, A% € K¢, we write A =, A2 if A! and A2 belong to the same
orbit of 7 = (7,...,7) in K!. We denote by (I@)ET the set of all orbits of 7 in K.
For a 7-invariant subset P of K¢ , P=_ denotes the set of all orbits of 7 in P.

By Proposition 4.1 and [18, Proposition 2.7], (V7)®¢ is a rational and Cy-
cofinite vertex operator algebra. Moreover,

{U'®---® Ut |Ut, .., U* are irreducible V7 -modules} (5.1)
is a complete list of irreducible (V7 )®¢-modules up to isomorphism. Set

Po={U'®--- U |U.... U € {Vion(€), Vi | je € Zs}},

Pr={U'® - @U"|U',...,U € {V]i(7)[e] | ke € Z3}},

Po={U'® - U |U,....U € V] ()e] | ke € Zs}

P =Py UPLUP;. (5.2)
Set Hy = {(r%,...,7%,1) € Hy | i1,...,i¢—1 € Z}. Then H, acts on V/g,

naturally and (V/,)"e = (V7)®"
For i € K and j = 0,1,2, set

{VLw,j)(z‘) ifi=0,1,2,
ij =

VL(i,j) lf i = a, b, C.
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For £ = (&1,...,&) € K% and v = (Y1, ---,ve) € Z§, set

4
Xey = ® Xei -
i=1

Then, for A € K* and y € Z§ Lemma 2.13 implies that Vi, | = @, X¢, and

VEgoym = @ Xg(e)v0
13

(5.3)

where g € Hy and € runs over the set {€ = (£1,...,&) € K' | & = A\ for all k €

suppx (A)}. This observation will be used in the argument just after (5.36).

We have X¢ o = Xy (¢) - as (V] )®“-modules for g € Hy since V} vi(e.5) = View
as V7 -modules for i, j € Z3. Thus, we can choose £ to be an element of {0, 1,2, c}t
when we deal with X -, as (V] )®“-modules. Using this notation, we can describe
some fusion rules for (V7)®¢ by Proposition 4.5 and [18, Proposition 2.10] as

follows:

Xpyt X X2 = Xpigyitq2

for p € Z§, € € {0,1,2,c}¢, and v*,~? € Z§.
For any 0 # )\ € K, vy € Z§, and € = 0, 1,2, set

¢
ng =e¢ (mod 3)},

k=1

P(Vi () = {5 = (&) e

P(Vi,..)) = {€ € {0,1,2,¢}" | suppg (€) = suppc (\)}-

Then, Lemma 2.13 implies that

Vi, (€)= @ Xeys
CeP(Vig ) (©)

Vi = @ Xen
§ePVi )

as (V7 )®“-modules. In particular, we have

(5.4)

(5.5)
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Tee= @ Xpo (5.7)

p=(p:)ELE
P14 pr=0

as (V7)®“-modules.
We have already seen in (2.25) and Section 3 that for A € K, v € Z§, n € Z,
and ge Hy

~ —1
VL(X’Y) °9=49 (VL(/\W)) = VL(g

1,y

V) o g = g N (V) = V(Y (5.8)

as Vyee-modules or 7i-twisted Vje.-modules. Hence for any 0 # \ € Kf, v € Z§,
€=0,1,2, and g € Hy,

Vi (€) 09 = Vi, (6), Vins °9= Ve

(9=t
Vst (r)el o g = V/gi(T")[e] (5.9)
as V] g.-modules.

LEMMA 5.1.  Let N be an N-graded weak V] ,-module. Then any irreducible
(VI )®-submodule of N is isomorphic to an element of P as defined in (5.2).

PROOF. Let U be an irreducible (V] )®“-submodule of N. By (5.1), there are
irreducible V7 -modules U, ..., Ufsuchthat U 2 U'®@---QUY. Set S = Vieo U.
For the same reason as in [36, Proof of Lemma 5.2], S is an ordinary V/,-module.
Moreover, Yy (v, z)U # 0 for any nonzero v € V/g,.

Set

Qo={ie{l,....04 |U € {Vion(e),Viees | j,e € Zs}},
Qi={ic{l,....00|U € VL) | keezs}},

Qe={ic{l,....00 | U € {VEE)[e] | ke € Z3} ).

Let wy, be the Virasoro element of V7. By [36, Section 4], the eigenvalues of
(wr)1 on the top levels of irreducible V] -modules are

0 for VL(O,O) (0),
1 for VL(o,o) (E), g = 17 2,
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2/3 for Vi.5 (g), j=1,2,=0,1,2,
1/2 for Vi c.0),
1/6 for Vi e, j=1,2, (5.10)

1/9 for V"2 (7)[0] and V"7 (r)[2], i=1,2, j=1,2,
4/9 for V,;"O(rH)[2] and V7 (#)[1], i=1,2, j=1,2,
7/9 for V"0 (r)[1] and V" (79)[0], i=1,2, j=1,2.

Let W' be an irreducible V7 -module and let W1" r = 0,1,2 be the ir-
reducible V7 -module determined by the fusion rule Vj .0 (r) x W! = W17 in
Proposition 4.5. Let A; and A1, be the eigenvalues of (wy); on the top levels of
W1l and Wb respectively. By (5.10), we have

0 if Wt e {VL(o,j)(€), Vi | 7, =0, 1,2},
A=A ={2r/3 it Whe {V/I(r)e] | j,e=0,1,2}, (mod Z) (5.11)
r/3 i We (VI (r)e] | j,e =0,1,2}.

Let w be the Virasoro element of V/5,. Assume that Q,, Q; # 0, s # t. Take
is € Qs and iy € Q; and define p = (p;) € Z by

1 ifi=is,
pi =122 ifi=i,

0 otherwise.

By (5.7), X,,0 is an irreducible (V;)®‘-submodule of V. Using (5.11), Proposi-
tion 4.5, and [18, Proposition 2.10], one can show that S has a (V})®‘-submodule
W such that the difference of the minimal eigenvalues of wy in W and in U is not
an integer since 0 # X,0-U C S. This is a contradiction. Hence the assertion
holds. U

LEMMA 5.2. Let N be an N-graded weak V]g,-module. Let M be an irre-
ducible (VLT)@’Z-submodule of N and N*' the V/ge-submodule of N generated by
M. Then N is isomorphic to one of the following inequivalent irreducible Viee-
modules.

(1) Vi, (e), 7€ 75, e =0,1,2.
(2) VL(X,W)} 0#X€ (’CZ)ETf v E Zg
(3) VIl nezs, i=1,2,¢=0,1,2.
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ProoF. By (5.8), we have
Vi 0T = Vi Vi 0T = Ve gy # Vie
as Vyee-modules for 0 # A € K¢ and v € Z§ and
VgéZ(Ti) or st (VLTQ;Z(Ti)) = VgéZ(Ti)

as T'-twisted V,ec-modules for n € Z§. It follows from [34, Theorem 2] that the
Vise-modules in the above list are irreducible and inequivalent.

By Lemma 5.1, M is an element of P in (5.2). Suppose M € Py, that is,
M~ Xe., £€1{0,1,2,c}*, y€Z, Set E= {p+&€{0,1,2,¢} | p= (pi) € Z§,
Zle pi = 0}. Since (V7)®* is a rational vertex operator algebra, N! is a direct
sum of (V7 )®*-modules. By (5.4) and (5.7), we can write N! = @,c 7 M7 where
each M7 is isomorphic to Xvi s v € 2. We can take M7t = M for some j; € J.
Let pr;: N' — MJ, j € J be projections. For any j € J, u € X,0 C Viee,
v € M, define fj(u,x)v = pr;(Yn(u,z)v). Then f; € Iy (XpJ,V(IJJM)' For each
v € E, we see from (5.4) that there is at most one j € J such that M7 = X, ., (cf.
[36, Proof of Lemma 5.6]).

Assume that X, oM =0 for X, o C V/g,. Then

0=V/sc" (Xp,o M) = (VLT@e ~Xp,o) M
= VLTEBZ -M DM

since V[, is simple. This is a contradiction. Hence 0 # X, o- M, and consequently
Xp0 M= X, ¢, as (V])®“modules. Therefore, we have

N'=PXx,, (5.12)

veE

as (V7 )®“-modules. Applying the above arguments to V/g,-module N1, we con-
clude that N is irreducible.

By [20, Theorem 6.14], if two irreducible V/,-modules W' W? have an
isomorphic irreducible (V7 )®‘-submodule, then there exists g € H, such that
W'og 2= W?. Hence by (5.6) and (5.9), N' is isomorphic to Vi, (), € € Z3 or
Vi, 0# A e K-

For i = 1,2, we see from Theorem 3.13 that every irreducible (V/ )2 module
in P; appears in the irreducible V/4,-modules listed in (3). Hence one can show
that if M € P;, then N' = V7(r%)[e], n € Z§, ¢ € Z; similarly. O
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PROPOSITION 5.3. V[, is a simple, rational, Ca-cofinite, and CFT type
vertex operator algebra. The following is a complete set of representatives of equiv-

alence classes of irreducible V5, -modules.
(1) Vi, (e), vy €25, e=0,1,2.
(2) Vi, 0# X e (K=, , v e Zi.
(3) VSl(r)e]l, n €2, i=1,2,¢=0,1,2.
PROOF. By (5.7) and [5], V], is a Cy-cofinite vertex operator algebra. The

classification of irreducible V;,-modules follows from Lemma 5.2. Since (V[ )®*
is rational, the rationality of V[, follows from Lemma 5.2. g

The following lemma gives lower bounds for some fusion rules for V/g,

LEMMA 5.4. Let \,A\',\? be nonzero elements of K* such that \* %, \?,
vy, meZs, i=1,2, and £,¢1, e2 =0,1,2. Then

Vi, (1) X VL o (62) 2 VL, 1, o (61 +22), (5.13)
VL(07,Y1)(5) X VL(MZ) > VL(MIMQ), (5.14)

2

VL(A1 41y X VL()\z 2) 2 Z Lix14rd(22),41442)7 (515)
7=0

Vigan X Vigae, 2 Z Vit P+ 2VEg 12y (5.16)
p=0

VL(O I (51) X VLE{;Z( )[62} > VL 7@] ( )[281 + 52} (517)
2

Vio XV, L@f Z&B? w )1l (5.18)

PROOF.  Restricting intertwining operators for Vye: in Lemma 2.14 to V] g,-

modules, we have (5.13)—(5.16), where dimg¢ Iy~ VL(X“VM% ) = 2 follows
Al “EGaa?)
from the same arguments as in the proof of [35, Lemma 6 (2)].
We shall show (5.18) for i = 1. (5.17) and (5.18) for ¢ = 2 can be proved by

a similar argument. It is easy to see that

(24 (VL

M
Iy~ ( T ) =0 (5.19)
Lot VL(A,’y) VLG’BZ(T)[E}
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for all M 2 VLT@Z 7(7)[r], r = 0, 1,2, by Proposition 4.5 and [18, Proposition 2.10].
Set A = AN € K% and 7 = (7,7,7,7,7,7) € Z8°. Recall that C(S\)
is the K-code generated by A and 7(\) and that D(5) is the Zz-code generated
by 4 (cf. Section 4). Lemma 2.6 implies LC(S\)xD(A}) is a T-invariant even lattice.

To obtain (5.18), we use the lattice vertex operator algebra VLcmem instead of
VL., since the lattice L(y ) is not even. Let 7 € 75 and set i) = (n,m,m,m,1,n) €
Z§*. Consider a T-twisted V| -module V" (7). Tt follows from (3.27)
(M) xD () C()\) D(%)
that
2
T.n o v Ii— J’Y
Vo (7 = D Voo (5:20)

H

as T-twisted Vyes.-modules. We have

Vgé?X)XD(w) @ @ ®VLT@Z j’y [0i] (5.21)

J=0 p1,...,p6€ZL3 i=1

as (Vg@5)®6-modules by the same argument as was used in the proof of Theorem
3.13 by replacing Vi, Vyee, C, D, and 1 by Viee, Viase, C(N), D(¥), and 7,
respectively. Since V, is simple, it follows from Lemma 2.13 and (4.14)

C(A)xD(%)
that
6
®6 ®6
( ® VL(0,0>(VT”)> VL()\ “ VL()\»’Y)
m=1
in VLC(S\)XD(’y) for v1,...,vs € Z3z. Therefore,

6
Ve VIO = (@ Viww ) ) VED ) VEHOE®®
m=1

6
<®VL(UYO)(1/m)) (VES - Vil(m)E]®®)  (5.22)

m=1

in V' (7). By Proposition 4.5 and (5.21),

C(A)xD (%)

Vi OO e @ @V i

P1y--,p6 €Lz M=1
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and for vq,...,v4, p1,-...,p6 € Z3,

6 6
<® Veoo m) > <® Vel ) C Q) Vil (D)vm + pm] - (5.23)
m=1

m=1 m=1

. T.7n . . . .
in V" (). Since V,'7 (1) is a 7-twisted irreducible Vp . -
C(A)xD(F) C(A)xD(%) C(N)xD(F)

module, Vig(’f L (VI.JTQ;Z'(T)[aD®6 is a mnonzero (V/g,)®%-module. Since

Q° _ VI () omls (p1,- -+, pe) € Z8, are all inequivalent irreducible (V/,)®-

m=1
modules, there exists (p},...,ps) € Z$ such that

VES (VI 3®VLT@Z ( (5.24)

By (5.22)—(5.24), we have

Vs VEINE = @ ®VLT®’,? 7( . (5.25)

P1yepe €L3 =1

Using the same argument as in the proof of (4.17), we have (5.18). O

We want to use the results in [20] and [35]. We follow the notation of [20].
Note that we can take all 2-cocyles in [20] to be trivial in our setting. Let S
be a finite Hy-stable set of irreducible V;;,-modules (cf. Section 2.1). Set M =
®pesM. Note that Hy acts on M by (2 25), (3.25), and (3.26). Define a vector
space CS = @prese(M) with formal basis e(M), M € S. The space CS is an
associative algebra under the product e(M)e(N) = dar,nve(M). Define the vector
space A(Hy,S) = C[H,] ® CS with basis g ® e(M) for g € H; and M € S, and a
multiplication on it by:

g@e(M)-h®e(N)=gh®e(h ' (M))e(N).
Then A(Hy,S) is an associative algebra with the identity element Y~ .5 1®e(M).

We define an action of A(Hy,S) on M as follows: For M, N € S,w € N and
g€ Hy, we set

g®e(M) w=dunNguw. (5.26)

For M € S, define a subgroup (H/)y = {g € Hy | g(M) = M} of H,
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and define subalgebras s(M) = spanc{g ® e(M) | g € (Hy)p} and D(M) =
spanc{g®@e(M) | g € Hy} of A(H,,S). Note that s(M) is isomorphic to the group
algebra of (H,)y. Decompose S into a disjoint union of Hy-orbits S = Uje 0.
Let M) be a representative of O;.

We shall compute some fusion rules for V[, in Proposition 5.7 by using
[35, Theorem 2]. We need the following result which gives a complete set of
representatives of isomorphism classes of irreducible A(Hy, S)-modules.

THEOREM 5.5 ([20, Theorem 3.6]). A(Hy,S) is semisimple and the irre-
ducible A(Hy,S)-modules are precisely D(M W) ®smy U, where U ranges over
the irreducible s(MY))-modules and j € J.

Note that Hy acts on (Kf)=,. Let 0 # X € {0,c}* and v € Z§ and set Ry be
the Hy-orbit in (Kf)=, containing A\. Then

Say =1{Vi(, [ ERNY (5.27)

is an Hy-stable set. We shall describe the irreducible A(IY@,S)W)-modules in
Proposition 5.6. Theorem 5.5 implies that the irreducible .A(H'g,SA’,Y)—modules
are obtained by the irreducible s(Vf, _,)-modules. In order to classify the irre-
ducible s(VL, . )-modules, we first investigate the action of s(V, ;) on VL, ..
We recall the decomposition Vi, ., = Eegep(VL(M))X&A, in (5.6), where P(VL,, )
is given in (5.5). For g € Hy, g is an element in (HZ)VL(A"\,) if and only if g\ =, A.

Thus, (HZ)VL(AM consists of the elements

(le,...,Tj’f)(7'7...,7')_j£ € H, (5.28)
with j, = 0 for all £ € suppx(A). Note that |(H£)VL(>\ w)\ = [P(VL, )| =
3wt (N) | We have ,

gu= (9,79 (1,...,T) U

= I () e () T (X )

for £ = (&) € P(V, ), u € X¢, and g € (I_{g)VLMm of the form (5.28), where
we define Oc = 0 in the sum ), jx&x. Note that the linear map X¢, > u —
(1,...,7) 9w € (7,...,7)79(X¢ ) is an isomorphism of (V] )®*-modules induced
by the isomorphism (7,...,7)77¢: Vi — VL(T—J’[(A),W) of Vg ,-modules.

For ¢ = (&) € {0,1,2,c}*, Ce(¢) denotes a vector space with formal basis
e(§). In view of the above observation, we define an action of s(Vz, ;) on Ce(§)
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by setting

9@ e(Vi,,) - e(€) = " e(¢)

for g € (EQ)VL(A . of the form (5.28) and £ € P(VL,, .,), where we define Oc = 0

in the sum . jpék.

Let v € Z§ and & € Zs. Then {V1, _ ()} is an Hy-stable set. For the same
reason as in the case of Sy, discussed above, we define an action of s(Vy, ., (€))
on Ce(§) by setting

9® e(Vig., (€)) - e€) = G5+ e(€)

for g = (le,. .. 77'j€717 1) S (HE)VL(OW) () — HZ and 6 € P(VL(O,’y)(E))'

We have the following result.

LEMMA 5.6.  With the above notation, the following assertions hold.

(1) 3% inequivalent irreducible s(VL(y.,,)-modules Ce(§), & €
P(Vi,..,), form a complete set of irreducible s(Vi, . )-modules up to isomor-
phism and for nonzero u € X¢ , Cu = Ce(€) as s(VL, .,)-modules. Moreover,

{D(VLi ) ®sn,, ) Cel€) € € P(Vi, )} (5.29)

is a complete set of irreducible A(Hy, Sy )-modules up to isomorphism and
dime D(Viy ) @stv, ) Ce(€) = [Ra] = 379 (5.30)

for&e P(V, ).

(2) 37! inequivalent irreducible 8(VL(o.,, (€))-modules Ce(§), & €
P(Vi.,(€)), form a complete set of irreducible s(Vy, ., (€))-modules up to iso-
morphism and for nonzero u € Xe¢ , Cu = Ce(§) as s(VL, ., (€))-modules. More-
over,

{D(VL(O,.Y) (6)) ®S(VL(01’Y>(E)) (Ce(g) I § S P(VL(O,—y) (8))} (531)
is a complete set of irreducible A(Hy, Vi, (€)})-modules up to isomorphism and

D(Vig () @aviy (o) Cel€) = Ce(©) (5.32)

as vector spaces for £ € P(VL, ,(€)).
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PROOF. We show the first assertion. The argument just before the lemma
shows that Cu = Ce(§) as s(VL, ,)-modules for nonzero u € X¢ .. It is clear
that |Ry| = 3V*(MN~=1 We have (5.30) since |H,| = 3! and |(HE)VL(>\.7)| =
3w Tt follows from [P(Vy, )| = 3% () that {Ce(¢) | & € P(Vi, )}
is a complete set of irreducible S(VL(AW) )-modules up to isomorphism. It follows
from Theorem 5.5 that (5.29) is a complete set of irreducible A(H/, Sy ,)-modules
up to isomorphism.

The second assertion can be obtained by a similar argument. O

We want to use the result [35, Theorem 2] in Proposition 5.7. Let A, A', A2
be nonzero elements of K¢ such that A\! #, A\? and let v', 7% be elements of Zg.
Set 73 =41 +42, R; = Ryi, and S; = Syi i for i = 1,2 (cf. (5.27)). Fori=1,2,
set & = (€1) € {0,c}" by

‘ 0 if X =0,
(g ’ 5.33
5 c ifA;=abec ( )

Note that & € R; and R; = {p € (K%)=, | suppy (i) = supp(A)} for i = 1,2.
Set Sz = {VL(M,73)7VL(O,73)( €) |0 # e (K= ,e =0,1,2}. For each i = 1,2,3,
S; is an Hy-stable set. Set 7; = {VL@?",W}’ i=1,2and 73 = {VL((Ms)(g) | e =
0,L,2}U{VL,, 4 10#peA0, c}*}. Then, 7; is a complete set of representatives

of Hy-orbits in S; for i = 1,2,3. We simply write P; = P(VL(Ei 71.)),1' = 1,2 (cf.
(5.5)). Let P3 = {0,1,2,c}’.
We note that
2
UAPV L 00) @stvi o) Ce€) 1€ € P(Vig s, ()}
e=0
U U {D(VL, ) Bs(Viy a)) Ce(€) | €€ P(Ve, o)} (5.34)

0£XE{0,c}*

is a complete set of representatives of isomorphism classes of irreducible A(Hy, S3)-
modules by Theorem 5.5 and

2
01,2, = JP(Viy @)U |J  P(Vi, ) disjoint.

e=0 0£ANE{0,c}*

Set M; = @pres, M for i = 1,2,3. For ¢ = 1,2,3, we write W, ¢ for an
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irreducible A(Hy, S;)-module D(M) ®,(ar) Ce(§) in (5.29), (5.31), and (5.34) since
they are parametrized by £ € P;. In (5.30) and (5.32), we have already seen

dimg W; ¢ = 3m>{0wie(O-1), (5.35)

For i = 1,2 and £ € P;, we note that suppg(£) = suppy(A) and dime W ¢ = [R;|.
We have

M; = @ Wie® HomA(H,g,si)(Wi,g,Mi)

EEP;

as an A(Hy, S;)@c (V) )®-module for i = 1,2, 3. Then Hom 4z, s,)(Wie, M;), € €
P; are nonzero inequivalent irreducible (V] )®‘-modules by [20, Theorem 6.14]. For
any V/g,-module M in 7; and any nonzero u € X¢ i, § € P;, in the decomposition
(5.6) of M, the A(H,,S;)-submodule of M; generated by u is isomorphic to W ¢
since Ce(§) = Cu as s(M)-modules by Lemma 5.6. Hence there exists a unique
fo € Hom 4g, s,)(Wie, M;) such that f,(1® e(§)) = v. In fact, the map v — f,
is a linear isomorphism. Therefore we identify Hom 4z, s,)(Wie, M;) with X .
and we write

M= P Wiew Xe . (5.36)
£EPR;

For any £ € P; and any nonzero v¢ € X¢ i, we can take a basis {w¥ |
j=1,...,dimc W} of W ¢ such that for j = 1,...,dimc Wi ¢, w" ® 0% is an
element of an irreducible V/,-module in §; and if dim¢c W; ¢ > 2, which implies
€ # 0, then for j # k, w9 ® v¢ and w* ® v¢ belong to different irreducible
V] ge-modules by (5.3). For i = 1,2, since dim¢ Wi = |R;| by (5.35), there
exists a bijection {1,...,dimc W} 3 j K; € R; where p; is determined by

wI v EVL , . €S
L
To see the above situation, we describe the case of i = 1 as an example. Let
{h1,...,h,;} be a complete set of coset representatives of (Hy)y, ={g€ H|

(A4t

g(\) =, A} in Hy where r = |Hy/(Hy)y, >|. We recall r = |Rq| = dim¢ W1 ¢

for £ € P;. By (5.3), we have

(AL,yt

,
Y
M @ Ly Ln; a1y,
j=1

HER1
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=P D X0 = D P Xny0

Jj=l¢ep §ep j=1

= P Wie® Xe o,
fep;

where we identify @;:1 X, (e) 4t With Wi ¢ @ Xe 1. Let § be an element of Py and
v a nonzero element of X¢ 1. For j =1,...,r, we can take h;(v%) € Xn, ) C

T 4. 4. as w¥ ®v¢ in the argument above.
(hj (A1) A1)

Set

M3 1 2
1= @ IV[@@ (M1 M2> ®c M ®c M~. (537)
(M?*,M?,M3)eS; xSz xS3

Let M? € S; for i = 1,2,3. For f € IV[@@ (MJIVILQ) and g € Hy, we define

3
of €1vr,, (9(1\/191()]\49()1\42)) as follows: For u € g(M?'),v € g(M?), set

gf(u,2)v = g(f(g™ u,2)g7 (v)).

We define an action of A(H,,S3) on Z as follows: Let M? € S; for i = 1,2,3. For
— 3
g@e(M) € A(H, Ss),ve M we M? and f € Iyr, (3 ap2)s set

f4

(g@e(M))  (f@vew)=0dmm: - ¢f ®g(v)®g(w)
g(M?) 1 2
Iy~ M M#=).
€ vz, (i) yagey ) @ 900 Se g(A2)
Let & € P; for i = 1,2. Fix a nonzero v € Xei - Set
Z(¢', &%) = spang {fow' @0 ' @u?®0v*° € T | w' € Wy g1,w? € Wyga}, (5.38)

which is an A(Hy, S3)-submodule of Z. Tt follows from the comments right after
(5.36) that

. . M3
bnere - Y Y ameng,(, M) G
(n=,v%)

PLERL,W2PER2 M3ESs (nl A1)

We have the following decomposition of Z(¢!,£2) as an A(Hj, S3)-module.
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I(¢',6%) = @) Wae @ Hom gz, 5,y (Wa e, (', €2)). (5.40)
£EPs

By [35, Theorem 2], we have

3
. _ 1 2 . Xe,
dime Hom 47, s,y (W3¢, Z(£7,£7)) < dimg I(VLT)W( - 762 2) (5.41)

for g S P3.
Now we compute some fusion rules for V/,.

PROPOSITION 5.7.  Let A\, A", \? be nonzero elements of K* such that \' #,
Aoyt atneZs, i =1,2, and e,61,60 = 0,1,2. Then

Vi (1) X Vi 5 (€2) = Vi 1 o (61 +€2), (5.42)
VLo, () X Vi o) = Vi iyas (5.43)
VEga X Ve o) = ZVL(A1+71(A2),~,1+~,2)7 (5.44)

=0
Viaan X Vigae ZVLm iy (P)F2VE s (5.45)
VLo (€1) X VLTQ’;Z(Ti)[Ez] = Vgéz_”(ri)[ial + e9), (5.46)
Viga XV, L@’ ZVLT@Z () o). (5.47)

PROOF. We shall show (5.44) and (5.45). We put A = A in (5.45) to deal
with (5.44) and (5.45) simultaneously. For A\',i = 1,2, define &' = (&}) € {0,c}*
by (5.33). By (5.6), X¢i o is a (V7)®“-submodule of V, , , and

(A*9")
Vi (T) Xe,
Iy~ ©m =] Iiir v
(VE)®* (Xgl o Xeg) (SPZ[ VO \ Xe1 1 Xez 2
=(&5)e
Eit e =r

for v € Z4 and r € Z3. For ¢ € Z§ and v € Z§ such that 4! + 2 # 7, it follows
from Proposition 4.5 and [18, Proposition 2.10] that
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Xe
Iy- il =0.
vees (Xswl st,vz)

By [11, Proposition 11.9], we obtain

. VLo (T) . Vi (7)
dlmc [V" < ©m < dlm(c Iiyryee ©m
L& VL(Al,wl) VL()\Q,’YQ) V) X§17,),1 ngﬁz

Xe
== d I T " == U.
Z e Svp)ee (Xgl A1 X§2 72) 0
£=(¢;)€Zs ’ ’
1t tEe=r

For the same reason, we can show easily that

hgw< M >0 (5.48)

Vi Vige e,

for M @V, 1\ 2sVig 1,0 () [0F#AXE (K9=,,r=0,1,2}.

From now on, we use the notation in the preparation just before this propo-
sition. For example, 73 = 4! + 12, R; = {h(\) € (KY)=, | h € H,}, and
S = {VL(ui,w‘) | it € R;} for i = 1,2. The following symbols are used to describe
the fusion rules for (V7)®%: Set

G=§+¢ }

=l ¢2y = (& ¢
2(¢h, €2) {é (&) €{0,1,2,¢} for all j ¢ {k | &} = € = ¢}

and
B ={=() eBE ) I =8 =¢=c} =k}

for nonnegative integers k. For example, if ¢! = (0,¢,1,¢) and &2 = (1,¢,¢,2) in
{0,1,2,c}*, then

5(51,52) ={(1,0,¢,¢),(1,1,¢,¢),(1,2,¢,¢),(1,¢,¢,¢) }

and Z(¢1,€2)1 ={(1,.c.)}. Note that [E(¢?,€2)i| = (V1978 gl =6 ==
and for & € Z(&1, &%)y,

wtg (€) = wte(§') + we(6%) = 21{j | § = & = c}| + k. (5.49)
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By Proposition 4.5 and [18, Proposition 2.10], we have

Xe s 28 if € € B(¢Y, ),
dim@ I(V{)‘X’Z( &y ) — . ’_‘( )k (550)
Xer 1 Xez 2 0 ifeg=(Eh &%)

for ¢ € {0,1,2,c}*.
By Lemma 5.4, we have

Mw

VL( a1y % L(M 2) (H1+,.j(“2)773)7 (5.51)

VE ooty X VL, 2 2 ZVL(O g) p)+2VL, s (5.52)

for p1, 11 € Ry and pp € Ro. We shall compute the dimension of Z(£1,£2) in two
ways using (5.38) and (5.40).

Case 1: We deal with the case suppy(A!) # suppi(A?). Note that gi(A\!) #,
g2(A?) for all g1,9> € Hy and wtg(€) > 0 for all £ € E(¢F,£2). We recall that
dime Wi i = |R;| = 3V €)1 for § = 1,2 by (5.35). By (5.39) and (5.51), we
have

dime Z(§,€%) = 3R |[Ry| = 3™ ()i, (5.53)

On the other hand, we have

dime Z(£4,€%) = Z dime W3¢ dime Hom 4, 5,y (Ws,e, Z(£",€%))

£ePs
(E)—1 1 X
< Z gwig(§)-1 dim¢ I(VL")®4 (X §a§ )
£eB(£L,82) gyt £2,72
1{41&5=¢;=c}
— Z Z gt (€1 +wig (6%)—2|{j|§j=¢] =c}|+k—19k

k=0 EEE(£L,62)k
{jle}=€2=c}]

-y (HJ' & Zkﬁf = C}|>3{js}—sj—c}|—k

k=0
% Wt (€ +wtg (1) —2{j|¢j=¢]=c}|+k—1ok
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|{J‘£1:§2:C}I . 1 2
Z (HJ 1§=¢ = C}|>3wtﬁ<51>+wtg<s2)—{j|e}-—sf-—c}|—12k

k=0 k

— gWhe(§)+wee (€)1 (5.54)

by (5.40), (5.41), (5.49) and (5.50). By (5.53) and (5.54), we have

. M3
dimc Z(¢',€%) = > > dime Iv-., ( )

M3eS; pteR1,u2€R2 VL(ulﬁl) VL(uz,vz)
— 3W%(51)+W'ﬂ;@(§2)—1,
and thus it follows from (5.48) that the equality holds in (5.51). Setting u! = A
and p? = A2 in (5.51), we have (5.44).
Case 2: We deal with the case suppy(A) = suppc(A?). Note that Ry = Ra,

H(php?) € Ry x Ry | pt #, 42} = |R1|(|R1] — 1) and &' = €2 in this case. By
(5.39), (5.51), and (5.52), we have

dime Z(¢',€') > 5|Ru| + 3[Ra[(|Ra] — 1)
= 32wig(€)—1 4 9. gwig (€)1, (5.55)

On the other hand, we have

dimc Z(¢',¢") = ) dime Wi ¢ dime Hom 4, s,y (Wa e, Z(£',€"))
£ePs

X¢ o3
< 3max{0,wt;€(f)_1} di Iyr ©7
<> EVDT X 1 Xer e
£EP; 7 |

X
_ Wi (€)—1 . &
Z 3 " dlm(c I(V ) <X€1 1 X£1 2)

ce=(eteh),
wt e (€)#0
. Xe s
+ Z dlmc I(VIT)QN (Xfl 71 X£1 2>
ces(eteh), ’
wt e (§)=0
wte ()

Z Z 3k—12k+3wt,€(£1)

k=1 £e5(£".¢")k
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wt,c(gl) t~( 1
_ Z (W &€ )>3wtﬁ(§1)—k3k—12k+3wt,€(£l)
k
k=1

— 32wig(€) =1 4 o gwig(¢)—1 (5.56)

by (5.40), (5.41), (5.49), and (5.50). By (5.55) and (5.56), we have

MS
dimeZ(¢h, ¢ = > Y dime Iy~ ( >
(12 ,42)

M3ESs pt u2eRy VL(ul,wl) Vi
— 32Wt)€(§1)—1 + 2. 3Wt)€(§1)—1
and thus it follows from (5.48) that the equality holds in (5.51) and (5.52). Setting
pt =XM% =A% in (5.51) and g = A! = X in (5.52), we have (5.44) and (5.45).

The same argument as above shows (5.47). We shall sketch the proof of (5.47)
for ¢ = 1. By Proposition 4.5, we can show easily that

I ( M ) 0
e\ Vi, VIEHT)[E]
for M ¢ {V,177(7)[p] | p = 0,1,2}. Take Hy-stable sets S§ = {V,727(7)[e]} and
ST ={V I (D)lp] | p=0,1,2} and set MT = @yesr M, i = 2,3. Note that for

M e SF, (Hy)y ={g9 € Hy| g(M)= M} equals Hy. For £ € {O 1,2}, define an
action of D(M), M € S on Ce(€) as follows: For g = (7%1,...,7%-1 1) € Hy, set

11,..0,%0—1,0), Zg
9@ e(M) - e(e) = ¢St 8m gy,

Denote the D(M)-module Ce(€) by Wng Set

P(Vgt(m)lpl) = P(Visl " (7)lp])

={£ (&) € {0,1 2}"Zij = mod3)}

for p =0,1,2. Note that

{0,1,2}* = UP VI (T)p);  disjoint.
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Set P] = P(VgéQ(T)[E]) and P = {0,1,2}. Then {Wl | € € PI'} is a complete

list of irreducible A(Hy, SI)-modules by Theorem 5.5 for i = 2,3. For £ = (&),
v = (m) € {0, 1,2}, set

‘
Tovp
X5 = Qv ™M (0l
k=1
For the same reason as in the proof of (5.36), we have

T _ T T T _ T T
M; = P Wie@Xg,  Mi= P Wiee X, ,

¢erf ceprf
as an A(Hy, ST)- and A(Hy, ST)-module, respectively. Set
T M? 1 2
77T = . Iy-., (M1 M2> ®c M' ®c M>.
(MY, M?2,M3)eS, xS xST

Let &' € Py = P(Vy, ) and &% € PJ. Fix nonzero elements v'® € X1, and

T,20 T
v S ngm. Set

I7(H, &%) = spanc {fow' @ v’ @ w? @ 0" € I |w' € Wy g, € WgEQ}.
Applying the same arguments as in the case of (5.44) and (5.45), we have
dim@ IT(€1,€2> — 3Wt}€(£1).

Therefore, (5.47) holds.
The other formulas can be proved similarly. O

6. Modules of V[ .

Let D be a self-orthogonal Zs-code of length ¢. In this section we dis-
cuss V7 -modules. Note that V/ = = @WGDVL(M)(O) as V] g,-modules. Let

7M. .., 4® be a basis of Z§ such that 1), ... ~(4 form a basis of D.

For j =1,...,¢, define a linear transformation x; on V(y1yer = @6€Z§VLMX5
by x;(u) = (Y ufor § = Zizl pey ™) € Z§ and u € VLo, Therestriction of x; to
Viexp is an automorphism of V., for j =1,...,¢. Let ®p be the automorphism

group of Vi, generated by x1,...,xq. Since 7 commutes with ®p, ®p induces
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an automorphism group of V7 . Note that (V7 _)*P = Vg4, (0) = V/a,.
For j=1,...,d, A € K, and v € Z§, Viy«(o4py 18 Xj-invariant and

Viskany = @ VL) (6.1)
seD

is an eigenspace decomposition for ®p. We also have

VLOX(’Y+D) (E) = @ VL(O,—y-HS) (6)7 S Z?n ’Y € Zg’
deD

¢ ¢
Visioin = @ Vigiyis AEKT, v €23 (6.2)
seD

as V}g,-modules.
Forj=1,....d, A€ K, ye D+, ue Viexp.and v € V., we have

YVLAX(,YJrD) (Xju7x)va =Xj (YVLAX(WJrD) (U,LE)U).

-1
Hence Vi, . .n) ©Xj = X; (VLxx(wm) =Visi(v4py 88 Vi, p-modules and

VLox(er)(g) ° Xj = Xgl(vLox(w+D) (5)) = VLox(er)(g)a oA DJ_; €€ ZBv

~ -1 ¢ L
Vinioio ©Xi ZX5 (Voakiny) = Viaxiainy: 0# ek, veD

as V/  -modules.
It follows from (3.27) and the corresponding formula for 72-twisted modules
that for n € D+, i =1,2, and r € Zs,

Vi, (T[] = @ Vel ()] (6.3)

yeD

as V/g,-modules. Using (6.3), we define an action of x; on VITO’ZD(Ti)[r] for j =

., ¢ by setting x;(v) = C;ipjv for § = 22:1 pey®) € Z4 and v € VLTG;‘Z (9)[r]
and extending y; for arbitrary v € VLT0 7 (79)[r] by (6.3) and linearity.
By Proposition 5.7, we have

YVLTO'Z L (] (s )x;0 = Xj (YVIT(;")’( L (] (u, )
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for u € Vg, ,, and v € V," (79)[r]. Hence

Loxp

T, i ~ T, i T, i
VLOZD(T )r]ox; = X; 1(VLOZD(T )[’I’D = VLOZD(T )]
and so we can define an action of ®p on VLTOZ (79)[r]. Then it is clear that (6.3)

D
is also an eigenspace decomposition of V" (7%)[r] for ®p.

LEMMA 6.1.  Let N be an N-graded weak Vi -module and let M be an
irreducible Vg, -submodule of N. If M is isomorphic to Vi, . (€), v € 78, ¢ €Zs
or Vi, 0#FXE Kt ~ € Z, then vy € D, If M is isomorphic to VgéZ(Ti)[E],
i1=1,2, € € Zs, nGZé, then n € D+,

PRrROOF. Let wy, be the Virasoro element of V. For ¢ = 1,2 and j,k,e €
{0,1,2}, let (WL, W?2) be one of (Vi (€), Vit (€))y (Vites, Vite+m), Or
(V7 (r)[e], VT (79)[e]). Let As be the eigenvalue of (wz); on the top level
of W? for s = 1,2. Note that

Vio-0(0) x WE=W?2 it (WL W?) = (V7 (1), v/ () [e)),
Vi (0) x Wh=TW?  otherwise

by Proposition 4.5 and that Ay — A1 = (jk + 2k?)/3 (mod Z) by (5.10). We have
already obtained a decomposition of every irreducible V/4,-module as a (V] L.
module in Theorem 3.13 and (5.6).

Now the proof is similar to that of Lemma 5.1 since Vi) (0) ® -+ ®
Voo (0) C VL, for v = (v)52; € D and D is self-orthogonal. O

Using the same arguments as in the proofs of Lemma 5.2 and Proposition 5.3,
we can show the following theorem. Indeed, we argue for Vi . V/g,, and ®p in
place of V/g,, (V7)® and H, in Section 5, respectively.

THEOREM 6.2.  Let D be a self-orthogonal Zsz-code of length £. Then V[
is a simple, rational, Cs-cofinite, and CFT type vertexr operator algebra. Let
DY/D = U;nzl(pj + D) be a coset decomposition. The following is a complete
set of representatives of equivalence classes of irreducible V[ -modules.

(1) Vig, i (e), j= 1,...€,m, e=0,1,2.
(2) VLxx/ng#D)’ 0£X e (K= ,7=1,...,m.
(3) Vo (7)), i=1,2,j=1,...,m, e=0,1,2.

Loxp

We compute some fusion rules for V7 which will be used in Section 7.2.
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PROPOSITION 6.3.  Let A\, \', \? be nonzero elements of K' such that \' %,
A2, v,y 2, ne DY, i =1,2, and e,e1,e0 = 0,1,2. Then

VL0x<w1+D)(€1) x VL0x<w2+D) (52) = VLOx(w1+v2+D) (‘61 + 52)’ (6'4)

Vigwiren () X Vs, ain) = Vineiainy

2

VL X VL (66)

A2x(v24D) Z VLGt ri ooy iat a2 ey
=0

Al x(y14D)

2
VLAX(wHD) x VLAx(vMD) = ZVLOX(HHMD) (p) + 2VL>\X(71+’Y2+D)’ (6'7)
p=0

Vieoim (€1) X VLT(;ZD(TZ‘)[@] — VLT(;Z;”(TZ')[@'gl + &), (6.8)
Vi iin X VLTO’ZD(TZ)[a] - Vf{;jg”(#)[p]. (6.9)
p=0

PrROOF. We shall show (6.6). Restricting intertwining operators for Vi, ,
in Lemma 2.14 to V7| -modules, we have

2
Visiiim X Vine e 2 ZVL(A1+rj<x2)>x<w1+72+D)' (6.10)
Jj=0

For k =1,2, 7 € Z3, 0 # X3 € K, and 7> € Z,

VLo, )\ o VL (r)
IVZ@Z( T - @IVLTEBZ Vi " 7

Vi Vige o2, oty Vi 42

5eD
Iy~ ( VLx3x<w3+D> )g@]w ( VL(>\3773+5) >’
L&t L®L
VL Ve e seD Vi Vige e

e Vialo ()0 )= @ VLTéZS_é(Tk)[T]>

Vigion Vige,e seD Vigian Vige,e

as vector spaces by (6.2) and (6.3). By [11, Proposition 11.9] and Proposition 5.7,
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( VL(A1+Ti(x2))x(—yl+w2+D) ) < dimc IVT (VL()\1+1—.7'()\2))><(’Y1+72+D))
o \VL VL N Vegaoy VL

Al x(v1+D)

= Z dime Iy VLiri 02y 424 -1 (6.11)
Lo\ vy v,
ALl YLz 42

AZx(y2+D) (A2,42)

for 7 =0,1,2 and

w
dimc Iy~
1mgc VLOXD <VL VL>\2><(fﬂ+D))

Al x(y1+D)

< dimg Iy ( W ) _0 (6.12)
E\VL G Lixz 42y

)

for any irreducible V/ -module W 2% Vg
(6.10)—(6.12), we obtain (6.6).
The other formulas can be proved similarly. (I

0,1,2. By

i (A2 x(rL4y24D) 1 =

7. Modules of V_ .

In this section we shall study V , -modules for an arbitrary 7-invariant self-
dual K-code C' with minimum weight at least 4 and an arbitrary self-dual Z3-code
D.

Let N be an N-graded weak V/_ -module. Since N is a V/,-module, N is a
direct sum of irreducible V[;,-modules listed in Proposition 5.3. If N contains an
irreducible V/g,-module which is isomorphic to VL(A,’y) for a nonzero A\ € Kf and
7 € Z&, then Theorem 6.2 implies that N also contains an irreducible Vi ge-module
which is isomorphic to Vi, , since N isa V/  -module and D is self-dual. This
observation is important in the proof of Proposition 7.8. Thus, it is necessary to
assume D is self-dual.

Recall that for u € K C(p) is the K-code generated by p and 7(u) (cf.
Section 4). If u € K¢ has positive even weight, then

VEC(M)XO = VLTGN D VL(,L,O) (7'1)

as V/g.-modules. Since N is also a V[C(“)Xo—module for each p € C, using [39,
Theorem 2.1.2], (7.1), and the fusion rules for V], in Proposition 5.7, we can ob-
tain information about irreducible V/;,-modules contained in N (See Proposition
7.5 and Proposition 7.8 below). Thus, we first study N-graded weak VLTC(u)xo'

modules with some conditions for u € Kf of positive even weight in Section 7.1.
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Next, we shall classify the irreducible V , -modules and establish the rationality
of Vi _ in Theorem 7.10 in Section 7.2.

7.1. Properties of Vi~ -modules.
Throughout this subsection, £ and m are fixed even positive integers with
2 < m < /{. In this subsection we study N-graded weak VLTC(M)XO—modules with

some conditions for p € K of positive even weight. We deal with the case p =
(e™0"™) = (c,...,c,0,...,0) until Lemma 7.4. We have

V{ = V{@e S5 VL

C(cmol—m)x0

(7.2)

((em0t=m),0)

as V/g.-modules. We shall fix the following notation. Let W = @52 W°(i) be an
N-graded weak VL e omotm _,“module. Let M° = @52, M°(i) be a V/,-submodule
of W* such that M°(0) ¢ W°(0). Assume that M? is isomorphic to V,, ,, for
some nonzero A = (Ay,...,Ay) € K.

In Lemma 7.1 we shall describe the action of o(uov) (see [39, Definition 2.1.1])

on the top level of M° for some elements u,v € VL( T in

(cmot—m) o) C VLC(UWOZ*"”)XO
the decomposition (7.2). Since o(u o v)w = 0 for all elements w in the top level of
MP we shall obtain the relations (7.5) and (7.6) below, which play an important
role to get information about A in Lemma 7.4. With the help of the action of Gy,
Lemma 7.4 immediately induces Proposition 7.5.

For S C {1,...,¢}, set

S*={ie{l,....m}i¢8). (7.3)

Recall that for each * € K we assign B(z) € L+ by 3(0) = 0, B(a) = 32/2,
B(b) = By/2, and B(c) = B1/2. For j € K, we use 3*)(j) to denote the element
B(j) € L* in the s-th entry of (L)%, For p = (p;) € K and € = (¢;) € {1,-1}¢,
set B(p;e) = Zle €39 (p;). For example,

S a2 =3 @p(e) = B0 ™) 6).
i=1 i=1
We simply write 3(p) for B(p; (1,...,1)). For a € (L)%, set e(a) = . Set
Si(A)={ief{l,....m} | A; = j}

for j = a,b,c.
For a formal Laurent series p(z) = > ., p,@™ in one variable x and i € Z, set
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p()]as = pi- For p(w,y) = 3., 1nen Pama"y™ and i, j € Z, set p(z,y)
similarly. For homogeneous u,v € V, we shall use the following expression:

ziyl = Pij

wt u
wtu
ofwon) = Y (" PVt w0l e ()
r=0

The following lemma is the key result in this section.

LEMMA 7.1. (1) Let S be a subset of {1,...,m} with 1 < |S| < m/2. If
A #, (cm0™) or |S| < m/2 —2, then for j =0,1,2 and € = (&) € {1, —1}*, we
have

(Cies i) /2.8(2)) -S| ( m =28 +1

(2) Suppose A Z, (c™0°~™) or m > 4. Then, for e = (¢;) € {1,—1}* we have

2 mo (@) m
3 <<2i_1 iB;"/2,B(A)) + /2> —o. (7.6)

o m—+1

PROOF. Let S be a subset of {1,...,m} and set s = |S|. Let

(E5) v-re(Sh e )

=0 i=1 ji= €S ieS*
Then
2 . m ﬁ(z) ﬁ _ﬁ %)
u:ZTje<Z;>, v—ZTJ (Z 1 +Z 1 )
7=0 i=1 €S ieS*

by (2.15) and hence u and v are elements of V; , of weight m/2. We

C(cmot—m)yx
shall describe the action of
ke m/2
o(uov) = Z ( . >YWO (Y(u,a:)v,g;)‘ml,,,,y,wr,,,1 (7.7)
r=0

on the top level of M (cf. (7.4)). For j = 0,1,2, set
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oo m (2) . '
Q) = (om18s—m2s o (Z (2 iz 5jk /2)(—k) $k>e<25§1)>,

k=1 €S

o (™ 30 9y (—k
Q2 §m+185 (m—2s)/2 exp (Z (lel ﬂj;;l/ )( )(Ek)

k=1

X e(Z _ij(‘i) s 53('11 . 5a+2>

€S 1€ES*

oo m (2)
4 (lBmy(m=20)/2 oy (Z (> icn ﬁjzz/m(_k) x’“)

k=1

50 (i)
xe(Z if +Zﬁ”225”1> (7.8)

€S i€ES*

Using (2.11) we have

Y(u,m)v = Z(Qlj + QQj) (79)

and hence

2 m/2

22 (m/2)on PV | F—— (7.10)

7j=0 r=0

In the decomposition (7.2) we have Q19 4 Q11 + Q12 € Vs, ((2)) and Qa0 + Q21 +
Q22 € VL mgem, o, () since (B2 = Bj12)/2 = B;/2+ Bjv1, § = 0,1,2

By [36, Section 4], we see that the top level of MY is spanned by {e(A;e€) |
e € {1,-1}*}. We shall compute Z;”:/g (mr/z)YWo (Qlj,y)’zl*hyfmwfle(A;e),
j=0,1,2. A similar computation as [22, (8.6.9)] shows the following formula:
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YWO (Qlj7 y)e(A; 6)

_ gmisey, < Cmios eXp(i (i 5§;>/2)<—k)$k)e(z 5§i>)7y)e( Ase)

k=1 i€S

@ 2\ (S 857 /2,8(850))
= (Qme18s g mmt2s (T 6] ,ﬁ(A;e)><1+y)

X exp (i (2uies 0y )R ij(i))(k) y’“)

xexp(g((zﬂ“) y+x>k—(:§:)<—k>y’“))

= (2

x e<25§“>em;e). (7.11)

i€S
Setting
W= s p(i@esﬁ;’)( >m)
o (S (50 rear - (£ 5 )oom)
we have

Yivo (Q15,y)e(Ase)

_ i <<Z?11 ﬁg('l)/27 5<A’ €)>> w—m+28+ty*t+<2ies BJ(-i>,ﬁ(A;€)>
t

t=0

x we<25§”>em;e). (7.12)

i€S

Let r be an integer with 0 < r < m/2. To describe the first term of (7.10),
we need to investigate the coefficient of z1="y=™%"=1 in (7.12). First, we shall
discuss the case that there is a nonnegative integer ¢ such that 1 —r > —m+2s+t
and —m+r—12> —t+(> g Bj(i), B(A;€)). Note that if no such ¢ exists, then the

coefficient of ! ="y ~™*"1 in (7.12) is equal to zero since ¥e(>", g ﬁj(-i))e(A; €) €
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WO[[z,y]]. Since (£8;/2,£3;/2) € {£1,+1/2} for 0 < i,j < 2, we have 2s +
<ZieS 55’1)’5(A; €)) > 0 and hence

—-m+r—1>—t+ <Zﬁ§i),ﬁ(A;6)>

€S
2—m+28—1+r+<Zﬂ;i),ﬁ(A;€)>
€S
>—-m-+r—1.

This implies that 25 + (.50, B(Aj€)) = 0, t = m — 25 —r + 1, and the

r,,—m-+tr—1

coefficient of z' ="y “lin (7.12) is

i)
9m-+18s ) <ZZ 1 ﬁ /2 6 A 6
GOm0 /2,8050)) ( m—2s—r+1 (24"

€S
(7.13)

Next, we shall discuss the case that 1 —r < —m+2s+tor —-m+r—1< —t+
(Eiesﬁj(.i),ﬁ(A;e)) for all nonnegative integer ¢. Since Ve(} ;. ¢ ﬁj(-i))e(A;e) €
WO[[x,y]], the coefficient of z1~"y~™*+"~1 in (7.12) is equal to 0. If m—2s—r+1 >
0, then by setting to = m — 2s —r + 1, we have 1 —r > —m + 2s + tg and hence

-m+r—1< —t0—|—<Zﬁ§-i),ﬁ(A;e)>

€S

_m+2s+rl+<Zﬂj@,ﬂ(A;e)>.

i€S

Thus, in this case 25 + (3 _,cg 5§i)7ﬁ(A;e)> # 0 and hence the coeflicient of
=y =mFr=1 in (7.12) is also given by (7.13). By (7.13) and (B(A!), B(\%;¢)) =
(B(ALs€), B(A2)) for A1, A2 € K™, we have obtained

m/2 m/2
Z( - )YWO(Qlj7y)|zlT$y7n+7‘le(A;€)
r=0
9m—+18s )
=GO B B(a) -
B mf2\ (S0 8 /2.8
=1
() (R ) (X et
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9m-+18s )
=GO B ).

y (<zz’il e /2, 8(0)) + m/Q)e(Z 5§i>>e( Aco) (7.14)

m—2s—+1 =
for 7 =0,1,2

We next investigate Z:n:/g (mf)YWo (ng,y)hjl_r
0,1,2. We expand y; as

m (%)
92_] ?S))én—i-lSs (m— 29)/2<1+ (Z J;l)( 1)1“")

S miae(Aie) for j =

i=1
;" B — 57
J o e ]
X e( } 5 + Z B >
= ieS*
m g0
i=1
1) 5 6
J M
Xe(. D )
€S ieS*

If 0 < s <m/2—2, then (m — 2s)/2 > 2 and hence Qy; € 2?W/{[z]]. This tells us
that

m/2

m/2
Z ( r/ )YWO (ng,y)’zl*hyﬂnwfle(A;e) =0. (7.15)
r=0
In the case of s = m/2 — 1, m/2, we do not need explicit expressions of

Z:%:/g (mT{?)YWO (Q25,9) |x1,r ZJ,,,W_le(A; €) to obtain (7.5) and (7.6).
Let pryo: W2 — MY be a projection. By (7.4), (7.9), (7.14), (7.15) and [39
Theorem 2.1.2], in the case of 0 < s < m/2 — 2, we have

0 =pryoo(uov)e(A;e)

_ omtiss N ((Ea ) /2,5(8)) +m/2
= 536 Z Cies By /2,8(A),—s

m—2s+1
7=0

x e<Zg§”>>e(A;e). (7.16)

€S
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In the case of s =m/2 — 1, we have

0 =pryoo(uov)e(A;e)

(<z?11 e /2,8(A)) + m/2>

9m+185
Zé Sies €iBS)/2,8(A)),—m/2+1

j=0 3
X e(ZﬁJ@>e(A €
€S
2 m/2 m/2
+pI’MOZZ< )on QQJ, )|x1*T,y*m+Tfle(A;6)' (717)
7j=0 r=0

In the case of s = m/2, we have

0 = pryoo(uov)e(Ase)

m ()
mt-18s €i3;
25 zeseﬁ()/Qﬁ(A)>—m/2(<Z 5 A(A) ) +m/2

7=0 i=1
e(Z@(‘i))e(A;e)
ies
2 /2 m/2
+prMozz( )on (19) [y e(Bi0) (7.18)
j=0 r=0

If 1 <5 <m/2—2, then (7.5) follows from (7.16) since e(}_, ¢ ﬁéi))e(A;e),
e(Des ,Bli))e(A; €), e(ziesﬂ;))e(A; €) are linearly independent. If m > 4, then
(7.6) follows by taking S =} in (7.16).

The map f(-,z) defined by f(u,z)w = prye(Ywo(u,z)w) for v €

in (7.2) and w € Vi, is an element of Iy~ ( Via0) ).

%5
VL(( mol—m) o) VL(A,O)

((emot=m),0)

Suppose A #, (¢™0‘~™). Then, by (5.44) we have

. VL
dimg Iy, (V (4.0 v =0
T
L(emot—my gy " L(a,0)

and hence in (7.17) and (7.18) the second terms are zero:
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2 m/2
2
prMO Z Z (m/ )YWO (92]7 y) ’I1—7~7y77n+7‘71e(A; 6) = 0

- T
7j=0 r=0

Moreover, if 1 < s < m/2, then (7.5) follows from (7.16)—(7.18). Taking S = ) in
(7.16)—(7.18), we have (7.6). O

REMARK 7.2. In the case of £ = m = 2, consider the vertex operator algebra
VLc(eopxo: We see that Vi .o (1) = {u € VL (e | Tu = (u} is an

irreducible VLTC((C C))Xo—module and that

VLC((C,C))XO(I) = VL(o,o)(l) @ VL((C,C),O)

as V/z,-modules. Note that the top level of V., is a subspace of the top level
of VLo (e.eyxo(1) and is a subspaces of (VL. . .).o)1- However, we have

2 (1) ()

(B 12+ 8 /2, 8((c, ) + 2/2

> )

_ (<6§”/2+ﬂ§2’/2, M2+ 87 /2) + 1)
3

. <<ﬁ§”/2+ﬂ§2>/2, §”/2+,6§2>/2>+1>

§=0,2 3

_ (2—;—1) +2(—13—|— 1)
=1#0.

Hence formula (7.6) does not hold in this case.

LEMMA 7.3.  Assume that A #, (c™0°"™). For j = a,b,c, the following
assertions hold.

(1) 1 m/2 < IS,A)] < m, then |S;(A)] = m/2, [SK(A) = 0 for all k # ],
and |S;(A)] is an even integer. In particular, {(k™0*"™),A)x = 0 for all
k=a,b,c.

(2) If 1 < [S;(A)] < m/2, then 3 5 crnp eynry [Sk(D)] is an even integer. In
particular, {(j70°~™), A)x = 0.

PROOF. Suppose m/2 < |S;(A)] < m. We use the notation defined just
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after (7.3). Take S C S;(A) such that [S| = m/2 and set e = (¢;) € {1,—1}* by

(7.19)
1 otherwise.

{—1 if 7 € S](A),
€ =

Then, <Zi€$’ eiﬁ(i)(j),ﬁ(A» = —[S] and by (7.5),

_((BUG™0 ™)), B(A)) 4+ m/2
0= ( m—2|S|+1 >

_ (_|Sj(A)| = Dke{abeh ks [OR(D)]/2+ m/2>
- m—2-m/2+1

=—S;(A) = > 1Su(A)/2+m/2

ke{ab,c} k]

<-m/2— > |Sk(A)|/2+m/2

ke{ab,c} k]

D YN

ke{a,b,c} k]

Thus |S;(A)| = m/2 and |Sk(A)| =0 for all k € {a,b,c}, k # j. By (7.6),

E™0):€), B(A m/2
o= 3 (O ) 2y

m+1
k=a,b,c +

- <—|5j(A)+7”fL/2>Jr 3 <Sj(A)I/2+m/2)

ml ke{a,b,c} k] m1

()
L)

Hence |S;(A)| = m/2 is even. In particular, ((k™0‘"™), A)x = 0 for k = a,b,c.
Therefore, (1) holds.

Suppose 1 < [S;(A)] < m/2. Set € = (&) € {—1,1}¢ by (7.19). Then
(Sies ) 6B (7), BA)) = —1S5(A)]. By (7.5), we have
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BGTO Y ), BA)) + )2
0‘( m—218;(A)] +1 >

_ <—|Sj(A)| - Zke{a,b,c},k;ﬁj |Sk(A)]/2 + m/2>
m —2|S;(A)] +1 ’

Since [Sj(A)] < m/2, Yyciaper sy [Se(A)] is an even integer.  Hence
{(j™0=™), A)x = 0. This proves (2). O

LEMMA 7.4. (1) ((¢™0"™),A)x = 0.
(2) If m >4, then |supp(A)N{Ll,...,m}| < m.

PROOF. We may assume suppy(A) N{1,...,m} # (). First, we shall show
that ((¢™0"™),A)x = 0. If A =, (¢™0°~™), then the assertion is clear from
the definition of (-, -)x. Assume that A #, (¢™0°~™). We may also assume
that |S.(A)] = 0 and 0 < |S.(A)],]S5,(A)] < m/2 by Lemma 7.3. If 1 <
1Sa(A)], IS(A)], then [Sy(2)] = [Sy(A)|+|S.(A)] and [Sa(A)] = [Sa(A)|+|S(A)
are even integers by Lemma 7.3 (2). Hence, we have ((c™0°"™), A)x = 0 in this
case. Suppose [S,(A)] = 0. Then |Sp(A)| > 0 since suppi(A) N {1,...,m} # 0.
Set € = (¢;) € {—1,1} by (7.19) with j = b. Note that (_|S”(n§}r‘£"m/2) = 0 since
1< |Sy(A)] < m/2. By (7.6)

_ (B(G™0"™)5€), B(A)) +m/2
0= Z ( m+1 >

j=a,b,c

_ (—Sb(ﬂ?)rimm) Py <Sb(A731|/i—1km/2>

j=a,c

]

Hence |Sy(A)| is an even integer. In particular, ((¢™0"™), A)x = 0. In the case
of |Sy(A)| = 0, we can show that ((¢™0"™), A)x = 0 similarly.

Next, we shall show that if m > 4 then |supp,(A)N{1,...,m}| < m. Suppose
by contradiction that | supp (A)N{1,...,m}| = |S.(A)|+|Ss(A)|+|S.(A)| = m.

Case 1: Suppose |Si(A)| = m for some k € {a,b,c}. Setting e = (1,...,1) in
(7.6), we have
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im0, B(A m/2
0= % ((ﬁ((] ), B(A)) + /)

Zabe m—+1
_ (<5b((km0€72)jrﬁl(A)> + m/2> N g:; (<5((jm0e_72)fl(ﬁ)> + m/2>
_ <m+m/2> < mﬁ:—lm/2>
= (") o

This is a contradiction.

Case 2: Suppose |Si(A)| < m for all k& = a,b,c. Note that (c™0"™) #, A
in this case. There exists j € {a,b,c} such that 1 < |S;(A)] < m/2 since
suppi (A) N {1 om} # 0. Set e = (¢) € {-1,1}¢ by (7.19). Then
(Ciesa) B ) B(A)) = =[S;(A)]. By (7.5), we have

(7m0 ™5 ), 5(A)>+m/2>
—2\5( )I+1

o- ("
( = Dke{abc} kg [Sk(A )/2+m/2>
-(

m—2[S;(A)| +1

—15;(A —|5;(A )|)/2+m/2>
m— 2\5( ) +1

TN
- <m—2|sj<A>| + 1> #0.

This is a contradiction. Therefore, we conclude that wtx(A) < m. O

PROPOSITION 7.5. Let i = (u) be a nonzero element of K' such that
wtc(p) is even and wti(p) > 4. Let W = @X W (i) be an N-graded weak
Lotuyxo-Module. Let M = DM (i) be an irreducible Vs, -submodule of W such
that M(0) C W(0). Assume that M is isomorphic to VL, , , for some nonzero
A = (Ag) € K. Then {u, A)x = 0 and |suppy (i) Nsuppy(A)| < wc(p).

PROOF. There exists g € Gy such that g(u) = (¢™0"™), where m =
wtic(u). Consider a vertex operator algebra Ve oo a0d a Vi = -module
Wog~t defined by Wog~! = W as vector spaces and Yyyog-1(u, z) = Yiy (97 u, z)

foruevy, . Notethat Mo gt is a V/g,-submodule of W o g~* which is
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isomorphic to Vg, ., 0 - Since g is an automorphism of KCt, it is sufficient to show

that (g(n), 9(A))x = ((€™0°™), g(A))x = 0 and |suppic(9(A))N{L,...,m}| <m
for Vgg(c(“))xo and a Vgg(c(“))xo—module W o g~!. These results hold by Lemma

7.4. O
7.2. Modules of V[

4 .
In this subsection we shcaTIDclassify the irreducible V7 -modules and estab-
lish the rationality of Vi _ for arbitrary 7-invariant self-dual K-code C' with
minimum weight at least 4 and arbitrary self-dual Zs-code D.
For any nonzero p € K¢ of even weight and any self-orthogonal Zs-code D,
we have

= VLOXD (0) eVL (720)

LTc(u)xD XD
as V[, -modules. The following lemma will be used in Lemma 7.7 and Proposi-
tion 7.9.

LEMMA 7.6.  For any nonzero u € K° of even weight and any self-orthogonal
Z3-code D, we have Vi, %3 =Vicioxn ™ (7.20).

wXx D wXx D

PrROOF. We may assume that g = (¢™0°"™), m > 0 by the action of Gy
(see Proof of Proposition 7.5). Then the assertion follows from (7.9). O

For the remainder of this paper, C' is a T-invariant self-dual K-code of length
£ with minimum weight at least 4 and D is a self-dual Z3z-code of the same length.
Let C=_ be the set of all orbits of 7 in C. Note that

‘/LCXD(‘(_:)g‘/LOxD(S)69 @ VLxxDv 6207172
0£MEC—,

as Vi -modules by Lemma 2.13.
By Proposition 6.3 and Lemma 7.6, the same argument as in the proof of [26,
Theorem 5.4] shows the following lemma.

LEMMA 7.7.  Let (N',Y') and (N?,Y?) be irreducible Vi -modules and
let € € Z3. Suppose for each i = 1,2, there is a V]g,-submodule of N? which is
isomorphic to Vi, , o (€). Then, N' and N* are isomorphic V[ -modules.

As it was mentioned at the beginning of this section, we need to assume that
D is self-dual to show the following proposition.

PROPOSITION 7.8.  Let N be an N-graded weak V[,  -module which has a
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Vi se-submodule isomorphic to Vi, ., for some nonzero A € K¢ and v € Z&. Then
there exists a Vg, -submodule M of N which is isomorphic to VL, o (€) for some
€ € Zsz. Consequently, there exists a VI -submodule of N which is isomorphic to

Vioxp(€). The VI  -submodule of N generated by M is isomorphic to VL., p,(€).

PROOF. Let W! be an irreducible V] ge-submodule of N which is isomorphic
to Vp, ., for a nonzero A € K* and v € Z§. Since N is a Vi, p-module, v € Dt =
D by Theorem 6.2 and consequently, there exists a V/;,-submodule W? of N which
is isomorphic to Vi, .

Suppose for any € € Z3, there is no V/,-submodule of N which is isomorphic
t0 Vi (€). Let N' = ®p2 (N'(n) be the V[ _ -submodule of N generated by
W?2. Note that every irreducible V] se-submodule of N1 is isomorphic to VL(%O)
for a nonzero A! € K by Proposition 6.3 and the assumption. Let M = &2 M (n)
be an irreducible V/,-submodule of N' such that M (0) C N*(0). There exists a
nonzero A € K¢ such that M is isomorphic to VL@‘O) as V] g,-modules. Since N1lis
a VLTCWXO—module for all 4 € C, we have (u, A)x = 0 by Proposition 7.5 and hence
A € C*+ = C. By Proposition 7.5 again, wtx(A) = |suppx(A) Nsuppx(A)] <
wti(A). This is a contradiction. Thus, there exists an irreducible V/4,-module
M isomorphic to V,, o (¢) for some € € Zs. By Proposition 5.3 and Theorem 6.2,
the V7 -submodule of N generated by M is isomorphic to VL, ,(€).

Let N? be the V[, ,-submodule of N generated by M. By Proposition 6.3,

N? gVLOXD(E)@ @ Virso
0#NEC=,

as V[ -modules (cf. Proof of Lemma 5.2). Since any nonzero V_  -submodule
of N2 must contain Vr,, ,, (¢) by the argument above, N? is irreducible. By Lemma
7.7, N*? is isomorphic to Vi, , (¢) as V7 -modules. O

PROPOSITION 7.9.  Let N be an N-graded weak V[ _ -module. Suppose N
has a V], -submodule M which is isomorphic to VLTG;’Z (79)[e] for some n € Z& and
€ € Zz. Then M is a V[ _  -submodule of N which is isomorphic to VLTC’(lD (9)[e]-

PROOF.  Note that the V[ -submodule of N generated by M is isomorphic
to VLT(;SD(Ti)[E] by Theorem 6.2. Take any nonzero A € C' and consider a vertex
operator subalgebra V; of VI . Let N' be the V[ -submodule of N

C(M)xD CcxD C(A)xD
generated by M. Note that for e; € Z3 with €1 # ¢, the difference of the minimal
eigenvalues of w; in VLTU’SD (19)[e1] and in VLTO’SD(Ti)[E] is not an integer, where w
is the Virasoro element of VLTcme' By Theorem 6.2 and Proposition 6.3, N is

a direct sum of V7 -modules, each of which is isomorphic to VLTO’SD (7%)[g]. We
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write N = @je s M7, M7 = VLTO’SD(Ti)[E]. We can take M7t = M for some j; € J.
For each j € 7, let ¢;: M7 — VLTO’SD(Ti)[E] be an isomorphism of V7 -modules
and let pr;: N' — M7 be a projection.

We want to show that |J| = 1. Suppose J contains at least two elements
and take jo € J, jo # j1. Forany j € J, v € Vi, ., and w € M, define

Vigwp (Tl
Jitv.2)w = (b (Y (v )w)). Then, f; € Iy, (a7 ). Note
AxD YLoxp
VT,O Ti
that at most one f; is not zero since dimc Iv; ( LOXDT(O )M_ ) =1 (cf. [36,
0OxD VkaD VLéxD(TI)[s]

Proof of Lemma 5.6]). Since N is generated by M, we have f;, # 0. Consequently,
J ={j1,j2} and f;, = 0. Namely,

N = M @ M2

and Vi, , - M7 = M7, For any k = 1,2, v € Vp, ,, and w € M2, define
VIO ()]
fa,5. (v, x)w = @j, (prjk(YN(v,x)w)). Then, f2;, € Ivr ( Loxp ' )

LoxD \ VL, p Vigo p(m9lel

By Lemma 7.6, we have

VL/\XD M7 = VLAXD : (VLAXD 'Mjl) = (VL/\XD : VLAXD) - M

= (VgoxD @ VL)\XD) ' Mjl = Mjl @ Mj2

Hence f3 ;, and fs ;, are linearly independent (cf. [36, Proof of Lemma 5.6]). This
7,0 Ti
contradicts the fact that dimc Iy, ( Vigun! )M_ ) =1
oxp 0 ()]

VLyxp VLT’D
Therefore, M is a V[ _ _-submodule of N. By Theorems 3.13 and 6.2,

VLTC’(iD(Ti)[E] = VLTO’SD(Ti)[a] as V[ -modules. The same arguments as in [28,

Lemma C.2] can show that any irreducible V[, p-module which is isomorphic to
LT(;(:D (7")[e] as V[, -modules must be isomorphic to VLTC’gD(Ti)[E]. Hence the

assertion holds. O

THEOREM 7.10. Let C' be a T-invariant self-dual KC-code of length ¢ with
minimum weight at least 4 and let D be a self-dual Zs-code of the same length.
Then V[ . 1is a simple, rational, Ca-cofinite, and CFT type vertex operator al-
gebra. There are exactly 9 equivalence classes of irreducible Vi -modules which
are represented by the following ones.

(1) Vig,p(e), e=0,1,2.
(2) V22 (r)[e], i=1,2,6 =0,1,2.
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PrROOF. The simplicity of V7 _  is a consequence of [17, Theorem 4.4].
Since V7, is a direct sum of finitely many irreducible V= -modules, V/ _
is Ca-cofinite by [5]. The classification of irreducible V_ -modules follows from
Propositions 7.8 and 7.9.

We shall show that V[  is rational. Let N be an N-graded weak V[ _ -
module. Let M be the sum of irreducible V7 -submodules of N, each of which

is isomorphic to any of V.., (¢), VLT()’SD(Ti)[E], € € Zs, i = 1,2. We denote by
W the V[ _ -submodule of N generated by M. By Propositions 7.8 and 7.9, W
is a completely reducible V7 -module. If the V[ _  -module N, /W is not zero,
then N/W has a V[ -submodule isomorphic to one of Vi, ,(€), VLTO’SD(Ti)[e],
€ € Z3, i = 1,2 by Propositions 7.8 and 7.9. This contradicts our choice of W.

Hence N = W. This implies that V/_  is rational. O

REMARK 7.11. In [24], it is shown that there exist a K-code C of length
12 and a Zgz-code D of the same length, which satisfy the conditions in Theorem
7.10, and such that Loy p is isomorphic to the Leech lattice A. In this case 7
corresponds to a unique fixed-point-free isometry of A of order 3 up to conjugacy
(cf. [6]). Hence, as a special case of Theorem 7.10, we obtain the classification of
irreducible modules, the rationality, and the Cy-cofiniteness for V.

REMARK 7.12. For ¢ = 4, let C' and D be a K-code and a Zgz-code with
generating matrices

o O o e
o O o e
e OO

respectively. It is clear that C' is 7-invariant self-dual and D is self-dual. The
lattice Loxp is a v/2 (Fg-lattice) and Loy p is an Eg-lattice. Note that D is the
[4,2, 3] ternary tetra code.

We can not apply Theorem 7.10 to Vi, , since the minimum weight of C
equals 2.

8. List of Notations.

Cn exp(2my/—1/n).

(-, ) the ordinary inner product of the Euclidean space RY.
L V2(Ag-lattice).
Lt the dual lattice of L.

081, B2 a Z-basis of L such that (81, 81) = (B2, 02) =4 and (51, B2) = —2.
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fo = —P1 — Pa. . N

the basis of L' defined by 3; = 31/2 and 32 = (31 — 32)/6.

an isometry of L induced by the permutation 5y — (3 — By — [1.
the direct product of ¢ copies of the group (7) generated by 7.

T = (1,...,7) € Hy (For simplicity of notation, we denote
(1,...,7) by 7 also).

{(Til,...,T“_l,l) € Hy | 21,.-.,00—1 € Z}

H; x &y, where &, is the symmetric group of degree £.

K ={0,a,b,c} = Zy X Zs is the Klein’s four-group.

a code over .

a code over Zs.

suppi(A) = {i | \i # 0} where A = (A1,...,\) € K*.

suppz, (v) = {i | v # 0} where v = (1, ..., %) € Z.

the cardinality of suppy(A).

the cardinality of suppy, (7).

N\ e = Zle \ipti € K where A = (\;), = (u;) € KL

(7,8)z5 = S25_1 7i0; € L3 where v = (;),6 = (§;) € Z§.

the KC-code generated by A € K¢ and 7(\).

the Zs-code generated by v € Zg.

B(0) = 0, B(a) = B2/2, B(6) = fo/2 B(c) = B /2.

L&D = B(x) +i(—F1 + f2)/3 + L where x € K and i € Zs.
Lixyy = L) @ oo @ L) ¢ (LH)® where A € K! and
v € Z§.

Lpxg = Uxerre@Lrq-

a subgroup in the center of (ij-)‘Z generated by ﬁgz)(/ig%))’l, 1<

r,s < {, where Iiz())sﬁ) denotes k3¢ in the s-th entry of (L1)*.
Ko={ax,7(a)"!|ac fJCxo,T}-
K={ax,7(a)"'|ac ﬁCXD7T}.
irreducible 7i-twisted V7., ,-module where n € D+ and i = 1, 2.
K= {0,1,2,a,b,c} (cf. Section 5).
suppe(A) = {i | A € {a,b,¢}} where A = (A1,..., ) € K°.
the cardinality of suppg(\).
X, = {VLm,j)(i) if i =0,1,2,

VL(M) ifi = a, b, C.
Xeny = @0 Xe, where & = (&,...,&) € Kf and v =
(M, %) € Z.
P(Vio)(€)) = {6 = (&) € Z5 | iy & = = (mod 3)} where
v € Z§ and ¢ € Zs.
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P(VLi.,) P(VL(A,A{)) = {¢ € {0,1,2,¢c}" | suppg(§) = suppx(A)} where

0# X €Kt and v € Z§.

B9 (4) B (4) denotes B(j) € L in the i-th entry of (L)’ where j =
a,b,c.

B(p;e) B(p;e) = Zle elﬂ(i)(pi) where p = (p;) € K and € = (¢;) €
{17 _1}€'

B(p) B(p) = B(p; (1,...,1)).

e(a) e(a) = e* where o € (L1)®°.

S S*={ie{l,...,m}|i¢&S} where S is a subset of {1,...,¢}.

S;i () S;(N)={ke{l,...,m} |\, =j} where A € K and j = a, b, c.
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